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“What raises us out of nature is the only thing whose nature we can know:

language. Through its structure autonomy and responsibility are posited for

us. Our first sentence expresses unequivocally the intention of universal and

unconstrained consensus.”

-Jurgen Habermas.

1 Introduction

The current paper introduces communication between agents in a collective choice setting.

We consider a simple setup in which a group of agents chooses one out of two alternatives.

Unlike most extant models of collective decision-making (e.g., Austen-Smith and Banks

[1996], Feddersen and Pesendorfer [1996, 1997]), we analyze a setting in which agents can

communicate before jointly choosing an action.

Our inquiry is motivated by the observation that most group decision processes contain

some form of communication phase before collective choices are made. For example, trial

jurors converse before casting their votes, hiring committees convene before making their

final decisions, and top management teams hold meetings before determining their firm’s

investment strategies.

The goal of this paper is twofold. First, we demonstrate that communication renders a

large class of voting rules equivalent in terms of the sets of sequential equilibrium outcomes

they generate. This serves as input to the second part of our investigation in which we

analyze a mechanism design problem where homogeneous agents are capable of investing in

information acquisition. The designer chooses the size, communication system, and voting

rule in order to maximize the (common) expected utility of the collective decision. Our

second goal is to characterize the solution of this mechanism design problem.

The characterization of the optimal mechanism yields a few interesting insights: 1. The

optimal size of the decision panel is bounded and does not necessarily coincide with the

maximal number of agents who can be induced to purchase information in equilibrium; 2.
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In order to provide strong incentives for information acquisition, the optimal device does

not necessarily utilize all the information that is reported; and 3. The optimal mechanism

exhibits many intuitive regularities with respect to the comparative statics of the problem:

e.g., the expected social value is monotonic in the cost of information and accuracy of

private information.

More formally, in the first part of the paper, we consider the class of threshold voting

rules parametrized by r = 1, ..., n. Under voting rule r, the first alternative is chosen if and

only if at least r agents vote in favor of it. Our first main result illustrates that regardless

of the structure of private information, when players can communicate before casting their

votes, voting rules 2, . . . , n − 1 are identical, in the sense that they all yield the same set
of sequential equilibrium outcomes.

The reasoning for our equivalence result is as follows. Take an outcome implementable

with communication under voting rule r = 2, ..., n − 1. The revelation principle (see My-
erson [1982], Forges [1986]) implies that this equilibrium outcome can be implemented

with a communication device in which players truthfully reveal their types to an impar-

tial mediator who disperses recommendations to all players. Each profile of recommended

actions corresponds, through r, to one of the two social alternatives. Consider then a

modification of this device which prescribes to each profile of private reports an identical

recommendation to all players matching the social alternative that would have resulted in

the original device. Since 1 < r < n, any unilateral deviation will not alter the outcome,

and so equilibrium incentives are maintained. In particular, the modified device generates

an implementable outcome coinciding with the one we started with. Moreover, since all

recommendations are unanimous, this remains an equilibrium outcome for any voting rule

r0 = 2, ..., n− 1. Our equivalence result then follows.
As it turns out, all equilibrium outcomes can be implemented with only two rounds of

unmediated public communication (transmitting information and dispelling recommenda-

tions).
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We also note that with voting rules 1 and n (unanimity) it is possible to implement

only a subset of the outcomes that can be implemented with the “intermediate” voting

rules r = 2, .., n− 1.
The equivalence result is key to the second part of the paper in which we study mech-

anism design with information acquisition. We consider the standard voting setup (see

Feddersen and Pesendorfer [1998] or Persico [2002]). There are two possible states of the

world and two alternatives that need to be matched to the states. All agents have the

same utility function and a common prior on the state of the world. At the outset of the

game, each agent can pay a positive cost and receive, in return, a signal of accuracy p > 1
2

(i.e., the signal reports the realized state of the world with probability p). Players can then

communicate with one another after which they cast their simultaneous votes. The model

can serve as a parable to the decision making process of a jury (each juror decides whether

to attend the testimonies or not, the jurors then meet to discuss the case, after which

they simultaneously cast their votes), an advisory committee (each member invests in in-

formation and gives an advice following conversation with the other committee members),

etc.

The first part of the paper implies that the designer’s choice of voting rule does not

affect the collective outcomes and that she can concentrate on communication devices that

give only unanimous recommendations.

For any fixed number of agents, the optimal scenario, which we term the first best,

entails all agents purchasing information and reporting truthfully. This information is then

utilized in a statistically efficient way. That is, for every profile of signals, the optimal

device calculates, using Bayes’ rule, the probability that each state of the world has been

realized and chooses the optimal alternative.

Unfortunately, for large numbers of agents, the marginal contribution of each signal

becomes quite low and, since the cost of information is positive, a free rider problem

disables the first best scenario from constituting an equilibrium.
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The benevolent designer faces two options. The mechanism can simply induce a small

number of agents to purchase information and make the best statistical use of it. Alterna-

tively, the designer can alleviate the free rider problem by using an aggregation rule which

is not statistically efficient, thus increasing the incentives to acquire information. This ap-

proach involves a compromise between achieving more information in the population, but

creating intentional distortions in the interpretation of the collective signals.

Our theoretical results indicate that the optimal design employs both approaches. One

can achieve the optimal expected social value by using distortionary mechanisms. These

are devices that induce more players to acquire information than would be possible if the

mechanismwere using statistically efficient rules in creating recommendations. Nonetheless,

the optimal mechanism does not always exhaust the number of agents that can be induced

to purchase information. That is, the optimal size of a panel of decision makers may be

smaller than the maximal number of players who can be made to invest in information in

equilibrium.

The mechanism design problem described so far depends on essentially three parame-

ters: a preference parameter indicating the relative preference of matching alternative to

each state (in the terminology of the jury literature, this is the weight each juror puts

on convicting the innocent relative to acquitting the guilty), the accuracy of the private

information, and the cost of private information.

There are a few interesting insights regarding the comparative statics of the mechanism

design problem. As was already mentioned, the expected (common) utility of the optimal

mechanism is decreasing in the cost of information and increasing in the accuracy of avail-

able signals. It also appears that as the cost of information increases, the optimal decision

panel decreases in size. Finally, the optimal committee size is not monotonic in the signals’

accuracy.

The paper is structured as follows. Section 2 overviews some of the related literature.

Section 3 describes the general setup of collective choice with communication and provides
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the comparison between different threshold voting rules. Section 4 analyzes the mechanism

design problem. Section 5 concludes. Most technical proofs are relegated to the Appendix.

2 Related Literature

The current paper is linked to a few strands of literature. First, the paper contributes

to the literature on mechanism design with endogenous information. While most of this

literature deals with auction and public good models (see, e.g., Auriol and Gary-Bobo

[1999], Bergemann and Välimäki [2002], and references therein), there are a few exceptions

focusing on collective decision-making.

Persico [2002] is possibly the closest paper to ours. He considers jury decisions and

allows the jurors to acquire information before voting. In contrast to our model, the jurors

are not allowed to communicate. Persico [2002] analyzes the problem of the designer who

can choose the size of the jury and the voting rule. While the tension between giving

incentives to acquire information and aggregating information efficiently comes through

in his framework, the optimal mechanism is very different from ours. In particular, the

distinction between different voting rules plays a crucial role in Persico [2002] but becomes

irrelevant in our context once we allow for communication.

Li [2001] considers a committee of a fixed size and allows each player to invest in the

precision of her private signal. Information is a public good and, thus, there is an insufficient

effort to gather information. To alleviate this problem, it is optimal to introduce statistical

distortions to the decision rule. In Li [2001] investments as well as signals are publicly

observed and thereby verifiable. As we show below, in our setup verifiability assures that a

non-distortionary rule is optimal when the committee is large enough. It is in environments

in which investment and acquired signals are not transparent (such as in the case of jury

decisions, hiring committee decisions, etc.) that distortionary devices end up being optimal.

Mukhopadhaya [1998] restricts attention to majority rule elections and compares com-

mittees of different sizes. Players decide whether to acquire information or not before voting

5



(and communication is prohibited). Mukhopadhaya [1998] shows that the quality of the

decision may worsen when the size of the committee increases.

Our paper is also connected with a few recent attempts to model strategic voting with

communication. Coughlan [2000] adds a straw poll preceding the voting stage. He shows

that voters reveal their information truthfully if and only if their preferences are sufficiently

close. Doraszelski, Gerardi and Squintani [2002] study a two-player model with commu-

nication and voting. Preferences are heterogenous (not necessarily aligned) and private

information. They show that some, but not all, information is transmitted in equilibrium,

and that communication is beneficial.

In a similar vein, there has been some experimental work on voting with communica-

tion. Guarnaschelli, McKelvey, and Palfrey [2000] constructed an experiment replicating

Coughlan’s [2000] setup. They noted that during deliberations, voters tend to expose their

private information but not to the full extent as predicted by Coughlan’s [2000] results.

Blinder and Morgan [2000] conducted experiments in which groups were required to

solve two problems - a statistical urn problem and a monetary policy puzzle. The groups

could converse before casting their votes using either majority rule or unanimity. They

found no significant difference in the decision lag when group decisions were made by

majority rule relative to when they were made under a unanimity requirement.

The importance of communication in political thought has been acknowledged exten-

sively. Habermas [1976] was one of the first to lay foundations for a universal theory of

pragmatism and direct attention to the importance of communication as foundations for

social action. His theory served as a trigger for work on political decisions when commu-

nication is possible amongst candidates and electors. In fact, the theory of deliberative

democracy is a source of an abundance of work in political science on the effects of commu-

nication on how institutions function and, consequentially, should be designed (see Elster

[1998] for a good review of the state of the art of the field). The research presented here

provides an initial formal framework to study some of these issues.
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3 Communication and Voting

A group of n > 3 individuals has to select one of two alternatives. We use the terminology
of jury models and denote the alternatives by A (acquit) and C (convict). Each player j

has a type tj which is private information. We let Tj denote the set of types of player j,

and assume that Tj is finite. T =
Qn
j=1 Tj denotes the set of profiles of types, and p is the

probability distribution over T. A player’s utility depends on the profile of types and the

chosen alternative. Formally, for each player j there exists a function uj : {A,C}×T → R.

The existing models of strategic voting assume that there exists an unknown state of

the world (for example, the defendant is either guilty or innocent). Each player receives a

signal which is correlated with the state. Conditional on the state of the world, signals are

independent across players. Moreover, all players have a preference parameter, which may

be either common knowledge or private information. The utility of a player is a function of

the state of the world, her preference type, and the chosen alternative. We consider a more

general model than the standard voting setup in that we do not impose any restrictions

on the set of possible types. In particular, we allow for correlation of the signals across

individuals.

The individuals select an alternative by voting. Each player can vote to acquit, a, or to

convict, c.We let Vj = {a, c} denote the set of actions available to player j, and V = {a, c}n

the set of action profiles. Under the voting rule r = 1, ..., n, the alternative C is selected if

and only if r or more players vote to convict.

Given a voting rule r and a profile of votes v, we let ψr (v) denote the group’s decision.

Formally, ψr : V → {A,C} is defined as follows:

ψr (v) =

½
A if | {j : vj = c} | < r,
C if | {j : vj = c} | > r.

The voting rule r defines the following Bayesian game Gr. Nature selects a profile of

types in T according to the probability distribution p, then players learn their types, after
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which they vote simultaneously. If the profiles of types and actions are t and v, respectively,

player j obtains uj (ψr (v) , t) .

We are interested in comparing different voting rules when players are allowed to com-

municate before casting their votes. We therefore add cheap talk to the game Gr. A cheap

talk extension of Gr is an extensive-form game in which the players, after learning their

types, exchange messages. At the last stage of the game, the players vote. Payoffs depend

on the players’ types and votes, but not on their messages. For the moment, we also assume

that there exists an impartial and exogenous mediator who helps the players communicate

(for a general definition of cheap talk extensions to arbitrary games see Myerson [1991]).

A strategy profile σ of a cheap talk extension of Gr induces an outcome, i.e., a mapping

γσ from the set of types T into the interval [0, 1]. γσ (t) denotes the probability that the

defendant is convicted when the profile of types is t (and the players adopt the strategy

profile σ). We let Γr denote the set of outcomes induced by Bayesian Nash equilibria of

cheap talk extensions of Gr. The notion of communication equilibrium (Myerson [1982],

Forges [1986]) allows us to characterize the set Γr. A mapping µ from T into ∆ (V ) , the

set of probability distributions over V , is a communication equilibrium of Gr if and only if

the following inequalities hold:1

P
t−j∈T−j

p (t−j|tj)
P
v∈V

µ (v|t)uj (ψr (v) , t) >
P

t−j∈T−j
p (t−j|tj)

P
v∈V

µ
¡
v|t−j, t0j

¢
uj (ψr (v−j, δ (vj)) , t)

∀j = 1, ..., n, ∀ ¡tj, t0j¢ ∈ T 2j , ∀δ : {a, c}→ {a, c} .
The set Γr coincides with the set of outcomes induced by communication equilibria of

Gr (Γr is therefore a convex polyhedron). Let V Cr denote the set of profiles of votes that

lead to conviction under the voting rule r. Formally, V Cr = {v ∈ V : ψr (v) > r} . Then we
have:

1As usual, T−j denotes the set of types of players other than j.
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Γr = {γ : T → [0, 1] |∃ a communication equilibrium µ of Gr
such that γ (t) =

P
v∈V Cr

µ (v|t) for every t ∈ T}.

We are now ready to compare the sets Γr and Γr0 for two different voting rules r and

r0. In Proposition 1 we show that, except for the voting rules r = 1 and r = n,2 all other

“intermediate” rules are equivalent. If players can communicate, every outcome that can

be implemented with a voting rule r 6= 1, n can also be implemented with a different voting
rule r0 6= 1, n. Furthermore, by adopting an extreme voting rule (r = 1 or r = n), we cannot
enlarge the set of equilibrium outcomes.

Proposition 1 Γ2 = ... = Γn−1. Moreover, Γ1 ⊆ Γ2 and Γn ⊆ Γ2.

Proof. We first show that for r = 1, ..., n, if γ belongs to Γr then γ satisfies the following

inequality:

P
t−j∈T−j

p (t−j|tj) [γ (t)uj (C, t) + (1− γ (t))uj (A, t)] >

P
t−j∈T−j

p (t−j|tj)
£
γ
¡
t−j, t0j

¢
uj (C, t) +

¡
1− γ

¡
t−j, t0j

¢¢
uj (A, t)

¤
∀j = 1, ..., n, ∀ ¡tj, t0j¢ ∈ T 2j .

(1)

If γ is in Γr, there exists a communication equilibrium µ of Gr that induces γ. For every

player j and for every pair
¡
tj, t

0
j

¢
we therefore have:X

t−j∈T−j
p (t−j|tj) [γ (t)uj (C, t) + (1− γ (t))uj (A, t)] =

X
t−j∈T−j

p (t−j|tj) [(
X
v∈V Cr

µ (v|t))uj (C, t) + (1−
X
v∈V Cr

µ (v|t))uj (A, t)] =

X
t−j∈T−j

p (t−j|tj)
X
v∈V

µ (v|t)uj (ψr (v) , t) >
X

t−j∈T−j
p (t−j|tj)

X
v∈V

µ
¡
v|t−j, t0j

¢
uj (ψr (v) , t) =

2The voting rules r = 1 and r = n are the only rules which require a unanimous consensus in order to
adopt a certain alternative (A if r = 1, C if r = n).
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X
t−j∈T−j

p (t−j|tj) [(
X
v∈V Cr

µ
¡
v|t−j, t0j

¢
)uj (C, t) + (1−

X
v∈V Cr

µ
¡
v|t−j, t0j

¢
)uj (A, t)] =

X
t−j∈T−j

p (t−j|tj)
£
γ
¡
t−j, t0j

¢
uj (C, t) +

¡
1− γ

¡
t−j, t0j

¢¢
uj (A, t)

¤
,

where the inequality follows from the truth-telling constraint of the communication equi-

librium µ.

To give an intuition of the above result, consider the communication equilibrium µ

which induces γ. Suppose that all players are obedient and that all players different from

j are also sincere. Let t−j be the profile of types of j’s opponents. By reporting the truth,

type tj of j will induce a lottery between the alternatives A and C, with probabilities

1− γ (t−j, tj) and γ (t−j, tj) , respectively. If type tj lies and reports a different message t0j,

then the alternative C will be selected with probability γ
¡
t−j, t0j

¢
. Inequality (1) simply

says that every player j has an incentive to report her type truthfully provided that her

opponents are sincere and all players (including j) are obedient.

Consider now a voting rule r = 2, ..., n− 1. We now demonstrate that if γ : T → [0, 1]

satisfies inequality (1), then γ belongs to Γr. Given γ, consider the following mapping µ̃

from T into ∆ (V ) :

µ̃ (v|t) =
 γ (t) if v = (c, ..., c) ,
1− γ (t) if v = (a, ..., a) ,

0 otherwise.

Obviously, µ̃ induces γ. It is easy to show that µ̃ is a communication equilibrium of Gr.

First of all, no player has an incentive to disobey the mediator’s recommendation. Indeed,

when the mediator follows µ̃, she makes the same recommendation to all players. A player’s

vote cannot change the final outcome if all her opponents are obedient (notice that we are

not considering r = 1 and r = n). Furthermore, the fact that γ satisfies inequality (1)

implies that no player has an incentive to lie to the mediator when her opponents are

sincere.

We conclude that Γ2, ...,Γn−1 coincide with the set of the mappings from T into [0, 1]
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which satisfy inequality (1). Moreover, this set contains Γ1 and Γn.

The inclusion of Γ1 and Γn in the set Γ2 may be strict, as the following example illus-

trates.

Example (strict inclusion of Γ1 and Γ2) Suppose that player 1 always prefers

acquittal to conviction. That is, let us assume that u1 (A, t) > u1 (C, t) for every t in T.

Denote by γC the outcome in which the defendant is always convicted, i.e., γC (t) = 1 for

every type profile t. Clearly, γC belongs to Γ2. Consider the game G2 in which the players

do not communicate. The symmetric strategy profile in which every type of every player

votes c constitutes a Bayesian Nash equilibrium. On the other hand, γC cannot belong to

the set Γn. Consider the voting stage of any cheap talk extension of Gn. Every time player

1 is pivotal, she will vote to acquit.3 A similar example can be constructed to demonstrate

that Γ1 may be strictly included in Γ2.

So far we have assumed that each player can communicate privately with a trustworthy

mediator. However, in many instances an exogenous mediator is not available and players

can only exchange messages with each other. In addition, there are cases, like jury deliber-

ations, in which a player cannot communicate with a subset of players but has to send her

message to all her opponents (public communication). We would like to investigate how

these restrictions affect our results.

To derive Proposition 1 we have used the Bayesian Nash equilibrium concept. However,

cheap talk extensions are extensive-form games, and in a Bayesian Nash equilibrium a player

could behave irrationally off the equilibrium path. Another way to check the robustness of

our result is to consider a stronger solution concept.

Given a voting rule r, we define a cheap talk extension with public communication of

Gr as follows. After learning their types, the players undergo a finite number of rounds of
3Of course, γC will not be an equilibrium outcome of the voting rule r = 2, ..., n−1 if we rule out weakly

dominated strategies. This raises the question of what is the set of outcomes that can be implemented
with a solution concept stronger than Bayesian Nash equilibrium. We will discuss this issue below.
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communication. In each round one or more individuals send a message to all players. In

the last stage, the players cast their vote simultaneously and the defendant is convicted if

r or more players vote to convict. We let ΓPr denote the set of outcomes that are induced

by sequential equilibria of cheap talk extensions with public communication of Gr.

Notice that for every r = 1, ..., n, the set ΓPr is included in Γr. In fact, any sequential

equilibrium of a cheap talk extension is obviously a Bayesian Nash equilibrium, and any

outcome that can be implemented without a mediator can be also implemented with a

mediator. We now demonstrate that the opposite inclusion holds for r = 2, ..., n− 1.

Proposition 2 For every r = 2, ..., n− 1, ΓPr = Γr.

Proof. We need to show that every outcome γ in Γr is induced by a sequential equi-

librium of a cheap talk extension with public communication of Gr. Consider the following

game. In stage 1, all players announce their types publicly (the players make their an-

nouncements simultaneously). In stage 2, players 1 and 2 announce two numbers in the

unit interval to all players (again, these announcements are simultaneous). Finally, in stage

3 the players cast their votes.

Consider the following strategy profile. In stage 1, all players reveal their types truth-

fully. In stage 2, both player 1 and player 2 randomly select a number in the unit interval,

according to the uniform distribution.

Finally, let us describe how the players vote in stage 3. Suppose that the vector of

reports in stage 1 is t. Let ωj, j = 1, 2, denote the number announced by player j in stage

2. Let χ : [0, 1]2 → [0, 1] denote the following function of ω1 and ω2 :

χ (ω1,ω2) =

½
ω1 + ω2 if ω1 + ω2 6 1

ω1 + ω2 − 1 if ω1 + ω2 > 1
.

If χ (ω1,ω2) 6 γ (t) all players vote to convict. If χ (ω1,ω2) > γ (t) all players vote to

acquit.
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Of course, this strategy profile induces the outcome γ. It is also easy to check that

our strategy profile is a sequential equilibrium (consistent beliefs can be derived from any

sequence of completely mixed strategy profiles converging to the equilibrium profile). Of

course, a player does not have a profitable deviation in stage 3 since her vote does not

affect the final outcome. In stage 2, players 1 and 2 perform a jointly controlled lottery

which determines how the players will vote. Since ω1 is independent of ω2 and uniformly

distributed, χ (ω1,ω2) is also independent of ω2 and uniformly distributed. Thus in stage

2, player 2 is indifferent between all announcements (clearly, the same argument can be

applied to player 1). Finally, the players’ reports in stage 1 determine which lottery will be

used in the subsequent steps of the game. Inequality (1) guarantees that each player has

an incentive to be sincere provided that all her opponents behave likewise.

The proof of Proposition 2 also demonstrates that all the equilibrium outcomes of an

intermediate voting rule can be implemented with a single game. Two rounds of public

communication followed by the voting stage are what we need to implement any equilibrium

outcome. Suppose that an external designer can decide how the players can communicate,

i.e., she can choose the cheap talk extension that will be played. The designer may be

interested in implementing a specific outcome. To accomplish this, the designer should

do two things. First, she should find a cheap talk extension with an equilibrium that

induces the desired outcome. Second, the designer should induce the players to play that

equilibrium. Our analysis shows that, without loss of generality, the designer can restrict

attention to the simple game described in the proof of Proposition 2. The only problem is

to induce the players to play the appropriate equilibrium.

Our analysis is a first attempt to compare different voting rules when players can com-

municate. However, we believe that there are still some important open questions.

It follows from Proposition 2 that our result on the equivalence of the intermediate rules

continues to hold even if we assume that a reliable mediator is not available and require

the players to be sequentially rational. On the other hand, sequential rationality does not
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allow us to rule out weakly dominated strategies. We feel that this is the main objection to

our results. Consider the equilibrium described in the proof of Proposition 2. After stage

1, all players know the profile of types t. Suppose that the messages sent by players 1 and

2 are such that in stage 3 all players are supposed to vote to acquit. Obviously, there could

be a player who, given the available information t, prefers to convict. This player does not

have any incentive to vote c because her vote will not affect the final outcome. However,

if either the player uses only undominated strategies or the players tremble at the voting

stage and cast the wrong vote with a small but positive probability, conviction would be a

plausible action for the player. Thus, it would be worthwhile to characterize the outcomes

of a voting rule that can be implemented with a solution concept stronger than sequential

equilibrium.

Furthermore, Proposition 2 relies on the fact that players can send their messages simul-

taneously. This assumption may be reasonable if players can exchange written messages.

Most of the time, however, members of a committee talk. It would therefore be interesting

to see what happens if we restrict attention to sequential communication, and consider

cheap talk extensions with only one sender in each round of communication.

4 Mechanism Design with Information Acquisition

In this section we assume that information is costly and study the problem of a designer

who can choose the procedure according to which collective decisions are made.

We concentrate on the case replicating the standard committee voting problem (see,

e.g., Feddersen and Pesendorfer [1998] or Persico [2002]). There are two states of the

world, I (innocent) and G (guilty), with prior distribution (P (I) , P (G)) . As in Section

3, the alternatives (or decisions) are acquittal, A, and conviction, C. There is an infinite

number of identical agents. All the agents as well as the mechanism designer share the

same preferences which depend on the state of the world and the final decision. Let q be a

number in (0, 1) . The common utility is given by:
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u (d,ω) =

 −q if d = C and ω = I
− (1− q) if d = A and ω = G

0 otherwise.

where d and ω denote the collective decision and the state of the world, respectively.

To intuit this utility specification, consider a jury decision scenario. Jurors prefer to

make the correct decision, i.e., acquitting the innocent and convicting the guilty (in this

case we normalize the utility to zero). The ratio q
1−q can be thought of as the jurors’

perceived cost of convicting the innocent relative to that of acquitting the guilty.

Each agent can purchase a signal of accuracy p > 1
2
. That is, upon paying the cost

c > 0,4 the agent receives a signal s ∈ {i, g} satisfying Pr (s = i|I) = Pr (s = g|G) = p.

If more than one agent purchases information, we assume their signals are conditionally

independent. Moreover, we only attend to the case in which an agent can buy at most one

signal. While these assumptions may not always be completely realistic, they serve as a

first approximation and make our benchmark model tractable.

In this environment there are infinitely many ways to make a collective decision. First,

we can have committees of different sizes. Second, for a committee of a given size we

can choose different voting rules. Finally, we can select different procedures according to

which the members of a committee communicate before casting their votes. Of course,

these variables will affect the agents’ decisions (whether they acquire information or not,

as well as how they communicate and vote) and, therefore, the quality of the final decision.

We now analyze the problem of designing the optimal mechanism. To accomplish this, we

study the following game.

Stage 1 The designer chooses an extended mechanism, i.e., the size of the committee n,

the voting rule r = 1, ..., n, and a cheap talk extension (i.e., how the players can

exchange messages before voting).
4To help the reader, we decide to follow the convention of using the variable c to denote the cost.

Although we already used c in Section 3 to denote the vote to convict, no confusion arises.
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Stage 2 All agents observe the designer’s mechanism. Each agent j = 1, ..., n decides

whether to purchase a signal. These choices are made simultaneously.

Stage 3 Each member of the committee j = 1, ..., n does not observe whether other mem-

bers have acquired information in Stage 2.5 All the agents in the committee exchange

messages (as specified by the cheap talk extension) and vote.

Note that the chosen extended mechanism is comprised partly by the size of the decision

panel. This is where we use the assumption that there exists an infinite pool of identical

players free to be selected by the designer as participants in the collective decision making

procedure.

Stages 2 and 3 constitute an extensive-form game played by the agents 1, ..., n. We re-

strict attention to sequential equilibria in which the players use pure (behavioral) strategies

in Stage 2, and are allowed to randomize in Stage 3. A strategy profile of this game deter-

mines an outcome (i.e., the probabilities that the correct decision is made in state I and in

state G) and therefore, the expected common utility of the decision. The designer chooses

the mechanism to maximize her utility (from the decision). In particular, the designer

does not take into account the cost incurred by the informed agents. There are different

situations in which this assumption is appropriate. The designer may be a principal who

delegates the final decision to a committee. Alternatively, the decision may affect the wel-

fare of every individual in a large society and the designer can be a benevolent planner

(Persico [2002]). In this case, any increase in the utility from the decision can compensate

for the information costs paid by the agents.

In the terminology of Section 3, each agent j’s type in Stage 3 is captured by tj ∈
{φ, i, g}, where φ stands for an agent who does not purchase information, and i or g

5Our analysis would, in fact, be tremendously simplified if investments were overt (see Footnote 10).
However, in many situations in which agents engage in information acquisition, investment in information
is indeed covert and signals are non-verifiable. For example, jurors would have a hard time proving they
had attended testimonies, committee members do not check their colleagues have gone over the relevant
background information before convening, etc.
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stand for an agent who purchases information and receives i or g as the realized signals,

respectively.

The assumption that players can invest in information, thereby endogenizing their types,

is a deviation from the basic model described in the previous section. We find this model

particularly appealing both on realistic and theoretical grounds. Indeed, when thinking

about real-life decision panels, players need to decide whether (and sometimes to what

extent) to invest in information acquisition: jurors choose whether to attend or not the

testimonies presented to them, hiring committee members decide whether to carefully go

over the candidate’s portfolio or not, etc. Theoretically, this framework allows us to study

mechanism design in situations where there are two forces at play. On the one hand, the

mechanism should use the information available as efficiently as possible. On the other

hand, the mechanism needs to provide agents with incentives to invest in information.

The analysis presented in Section 3 simplifies enormously the designer’s problem. In-

deed, once players decide whether to acquire information or not, and the appropriate signals

are realized, we are in the setup of the previous section and all intermediate voting rules

result in identical sets of equilibrium outcomes. This implies that when the size of the

committee is n > 2, we can ignore the choice of the voting rule. Moreover, without loss

of generality, we can restrict attention to communication devices that give unanimous rec-

ommendations to all the players. That is, for every profile of types, the device chooses

(possibly probabilistically), an alternative in {A,C}, which is recommended to all play-
ers. In other words, when the designer chooses a committee of size n > 2, she needs only

to select an incentive compatible communication device γ : T1 × ... × Tn → [0, 1] , where

Tj = {φ, i, g}. Each player j = 1, ..., n reports her type to the device, and γ (t) denotes the

probability that the defendant is convicted when the vector of reports is t. Of course, incen-

tive compatibility requires that each player has an incentive to report her type truthfully

provided that all her opponents do the same.

To summarize, when n > 2 our design problem can be described by the following
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simplified timeline:

Stage 1* The designer chooses the size of the committee n and an incentive compatible

device γ (that is, a device that induces truthful revelation).

Stage 2* All agents observe the designer’s mechanism. Each agent j = 1, ..., n (simulta-

neously) decides whether to purchase a signal.

Stage 3* All players report (truthfully) their types to the device simultaneously.

Although this problem is much simpler to analyze than the original one, in order to

characterize the optimal mechanism we still have to consider all possible incentive compat-

ible devices (for any committee size) and all equilibria. We now present a number of steps

that further simplify the designer’s problem.

Given the committee size n and an incentive compatible device γ, consider the game in

which the agents 1, ..., n decide whether to become informed or not. In general, this game

admits multiple equilibria. In particular, there may be an equilibrium in which all players

acquire information, and equilibria in which one or more players do not pay the cost c to

observe a signal.6 However, without loss of generality, we can restrict attention to equilibria

in which every member of the committee buys the signal. Consider an equilibrium in which

only players 1, ..., n0 acquire the signal, where n0 < n. It is easy to show that the same

equilibrium outcome can be implemented with a committee of size n0 and a communication

device γ0 such that all the agents become informed. For every vector of reports t1, ..., tn0 ,

let γ0 (t1, ..., tn0) = γ (t1, ..., tn0 ,φ, ...,φ) . In the original equilibrium, the first n0 players

know that players n0 + 1, ..., n do not purchase the signal and report message φ to the

device γ (remember that γ induces truthful revelation). If players 1, ..., n decide to acquire

information and be sincere under γ then they have an incentive to do the same under γ0.

Therefore, in the remainder of the section we focus on incentive compatible devices that
6As already mentioned, we do not allow for mixed strategies in this stage of the game.
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admit equilibria in which all agents acquire information. We call these devices admissible.

It is important to note that admissible devices are characterized by two classes of incentive

compatibility constraints. The first is the already introduced truthful revelation constraint.

The second guarantees that each player best responds by acquiring information.

The next step of our analysis is to show that we can ignore what a communication device

specifies when one or more players report the message φ. Consider an admissible device

γ : {φ, i, g}n → [0, 1]. Let Uj
¡
tj, t

0
j

¢
denote the expected utility (from the decision) of player

j when her type is tj, she reports message t0j and all her opponents acquire information and

are sincere. Truthful revelation holds if and only if:

Uj (tj, tj) > Uj
¡
tj, t

0
j

¢ ∀j = 1, ..., n, ∀ ¡tj, t0j¢ ∈ {φ, i, g}2 . (2)

The expected utility of player j when she does not acquire information can be expressed

as:

Uj (φ,φ) = Pr (i)Uj (i,φ) + Pr (g)Uj (g,φ) ,

where Pr (s) denotes the probability that agent j will observe signal s = i, g if she acquires

information. It follows that agent j will purchase the signal if and only if the following,

information acquisition constraint, is satisfied:

Pr (i)Uj (i, i) + Pr (g)Uj (g, g)− c > Pr (i)Uj (i,φ) + Pr (g)Uj (g,φ) . (3)

Constraints (2) and (3) imply that a necessary condition for a communication device

to be admissible is that for every player j = 1, ..., n :

Pr (g) (Uj (g, g)− Uj (g, i)) > c, (4)

Pr (i) (Uj (i, i)− Uj (i, g)) > c. (5)

These inequalities guarantee that agent j prefers to buy the signal and be sincere rather

than not buy the signal and always report one of s = i, g (i in the first inequality, g in the

second one).

19



We now explain in which sense inequalities (4) and (5) are also a sufficient condition for

a device to be admissible. Consider a device γ : {φ, i, g}n → [0, 1] , and suppose inequalities

(4) and (5) hold. This device may not be incentive compatible. In particular, a player may

have an incentive to lie when her type is φ. Consider, however, the outcome induced by γ

when all players acquire information and are sincere. This outcome can be implemented

with the following admissible device γ0. Given γ, consider player j = 1, ..., n and assume

that all her opponents acquire information and are sincere. Suppose that player j does not

observe a signal and has to choose between message i and message g. Denote by sj the

message that agent j prefers to send.7 Given the device γ, we construct γ0 as follows:

γ0 (t) =
½

γ (t) if t ∈ {i, g}n
γ (sj, t−j) if t = (φ, t−j) and t−j ∈ {i, g}n−1 ,

and we assign an arbitrary value to γ0 (t) when two or more players report message φ.

Intuitively, when each player different from j sends either i or g, the device γ0 interprets

message φ of player j as message sj.

Notice that the expressions in inequalities (4) and (5) do not depend on what the device

specifies when some players report φ.We can, therefore, think of an admissible device as a

mapping γ : {i, g}n → [0, 1] which satisfies conditions (4) and (5).

An admissible device γ is symmetric if for every vector (t1, ..., tn) in {i, g}n and every
permutation ϕ on {1, ..., n}, γ (t1, ..., tn) = γ

³
tϕ(1), ..., tϕ(n)

´
. In a symmetric device, the

probability that the defendant is convicted depends only on the number of messages g (or

i) but not on the identity of the players who send g. We now argue that there is no loss of

generality in considering only symmetric devices. In fact, suppose that γ is an admissible

device and consider a permutation ϕ on {1, ..., n} (let Λn denote the set of such permuta-
tions). Consider the device γϕ, where γϕ (t1, ..., tn) = γ

³
tϕ(1), ..., tϕ(n)

´
for every {t1, ..., tn}

in {i, g}n . Since all players are identical and γ is admissible, the device γϕ is also admis-
7That is, sj ∈ {i, g} and is such that Pr (i)Uj (i, sj)+Pr (g)Uj (g, sj) > Pr (i)Uj

¡
i, s0j

¢
+Pr (g)Uj

¡
g, s0j

¢
,

where s0j = i, g.
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sible and outcome equivalent to γ. Of course, convex combinations of admissible devices

are admissible. It follows that the symmetric device γ̃ =
³

1
|Λn|
´P

ϕ∈Λn γϕ =
1
n!

P
ϕ∈Λn γϕ

is admissible and outcome equivalent to the original device γ.

A symmetric device can be represented as a mapping γ : {0, 1, ..., n} → [0, 1] , where

γ (k) denotes the probability that the defendant is convicted (alternative C is chosen) when

k players report the guilty signal g (each player can report either i or g). For a symmetric

device γ : {0, 1, ..., n}→ [0, 1] conditions (4) and (5) can be expressed as:

n−1X
k=0

µ
n− 1
k

¶
f (k + 1;n) (γ (k + 1)− γ (k)) > c, (ICi)

n−1X
k=0

µ
n− 1
k

¶
f (k;n) (γ (k)− γ (k + 1)) > c, (ICg)

where f (·;n) : R→ R is defined by:

f (x;n) = −qP (I) (1− p)x pn−x + (1− q)P (G) px (1− p)n−x .

For each n > 2, we look for the optimal admissible device, i.e., the admissible device

that maximizes the expected utility of the decision. This amounts to solving the following

linear programming problem Pn :

max
γ:{0,...,n}→[0,1]

− (1− q)P (G) +
nP
k=0

¡
n
k

¢
f (k;n) γ (k)

s.t. (ICi), (ICg).

We denote by γ̄n the solution to problem Pn (if it exists), and by V (n) the expected

utility of the optimal device. If problem Pn does not have any feasible solution, we set

V (n) = −1.
To complete the description of all mechanisms, we need to consider committees with less

than three players. We let V (0) = max {−qP (I) ,− (1− q)P (G)} denote the expected
utility of the optimal decision when no information is available.
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Suppose n = 1, i.e., the designer delegates the final decision to a single agent. Let V̂ (1)

be the expected utility of the optimal decision of the agent when she acquires information.8

If the benefit of buying the signal, V̂ (1)−V (0) , is greater than or equal to the cost c, the
agent will acquire information, and we set V (1) = V̂ (1) . Otherwise, we set V (1) = −1.
Finally, suppose that the designer chooses a committee with two agents. We define

problem P2 in the same way as Pn for n > 2.We let V (2) denote the value of the objective

function at the solution (if it exists). Notice, however, that problem P2 does not guarantee

that V (2) can be achieved by the extended mechanism designer. In fact, when n = 2, a

player can be pivotal at the voting stage and we need to take into account her incentives to

follow the mediator’s recommendation (constrains (ICi) and (ICg) do not capture these

incentives). In other words, V (2) represents an upper bound of the expected utility that

can be achieved with two players. If the problem P2 does not admit any feasible solution,

we set V (2) = −1.
The optimal mechanism consists of the optimal size of the committee n∗, and the optimal

admissible device γ̄n∗ . n
∗ is such that V (n∗) > V (n) , for every nonnegative integer n.9 In

what follows, we will demonstrate that the optimal size of the committee is always finite.

Furthermore, when the cost of acquiring information is sufficiently low, the optimal size n∗

is greater than 2 (see below) and, therefore, the expected utility V (n∗) can be achieved.

4.1 Features of The Optimal Extended Mechanism

The extended mechanism the designer chooses is comprised of the size of the decision panel

as well as the incentive scheme it will operate under. In Subsection 4.1.1 we tackle the

first aspect of the this design problem. Namely, we illustrate that the optimal committee

is of bounded size. In Subsection 4.1.2 we illustrate some traits of the optimal device the

8Formally, V̂ (1) = max
γ:{0,1}→[0,1]

− (1− q)P (G) +
1P

k=0

f (k; 1) γ (k) .

9Notice that V (0) > −1, and, thus, n > 1 can be the optimal size only if problem Pn admits a feasible
solution. Similarly, n = 1 can be optimal only if the agent who has to make the final decision acquires
information.
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designer would choose. In particular, we show that imperfectly aggregating the available

information may induce more players to acquire information, thereby yielding a higher

overall expected utility level.

4.1.1 The Scope of The Committee

Our first result, Proposition 3, shows that the solution to our design problem always exists.

In fact, we show that when the size of the committee is very large it is impossible to give the

incentive to all the members to acquire information. That is, committees with too many

members do not have any admissible device. Intuitively, when there are many agents in the

committee, the marginal contribution of an additional signal is relatively small. Therefore,

each agent has an incentive to save the cost c and benefit from the information acquired

by the other participants. In other words, in large committees there is a severe free rider

problem.

Proposition 3 Fix P (I) , q, p and c. There exists n̄ such that for every n > n̄, problem
Pn does not have any feasible solution.

Proof. See Appendix.

Clearly, it follows from Proposition 3 that the optimal size of the committee n∗ is finite

and smaller than n̄. This, in turn, implies that when information is costly, the probability of

making the wrong decision is bounded away from zero. This observation stands in contrast

to the underlying message of the information aggregation literature (see, e.g., Feddersen

and Pesendorfer [1996, 1997]) in which a large pool of agents yields complete aggregation

of all of the available information.

4.1.2 Optimal Distortionary Devices

The next question is how the optimal device uses the information of the agents. To analyze

this problem, let us first consider the case in which the designer makes the final decision
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after observing n free signals. This will give us an upper bound on what the designer can

achieve when she chooses a committee of size n and information is costly.

To find the optimal decision rule, we simply need to maximize the objective function of

problem Pn (without the constraints). We let γBn denote the solution to this maximization

problem. γBn , which we call a Bayesian device, is of the form:

γBn (k) =

½
0 if f (k;n) 6 0
1 if f (k;n) > 0

,

(in fact, when f (k;n) = 0, γBn (k) can be any number in the unit interval).

To interpret this result, notice that f (k;n) is positive (negative) if and only if the cost

of convicting the innocent q is smaller (greater) than the probability that the defendant is

guilty given that k of n signals are g.

The function f (·;n) is increasing and we let z (n) be defined by f (z (n) ;n) = 0. We
have:

z (n) =
1

2

n+ ln
³

qP (I)
(1−q)P (G)

´
ln
³

p
1−p
´

 .
Another way to express the Bayesian device γBn is:

γBn (k) =

½
0 if k 6 z (n)
1 if k > z (n)

.

For small values of n, z (n) can be negative or greater than n. In the first case, the

optimal decision is always to convict the defendant. In the latter case, the optimal de-

cision is always to acquit. These cases arise when the designer is very concerned with a

particular mistake (acquitting the guilty or convicting the innocent), and the signal is not

very accurate, i.e., p is close to 1/2. In both cases the n signals are of no value. For large

values of n, however, z (n) is positive and smaller than n (z (n) /n converges to 1/2 as n

goes to infinity), and the defendant will be convicted if and only if the designer observes

sufficiently many guilty signals.
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We let V̂ (n) denote the expected utility of the Bayesian device:

V̂ (n) = − (1− q)P (G) +
X

k∈{0,..,n}, k>z(n)

µ
n

k

¶
f (k;n) ,

The utility V̂ (n) is nondecreasing in the number of signals n.Moreover, V̂ (n) is strictly

greater than V (0) , the expected utility of the optimal uninformed decision, if and only if

z (n) belongs to (0, n) . If z (n) is not in (0, n) , then V (0) = V̂ (1) = ... = V̂ (n) .

When n becomes unboundedly large, the Bayesian device uses an infinitely increasing

number of i.i.d. signals. The law of large numbers ensures that all uncertainty vanishes

asymptotically. In particular, V̂ (n) converges to zero, the no uncertainty value, when n

goes to infinity.10

We now return to the original design problem. Clearly, the expected utility of the

optimal admissible device V (n) cannot be greater than V̂ (n) , since the Bayesian device

γBn is the solution to the unconstrained problem. On the other hand, when the Bayesian

device γBn is admissible, we have V (n) = V̂ (n) . In this case the designer is able to give

the incentive to the n agents to acquire the signal and, at the same time, to make the best

use of the available information. Proposition 4 shows that this can happen if and only if

the contribution of the last signal to the utility of a single decision maker is greater than

or equal to its cost.

Proposition 4 For every n > 2, V (n) = V̂ (n) if and only if V̂ (n)− V̂ (n− 1) > c.

Proof. See Appendix.
10Note that if information acquisition is overt and c < 1, then V̂ (n) is implementable (in Nash equilib-

rium) for sufficiently large n. Indeed, consider the following scenario. The designer selects the Bayesian
device γBn as long as everyone purchases information, and a device γ that makes a choice contrary to
the Bayesian prescription if any agent does not purchase information (i.e., for all k, γ(k) = 1 − γBn (k)).
The strategy profile under which all players acquire information and are always sincere constitutes a Nash
equilibrium. Under this profile, the expected utility of the decision approaches 0. If one player deviates
and does not acquire information, she drives the common utility to a level that approaches −1. Finally,
no agent has an incentive to lie upon acquiring information.
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The following example provides an intuition for Proposition 4. The Bayesian device

γB9 of a committee of size 9 selects conviction if at least 5 players report a guilty signal.

Consider the Bayesian device γB8 for the committee of size 8. There are two cases, depending

on p, q and P (I): (a) the device selects conviction when there are at least 4 guilty signals;

(b) it selects conviction when there are at least 5 guilty signals. Consider the committee

with 9 members and suppose that each opponent of player 1 acquires information and is

sincere. Player 1’s expected utility if she also acquires information and is sincere is equal

to V̂ (9) − c. However, if player 1 does not purchase the signal and reports message g in
case (a) and message i in case (b), she gets V̂ (8) . The proof of Proposition 4 formalizes

this argument.

Let nB denote the greatest integer for which the Bayesian device is admissible (we

assume that there exists at least one such integer). That is, V̂
¡
nB
¢ − V̂ ¡nB − 1¢ > c,

and V̂ (n) − V̂ (n− 1) < c for every n > nB. The existence of nB is guaranteed by the

fact that the sequence
n
V̂ (1) , ..., V̂ (n) , ....

o
converges (to zero). The designer can induce

more than nB players to acquire information only if she selects a device that aggregates the

available information suboptimally. On the other hand, more information will be available

in larger committees. How should the designer solve this trade-off? Is the optimal size of

the committee equal to or larger than nB? Before answering these questions, let us explain

why we believe they are important.

Suppose n is such that the Bayesian device is admissible. We now show that there

is a very simple mechanism that does not require communication and allows the designer

to obtain utility V̂ (n) . Let kn be the smallest integer greater than z (n) . Notice that kn

belongs to {1, ..., n} since V̂ (n) can be greater than V̂ (n− 1) only if z (n) is in (0, n) .
Consider the following game. Each agent decides whether to buy a signal or not. Then

the players vote, and the defendant is convicted if and only if at least kn agents vote to

convict. This game admits an equilibrium in which each player acquires the signal and

votes sincerely (i.e., she votes to convict if and only if she observes signal g). The expected
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utility of the decision when the agents play this equilibrium is, of course, V̂ (n) .

Consider our design problem. If the optimal size of the committee is nB, then commu-

nication is unnecessary and the designer simply needs to select the voting rule knB (this

is the optimal mechanism in Persico [2002] where communication is not allowed). On the

other hand, if the optimal size is larger than nB, then communication may play a very

important role in the solution to the designer’s problem. Proposition 5 shows that this is

indeed the case (at least when the cost is sufficiently low).

Before formally stating the result, we need to introduce one technical assumption. We

say the environment is regular if
ln( qP (I)

(1−q)P (G))
ln( p

1−p)
is not an integer. This implies that for all

n, z(n), the Bayesian threshold value, is not an integer. In a regular environment, if n is

such that V̂ (n) > V (0), then for all n0 > n, V̂ (n0 + 1) > V̂ (n0). Note that assuming the

environment is regular is not restrictive since this is, generically, the case.

Proposition 5 Fix P (I) , q and p and assume the environment is regular. Let n∗ (c)

denote the optimal size of the committee when the cost of acquiring information is c. There

exists c̄ > 0 such that for every c < c̄, V (n∗ (c)) < V̂ (n∗ (c)) .

Proof. See Appendix.

In the proof of Proposition 5, we show that if nB is sufficiently large (or equivalently,

if c is sufficiently low), then there exists a non Bayesian device for a committee of size

nB +1 that is better than the Bayesian device with nB players, i.e., V
¡
nB + 1

¢
> V̂

¡
nB
¢
.

Proposition 5 provides only sufficient conditions for the optimal size to be greater than nB.

Of course, if the optimal size happens to be n∗ = 1, then V (n∗) = V̂ (n∗) . However, the

authors have not found any example in which the optimal size n∗ is greater than one and

coincides with nB.

4.2 Comparative Statics

In this section we analyze how the optimal extended mechanism and the quality of the

decision depend on the primitives of the model. We first look at the impact that changes
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in the information cost c and in the accuracy of the signal p have on the expected utility of

the designer and on the optimal size of the committee. We then perform the comparative

statics for the agents’ preferences. Finally, we focus on the optimal admissible device.

The Cost of Information

The first, obvious, result is that the expected utility of the optimal mechanism is de-

creasing in the cost of information acquisition. This follows from the fact that for any

given size of the committee, the utility of the optimal devices increases (weakly) when the

cost decreases. In fact, if a device is admissible when the cost is c, then the device is also

admissible when the cost is lower than c.

We now consider how the optimal size is affected by a change in the information cost.

Clearly, given any cost c with optimal size n∗ (c) , we can always find another cost c0,

sufficiently lower than c, such that n∗ (c0) is greater than n∗ (c) . In fact, it is enough to

choose c0 such that the Bayesian device γBn is admissible for some n greater than n
∗ (c) .

Unfortunately, it is less straightforward to perform the comparative statics for small changes

of the information cost. In all the examples we have constructed, the optimal size decreases

when the information cost increases. However, we have not been able to prove that this is

a general result. To illustrate what constitutes a problem, we consider two committees of

size n and n + 1. For any cost c, let us consider the difference between the utility of the

optimal device at n+1 and the utility of the optimal device at n. It is possible to construct

examples such that this difference is positive for low and high values of the cost, but is

negative for intermediate values (in a sense, the utility does not exhibit a single crossing

property).11 In other words, suppose we start with a level of the cost such that size n+ 1

is better than size n. In general, we cannot conclude that this relation holds when the

cost becomes smaller. Of course, this discussion does not show that the optimal size may

increase with the cost. It only explains why it could be difficult to obtain analytical results.

But it remains an open question whether the optimal size is indeed always decreasing in
11A possible example is the following: P (I) = 1

2 , q = 0.82, p = 0.55 and n = 7.
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the cost or not.

The Signals’ Accuracy

As one would expect, the utility of optimal extended mechanism increases when the

signal becomes more accurate, i.e. when p increases. In fact, a stronger result holds. For

a committee of a given size n, the utility of the optimal device increases when the quality

of the signal improves. Intuitively, when the signal is more accurate, the device can ignore

some information and replicate an environment with less information. Formally, let γ be an

admissible device when the accuracy of the signal is p. Suppose now the accuracy is p̂ > p

and consider the following device γ̂. The simplest way to describe γ̂ is to imagine that each

player j reports her signal sj = i, g to the mediator. The mediator then generates a new

variable s0j = i, g at random according to the distribution:

Pr
¡
s0j = i|sj = i

¢
= Pr

¡
s0j = g|sj = g

¢
=
p+ p̂− 1
2p̂− 1 .

The variables s01, ..., s
0
n are independent of each other. Finally, the mediator applies

the original device γ to the vector (s01, ..., s
0
n) .

12 Notice that the mediator’s distribution is

appropriately chosen so that Pr
¡
s0j = i|I

¢
= Pr

¡
s0j = g|G

¢
= p. Thus, the expected utility

of the device γ̂ when the accuracy is p̂ coincides with the utility of γ when the accuracy is

p. It is also easy to show that γ̂ is admissible (when the accuracy is p̂). This implies that

for any committee size, the utility of the optimal device is increasing in p.

While in our model the designer always benefits from a more informative signal, this

is not necessarily the case when communication is not possible. For example, in Persico

[2002] the utility of the optimal mechanism can decrease when p increases. When players
12That is, for every vector (s1, ..., sn) in {i, g}n ,

γ̂ (s1, ..., sn) =
X

(s01,...,s0n)∈{i,g}n
Pr ((s01, ..., s

0
n) | (s1, ..., sn)) γ (s01, ..., s0n) ,

where Pr ((s01, ..., s
0
n) | (s1, ..., sn)) denotes the probability that the mediator generates the vector (s01, ..., s0n)

when the vector of reports is (s1, ..., sn) .
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are not allowed to communicate, the designer can induce n agents to acquire information if

and only if V̂ (n)− V̂ (n− 1) is greater than the information cost. When the signal is very
informative, V̂ (n) is close to zero for n relatively small, and therefore it is impossible to

induce many players to acquire information. In contrast, when the signal is less accurate,

the difference V̂ (n)−V̂ (n− 1) can be larger than the cost for large values of n. It is possible
for the designer to prefer having many uninformative signals over a few very accurate ones.13

As far as the optimal size of the committee is concerned, simple examples indicate that

it is not monotonic in p. Consider, for example, the case P (I) = 1
2
, q = 0.62, and c = 0.004.

The optimal size is 13 for p = 0.55, 24 for p = 0.65, and 15 for p = 0.75.

The Preference Parameter

The agents and the designer’s preferences are characterized by the parameter q, the cost

of convicting the innocent. We do not have a formal result for the relation between q and

the optimal size of the committee. However, all the examples that we have constructed

suggest that it depends on the comparison between q and P (G) , the probability that the

defendant is guilty. If q is greater than P (G) , the agents (and the designer) are more

concerned with the error of convicting the innocent, and an uninformed agent would acquit

the defendant. In this case, the optimal size of the committee decreases when q increases.

Conversely, if q is smaller than P (G), the optimal uninformed decision is to convict the

defendant. In this case, the optimal size is increasing in q. Our examples also show that

the utility of the optimal mechanism is not monotonic in q (even if we restrict attention

to values of q above or below P (G)). Finally, notice that similar results hold for the prior

distribution, since q and P (I) play an interchangeable role throughout all of our analysis.

The Optimal Device

As was illustrated in Proposition 5, for certain parameters, the optimal device does not
13To give a concrete example, let us assume that P (I) = 1

2 , q = 0.82, and c = 0.0013. When p = 0.85,
the optimal size is 10 and the utility is −0.001455 (the voting rule is r = 6). However, when p = 0.95, the
optimal size is 4 and the utility is −0.001459 (the voting rule is r = 3).
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Figure 1: The Optimal Devices

coincide with the corresponding Bayesian device. It is then natural to compare γ̄n∗ with

the Bayesian γBn∗. There are three main observations that may prove significant for future

theoretical investigations of the optimal extended mechanism.

First, unlike its Bayesian counterpart, γ̄n∗ may be non-monotonic in the number of

guilty signals k. For the sake of illustration, consider the example in which P (I) = 1
2
,

c = 0.002, p = 0.55, and q = 0.72. In this case, the optimal size of the team is n∗ = 31.

Figure 1a plots γ̄n∗ and the Bayesian threshold z(n
∗) and illustrates that γ̄n∗ may indeed

be non-monotonic.

Second, when γ̄n∗ is monotonic, there is no global regularity in its relation to the

Bayesian incentive scheme. Specifically, it can be above γBn∗ (thereby inducing a higher or

equal probability of conviction for any profile of signals), as illustrated in Figure 1b14 for
14Note that the Bayesian device γBn∗ is in fact a step function achieving the value of 0 for any k 6 z(n∗)
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the case of P (I) = 1
2
, c = 0.035, p = 0.75, and q = 0.52. It can be below γBn∗ (thereby

inducing a lower or equal probability of conviction), as illustrated in Figure 1c for the case

of P (I) = 1
2
, c = 0.014, p = 0.95, and q = 0.92. It can also be neither below nor above γBn∗,

as illustrated in Figure 1d for the case of P (I) = 1
2
, c = 0.014, p = 0.85, and q = 0.72.

Third, in cases as described above, an agent is pivotal for more than one value of

guilty signals. Intuitively, increasing an agent’s probability of being pivotal (relative to the

Bayesian device) increases her incentives to purchase information. In such situations, this

effect is stronger than the statistical efficiency loss.

5 Conclusions

A group can be identified as a collection of agents satisfying one or more of the following

three elements: sharing a common goal, having a joint task, or possessing the ability to

communicate and exchange information at no costs. The current paper considers groups

satisfying all three conditions and introduces a model of group decision making under

uncertainty.

Our analysis yielded four key insights. First, communication between group members in

collective choice scenarios is consequential to the resulting equilibrium outcomes. Specifi-

cally, communication renders all intermediate threshold voting rules equivalent with respect

to the sequential equilibria outcomes they generate. Second, when members of the group

decide whether to acquire costly information or not preceding the communication stage,

groups producing the optimal collective decisions are bounded in size. Third, the optimal

incentive scheme in such an environment balances a trade-off between inducing players to

acquire information and extracting the maximal amount of information from them. In

particular, the optimal device may aggregate information suboptimally from a statistical

point of view. Fourth, the comparative statics of extended mechanism design for collective

choice exhibit some regularities.

and the value of 1 for any k > z(n∗).
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In what follows we outline several avenues in which the current framework can be

extended.

First, since our result concerning the equivalence of intermediate threshold rules could

potentially be extremely important to mechanism design pertaining to collective choice,

as well as provide some formal foundations for deliberative democracy theories in political

science, there are a few directions in which its robustness should be put to test. The authors

are interested in a comparison between the equilibria outcomes predominantly under three

modifications: allowing the players to tremble in their action choices (e.g., by looking at

the sets of trembling hand equilibria instead of Nash or sequential equilibria), considering

sequential communication protocols in which players do not send messages simultaneously

but rather take turns, and regarding players as having a bounded ability to calculate best

responses.

Second, it would be interesting to investigate additional extended mechanisms. For

instance, one could consider a setup in which the designer is able to subsidize agents’ infor-

mation. One example would be a department chair investing in the creation of a centralized

web-site containing all information pertaining to job candidates. Such an investment would

potentially reduce the cost of studying each candidate’s portfolio for all of the hiring com-

mittee members. Formally, in the extended mechanism the designer has to choose the level

of informational subsidies in addition to the size of the group and the communication pro-

tocol. Selecting a high level of subsidies creates a trade-off between inducing more agents

to acquire information, and internalizing some of this information cost by the designer.

A third interesting extension concerns the homogeneity of the players. So far we have

considered homogenous decision panels, in the sense that all players, including the mech-

anism designer, share the same preferences. Concretely, in our model, both the designer

and all of the players share the same utility parameter q. However, in many situations it is

conceivable that agents have heterogenous preferences. One could then study the extended

mechanism design problem in which, at stage 1, the designer chooses the distribution of
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preference parameters of the decision panel members, in addition to choosing the panel’s

size and the device. An analysis of such a scenario would entail defining carefully the

goal of the designer (maximizing her own preferences, as characterized by one given q, or

implementing a point in the Pareto frontier of the equilibria set). We are especially inter-

ested in the optimal composition of the decision panel. In particular, would the designer

choose a committee comprised of agents with preferences coinciding with her own or would

she choose agents with diverging tastes (as observed, e.g., in the optimal choice of central

banker - see, for example, Alesina and Gatti [1995] and references therein)?

Appendix

Proof of Proposition 3

We prove Proposition 3 by demonstrating that when the size of the committee is sufficiently

large there is no device that satisfies constraint (ICi). The choice of the constraint is

arbitrary since we could prove the same result for constraint (ICg).15

Given a device γ : {0, ..., n}→ [0, 1] , let Hn (γ) denote the left hand side of constraint

(ICi):

Hn (γ) =
n−1X
k=0

µ
n− 1
k

¶
f (k + 1;n) (γ (k + 1)− γ (k)) .

For ease of presentation, we will drop the argument n in f throughout this proof. Hn (γ)

can be expressed as:

Hn (γ) = −f (1) γ (0) +
n−1X
k=1

µ
n− 1
k − 1

¶
(1− p)k pn−k−1 1

k
h (k) γ (k) + f (n) γ (n) ,

where

h (k) = qP (I) (n (1− p)− k) + (1− q)P (G)
µ
1− p
p

¶n−2k−1
(k − np) .

15In this proof, we show how to construct an upper bound on the size of the committees that have
admissible devices. The fact that we do not consider both constraints at the same time implies that our
bound is not tight. Admissible devices may not exist even when the size of the committee is smaller than
our bound.
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For n sufficiently large, −f (1) > 0 and f (n) > 0. Moreover, h (k) < 0 for k in

[n (1− p) , np] .
Let bn(1 − p)c denote the greatest integer smaller than n (1− p) . For every k =

1, ..., bn(1− p)c− 1, we have:

h (k) > qP (I)− (1− q)P (G)
µ
1− p
p

¶n(2p−1)+1
(np− 1) .

Notice that the right hand side of the above inequality is positive when n is sufficiently

large. Similarly, let dnpe be the smallest integer greater than np. For k = dnpe+1, ..., n−1,

h (k) > −qP (I) (np− 1) + (1− q)P (G)
µ

p

1− p
¶n(2p−1)+1

,

and the right hand side is positive for n sufficiently large.

Consider the following maximization problem:

max
γ:{0,...,n}→[0,1]

Hn (γ) ,

and let γ+ denote the solution. Define H̄n = Hn (γ+) . It follows from the analysis above

that when n is sufficiently large, the device γ+ is of the form:

γ+ (k) =

½
1 if k = 0, ..., k0, k00, ..., n
0 if k = k0 + 1, ..., k00 − 1

where k0 is either bn(1− p)c− 1 or bn(1− p)c, and k00 is either dnpe or dnpe+ 1. This, in
turn, implies:

H̄n = −
µ
n− 1
k0

¶
f (k0 + 1) +

µ
n− 1
k00 − 1

¶
f (k00) .

When n is sufficiently large, both −f (k0 + 1) and f (k00) are positive. Furthermore,

−f (k0 + 1) 6 qP (I) (1− p)n(1−p)−1 pnp+1 − (1− q)P (G) pn(1−p)−1 (1− p)np+1

since k0 belongs to [n (1− p)− 2, n (1− p)) , and

f (k00) 6 −qP (I) (1− p)np+2 pn(1−p)−2 + (1− q)P (G) pnp+2 (1− p)n(1−p)−2
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since k00 belongs to (np, np+ 2] .

To bound the binomial coefficients in the expression of H̄n, we now introduce Stirling’s

approximation (see Feller [1968]):

l1 (n) =
√
2πnn+

1
2 e−n < n! <

√
2πnn+

1
2 e−n+

1
12n = l2 (n) .

For every n, the function l2(n)
l1(x)l1(n−x) is increasing for x <

n
2
, and decreasing for x > n

2
.

This and the range of k0 and k00 imply:µ
n− 1
k0

¶
=
n− k0
n

n!

(k0)! (n− k0)! 6
np+ 2

n

l2 (n)

l1 (k0) l1 (n− k0) 6

np+ 2

n

l2 (n)

l1 (n (1− p)) l1 (np) =
np+ 2

n

e
1
12n

√
2πn (1− p)n(1−p)+1

2 pnp+
1
2

.

Similarly,µ
n− 1
k00 − 1

¶
=
k00

n

n!

(k00)! (n− k00)! 6
np+ 2

n

l2 (n)

l1 (k00) l1 (n− k00) 6
np+ 2

n

l2 (n)

l1 (np) l1 (n (1− p)) .

After substituting the above inequalities in the expression of H̄n and performing some

algebraic manipulations, we get:

H̄n 6
np+ 2

n

e
1
12n√
2πn

(qP (I) (1− p) + (1− q)P (G) p) p
1
2

(1− p) 52
.

The right hand side of the above inequality decreases in n and converges to zero as n

goes to infinity. Thus, the claim of Proposition 3 follows.

Proof of Proposition 4

First, suppose that V̂ (n) = V (0) = V̂ (n− 1) . It follows that either γBn (0) = ... = γBn (n) ,

or γBn (0) = 0, f (0;n) = 0 and γBn (1) = ... = γBn (n) = 1. In both cases, the left hand side

of constraint (ICg) is zero.

Thus, we now assume that V̂ (n) > V (0) . This implies that z (n) is in (0, n) and kn,

the smallest integer greater than z (n), belongs to {1, ..., n} . Depending on the distance
between kn and z (n) , there are two cases to consider.
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Case (i): 0 < kn − z (n) 6 1
2
. In this case, it is easy to check that:

V̂ (n)− V̂ (n− 1) =
µ
n− 1
kn − 1

¶
f (kn;n) ,

and

−f (kn − 1;n) > f (kn;n) .

Case (ii): 1
2
< kn − z (n) 6 1. Then we have:

V̂ (n)− V̂ (n− 1) = −
µ
n− 1
kn − 1

¶
f (kn − 1;n) ,

and

−f (kn − 1;n) < f (kn;n) .

The Bayesian device is admissible if it satisfies the following constraints:µ
n− 1
kn − 1

¶
f (kn;n) > c, (6)

−
µ
n− 1
kn − 1

¶
f (kn − 1;n) > c. (7)

Clearly, the two inequalities above hold if and only if V̂ (n)− V̂ (n− 1) > c.

Proof of Proposition 5

For every c, let nB (c) denote the largest integer for which the Bayesian device is admissible.

We show that if nB (c) is sufficiently large then V
¡
nB (c) + 1

¢
> V̂

¡
nB (c)

¢
. This will

complete the proof of Proposition 5 since nB (c) is decreasing in c.

We now fix c and write n for nB (c). We assume 0 < kn − z (n) < 1
2
(the proof for the

case 1
2
< kn − z (n) < 1 is similar and is therefore omitted).16 The Bayesian device γBn is

admissible, and so inequalities (6) and (7) hold.
16Since the environment is regular, kn − z(n) 6= 1

2 , 1.
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Consider now a committee of size n+ 1. For every α in the unit interval, let the device

γα : {0, ..., n+ 1} be defined by:

γα (k) =

 0 if k = 0, ..., kn − 1
α if k = kn
1 if k = kn + 1, ..., n+ 1

.

The constraints that the device γα has to satisfy to be admissible can be expressed as:

F (α) =

µ
n

kn

¶
f (kn + 1;n+ 1) + α

·µ
n

kn − 1
¶
f (kn;n+ 1)−

µ
n

kn

¶
f (kn + 1;n+ 1)

¸
> c,
(8)

L (α) = −
µ
n

kn

¶
f (kn;n+ 1) + α

·µ
n

kn

¶
f (kn;n+ 1)−

µ
n

kn − 1
¶
f (kn − 1;n+ 1)

¸
> c.
(9)

The function F is decreasing in α. We now assume that n is sufficiently large, so that

kn − 1 > n (1− p) and kn 6 np. This implies:

F (0) =

µ
n

kn

¶
f (kn + 1;n+ 1) >

µ
n− 1
kn − 1

¶
f (kn;n) > c,

and that L is an increasing function that satisfies:

L (1) = −
µ

n

kn − 1
¶
f (kn − 1;n+ 1) > −

µ
n− 1
kn − 1

¶
f (kn − 1;n) > c.

We let α̂1 denote the greatest value of α for which the device γα satisfies constraint

(8). Similarly, we let α̂2 denote the smallest value of α for which the device γα satisfies

constraint (9). Notice that −f (kn − 1;n) > f (kn;n) since we are assuming that kn− z (n)
is in

¡
0, 1

2

¢
(see the proof of Proposition 4). Thus, the cost c can be at most

¡
n−1
kn−1

¢
f (kn;n)

since the Bayesian device γBn is admissible. It follows that:

α̂1 >
¡
n
kn

¢
f (kn + 1;n+ 1)−

¡
n−1
kn−1

¢
f (kn;n)¡

n
kn

¢
f (kn + 1;n+ 1)−

¡
n

kn−1
¢
f (kn;n+ 1)

≡ α1,

α̂2 6
¡
n−1
kn−1

¢
f (kn;n) +

¡
n
kn

¢
f (kn;n+ 1)¡

n
kn

¢
f (kn;n+ 1)−

¡
n

kn−1
¢
f (kn − 1;n+ 1)

≡ α2.
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With a slight abuse of notation we let V (α) denote the expected utility of the device

γα :

V (α) = − (1− q)P (G) + α

µ
n+ 1

kn

¶
f (kn;n+ 1) +

n+1X
k=kn+1

µ
n+ 1

k

¶
f (k;n+ 1) .

The difference between V (α) and V̂ (n) is equal to:

V (α)− V̂ (n) =
µ
n

kn

¶
f (kn;n+ 1)

µ
n+ 1

n− kn + 1α− 1
¶
.

Let α∗ = n−kn+1
n+1

. Then V (α) is greater than V̂ (n) if and only if α < α∗.

It remains to be shown that α2 < α∗ and α2 < α1 for sufficiently large values of n. Let

us start with the first inequality. We need to show:

(n− kn + 1)
h¡

n
kn

¢
f (kn;n+ 1)−

¡
n

kn−1
¢
f (kn − 1;n+ 1)

i
>

(n+ 1)
h¡

n−1
kn−1

¢
f (kn;n) +

¡
n
kn

¢
f (kn;n+ 1)

i
which can be rewritten as:

−
µ
n− 1
kn − 1

¶
(nf (kn;n+ 1) + nf (kn − 1;n+ 1) + (n+ 1) f (kn;n)) > 0.

We divide the above the expression by
¡
n−1
kn−1

¢
, and notice that

f (kn;n+ 1) + f (kn − 1;n+ 1) = f (kn − 1;n) .

We obtain:

−nf (kn − 1;n)− (n+ 1) f (kn;n) > 0.

After dividing both sides by qP (I) (1− p)z(n) pn−z(n) and rearranging terms we have:µ
p

1− p
¶1−2λ

>
n+ p

n+ 1− p,

where λ = kn − z (n) . The left hand side is greater than 1 since λ belongs to
¡
0, 1

2

¢
, while

the right hand side is decreasing in n, and converges to 1 as n goes to infinity.
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We now compare α1 and α2. We divide both the numerator and the denominator of α1

by
¡
n−1
kn−1

¢
qP (I) (1− p)z(n) pn−z(n), rearrange terms and obtain:

α1 =

³
(1− p)λ p−λ − pλ (1− p)−λ

´
+
³
n
kn

´³
− (1− p)1+λ p−λ + p1+λ (1− p)−λ

´
³
n
kn

´³
− (1− p)1+λ p−λ + p1+λ (1− p)−λ

´
+
³

n
n−kn+1

´³
(1− p)λ p1−λ − pλ (1− p)1−λ

´ .
We now take the limit of α1 as n goes to infinity. Both

³
n
kn

´
and

³
n

n−kn+1
´
converge

to 2 as n grows large. Thus, we have:

ᾱ1 = lim
n→∞

α1 =

1
2

³
(1− p)λ p−λ − pλ (1− p)−λ

´
− (1− p)1+λ p−λ + p1+λ (1− p)−λ

− (1− p)1+λ p−λ + p1+λ (1− p)−λ + (1− p)λ p1−λ − pλ (1− p)1−λ .

In a similar way we derive:

ᾱ2 = lim
n→∞

α2 =

1
2

³
− (1− p)λ p−λ + pλ (1− p)−λ

´
− (1− p)λ p1−λ + pλ (1− p)1−λ

− (1− p)λ p1−λ + pλ (1− p)1−λ + (1− p)λ−1 p2−λ − pλ−1 (1− p)2−λ .

It is tedious but simple to show that ᾱ2 < ᾱ1 for every p in
¡
1
2
, 1
¢
and every λ in

¡
0, 1

2

¢
.
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