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Abstract

In this paper, | consider the problem of optimal unemployment insurance in a world in which
the unemployed agent’s job-finding effort is unobservable and his level of savings is unobservable.
| show that the first-order approach is not always valid for this problem, and | argue that the available
recursive procedures are not currently compatetlly feasible. Nonetheless, for the case in which
the disutility of effort is linear, | am able to provide a complete characterization of the optimal
contract: the agent’s consumption is constant while he is unemployed, and jumps up to a higher
constant and history-independent level of consumption when he finds a job.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

In a recent paper, Hopenhayn and Nicolini (1997) study the properties of an optimal
insurance arrangement between a risk-neutral insurer (principal) and a risk-averse worker
(agent). They assume that the agent beliiesinemployed and expends a hidden amount
of effort to find a job in each period. His probability of finding a job is increasing in the
amount of effort exerted; once he finds a job, he keeps it forever. Importantly, the insurer
has complete control over the agentonsumption, because the agent carssatretly
transfer consumption from one period to the next.

They find that in an optimal contract betwetre principal and the agent, the agent’s
consumption is a decreasing function of his time spent unemployed. This general result

Y This paper previously circulated under the title “Slifying optimal unemployment insurance: The role of
hidden savings.”
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has two consequences. First, an agent who has been unemploygetfards has a lower
consumption than an agent who has been unemployedfot) periods. Second, an agent
who finds a job after a long period of unemployment must make a higher payment to the
insurer than an agent who finds a job after a short period of unemployment.

As stated above, Hopenhayn and Nicolisisame that the principal can costlessly
monitor the agent’s savings and condition contractual payments on this variable. One can
show that the optimal contractin Hopenhayn and Nicolini’s setting has the property that the
agent issavings-constrainedhen unemployed: the agent’s shadow interest rate is lower
than the principal’s shadow interest rate. Nor is this feature of the Hopenhayn—Nicolini
contract unique to the unemployment insurance problem. Rogerson (1985a) shows that in
settings with repeated moral hazard, it is gatlg optimal to impose a sufficiently severe
punishment for poor output performance that therat ends up being savings-constrained.
Intuitively, the agent would like to save so as to mitigate next period’s punishinent.

It follows that with moral hazard, the gmal dynamic contract is only incentive-
compatible under the assumption that the principal is able to costlessly monitor the agent’s
asset levels. This assumption is somewhat restrictive. After all, there are a number of
ways that a person can transfer resources to the future (like foreign bank accounts or by
accumulating durables) that may be hard forsagrs to observe. It is therefore important
to understand the intertemporal structure of optimal contracts when the agent is allowed to
engage in secret asset accumulation.

This paper is a contribution to this generakearch agenda. | relax the assumption
that savings can be monitored by the principal in the Hopenhayn—Nicolini unemployment
insurance model, and assume instead that ¢femtacan secretly save at the same rate as
the principal. | then look to solve for the optimal insurance contfadat surprisingly,
this problem is generally impossible to solve analytically. Unfortunately, it is also difficult
to solve numerically. In a recent paper, Fernandes and Phelan (2000) have described a
recursive formulation for a related class of problems. It is not known, though, how to
translate their recursive formulation into a practical computational procedure when savings
can take on a continuum of values. Werning (2002) and Abraham and Pavoni (2003) attack
the problem by using a computationally féds first-order apprach that replaces the
agent’s incentive constramtvith the corresponding first order conditions. However, | show
that even in simple examples, the first-ordpproach may not be valid because the agent’s
decision problem is intrinsically non-concave in effort and savings.

It is possible, though, to obtain an analytical solution in a particular case, even when
the first-order approach is known to be invalid. | assume that the agent’s disutility from
effort is linear in the probability of his finding a job, and that the principal wants the
agent to exert an interior amount of effort while unemployed. Under these assumptions,

1 In arecent working paper, Shimer and Werning (20€®)sider unemployment insurance in a version of
the McCall search paradigm. They assume that the insurer cannot observe the wage drawn by the unemployed
agent. They show that if the agent has exponential utilitgntthe optimal unemployment insurance contract is
the same whether or not the agent can secretly save and/or borrow.

2 |search across all incentive-compatible insuranceraoty. Abdulkadiroglu et al. (2002) instead consider an
incomplete markets economy with a limited set of possible unemployment insurance systems. They numerically
characterize the optimal unemployment insurance system in that set.
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| prove that the optimal unemployment insurance contract takes an extremely simple form.
During the period that an agent is unemployed, his consumption is constant. When he
becomes employed, his consumption jumpsap new constant level that is independent

of the duration of the unemployment spell. This structure implies that once the agent’s
savings level is unobservable, it is optimal for the agent tbdreowing-constrainedvhen
unemployed.

The intuition behind this rest is as follows. The contract has to be designed to punish
the agent as severely as possible, given that it must deter the agent from saving. This
intuition would seem to lead to the optimal contract’s featuring consumption-smoothing, so
that the principal and agent have the same shadow interestiiat@ever, the very fact that
the first-order approach fails is a sign thastimtuition is wrong. The binding intertemporal
incentive constraint is one in which the agent jointly deviates from the optimal contract by
simultaneouslgaving more and working less. When the contract is designed to prevent this
joint deviation, the agent ends up being borrowing-constrained given that he does work the
amount specified by the contract.

In this paper, | assume that the unemployed agent cannot borrow secretly. | have two
reasons for this restriction. The first is technical: in the linear disutility case, thereare
incentive-compatible contracts (including repetition of any static contract) if agents can
engage in both hidden borrowing and lending. The second is more substantive. It is much
more difficult for individuals to engage indhden borrowing than hidden saving, because
their loans have to be enforced. In contrast Cole and Kocherlakota (2001) explicitly
model, hidden saving can take the form of physical investment. Physical investment
requires no outside enforcement and so is intrinsically more difficult to monitor.

2. Theproblem

In this section, | describe a variant of the Hopenhayn—Nicolini unemploymentinsurance
model, augmented to allow for hidden savings. The principal has von Neumann—
Morgenstern utility function

oo
_ Zﬁ[*lct
=1
and the agent has von Neumannasiglenstern ility function

oo

Y B uten —v(po)]

=1
where, in both utility functions;, is the agent’'s consumption in periodThe variablep,
is the agent’s effort in period, and lies in the sef0, 1]. | assume that’, —u”, v’ > 0,
v” > 0, and that is bounded from above and from below. | assume that®< 1.

3 This intuition is valid in the environment with hidden income and hidden storage studied by Cole and
Kocherlakota (2001). The key difference between thedeitings is that in Cole and Kocherlakota, the two types
of deviations (storing from periodto period(s + 1) and then lying) are not complementary in utility. In contrast,
shirking and storing are complementary in the model studied in this paper.
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An agent can be employed or unemployed; he begins life unemployed. The choice of
p: affects the probability of becoming employed for an unemployed agent. Specifically, if
an agent is unemployed at the end of period 1), then the probability of his becoming
employed in period is p;, and the probability of his staying unemployed(ls— p;).

If an agent is employed at the end of perigd- 1), he stays employed in perigdwith
probability one. Thus, being employed is an absorbing state.

The agent’s employment status is observable to others, but his choige o
unobservable. As well, the agent can secretly save at ygte-11. | consider contracts
in this economy that specify two sequenge$, ¢V} . Given such a contract, an agent
who is unemployed in periodreceives compensatiary from the principal. If an agent
became employed for the first time in perigdhen his compensation from the principal
in periods >t is ¢£. Thus, once an agent is employed, his compensation is constant over
time. (It is simple to show thabecause the principal and agent have the same discount
factor, this smooth compensation is efficient in this economy.)

| assume that the principal wants to (weakly) implement a sequence of effort choices
p* = {pf}2, by the agent when unemployed, where-1p; > 0 for all z. | define an
incentive-compatible contract?, cV) to be one such that:

[ee) t—1
{Sf.piliiie arg max SB[ pofpu(ef)/@—8)—vipn

SepZi i -1
+@ = pou(s”)}
st. ¢E=cE+85_11-p)/p forallr,
tV=cV+5_1/8-5, foralls,
St pis—prgE cV >0 forally,
So=0,

so that it is weakly optimal for an unemployed agent to chggsén all r. Note that if
an agent becomes employed in periodith savingsS;_1, then his optimally smoothed
consumption igcf + S;_1(1— B)/B) in every period thereaftér.

It is straightforward to show that, given any incentive-compatible contract, there exists
a payoff-equivalent contract?’, ¢U’) in which the agent’s optimal savings sequence is

4 | do not formally modelwhythe principal desires to implement an interjgf. It is standard in principal-
agent problems to model the principal’s objective as being linear;ithis assumption, if the agent's utility
function is linear inp, would generically result in the princigslpreferring a bang-bang specification for

However, in this unemployment insurance probleme, principal may prefer an interior choice fpbecause
of search externalities. Suppose that the principal israotihg with a unit measure of agents, and that a given
agent’s disutility from choosing a probabiliy is given byp¥ (p), wherep is the average chosen by the other
agents in the economy. ¥ is increasing, then there are congestioe@f—it becomes harder for a given agent
to find a job when other agents are seargta lot. When designing the optimabntract, the principal internalizes
the externality implicit in&, and the principal’s choice gf will, for a generic class of problems, be interior.
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zero. | restrict attention to these contracts that induce zero savings, and look to solve the
following cost-minimization problengUIP):

00 t—1
min > g [T (2 - p){prcf /A= B) + (1 p))el)
=1 s=1

S.t.
00 t—1
* t—1 E — i
©, p )eargS>OT§;<>0; B s:l_ll(l_ p){prue(cE + Si—1(1— B)/B)/(L—B)

+ @ = poul(c’ + S-1/B—Si) —v(pn)}
st. UV +585_181-8 >0 forallt, So=0;

00 t—1
ST A polpiu(cE) /@ =By + A= pou(cl)} = us
t=1 s=1

cE.cV>0 forallr.
In words: What contracts are the minimal-togentive-compatible contracts among all
those that provide the agent with ex-ante utility of at leg&t

3. Difficulties

In this section, | consider two recenttigveloped approaches to solvibgP. The first
is to make the problem recursive in some fashion. | find that this approach is, at least of
this writing, computationally infeasible. The second is to use a version of the first-order
approach. | find that this approach will not work if the curvature & sufficiently small.

3.1. Can we make the problem recursive?

Much of the recent analysis of dynamic moral hazard problems is based on an insight of
Spear and Srivastava (1987). They show that, without hidden savings or other hidden state
variables, dynamic moral hazard problems are recursive in the following sense: in each
period, the principal chooses current comption and next pesd’s continuation utility
S0 as to minimize his costs subject to the incentive constraints, and subject to delivering a
specified amount of continuation utility to the agjeHence, the principal-agent problemis
recursive with respect to a one-dimensional state variable: continuation utility.

The difficulty in makingUIP recursive in a similar fashion is that if an agent brings
savings into the period, his response to any given contract is different than if he does
not bring savings. In other words, the presence of hidden savings essentially introduces
an adverse selection problem at each date. Fernandes and Phelan (2000) show how to deal
with this kind of dynamic adverse selection problem: the principal must minimize his costs
subject to delivering a given amount of continuation utilityeterytype.



546 N.R. Kocherlakota / Review of Economic Dynamics 7 (2004) 541-554

Here’s how Fernandes and Phelan’s insight works in this context. Suppose the principal
wants to induce an unemployed agent to choasén every period. Given an incentive-
compatible contractc?, ¢), we can defind’ (S)/(1 — ) to be the ex-ante utility of the
agent if he begins life witt§ units of savings (as opposed to with zero) and then chooses
an optimal effort and savings strategy in response to the contract. This,a value
function DefineDOM to be the set of all such value functions (as we vary the incentive-
compatible contradic?, ¢V)). Further, given a value functior in DOM, let I71(V) be the
minimal cost to the principal of all incentive-compatible contracts that generate the value
functionV.

Then, the function7 : DOM — R, satisfies the following functional equation (FE):

nVy= min p.ct/1=p)+ 1= po{c’ +pIW)}

S.t.
0. p.) €arg max pu(c’) = v(p)(d—B)
V>8>0
1>p>0
+@—p){u(cV =8)A-p)+ pW(SH},
V)= max {pu(cf+5A-p)/B) —v(p)L-B)}
S 14cV >85>0
1>p20

+@—p){u(cV +5/B—5)1-p)+pW(SH],
cE,cV >0, W e DOM.

At a given point in time, the principal seeks to minimize the expected value of his
discounted costs, given that he wishes to induce an agent with no assets to choose effort
p+« and to choose not to save. Thessibility of hidden savings means that, in order to
make sure the contract is in fact incentiveagpatible, the agent needs to know how much
utility he will get from choosing values of savings othernttae principal’s preferred level
of savings (zero). Hence, the principal neealsatisfy a promise-keeping constraint that
appliesto all values aof, not justS = 0, and needs to pick a continuation value function
not just a continuation utility.

We now have a recursive approachUtP. Let IT be the solution to (FE). Then, the
principal’s first step is to solve the minimization problem:

min I1(V)
VeDOM
st. V() >u”.

He obtains a solutiorVy to this minimization problem. Next, the principal solves the
minimization problem in (FE) wittVp substituted in fo’, and obtains a solutioe?, ¢{')
and a continuation value functiofy. He again solves the minimization problem in (FE),
now with V1 substituted in folV. This will deliver a(cf, cé’), as well a continuation value
function V». The principal can continue in this recursive fashion; the resultifige )%,
solvesUIP.

Note that because of hidden savings, the relevant state variable isfumsti®n,not a
number as when only effort is hidden. This is inevitable, because we have to keep track of
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continuation utility for all types—that is, for all savings levels. As well, we have to use a
generalization of Abreu et al. (1990) to iterate on (infinite-dimensional) sets of functions
until we find DOM. These infinities pose significant computational difficulties. Hence, at
this point in time, it is not known how to implement Fernandes and Phelan’s recursive
approach in practice when the agent has a continuum of possible savingslevels.

3.2. The first-order approach

Much of the analysis of moral hazard problems usedfitseorder approachTo see
how this approach works, it's useful to look at a two-period version of the unemployment
insurance problem posed in the previous section. | set the discount rate equal to zero, and
assume that the agent has preferences of the form

In(c1) + In(c2) — v(p2)
and a technology of the form
__ [ £ with probability p2,
YZ1u with probability 1— ps.
The agent can secretly save at a zero rate of return. The principal cannot observe the agent’s
choice of storage level or the agent’s choicepgf the principal can condition the agent’s
second period consumption on the realization of
The principal’s problem is to (weakly) implement a chojege (0, 1) at minimal ex-
pected cost, given that the agent must receive at least reservationatilit\athematically,
the principal’s problem is:
min_ c1+ psce + (1— p3)cu
c1,¢g,cy =0
s.t.
(S, p3) e max In(c1— )+ pzIn(ce +8) + (L - p2) In(cy + S) — v(p2),

12p220
12520

In(c1) + p5In(ce) + (1= p3) In(cv) — v(p3) = us.
Itis simple to show that given a solution to this problém, cg, cy), then(c1 — S, cg + S,

cy + ) is also a solution which leads the agenttwostore. Hence, the principal’s minimal
costs are not increased by considering the following problem with a smaller constraint set:

min_ c1+ psce + (1 - pﬁ)cu
c1,¢g,cy =0
S.t.
(0, p3) € max In(ca— ) + p2In(ce + ) + (1= p2) Ineu +5) = v(p2),

Zp22
12520

In(c1) + p5In(ce) + (1 - p%) In(cy) — v(pé) > Uy

5 However, if the agent had only a finite number of pbsisavings levels, we might be able to use this
approach to some effect (a la Doepke and Townsend, 2003).
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| call this problemP1.

A difficulty with this problem is that there is no obvious way to attack it using standard
Lagrangian methods. The first-order approach gets around this difficulty by replacing
the agent's decision problem with its first-order necessary conditions. This creates the
following problemP2:

min__c1+ pice + (1— p3)cu

c1,cg,cy 20

s.t. In(cg) —In(cy) = U/(pg),

1/e1 = p3/cE+ (11— p3)/eu,

In(c1) + p5In(ce) + (1 - p%) In(cy) — v(pé) > Uy

This problem has two advantages relative R&. The first is obvious: the constraint

set is such that the problem is easily amenable to Lagrangian methods. The second
advantage is more subtle. In the previous subsection, we saw that the recursive formulation
of P1 is difficult to implement computatiofig. Werning (2002) considers multiperiod
versions of the problen?2. He shows that, in each period, the principal chooses current
consumption and next period’s continuation utility subject to the incentive constraints
on effort, subject to delivering a pre-agfied amount of cormiuation utility and subject

to not exceeding a pre-specified upper boundmaarginal utility of mnsumption. The

last constraint guarantees that the principal is satisfying the agent’s intertemporal Euler
equation at each point in time. Thus, multiperiod versiong Bfare recursive in two state
variables: continuation utility and an uppeound on continuation arginal utility. This

is much simpler than multi-period versions Bl (like our original problenUJIP), where

we have to keep track of an infinite-dimensional state variable (and solve as well for the
domain of that state variable).

So, it seems like a good idea to attaBR instead ofP1. Unfortunately, solvingP2
may not be the same as solviij.. The problem is that the agent’s objective function is
not globally concave in savings and effort. It follows that the first order conditions of the
agent’s decision problem are onlgeessary: the constraint set B2 is in general larger
than the constraint set 1. This creates the possibility that the solutiorP® may not be
incentive-compatible. | now show that this possibility is in fact realizadifs sufficiently
low curvature.

To do so, | first solveP2. In this two-period context, the solution is simple: at an
optimum, the two weak inequalities must hold with equality. If the last constraint is an
inequality, simply lowerc;: this lowers the principal’s objective without violating the
other two constraints. If the second constraint is an inequality, aidey ecy, lower
ceg by ecg and lowercy by ecy. This keeps the agent’s ex-ante utility the same, and
does not affect the agent’s effort decisidrhe principal’s objective is lowered because
c1 < psce + (1= p3)cy (by Jensen’s inequality).

Thus, the solution taP2 is the unique triple(c], ¢}, cj;) that satisfies all constraints
with equality. However(c7, ¢, cj;) is notin the constraint set dt1. Here’s why. Given
(c1, cg. c}p), the agent's objective is supposedly maximizedsat O and p2 = p3. By
construction, the agent’s first order conditions are satisfied (with equality). But look at the
Hessian of his objective:
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—1(e)2 = p3/(cp)P = (= p3)/(ch)? (/e — 1/ch)
(1/('} — 1/CZ) —v”(pﬁ)

A necessary condition fof = 0 and p2 = p5 to solve the agent’s problem is that this
Hessian be negative semi-definite. It is true that the diagonal elements are non-positive.
But the determinant of the Hessian is negative'if p3) is sufficiently small, and so,

even though the agent’s first order conditions are satisfieétd=a0 andp, = p3, he can
experience aecond-ordegain by increasing above 0 and lowering, below p3.

Thus, even in this simple example, the first-order approach is invalitiéds sufficiently
low curvature. This possibility is generated by the fact that the agent’s objective function
is not guaranteed to be non-concave as a functign@ndsS. The same kind of reasoning
can be applied in the infinite-horizon setting of Section 2 to show that we cannot always
use the first-order approaéh.

There is no set of known conditions in the infinite horizon problgh® that are
sufficient to guarantee that the first-order approach is valid with hidden savings. Abraham
and Pavoni (2003) point out, though, that it is possible to verify whether a particular
solution to the first-order approach problem is actually a solution to the true problem. They
use a two-step numerical procedure in their analysis of optimal unemployment insurance
with hidden borrowing and lending. First, they solve the first-order approach problem
(the infinite-horizon analog oP2). Second, they verify whether the solution is incentive-
compatible, by checking whether the agent finds it optimal to chpésehen confronted
with the solution contract. They conclude that for all of their parameterizations, the solution
to the first-order approach problem is in fact the solution to the true problem.

Werning (2002) also attack$lP by solving the first-order approach problem. For some
specifications ofi andv, he shows numerically and analytically that in the solution to this
problem, the difference betweep; andcg; is falling over time. (He interprets this falling
differential as implying that unemploymemnefitshould bencreasingn the duration of
unemployment.) His paper does not have the kind of explicit verification step contained in
Abraham and Pavoni (2003). Hence, his paper contains no information about whether his
characterization of the solution to the firgder approach problem carries over to the true
problemUIP or not.

4. Solvingtheinsurance problem in thelinear disutility case

We now return to the probletdIP: what is the principal’s preferred contract among all
those incentive-compatible contracts that provide the agent with ex-ante utility no less than
u*? We have seen in the previous section thatetfaee no generally valid approaches that

6 Even without hidden savings, it is possible that thetfarder approach is invalid. The basic problem,
again, is that the agent’s problem may not be globatipoave in effort. However, there are known sufficient
conditions that preclude this possibility ard satisfies those sufficient catidns. See Rogerson (1985b) for a
full discussion.
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are currently computationally feasible to solving contracting problems with hidden effort
and hidden savings. In this section, | specialize the problem by assuming that

v(p2) =ap2, «o=>0.

Under this assumption, the first-order apgeb is definitely invalid, because the Hessian of
the agent’s objective is guaranteed not to be negative definite. Nonetheless, | can provide a
complete analyticatharacterization of the optimal contract.

4.1. Arelaxed problem

We begin by first constructing a superset for the set of incentive-compatible contracts.
Any incentive-compatible contract must satisfy

oo
A=B)Y Bu(cth,) =u(cf)—adl—p) forallz. (R1)
s=0
This restriction derives from the linearity of the agent’'s problem. In particular, in
period ¢, the agent’s problem is linear ip, s for s > 0. Hence, if he chooseg, > 0
in every period, he must be indifferent among all possjpkequences, including setting
pr+s = 0 for all s, and settingp, = 1.
The restriction (R1) is implied by efforts being hidden. In addition, hidden savings
implies that any incentive-compatible contract must also satisfy

cf <cy forallr. (R2)

Supposert‘ﬂrl < cY. Then, an unemployed agent in periogrefers to set(s; > 0,
pr+1 = 0) to setting(S; = 0, p;+1 = 0). But (R1) implies that the agent is indifferent
between settings; =0, p;11=0) and(S; =0, pi41 = p},,). Hence, ifc? ; <V, itis
not optimal for an unemployed agent in periotb setS; = 0 andp,11 = p;, ;. Thisis a
contradiction of incentive-compatibility.

Note that(R2) implies that a contract may satisfy batR1) and

w'(c') = pean(efin) + (- pf+1)“/(ctlﬁr1) forallz, (R3)
and still not be incentive-compatibl@gr1) and(R3) are the first-order necessary conditions
that are implied by the optimality of effort strategy and zero savings. But, just as in the
discussion of the first-order approach in the previous section, they do not take into account
the second-order consequences of sinméltaus changes in savings and effort.

Thus, the set of contracts that satigfil) and (R2) are a superset of the incentive-
compatible contracts. We now poseadaxed problemamong the contracts that satisfy
(R1) and(R2), and provide the agent with at least in ex-ante utility, which ones does
the principal prefer?

4.2. Solving the relaxed problem

To solve the relaxed problem, we begin with two straightforward observations. First, in
any solution to the relaxed problem, the ex-ante utility constraint must hold with equality.
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If it does not, we can Iowew(cf) by ¢ andu(cf) by £(1 — B). This change improves the
principal’s objective without violating any of the constraints fsmall. Second, note that
the constraintgR1) and(R2) together imply that in any solution’ < c£ for all ¢.
The next step is the key one: in any solution to the relaxed problem,

&V =cl,.
Suppose not, and’ < cfﬂrl. Then, we can construct a new contract by using a perturbation
similar to that in Rogerson (1985a): raisingc;’) by ¢, loweringu(c’, ;) by ¢~ and
Ioweringu(ctEH) by e8~1(1 — B). This new contract satisfigR1) for anye, and satisfies
(R2) as long ag is sufficiently small. The new contract’s change in cost relative to the old
one is given by

e/u(c)') = epy u (1) = (1= pfaa) /' (€a)
<e/u'(cV)—e/u'(cl,y) (because” <Oandef, ;> cl, )
<0,

and so the old contract was not optimal.
Hence, in any contract that solves the relaxed probtéms ¢V for all ¢. From (R1),
we know that

cE=eF=uHu@) +a@-p)

for all . We can then find the unique solution to the relaxed problem by substituting into
the ex-ante utility constraint to find

Y =uur - )]
4.3. The optimal contract

We have characterized the unique solution to the relaxed problem. To verify that it in
fact solves the original problem, we need to show that this solution is in fact incentive-
compatible. But note that for any,

u'(EU) > pu’(E‘E) +1- p)u’(EU).

Hence, no matter what sequence that he chooses, an unemployed agent never wants to
save. As well, the agent is indifferent between all levelg @f each period. It follows that

the contract is indeed incentive-compatible, and must be in fact the principal’s preferred
incentive-compatible contract.

4.4. Discussion

It is useful to contrast this contract with the optimal contract when the agent cannot
secretly save. When savings are observable, it is optimal in this setting for the principal to
leave unemployed agergavings-constraingao that

u,(CrU) < Pt+l”/(CtE+l) +(1- Pt+1)”/(ct[£rl)'



552 N.R. Kocherlakota / Review of Economic Dynamics 7 (2004) 541-554

Intuitively, the optimal way to provide incentives in perigdt 1) is to punish the agent so
severely when he is unemployed that he would like to save from petmgeriod(s + 1).

Once the agent can save secretly, it is no longer possible to punish the agent so severely.
The key principle underlying the optimal contract is that it is designed to punish the agent
as much as is possible ex-post, given therdg ability to undermine such punishments
using secret savings. One might think that this principle means that the optimal contract
would adjust to secret savings by making the above inequality an equality. Indeed, had we
incorrectly used the first-order approach to “solP, the “solution” would in fact have
had this property.

The problem with this thinking is that even if a contract satisfies the intertemporal
Euler equation’(c¥) = pi11u’(cE 1) + (1= pry)u’(cl, 1), the agent can still undermine
the punishment inherent in the contract by saving secretly. In particular, suppose the
intertemporal Euler equation holds beft > ¢ ;. Then, the agent will find it optimal
to save(cV — cfﬂrl)/Z from periodr to period (s + 1) and then sep;;+1 = 0 in period
(t + 1). In other words, the possibility of j@int deviation of saving and shirking imposes
the even tighter intertemporal restrictiondf < ct‘ﬂrl on the optimal contract. Given this
restriction, the optimal contractimposes the most severe punishment on the agentin period
(t + 1)—and this implies that” equalsc? , in the optimal contract.

t+1
The structure of the optimal contract implies that forzall

w'(cf') > prvau (cfiq) + A= pranu’ (cha),
so that for alk the agentidorrowing-constrainedearlier, | restricted attention to contracts
which induce zero savings on the part of the agent. This raises the question of whether there
are other optimal contracts which induce the same consumption allocation for the agent,
but a positive amount of private savings in at least some period. But it is optimal for the
agent to be borrowing-constrained at everyedim the optimal contract; hence, private
savings must be zero at every date.

Itis useful to note as well that the optimal contract in this setting is renegotiation-proof:
itis Pareto optimal at the beginning of each period. (Of course, it is not Pareto optimal after
the agent has exerted effort within a period, but before the realization of his employment
status.) In contrast, Chiappori et al. (1994) find that the ex-ante optimal contract is not
renegotiation-proof when they consider a principal-agent problem in which the agent has
only two possible effort choices and can secretly borrow and lend.

5. Conclusions

This paper considers the optimal provision of unemployment insurance for an agent
who can secretly exert effort to find a job and who can secretly save. The paper argues
that it is not practical to compute an approximate solution to the contracting problem using
currently available recursive methods. As well, the first-order approach is not generally
valid: the complementary nature of shirking and saving makes the agent’s problem non-
concave.

Despite these difficulties, it is possible to completely and analytically characterize the
optimal contract when the agent’s disutility of effort is a linear function of his probability
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of finding a job. The paper uses this characterization to show that the nature of optimal
unemployment insurance is caderably changed if the agent can engage in secret saving.
In particular, the agent’s compensation when he is unemployed or when he gets a job is
independent of his history, instead of depending in complicated ways on the duration of
unemployment. As well, rathghan being savings-constn&d, the agent faces binding
borrowing constraints at each date.

It is natural to ask whether these findings are robust to introducing small amounts of
curvature inv. | suspect that the exact history independence result will collapse—although
my guess is that even in those cases, there will not be much loss in welfare in restricting
the contract to be history independent. As well, | suspect too that the optimal contract will
continue to leave the agent borrowing-constrained (which also means that the first-order
approach will not work). The challenge thaimains is to develop robust and practical
numerical methods to assess these, and other, conjectures. The continuous-time approach
of Williams (2003) may be a promising step in this direction.
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