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Abstract

This paper studies the properties of the Bayesian approach to estimation and comparison of
dynamic equilibrium economies. Both tasks can be performed even if the models are nonnested,
misspeci5ed, and nonlinear. First, we show that Bayesian methods have a classical interpretation:
asymptotically, the parameter point estimates converge to their pseudotrue values, and the best
model under the Kullback–Leibler distance will have the highest posterior probability. Second, we
illustrate the strong small sample behavior of the approach using a well-known application: the
U.S. cattle cycle. Bayesian estimates outperform maximum likelihood results, and the proposed
model is easily compared with a set of BVARs.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last two decades, dynamic equilibrium models have become a standard in-
strument to study a variety of issues in economics, from Business Cycles and Growth
Theory to Public Finance, International Trade, Industrial Organization and Labor Eco-
nomics. Since a dynamic equilibrium economy is an arti5cial construction, these mod-
els will always be false. This fact presents two main challenges for econometric
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practice: 5rst, how to select appropriate values for the “deep” parameters of the model
(i.e. those describing technology, preferences, and so on) and, second, how to compare
two or more misspeci5ed models that might be nonnested.
Bayesian econometrics addresses these two challenges by suggesting both a pro-

cedure to select parameters and a criterion for model comparison. Parameter choice
is undertaken by the computation of posteriors while model comparison is performed
through the use of posterior odds ratios. The bayesian approach is, of course, well
known. Inference about parameter values follows directly from Bayes’ Theorem while
model comparison through posterior odds was introduced by JeHreys (1961) (in the
form of hypothesis testing) and recently revived by Gelfand and Dey (1994), Geweke
(1998), Landon-Lane (1999), and Schorfheide (2000), among others.
Our work follows this tradition. In particular, this paper makes two contributions.

First, we show that the Bayesian approach to model estimation and comparison has
a classical interpretation: asymptotically, the parameter point estimates converge to
their pseudotrue values, and the best model under the Kullback–Leibler measure will
have the highest posterior probability, both results holding even for misspeci5ed and/or
nonnested models. Second, we illustrate the strong small sample behavior of Bayesian
methods using a well-known application: the U.S. cattle cycle. Bayesian estimates
outperform Maximum Likelihood results, and the proposed model is compared with a
set of Bayesian Vector Autoregressions. 1

These contributions are important for two reasons. Our 5rst point helps to remove one
of the main criticism of bayesian methods, the possible impact of priors in our reading
of the data, since they imply that, as the sample grows, the priors disappear. The con-
vergence of the posterior odds ratio toward the Kullback–Leibler preferred model is at-
tractive because there is a complete axiomatic foundation that justi5es why this measure
is precisely the criterion a rational agent should use to choose between models. Details
of this axiomatic foundation are presented in Shore and Johnson (1980) and Csiszar
(1991). Our second point shows how, in real life applications, a bayesian approach
delivers a very strong performance when applied to dynamic equilibrium models.
There are several reasons to justify our “Bayes choice”. First, Bayesian inference

builds on the insight that models are false and is ready to deal with this issue in a
natural way. Estimation moves from being a process of discovery of some “true” value
of a parameter to being a selection device in the parameter space that maximizes our
ability to use the model as a language in which to express the regular features of
the data (Rissanen, 1986). Second, the Bayesian approach is conceptually simple yet
general and Jexible. Issues such as nonstationarity do not require speci5c methods as
needed in classical inference (Sims and Uhlig, 1991). Also from the parameters pos-
terior distribution we can build point estimates to match diHerent objects of interest
as impulse-response functions to shocks estimated from the data (Schorfheide, 2000)
or moment conditions (Geweke, 1999b). Third, there is an asymptotic justi5cation of
the Bayes procedure. As mentioned before, we prove consistency of both the point

1 An additional contribution-how to evaluate the likelihood of nonlinear representations of dynamic
equilibrium models using Sequential Monte Carlo 5ltering-is described in detail in a companion paper
(Fern)andez-Villaverde and Rubio-Ram)0rez (2002)).
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estimates and the posterior odds ratio. Fourth, also as shown in the paper, the small
sample performance of Bayesian estimates tends to outperform classical ones even
when evaluated by frequentist criteria (for similar 5ndings, see Jacquier et al., 1994;
or Geweke et al., 1997). Fifth, the Bayes’ Theorem is an optimal information process-
ing rule in the sense of Zellner (1988): it uses eLciently all the available information
in the data (both in small and large samples) and it does not add extraneous informa-
tion. Sixth, the advent of Markov chain Monte Carlo techniques has removed the need
for suitable expressions for likelihoods and priors (in fact, simulation methods like the
Sequential Monte Carlo even allow dealing with models without closed-form likeli-
hood functions). Seventh, it is computationally straightforward to conduct a robustness
analysis of the results.
This paper relates with previous Frequentist and Bayesian work on model compari-

son. Frequentist literature has concentrated on the use of nonnested hypothesis testing
(for a review see Gourieroux and Monfort, 1998). In particular, Vuong (1989) and
Kitamura (1998) have developed tests for nonnested and misspeci5ed models, and
Aguirre-Torres and Gallant (2001) have proposed the use of the EMM for such a
purpose. We see our contributions as very similar in spirit to these papers.
In the Bayesian literature, DeJong et al. (2000) pioneered the Bayesian estimation

of Real Business Cycles models using importance sampling. Otrok (2001) 5rst applied
the Metropolis–Hastings algorithm to the estimation problem. In the area of dynamic
equilibrium models comparison, Landon-Lane (1999) has studied one-dimensional lin-
ear processes, and Schorfheide (2000) has compared the impulse-response functions of
linearized models.
We advance with respect to these papers in several aspects. First, we pose the prob-

lem in very general terms, not limiting ourselves to linearized Real Business Cycles
models. Second, the use of State-Space representations allows us to deal with high
dimensional vectors and to study a general class of (possibly nonlinear) models. Third,
we develop the asymptotic properties of the procedure. Fourth, we document the per-
formance of Bayesian estimation in small samples and compare the marginal likelihood
of the model against a set of alternatives.
The rest of the paper is organized as follows. Section 2 presents the asymptotic

properties of the Bayesian approach to model estimation and comparison. Section 3
develops a dynamic equilibrium economy: the cattle cycle model. Section 4 estimates
the model, and Section 5 compares it with a set of Bayesian Vector Autoregressions
and discusses further extensions. Section 6 concludes.

2. Asymptotic properties of the Bayesian approach

This section develops the asymptotic properties of Bayesian inference when models
are possibly misspeci5ed and/or nonnested. We will prove that the posterior distribution
of the parameters collapses to their pseudotrue values and that posterior odds ratio of
any model over the best model under the Kullback–Leibler measure will approach
zero as the sample size goes to in5nity. The novelty of these two results is that we do
not assume that the models are well-speci5ed and/or nested as the existing literature
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requires (see for instance Chen, 1985; or Gelfand and Dey, 1994). After presenting the
notation, we explain the Bayesian model comparison, and we proved the two theorems
mentioned above. Finally we discuss the numerical implementation of the bayesian
approach.

2.1. Notation

Assume that the observed data is a realization of the real-valued stochastic pro-
cess Y ≡ {Yt : � → Rm, m∈N, t = 1; 2; : : :}, de5ned on a complete probability
space (�; I; P0), where � = Rm×∞ ≡ limT→∞ ⊗T

t=0 Rm and I ≡ limT→∞ IT ≡
limT→∞ ⊗T

t=0 B(R
m) ≡ B(Rm×∞) is the Borel 	-algebra generated by the measur-

able 5nite-dimensional product cylinders. De5ne a T segment as Y T ≡ (Y ′
1 ; : : : ; Y

′
T )

′

with Y 0 = {∅} and a realization of that segment as yT ≡ (y′
1; : : : ; y

′
T )

′. Also de5ne
PT
0 (B) ≡ P0(B)|IT ≡ P0(Y T ∈B), ∀B∈ IT to be the restriction of P0 to IT . The struc-
ture of � is important only to the extent that it allows for a suLciently rich behavior
in Y . For convenience, we choose �=Rm×∞. In this case, Yt is the projection operator
that selects yt , the tth coordinate of !, so that Yt(!) = yt . With I ≡ B(Rm×∞), the
projection operator is measurable and Y is indeed a stochastic process.
It is often more convenient to work with densities rather than measures. As a con-

sequence, we assume there exists a measure T on (Rm×T ;B(Rm×T )) for T = 1; 2; : : :
such that PT

0�T (where “�” stands for “absolute continuity with respect to”). We
call the Radon–Nykodym derivatives of PT

0 with respect to T the probability density
function pT

0 (·) for ∀T .
Let M ≡ {1; 2; : : : ; H}. We de5ne a model i as the collection S(i) ≡ {f(�; i);

�(�|i); �i}, where f(�; i) ≡ {fn(·|�; i) :Rm×n × �i → R; n= 1; 2; 3; : : :} is the set of
densities fn(·|�; i) on (Rm×n;B(Rm×n)), �(�|i) is a prior density on (�i;B(�i)), and �
is a ki-dimensional vector of unknown parameters such that � ⊆ �i ⊆ Rki ∀i∈M . We
assume that fn(·|�; i) is measurable with respect to Pn

0 ∀n; i. Each family of parameter-
ized probability densities comprises diHerent candidates to account for the observations
while the prior probability densities embody the previous knowledge about the parame-
ter values. We de5ne S ≡ {S(i); i∈M} as the set of considered models. We can think
about S in a very general way: It can contain models derived directly from economic
theory (as the stochastic neoclassical growth model) and/or pure statistical models (as
a Vector Autoregression).
The function fT (yT |�; i) is called the pseudo-likelihood function of the data. De5ne

the pseudo-maximum likelihood point estimate (PMLE) as �̂T (i; yT ) ≡ argmax�∈�i

logfT (yT |�; i). Note that we do not assume that there exists a value � ∗ such that
fT (yT |� ∗; i) = pT

0 (y
T ). Statistically this means that the model may be misspeci5ed.

Far more importantly, from an economic perspective, this is a direct consequence of
the fact that the model is false.
Often we 5nd it more convenient to write, for ∀�∈�i, fT (yT ; �|i) = fT (yT |�; i)

�(�|i). With this notation and using conditional probabilities, we can write the posterior
of the parameters as �(�|yT ; i)˙ fT (yT |�; i)�(�|i) and its marginal likelihood as

fT (yT |i) = Ei(fT (yT |�; i)) =
∫
�i

fT (yT |�; i)�(�|i) d�=
∫
�i

fT (yT ; �|i) d�: (1)



J. Fern3andez-Villaverde, J.F. Rubio-Ram37rez / Journal of Econometrics 123 (2004) 153–187 157

The marginal likelihood is the probability that the model assigns to having observed
the data. This interpretation relates the marginal likelihood with the pseudo-likelihood
evaluated at the PMLE. In this case, the parameters are integrated out through maxi-
mization using a measure that puts all the mass at the PMLE while, in the marginal
likelihood, they are integrated out using the prior (herein we are assuming that we
built our densities from a probability measure and, as a consequence, �(�|i) is always
proper).
Usually we will be in the situation where fT (yT |�; i) can be factorized in the follow-

ing way: fT (yT |�; i)=∏T
t=1 ft(yt |yt−1; �; i) where ft(·|yt−1; �; i) :Rm×t ×�i → R+ is

B(Rm×t)-measurable for each �∈�i. This factorization turns out to be important both
theoretically (for instance to interpret the marginal likelihood as a measure of with-in
sample forecasting performance) and computationally (to evaluate pseudo-likelihoods
recursively).
Now we de5ne the Kullback–Leibler measure as

K(fT (·|�; i);pT
0 (·)) =

∫
Rm×T

log
(

pT
0 (Y

T )
fT (Y T |�; i)

)
pT
0 (Y

T ) dT :

The intuition of this closeness concept is simple: it evaluates the average surprise
with respect to the true measure that the researcher using fT (·|�; i) suHers if he sud-
denly learns that the true density is pT

0 (·). As mentioned in the introduction, the
Kullback–Leibler measure is particularly attractive because of its sound foundations
on decision-choice theory. Because of space constraints we omit a thorough discussion
of its complete axiomatic foundations. We refer the interested reader to Shore and
Johnson (1980) and Csiszar (1991).
We de5ne the pseudotrue value as �∗

T (i) ≡ argmin�∈�i
K(fT (·|�; i);pT

0 (·)), i.e. the
parameter values that select the member of the parametric family that is “closest”
to P0T in the Kullback–Leibler sense. Also we de5ne � ∗ (i) = limT→∞ �∗

T (i). Finally,
we assume that �∗

T (i) and the PMLE are unique. This assumption is the fundamental
identi5cation condition in the context of misspeci5ed models. Finally, let ‖y‖∞ be the
sup norm.

2.2. Model comparison

First, de5ne the measurable space (M;P(M); �), where P(M) is the power set of
M and � is a measure that assigns a probability �i to each element of M . This
measure reJects the previous knowledge of the researcher about the diHerent models
being considered.
Model comparison is an application of Bayes’ Theorem. The posterior probabilities

of each model are given by

�̂k =
fT (yT |i)�k∑
M fT (yT |i)�i

: (2)



158 J. Fern3andez-Villaverde, J.F. Rubio-Ram37rez / Journal of Econometrics 123 (2004) 153–187

The division of any two posteriors produces the posterior odds ratio

PORi;j|YT =
�̂i

�̂j
=

fT (yT |i)�i

fT (yT |j)�j

which can be intuitively factored between the Bayes Factor

Bi;j|YT =
fT (yT |i)
fT (yT |j) (3)

and the ratio of priors �i=�j as

PORi;j|YT = Bi;j|YT

�i

�j
: (4)

The Bayes Factor is the ratio of probabilities from having observed the data given
each model and represents how much we should change our beliefs about the proba-
bility of each model given the empirical evidence. In other words, the Bayes Factor is
a summary of the evidence provided by the data in favor of one model as opposed to
the other, and it is our chosen approach to model comparison. 2

The Bayes factor also has an interpretation as an optimal information processing
rule in small and in large samples. Zellner (1988) shows how the Bayes’ theorem is
a 100% eLcient processing information rule in the sense that it uses all the existing
evidence and it does not add extraneous information. Since the comparison of marginal
likelihoods is nothing more that the application of the Bayes’ theorem, Zellner’s result
provides a strong information-based justi5cation of the Bayes factor in addition to the
standard axiomatic foundations of bayesian theory.
In the same way the marginal likelihood is related to the likelihood value at the

PMLE, the Bayes factor is linked with the likelihood ratio (LR). The Bayes factor
enjoys three advantages. First, LR tests may simultaneously reject or accept diHerent
nulls because of the asymmetric treatment of the two hypothesis. In comparison, the
Bayes factor states clearly which of the two models 5ts the data better. Second, no
arbitrary choice of a signi5cance level is needed. Third, when both models are false,
the normal case in economics, the LR tests do not imply an asymptotic distribution of
the ratio (for a way to deal with this problem, see Vuong (1989)).

2.3. Convergence theorems

In this subsection we prove two new theorems. First, we show that the posterior dis-
tribution of the parameters collapses to their pseudotrue values. Second, we demonstrate
that the Bayes factor of any model over the best model under the Kullback–Leibler
measure approaches zero. With these two theorems we build on the recent literature
on the asymptotic properties of Bayesian inference. Examples include Phillips and
Ploberger (1996), Phillips (1996) and Kim (1998).
The contribution embodied in the theorems is important for several reasons. First,

we assure that, even when the models are misspeci5ed, the priors are irrelevant as the

2 Note that model comparison is a related but diHerent task than the decision-theory problem of selecting
one model among a set of alternatives since the latter requires the speci5cation of a loss function.
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sample size grows. This result is not surprising since it is the natural counterparts from
the bayesian perspective of the results in White (1994). However its formal derivation
is a useful addition to the literature. Also is a required step to prove the next result.
Second, if we want to choose our best model to satisfy the Kullback–Leibler criterion
(and, as we argued before, there are axiomatic systems that tell us that this is the
right thing to do), our results indicate that the Bayes factor is a consistent selection
device even when the models are misspeci5ed and/or nonnested. This result, the main
theoretical point of the paper, is to the best of our knowledge new.
The structure of this subsection is as follows. First, after stating some technical con-

ditions, we prove Lemmas 1 and 2. The 5rst lemma states the asymptotic concentration
of the posterior around the PMLE, and the second states the consistency of PMLE to
the pseudo-true value. These two lemmas imply the 5rst of the theorems: the posterior
concentrates asymptotically around the pseudo-true value. Then we prove Lemma 3.
This lemma characterizes the asymptotic behavior of the marginal likelihood, and it is
an intermediate step to prove the second of the theorems: the Bayes factor of any other
model over the model closest to PT

0 under the Kullback–Leibler measure asymptotically
approaches zero.
Following Chen (1985) and Kim (1998), we begin the analysis of the posterior

behavior de5ning a “neighborhood system” in the parameter space.

De�nition 1. For ∀a∈�i ⊆ Rki and ∀i∈M , a neighborhood system is a collection of
ki-dimensional ellipsoids {E(a; !j(i)), j = 1; 2; : : :} such that

E(a; !j(i)) ≡
{
�∈�i:

|a1 − �1|2
!2j1(i)

+ · · ·+ |aki − �ki |2
!2jki(i)

¡ 1

}
(5)

where !j(i)∈R, j = 1; 2; : : : .

The idea behind this system is to look at the parameter values closely enough to
some ki-dimensional point a, making the values of !j(i) smaller as T ↗ ∞. In general,
this point a will be the PMLE �̂T (i; yT ). This system allows for diHerent rates of
accumulation along diHerent dimensions. Kim (1998) shows that this feature of the
“neighborhood system” makes the theory relevant to work with many nonstationary
processes that otherwise could not be analyzed.
Now we introduce some conditions that we would need to prove Lemmas 1 and 2.

Condition 1. For ∀i∈M and ∀�∈�i, limT→∞ PT
0 (T

−1 logfT (Y T |�; i)¡∞) = 1.

Condition 2. For ∀i∈M , limT→∞ PT
0 (T

−1 logfT (Y T |�∗
T (i); i)¿ − ∞) = 1.

Condition 3. For ∀ i∈M :

lim
T→∞

PT
0 (|fT (Y T |i)|= 0) = 0; (6)

lim
T→∞

PT
0

(∣∣∣∣∣fT (Y T |�̂T (i; Y T ); i)
fT (Y T |i)

∣∣∣∣∣= 0
)
= 0: (7)
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Condition 4. For ∀i∈M and ∀�∈�i, let {!t(i)}∞
t=1 such that E(a; !t(i)) ⊆ E(a; !t−1(i))

and
⋂∞

t=1 E(a; !t(i)) = {a}. Then, there exists a sequence of nonincreasing positive
functions {kT (!T (i); i); T = 1; 2; : : :} such that TkT (!T (i); i) ↗ ∞ and

lim
T→∞

inf PT
0

(
sup

�∈�i\E(�̂T (i;Y T );!T (i))

logfT (Y T |�; i)− logfT (Y T |�∗
T (i); i)

T

6− kT (!T (i); i)

)
= 1: (8)

Conditions 1–4 are common on the literature and not very restrictive. Conditions
1 and 2 bound the log likelihood. These conditions only mean that the likelihood is
informative, i.e., that there is a chance that we can learn from the data. Condition 3
precludes priors without support of the pseudo-true value. This condition implies that
we can write the posterior distribution as the ratio of the integral of the prior times
the likelihood over the marginal likelihood. This condition is not strictly needed. We
could prove the following lemmas using much weaker conditions than 3. However,
for clarity of exposition and since the proof with weaker conditions does not pro-
vide further insight into the logic of the reasoning, we prefer to use this slightly
stronger condition. Condition 4 is an adaptation for the case of misspeci5ed models
of condition D2 (ii) in Kim (1998). It requires that the diHerence between the log
likelihood evaluated at the pseudo-true value and the best of the candidates outside
of the neighborhood E(�̂T (i; Y T ); !T (i)) goes to in5nity with probability one when T
goes to in5nity. In other words, we require that the tails of the log likelihood function
decrease suLciently fast as more information arrives. This condition plays an important
role in the proof of Lemma 1 since it allows us to bound the posterior distribution on
�i \ E(�̂T (i; Y T ); !T (i)) by exp[ − kT (!T ; i)T ] ↓ 0. As in the case of condition 3, we
could substitute it for a weaker one by paying the cost of a more cumbersome proof.
In addition, as Kim (1998) remarks, if we assume we know the underlying true process
(although in general we do not do so), this condition is, in some cases, veri5able.
With these conditions we can prove the following lemma:

Lemma 1. Under Conditions 1–4,
∫
�∈�i\E(�̂T (i;Y T );!T (i))

�(�|Y T ; i) d� → 0 as T → ∞
in PT

0 -probability ∀i∈M .

Proof. See Appendix.

It is important to emphasize that with Lemma 1 we have shown a result that is
often directly imposed as a condition in the literature (see, for instance, condition C6
in Phillips and Ploberger, 1996).
In order to prove Lemma 2, we need an additional condition on the asymptotic

behavior of the series {fT (Y T |�; i)}∞
t=0:

Condition 5. ∀i∈M , {fT (Y T |�; i)}∞
t=0 obeys a strong uniform law of large numbers.
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Condition 5 is only slightly restrictive, and the results in Andrews (1988) and
Davidson (1994) assure that a very large class of models satisfy it. 3

Lemma 2. Under Conditions 1–5, �̂T (i; Y T )−� ∗(i) → 0 as T → ∞ in PT
0 -probability.

Proof. See Appendix.

With these two lemmas, it can be shown that the posterior distribution of the
parameters collapses to the pseudo-true value of the parameter. Formally:

Theorem 1. Under Conditions 1–5,
∫
�∈�i\E(� ∗(i);!T (i))

�(�|Y T ; i) d� → 0 as T → ∞ in
PT
0 -probability ∀i∈M .

Proof. This proof follows directly from Lemmas 1 and 2.

Now we prove the main theorem of this paper. Before doing so, we need a previous
step in the form of Lemma 3. This result extends the Lemma 2.1. in Chen (1985)
when models are misspeci5ed. In order to prove the lemma, we make the following
de5nitions and conditions:

Condition 6. ∀i∈M , logfT (yT |�; i) is twice di?erentiable.

De�nition 2. De5ne

L′
T (y

T |�; i) ≡ @ logfT (yT |�; i)
@�

;

L′′
T (y

T |�; i) ≡ @2 logfT (yT |�; i)
@� @�′ ;

&T (yT |i) ≡ [− L′′
T (y

T |�̂T (i; yT ); i)]−1;

where &T (yT |i) is the Cram)er–Rao bound.

Condition 7. ∀i∈M , for any 'T ↓ 0 there exist ‖!T (i)‖∞ ↓ 0 such that
lim

T→∞
PT
0 (I − A('T )6− L′′

T (y
T |�; i)&T (yT |i)6 I + A('T )) = 1;

∀�∈E(�̂T (i; Y T ); !T (i)), where A('T ) is a semide-nite positive symmetric matrix whose
largest eigenvalue goes to zero as 'T ↓ 0.

Condition 8. ∀i∈M , for any !T (i) such that 7 holds, *min(&T (yT |i)−1)‖!T (i)‖∞ → ∞
as T → ∞ in PT

0 -probability.

Condition 9. ∀i∈M , 0¡�(� ∗(i)|i)¡∞ and �(�|i) are continuous.
3 Andrews (1988) proves laws of large numbers for L1-mixingales. We proved, we do not include, that

an exponential density family, {logft(Y t |�; i)}∞
t=1; is a L1-mixingale. Davidson (1994) presents even more

general results for Near-epoch dependent and mixing processes.
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Condition 6 is a common assumption in the literature. Condition 7 is also quite
common and imposes a smoothing condition on the second derivative of the log like-
lihood. Condition 8 implies that the pace at which data provides information about the
process is fast enough. We use these last two conditions to bound the log likelihood in
an intermediate step to prove Lemma 3. Condition 9 is just a technical assumption to
simplify the proof, and it can easily be eliminated, making the argument slightly longer.
Now we are ready to state the following lemma:

Lemma 3. Under Conditions 1–9,

fT (Y T |i) = |&T (Y T |i)|−1=2(2�)−ki=pfT (Y T |�̂(i; Y T ); i)�(� ∗(i)|i)
as T → ∞ in PT

0 -probability.

Proof. See Appendix.

Before we move on, we introduce two 5nal conditions.

Condition 10. ∃j ∈M such that ∃T0 such that ∀T¿T0∫
Rm×T

T−1 logfT (Y T |�∗
T (j); j)p

T
0 (Y

T ) dT

¿
∫

Rm×T
T−1 logfT (Y T |�∗

T (i); i)p
T
0 (Y

T ) dT

∀i∈M \ {j}.

Condition 11. For the same j ∈M of Condition 10 ∃T1 such that ∀T¿T1∫
Rm×T

T−1 log |&T (Y T |j)|−1=2fT (Y T |�∗
T (j); j)p

T
0 (Y

T ) dT

¿
∫

Rm×T
T−1 log |&T (Y T |i)|−1=2fT (Y T |�∗

T (i); i)p
T
0 (Y

T ) dT ;

∀i∈M \ {j}.

Condition 10 requires the model comparison to be a meaningful task by asking one
of the models to be the closest to the “true” one under the Kullback–Leibler measure.
Condition 11 precludes the pathological case of a model that is further away in the
Kullback–Leibler measure than the closest one yet has such a high learning speed that
it overcomes the eHects of Condition 10. Note that if we had not assumed Condition
11 we would need to modify the Bayes factor by the ratio of Cram)er–Rao bounds
to assure consistency. 4 Since for stationary models condition 11 holds, we prefer to
show the theorem under this condition.

4 The Cram)er–Rao bound is directly related to the speed at which we learn about the parameter as the sam-
ple size grows. We can show, but do not include because space of considerations, that, if Condition 11 does
not hold, then the result below changes to limT→∞ P0T (|&T (YT |i)|1=2fT (YT |i)=|&T (YT |j)|1=2fT (YT |j) =
0) = 1.
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Finally, we are ready to prove the main theoretical result in this paper, i.e., that the
Bayes factor selects the model closest to the data regardless of the priors used.

Theorem 2. Under Conditions 1–11, limT→∞ P0T (fT (Y T |i)=fT (Y T |j) = 0) = 1.

Proof. See Appendix.

The second theorem is closely related to the asymptotic justi5cation of the Schwarz
Information Criterion (Kass and Raftery, 1995) and the Posterior Information Criterion
(Phillips and Ploberger, 1996). Both criteria had been proposed as simple ways to
choose among competing models. We think, however, that the Bayes factor is the
appropriate choice. Even if these other criteria are easy to compute, in general we
will know relatively little about their small sample properties. The Bayes factor, in
comparison, is well understood regardless of the sample size, and we can always check
its robustness against diHerent priors.
Finally, we conjecture, based on similar arguments in Chen (1985), Phillips (1996)

and Kim (1998), the asymptotic normality of the posterior. We do not seek to use
asymptotic approximations to the posteriors because the use of the Markov chain Monte
Carlo method allows exact (up to a simulation error) Bayesian computations.

2.4. Numerical implementation

From our previous description, it is clear that the implementation of Bayesian infer-
ence requires two conditions: being able to evaluate the likelihood function for arbitrary
parameter values and being able to compute the marginal likelihood.
The 5rst task can be accomplished using a State Space representation of the econ-

omy. If this representation is linear (or if we use a Linear Quadratic Approximation
of the objective function or a linearization of the Euler Conditions), the Kalman Filter
provides an eLcient procedure to evaluate the likelihood. If this representation is non-
linear, Fern)andez-Villaverde and Rubio-Ram)0rez (2002) show how to use Sequential
Monte Carlo methods to evaluate the likelihood function of a general class of nonlinear
dynamic equilibrium models.
State Space representations also allow the use of diHerent solutions to a common

problem in dynamic equilibrium economies: their stochastic singularity. Since the num-
ber of stochastic innovations speci5ed by the theory is usually lower than the di-
mensions of the data we are studying, their variance–covariance matrix is singular.
These solutions include augmenting the sources of randomness in the model (Leeper
and Sims, 1994), introducing measurement errors, using principal components analysis
(Landon-Lane, 1999) and others. In this paper we are agnostic about how to solve this
singularity, and we merely point out how State Space representations may deal with
this problem.
Even if we need to work with stochastically singular models (because for instance

we are reluctant to arti5cially modify the theory with measurement errors), bayesian
methods allow for the recovery of useful information. We can always build likelihood
functions with the same dimensionality than the sources of uncertainty in the model.
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Those likelihoods may be very informative (Landon-Lane, 1999). Also with the like-
lihoods we can 5nd posteriors for all the parameters of the model and perform point
estimates as the matching of impulse-response functions of all the relevant variables of
the model to shocks (beyond the ones used in the building of the likelihood), moment
evaluation or spectral analysis. The results in the paper apply for this case and help to
understand the properties of these exercises.
For the second task of computing the marginal likelihood, and since we will not

have in general exact analytic expressions, we can use Markov chain Monte Carlo
methods as described, for instance, in Geweke (1998).

3. A dynamic equilibrium model: the cattle cycle

Once we have shown the asymptotic properties of the Bayesian approach to inference
and model comparison of dynamic equilibrium economies, the rest of the paper explores
the small sample behavior of the procedure. To do so, we 5rst present an example of
a dynamic equilibrium model, the cattle cycle, for its econometric analysis.

3.1. The cattle cycle

Cattle stocks are among the most periodic time series in economics. The standard
model to account for this behavior is based on Rosen et al. (1994) and modi5ed by
Anderson et al. (1996).
Two reasons suggest the choice of this application. First we want to provide an

“exhibit” of what one can learn and what can go wrong when applying the meth-
ods proposed in the paper to a simple yet rich and easily tractable dynamic equilib-
rium model. 5 The cattle cycle has been chosen in the past by numerous authors as
their favorite display for the purpose of illustrating how to estimate dynamic equilib-
rium models. Following their choice makes our paper comparable with the literature.
Second, and as a consequence of the last point, a number of diHerent estimation pro-
cedures have been performed with basically the same model and data. For instance,
Rosen et al. (1994) mix calibration and ARMA estimation; Anderson et al. (1996)
use Maximum Likelihood Methods; and Diebold et al. (1998) minimize the spectral
distance between the data and the model. These procedures give us a benchmark to
assess the performance of the Bayesian approach to model estimation and comparison.
Given the previous 5ndings we will know that any surprising or diHerent result will
come from our econometric approach and not from the model itself.

3.2. The model

There is a representative farmer who breeds cattle and slaughters them for the market.
Adult stocks are either held for breeding or slaughtered. After one year, each animal
in the breeding stock, xt , gives birth to g calves. Calves became part of the adult stock

5 We thank a referee for this point.
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after two cycles. Therefore, given an exponential death rate ! for the breeding stock
and a slaughtering rate ct , xt is given by xt=(1−!)xt−1 +gxt−3−ct and the total head
count of cattle (the sum of adults, yearlings, and calves) is st = xt + gxt−1 + gxt−2.
The price of freshly slaughtered beef is pt (we assume no diHerence in the quality

of beef depending on age). There are two types of cost for the farmer. The 5rst type
includes the feeding cost of preparing an animal for slaughter, mt , the one-period cost
of holding an adult, ht , of holding a calf, 00ht , and of holding a yearling, 01ht . These
costs are exogenous, autoregressive, stochastic stationary processes:

ht+1 = (1− 1h)2h + ht + 'ht where 'ht ∼ N(0; 	2h) (9)

mt+1 = (1− 1h)2m + mt + 'mt where 'mt ∼ N(0; 	2m): (10)

The second type of cost is associated with the holding and slaughtering of cattle and
has a quadratic structure ( 1=2)x2t + ( 2=2)x2t−1 + ( 3=2)x2t−2 + ( 4=2)c2t , where  i are
small, positive parameters.
A representative farmer solves the following maximization problem:

max
{ct}∞

t=0

E0
∞∑
t=0

4t


(pt − mt)ct − htxt − 00htgxt−1 − 01htgxt−2

− 1
2

x2t −  2
2

x2t−1 −  3
2

x2t−2 −  4
2

c2t

 (11)

s:t: xt = (1− !)xt−1 + gxt−3 − ct (12)

{x−1; x−2; x−3} 5xed: (13)

To simplify we assume that the quadratic component of the cost is common for all
activities '2 =  1=2 =  2=2 =  3=2 =  4=2 and trivially small. 6

The model is closed with a demand function ct=50−51pt+dt , where 50, 51¿ 0 are
the parameters of the demand and dt is a stochastic, autoregressive, stationary, demand
shifter with zero mean, dt+1 = 1ddt + 'dt where 'dt ∼ N(0; 	2d).
Finally, we assume that there is a measurement error in the total stock of cattle, st ,

and the slaughter rate, ct , such that the observed rates are given by

s̃t = st + 'yt where 'st ∼ N(0; 	2s ); (14)

c̃t = ct + 'ct where 'ct ∼ N(0; 	2c): (15)

We are now ready to de5ne a competitive equilibrium for this economy.

De�nition 3. A Competitive Equilibrium for the Cattle Industry is a sequence of beef
consumptions {ct}∞

t=0, cattle stocks {st}∞
t=0, breeding stocks {xt}∞

t=0, prices {pt}∞
t=0,

6 In this way and since we have (nearly) constant returns to scale and competitive markets, the model
does not need to deal with the entry and exit of farmers in the market. In general models of an industry
need to be careful regarding entry and exit in response to pro5ts and losses Wa la Marshall (see Veloce and
Zellner, 1984, 1985). We thanks the editor for pointing out this issue to us.
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exogenous stochastic processes {ht ; mt; dt}∞
t=0, and initial conditions {x−1; x−2; x−3}

such that:

1. Given the stochastic processes and initial conditions, the representative farmer solves
her problem:

max
{ct}∞

t=0

E0
∞∑
t=0

4t

{
(pt − mt)ct − htxt − 00htgxt−1 − 01htgxt−2

−'2x2t − '2x2t−1 − '2x2t−2 − '2c2t

}
(16)

s:t: xt = (1− !)xt−1 + gxt−3 − ct (17)

2. Demand is given by ct = 50 − 51pt .
3. Stocks evolve given by xt = (1− !)xt−1 + gxt−3 − ct and st = xt + gxt−1 + gxt−2.
4. Stochastic Processes are given by

ht+1 = (1− 1h)2h + ht + 'ht where 'ht ∼ N(0; 	2h); (18)

mt+1 = (1− 1h)2m + mt + 'mt where 'mt ∼ N(0; 	2m); (19)

dt+1 = 1ddt + 'dt where 'dt ∼ N(0; 	2d): (20)

4. A structural estimation of the cattle cycle model

In this section, we estimate the structural parameters of the cattle cycle model and
its associated marginal likelihood using the annual measured total stock of beef, the
measured slaughter rate, and the price of slaughtered beef for 1900–1990 (Bureau
of the Census, 1975, 1989). First, we specify priors over these structural parameters.
Second, using the Metropolis–Hastings algorithm and the Kalman 5lter, we 5nd the
posterior distributions and moments of the parameters. To check the accuracy of our
computations, we present estimates of our numerical errors and convergence assessment
of our Markov chain Monte Carlo. In addition, we study the robustness of the results
to diHerent priors. Finally, assuming a quadratic loss function, we compare our point
estimates with the results of maximum likelihood estimation (MLE).

4.1. Specifying the priors

The parameters of the cattle cycle model described above are collected in an eighteen-
dimensional vector � = {4; !; 50; 51; 00; 01; g; 1h; 1m; 1d; 2h; 2m; 	h; 	m; 	s; ; 	c; 	d; '}. We
will impose dogmatic priors on six parameters. This restriction plays two diHerent
roles. First, since it reduces the dimensionality of this problem by half, the compu-
tational burden is greatly diminished. Second, since the same restriction is used in
Anderson et al. (1996), it increases the comparability of our results to previous esti-
mations. We will set 4 = 0:96, != 0, ' = 0:0001, 1d = 	h = 0, 2h = 37, and 2m = 63.
The 5rst restriction pins down the discount factor, a diLcult parameter to estimate in
this type of model, to a commonly used value. The second one rules out deaths in
the breeding stock. The value for ' is a small number that creates the quadratic costs,
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Table 1
Priors for the parameters of the cattle cycle model

Parameters Distribution Hyperparameters

50 Normal 146, 35
51 Gamma 2, 0.5
00 Gamma 2, 0.5
01 Gamma 2, 0.5
g Normal 1, 0.1
1h Beta 3, 2
1m Beta 3, 2
	h Gamma 2, 1
	m Gamma 2, 1
	s Gamma 2, 1
	c Gamma 2, 1

and it is basically irrelevant. The last restrictions make demand deterministic and 5x
the mean value of the processes to the observed means. The remaining vector is then
�′ = {50; 51; 00; 01; g; 1h; 1m; 	h; 	m; 	s; ; 	c}.
Table 1 presents our priors. The independent term of the demand function follows

a normal distribution with mean 146 and variance 35, the point MLE. The next three
parameters follow a gamma distribution with hyperparameters 2 and 0.5 that imply
a mean of 1 and variance of 0.5. This choice gives support to all positive values of
those parameters. That means that, in the case of 51, we only impose the condition that
the good is not GiHen (we are not aware of any evidence supporting the hypothesis
that beef is a GiHen good). The mean of 1 is a focal point for the eHect of changes
of prices on beef consumption. A not very tight variance of 0.5 spreads the density
enough around this value. For the case of 00 and 01, we require that both costs of
raising beef are positive. Setting the mean to 1 is intuitive (diHerent types of cattle
should not have very diHerent relative holding costs), and the variance to 0.5 shows
that we are relatively unsure about that guess. The growth factor is set to obey a
normal centered at 1: The number of births per animal in stock is one per year with
a small variance. Biological constraints justify this choice. The autoregressive terms
follow a beta with mean 0.6 and variance 0.04, i.e., the process is stationary, with
positive autocorrelation and with a mean skewed to the right in a somehow imprecise
way. For the four variances of the innovation terms we choose gamma distributions to
stay in the positive reals. The parameters 2,1 reJect an (imprecise) opinion in favor
of large variances (mean and variance of 2) (Table 1).

4.2. Results

To solve for the lack of tractable expressions for the likelihood and posterior distri-
butions of the parameters, we use the Kalman 5lter and the random-walk metropolis–
hastings to produce a Markov chain {�1; �2; : : : ; �m} of parameter values. The empirical
histograms of the parameters are included as Fig. 1.
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Fig. 1. Empirical distribution of the posterior.
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Fig. 1. continued.

Given this Markov chain and a function of interest g(·), its expectation 2=E(g(�))
can be approximated using a strong law of large numbers by 2̂ = 1=m

∑m
i=1 g(�i).

Then, with indicator functions, we can 5nd the diHerent moments of the distribution
or compute quantiles. We simulate a chain of size 106 that passes all the requirements
of convergence. Table 2 reports the expectation and standard deviation of the posterior
of the parameters. 7

The computation of the marginal likelihood is done using the method proposed by
Gelfand and Dey (1994). For any k-dimensional probability density h(·) with support
contained in �, note that:

E
[

h(�)
fT (Y T |�; i)�(�)

∣∣∣∣ YT ; i
]
=

∫
�

h(�)
fT (Y T |�; i)�(�) f

T (�|Y T ; i) d�

=
∫
�

h(�)
fT (Y T |�; i)�(�)

fT (YT |�; i)�(�)∫
� fT (YT |�; i)�(�) d� d�=

∫
� h(�) d�∫

� fT (Y T |�; i)�(�) d�
=fT (Y T |i)−1: (21)

7 Under a quadratic loss function the expectation of the posterior is the point estimate. However more
Jexible loss functions are possible. For example an important literature in macroeconomics has focused on
the ability of dynamic equilibrium models to match impulse response functions to shocks estimated from
the data (Christiano et al., 2001). If this is the object of interest, the researcher can specify a loss function
to obtain point estimates that minimize the distance between the estimated impulse response functions from
the data and the impulse response functions generated by the model (Schorfheide, 2000).
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Table 2
Parameters statistics

Parameters Expectation S.D.

50 146.23 20.62
51 1.27 0.20
00 1.02 0.52
01 1.36 0.54
g 0.95 0.04
1h 0.93 0.03
1m 0.70 0.03
	h 5.30 1.31
	m 4.05 0.68
	s 0.33 0.10
	c 4.54 0.58

This expression is an unbiased and consistent estimator of the marginal likelihood and
satis5es a Central Limit Theorem if

∫
� h2(�) d�=

∫
� fT (Y T |�; i)�(�) d�¡∞. Then,

from the m draws of the simulation and applying a strong law of large numbers, we
can compute:

fT (Y T |i)−1 = 1
m

m∑
i=1

h(�)
fT (Y T |�; i)�(�) : (22)

As a choice of h we modify Geweke’s (1998) proposal. First, from the output of
the simulation, de5ne �̂M = 1=m

∑m
i=1 � and &̂m = 1=m

∑m
i=1 (� − �̂)(� − �̂)′. Then,

for a given p∈ (0; 1), de5ne the set �M = {�: (�− �̂)&̂−1
m (�− �̂)′6 721−p(11)} where

721−p(·) is a chi-squared distribution with degrees of freedom equal to the number
of parameters. Letting I�M∩�(·) be the indicator function of a vector of parameters
belonging to the intersection �M ∩ �, we can take a truncated multivariate normal as
our h function:

h(�) =
1

p̂(2�)k=2
|&̂m|1=2 exp[− 0:5(� − �̂)&̂−1

m (� − �̂)′]I�M∩�(�); (23)

where p̂ is a normalizing constant. Then, if the posterior is uniformly bounded away
from zero on every compact subset of �, our computation approximates the marginal
likelihood.
Hence, with the output of the Markov chain Monte Carlo, the estimation of the

marginal likelihood is direct: We use the computed values of fT (Y T |�; i)�(�) for
each point in the Markov chain, and we 5nd its harmonic mean using the function
h as a weight. Following this procedure, our estimated marginal likelihood value is
exp(−647:5281).
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4.3. Numerical standard error of posterior moments

A central limit theorem assures that
√
m(2̂−2) D→N(0; 	22), allowing us to evaluate

the accuracy of the estimates. However, the estimation of 	22 is complicated by the lack
of independent sampling in the simulated Markov chain. DiHerent methods have been
proposed to overcome this problem. We follow here the suggestion by Hannan (1970).
Assuming that the function of interest g(·) has a spectral density Sg(!) continuous at
the origin, 8 we can estimate the NSE as ((1=m)Ŝg(0))1=2 (Hannan, 1970, Corollary 4,
p. 208). We computed the required power spectral density using a Welch’s averaged,
modi5ed periodogram method. All the estimated NSEs were less than 0.5% of the
mean value of the parameter, suggesting tight estimations and con5rming the evidence
from repeated simulations that systematically generated nearly identical values for the
means.

4.4. Assessing convergence

Maybe the most important issue in the empirical implementation of a Markov chain
Monte Carlo is to assess the convergence of the simulation (see Mengersen et al.,
1999). Since there is serial correlation in the Markov chain, we need to assure that the
simulation is long enough so that the results do not depend on the initial conditions.
Theorems of this type require conditions diLcult to check in practice.
To overcome this problem, we followed two routes. First, as common in the liter-

ature, we compared several chains. Among other things, we simulated ten chains of
size 105 and one of size 106. All of them generated very similar results and their
draws followed a stationary process. Second, since informal methods can hide subtle
nonconvergence problems, we implemented the convergence test proposed by Geweke
(1992). We took the 5rst pA and the last pB vectors of the simulation and computed
the partial means 2̂1 = 1=pA

∑pa
i=1 g(�i) and 2̂2 = 1=pB

∑m
i=m−pB+1 g(�i). Then, under

the null hypothesis that both means are equal, as m → ∞ we know that
(2̂1 − 2̂2)

[ŜA
g (0)=pA + ŜB

g (0)=pB]1=2
⇒ N(0; 1):

The computed values of the test for each 5rst moment were all less than |0:7× 10−4|,
strongly supporting that our simulation converges.

4.5. Robustness analysis

The subjective character of the Bayesian paradigm calls for an indication of how the
posterior expectations vary with changes in the prior distribution. Methods to undertake
this robustness analysis have been presented in Geweke (1999a). Given any prior
density �∗(�) with support included in our prior �(�) support, we can de5ne the

8 A suLcient condition for continuity is given by the strict stationarity of the simulation (Hannan, 1970,
Corollary 1, p. 205) as is the case if the conditions for consistency of Section 2 hold. In practice, strict
stationarity can be checked using standard tests.
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Table 3
ML estimation for cattle cycle

Parameters Estimates S.E.

50 146 33.4
51 1.27 0.323
00 0.65 11.5
01 1.77 12
g 0.94 0.0222
1h 0.89 0.115
1m 0.70 0.0417
	h 6.82 10.6
	m 4.04 1.05
	s 0.27 0.0383
	c 4.82 0.531

weighting function w(�) = �∗(�)=�(�) and 5nd the new posterior function of interest
as 2̂ = 1=m[

∑m
i=1 w(�)g(�i)=

∑m
i=1 w(�)].

An extensive prior set was tested without altering the reported results. We attribute
that to the fact that the sample size is big enough (ninety one observations) to swamp
the prior. However, our robustness checks may be quite diHerent from what the reader
desires. As a consequence, upon request, we will electronically deliver the simulator
output matrices and required documentation. These simulation matrices include the
draws from the posterior, �i, the likelihood times the prior fT (Y T |�i; i)�(�), and the
prior values �(�i) i=1; : : : ; m, for each of the diHerent models described in the paper.
With these matrices, the application of a reweighting scheme will allow third parties
to quickly recompute both the moments of interest and the marginal likelihood with
any desired prior that satis5es the support condition.

4.6. Comparison with other results

One of the reasons for the choice of the cattle cycle model as an application was the
existence of previous econometric estimations of the model we could use as benchmarks
to assess the performance of the Bayesian procedure.
We will only discuss in detail the closest existing estimation-the one in Anderson

et al. (1996) that estimated the same model with the same parametric restrictions and
data using MLE. We successfully reproduced their point and standard error estimation
(Table 3).
Comparison with Table 2 highlights two points. First, the MLE with low standard

errors (precise estimates) are closely matched (51 equals to 1.27 against 1.27, 1m equal
0.70 against 0.70, etc.). Second, for those parameters imprecisely estimated, as 00 and
01 (the relative holding costs of cattle according to their age), the Bayes estimate
is both more precise and closer to our intuition of relatively homogenous costs of
holding diHerently aged cattle. Fig. 1 explains the result. While the posteriors of 51
or 50 are well-behaved and unimodal, the posteriors of 00 and 01 are multimodal and
relatively Jat over a long range of values. Given these shapes, the MLE will 5nd one
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of the local maxima, and the Jatness of the likelihood around these points will turn out
very high standard errors. The Bayes estimate overcomes these diLculties and gives
a more accurate 5nite sample view of the plausible parameter values. It is important
to emphasize that, through robustness analysis, we checked that this higher precision
is not spuriously induced by the prior but by the use of the whole likelihood shape
that bayesian procedures imply instead of just one point (and its neighborhood) as in
MLE. We interpret this result as a strong endorsement of the small sample properties
of Bayesian estimation. This result is also similar to other frequentist evaluations of
the small sample performance of Bayesian methods, as in Jacquier et al. (1994) and
Geweke et al. (1997).
Once we have estimated the cattle cycle model, the next question to address is to

explore how it compares with alternative accounts of the data, i.e., with competing
models. We perform this model comparison in the next section.

5. Comparing models: the cattle cycle versus BVARs

In this section we compare the cattle cycle model with a set of Bayesian vec-
tor autoregressions (BVARs). This choice is motivated by our desire to compare a
dynamic equilibrium model against a pure and powerful statistical competitor. Vector
Autoregression models, linear statistical representations of the dynamic relations among
variables, have been proposed as an alternative to structural modeling of time series
that can provide a good forecasting performance (see Sims, 1980; Litterman, 1986). 9

However VARs have problems of their own. Critics have pointed out their low obser-
vation/parameter ratio in comparison with alternatives like the structural-econometric-
modeling-time-series approach (see Zellner, 1982), their inability to account for struc-
tural instability in time series relations (Stock and Watson, 1996) or their missing of
nonlinearities in the data, specially around turning points (Kim and Nelson, 1988). As
a consequence VARs may forecast poorly (Stock and Watson, 2001) and the outcome
of the model comparison is not 100% assured.
We 5rst describe the vector autoregression speci5cations, then the priors and 5nally

the results of the models comparison. We 5nish discussing the issue of parameter
stability and the estimation of a time-varying parameters model.

5.1. A vector autoregression speci-cation

We de5ne nine versions of a three-variable BVAR, indexed by the number of lags
(1, 2, and 3) and by three diHerent priors. Let yt be the row vector of three observed
variables at time t. The p-lags BVAR can be written as:

yt =
p∑

i=1

yt−iAi + C + ut ∀t ∈ {1; : : : ; T}; ut ∼ N(0; ;) (24)

where Ai and C are parameter matrices of dimension 3× 3 and 3× 1.

9 Note that, however, these BVARs are not completely nonnested with the cattle cycle model since the
latter has a restricted vector autoregression representation.
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A useful way to rewrite (24) is as follows. De5ne yt = zt= + ut where
zt =(I; yt−1; : : : ; yt−p) and ==(C′; A′

1; : : : ; A
′
p)

′. Stacking the row vectors yt , zt , and ut

in Y , Z , and U such that Y =Z=+U and letting the i subscript denote the ith column
vector, we have yi = Z0i + ui. Stacking the column vectors yi; 0i; and ui in y; 0; and u,
we get y = (I ⊗ Z)0+ u; where u ∼ N(0; ; ⊗ I). The likelihood function is

fT (0|;)˙ |;|−T=2 exp{−tr[(Y − Z=)′;−1(Y − Z=)]=2} (25)

5.2. Prior distributions

We use three diHerent priors, each one more general than the previous one: a modi-
5ed Minnesota prior, a Normal-Wishart prior, and a Hierarchical Prior (see Kadiyala
and Karlsson, 1997; Sims and Zha, 1998). In this way we can show the power of model
comparison for diHerent speci5cations of the models and assess how useful some of
the recently proposed priors are for empirical analysis.

5.2.1. Minnesota prior
Litterman (1980) de5ned the Minnesota prior. Its basic feature is that the prior mean

implies that each variable follows a random walk. To win further Jexibility, we modify
two aspects of the original prior. First, we let the prior variances decrease slowly with
the lags. Litterman used a rate 1=k2 while we use 1=k. Second, we do not restrict the
variance-covariance matrix to be diagonal.
In more detail, our version of the Minnesota prior for p lags is:

1. The prior mean for the parameter on the 5rst own lag is set to one, and the prior
means of the remaining parameters are set to zero, i.e., the mean of 0s for s∈ {1; 2; 3}
is 2s = (0; 7{0}(s − 1); 7{0}(s − 2); 7{0}(s − 3); 0; : : : ; 0)′.

2. The variance of 0s for s∈ {1; 2; 3} is equal to

&s =


�(3)	2s 0 · · · 0

0 �̃1 · · · 0

...
...

. . .
...

0 0 0 �̃3p

 (26)

where 	i = E(yi; t − Eyi; t)2 is a scale factor accounting for the variability of the
diHerent variables and �̃1 = �(2− 7{0}(s − 1))	2s =	

2
1, �̃2 = �(2− 7{0}(s − 2))	2s =	

2
2,

�̃3 = �(2 − 7{0}(s − 3))	2s =	
2
3, �̃i = 3�̃1=[(i − 1)=3 + 1] for i∈ {4; 7; : : : ; 3p − 2},

�̃i = 3�̃2=[(i − 2)=3 + 1] for i∈ {5; 8; : : : ; 3p − 1} and �̃i = 3�̃3=[(i − 3)=3 + 1] for
i∈ {6; 9; : : : ; 3p}.

3. For s∈ {1; 2; 3}, 0s ∼ N(2s; &s).
4. The variance–covariance matrix, ;, is 5xed and equal to the MLE.
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Table 4
Logmarginal likelihoods

Cattle cycle −647:5281
Minnesota (1) −615:4347
Minnesota (2) −604:0657
Minnesota (3) −618:9883
Wishart (1) −791:4154
Wishart (2) −779:1833
Wishart (3) −808:9510
Hierarchical (1) −715:9167
Hierarchical (2) −732:1339
Hierarchical (3) −782:9960

5.2.2. Normal-Wishart prior
The last characteristic of our Minnesota prior is restrictive since it implies an

extraordinarily precise knowledge of the variances of innovations. An alternative is to
assume that ; is inverse-Wishart distributed. We de5ne the prior distributions 0|; ∼
N(2;; ⊗ &) and ; ∼ iW (;; 5) where 0 = (01; 02; 03)′, E(0) = 2 = (21; 22; 23)′, and
var(0s)=&s, ∀s∈ {1; 2; 3}. If we let s2i be the MLE of the variances of the innovations,
then ; is diagonal with entries {(5 − n − 1)s21; (5 − n − 1)s22; (5 − n − 1)s23}.

5.2.3. Hierarchical prior
Finally, we can relax the basic Minnesota prior assumption forcing the prior mean

for the parameter on the 5rst own lag to one and the prior mean of the remaining
parameters to zero. Using a hierarchical prior, the prior mean of the parameters will
follow a normal distribution. Formally, 0|;; 2 ∼ N(2;; ⊗ &), ; ∼ iW (;; 5), and
2 ∼ N(2; !I).

5.3. Results

We estimate the nine diHerent BVARs and use the output of the Metropolis–Hastings
simulation to compute their marginal likelihoods. 10 We report our 5nding in Table 4. 11

We learn two lessons. First, despite how well the cattle cycle model comes to match
some aspects of the data, it is not even close to the performance of a BVAR with a
Minnesota prior and two lags. The log diHerence in favor of the BVAR is 43.46. How
big is this diHerence intuitively? We will provide two measures. First, we will note
that this diHerence means that the empirical evidence overcomes any prior ratio lower
than 7.4892e+018 in favor of the cattle cycle. Second, this diHerence is substantially

10 We can use these marginal likelihoods to combine models and obtain eLcient forecasts. Zellner (1989)
extends model combining to groups of models that are not an exhaustive set.
11 Each BVAR is called by the name of its prior and, in parenthesis, by the number of lags. For each

BVAR, we computed the moments of the posterior and assessed convergence using the same methods
described in the previous section.
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bigger than 7, a bound for DNA testing in forensic science, often accepted by courts
of law as evidence beyond reasonable doubt (Evett, 1991).
This diHerence does not mean by itself, however, that we must disregard the model.

This decision is a diHerent task than its comparison with alternative models. We may
still keep it as the best available alternative within the class of models with substantive
economic content, or we can use it to perform welfare analysis or forecasting under
changing policy regimes beyond the capabilities of BVARs. Also, it may be argued
that the model is designed to capture only certain characteristics of the data (as, for
example, in the stochastic growth model, the business cycles Juctuations). It is an open
question how to use the marginal likelihood to extract how well the model accounts
for particular aspects of the data we may be interested in.
Finally, we should note that the Minnesota prior has the variance 5xed at the MLE.

Allowing the data to enter into the prior in this way gives a tremendous boost to any
model and makes the model comparison unfair. If we restrict our comparison to the
other six BVARs, the cattle cycle model outperforms them.
Our second lesson is that more Jexible priors or longer lags are not always prefer-

able. The reason is simple: richer models have many more hyperparameters and the
Bayes factor discriminates against these. 12 We see this “built-in” Ockam’s razor as
a 5nal and attractive feature of the Bayes factor: It embodies a strong preference for
parsimonious modeling.

5.4. Structural stability and time-varying parameters models

In this subsection we study in more detail why the Cattle cycle model performs
poorly in comparison with a BVAR with Minnesota prior. One possible reason could
be that we have chosen bad parametric functions for the equilibrium model. Some
exploration suggested to us that playing with these forms does not improve the perfor-
mance of the model. A second possibility is that the lack of structural stability of the
parameters burdens the estimation.
To explore that route we divided the sample into several intervals and repeated

the estimation exercise for each of those. After trying diHerent splitting strategies, our
favorite choice was a division in two sub-samples: 1900:1946 and 1947:1990. 13 As we
will see below a time-varying parameters model also suggests a change occurs around
that time.
Table 5 presents the means of the posterior for each parameter using the whole

sample and only each of the two parts. Most parameters posterior means are stable
across samples, within one standard deviation of the posterior of the whole sample.
We only 5nd an interesting diHerence in 50 and 51 where there is evidence that the
mean demand for meat has decreased and has become less elastic over time. The 00 and
01’s, where we also see some diHerences, where the two parameters that were diLcult

12 This discrimination can easily be seen in the Schwarz criterion (an asymptotic approximation of the log
Bayes Factor) that explicitly penalizes the diHerence in the dimensionality of the parameter space.
13 Further results are available upon request. We do not include them because of space considerations.
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Table 5
Means of the posterior

Parameter 1900–1991 1900–1946 1946–1991

50 146.23 186.53 130.81
51 1.27 1.66 1.10
00 1.02 1.19 1.37
01 1.36 1.13 1.32
g 0.95 0.92 0.99
1h 0.93 0.89 0.94
1m 0.70 0.64 0.74
	h 5.30 3.85 6.49
	m 4.05 3.17 4.33
	s 0.33 0.43 0.34
	c 4.54 4.30 4.32

to pin down in the benchmark estimation. Splitting the sample moves the mean but
still within the main body of the (Jat) posterior for the whole sample.
The increased Jexibility of a smaller sample does not save the Cattle cycle: its

marginal likelihood still lags behind the one for BVAR with Minnesota Prior (in log
terms, −421:15 for Cattle Cycle versus −333:80 for Minnesota (2) in the 1900:46
sample and −470:46 versus −366:76 in the 1947:1990 sample). If anything the distance
between the two models increases.
The evidence from the previous discussion leads us to estimate a more Jexible model

that can take account of the time-varying nature of the parameters. Again bayesian
methods easily deal with the estimation problem. We follow Zellner et al. (1991) and
Cogley and Sargent (2001) and estimate a BVAR with drifting parameters. 14

Let a·m
i be the mth column of matrix Ai and cm the mth column of a matrix C. We

rewrite Eq. (24) for p=1 as y′
t=I3×3⊗[1yt−1]A+u′

t where A=[c1a·1
1

′c2a·2
1

′c3; a·3
1

′]′. 15

If we let A to be time-varying, we can write At = [c1t a
·1
1; t

′c2t a
·2
1; t

′c3t a
·3
1; t

′]′.
We treat the coeLcients in At as a hidden state that evolves following a driftless

random walk At = At−1 + Ct where Ct is an i.i.d. Gaussian process with mean 0 and
covariance Q. Also (ut ; C′

t)
′ are i.i.d. Gaussian process with mean 0 and covariance

matrix

Et

[(
u′
t

Ct

)(
ut C′

t

)]
= V =

(
; C′

C Q

)
:

Our priors about the initial state A0 and V are as follows. We assume that the
initial state A0 is distributed as a normal with mean ZA and covariance ZP while V
is an inverse-Wishart IW ( ZV−1; T ). Following Cogley and Sargent (2001) we set the

14 We cannot estimate a dynamic equilibrium model with time-varying parameters since such task involves
in general non-linear cross-equation restrictions that require non-linear 5ltering methods not well understood.
See Cogley and Sargent (2001) for an explanation.
15 Time-varying parameters models are richly parametrized. Higher order BVARs with only 273 data points

perform worse than our speci5cation.
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Fig. 2. Posterior mean of the time-varying parameters, constants.

prior mean of A0, ZA, is equal to the MLE point estimates, ZP to its asymptotic co-
variance matrix, Z; equal to the estimated innovation covariance matrix, ZC = 0 and
ZQ = (0:01)2 Z;. 16

Given AT = [A′
1; A

′
2; : : : ; A

′
T ]

′ our goal is to summarize the posterior density
�(AT ; V |Y T ). Following Zellner et al. (1991) we use the Gibbs sampler to simulate
draws from �(AT ; V |Y T ) in two steps. First, conditional on Y T and V , we draw from
�(AT |Y T ; V ). Then, conditional on Y T and AT , we draw from �(V |Y T ; AT ).
Figs. 2–5 report the posterior mean for AT . We ordered the variables in the BVAR

as stock of beef, slaughter rate and the price of beef. In Fig. 2 we see how the
means of posteriors for the constant parameters are constant over time with the partial
exception of some positive drift for the price. Figs. 3–5 show the autoregressives on
each of the three variables. The most interesting 5nding is in Fig. 4 that shows how the
autoregressive component of the slaughter rate on itself has a clear change around 1947
(right where we split our sample above) within a negative drift. A way to interpret this
5nding is to note that the number of sacri5ced animals has increased relative to the
stock of beef due to a move towards younger animals being slaughtered. In that context
the previous slaughter rates are less and less important to account for the dynamics of
the variable.

16 As sensitivity analysis we tried Litterman (1980) prior and stochastic volatility schemes (Cogley and
Sargent, 2003) with limited successes.
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Fig. 3. Posterior mean of the time-varying parameters, stock of beef.

Fig. 4. Posterior mean of the time-varying parameters, slaughter rate.

The main conclusion from this part is that there is evidence of the changing param-
eters over time and that this may be an important reason behind the poor performance
of the Cattle cycle model in comparison with a simple BVAR.
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Fig. 5. Posterior mean of the time-varying parameters, price.

6. Conclusions

In this paper we have studied some properties of the Bayesian estimation and com-
parison of dynamic equilibrium models. Not only is this framework general, Jexible,
robust, and simple to apply, but also its shown properties have an intuitive appeal.
Asymptotically, our convergence theorems show how the priors are irrelevant under
appropriate technical conditions. On small samples, the prior is a way to achieve ex-
act inference and, given the evidence in our paper, possibly superior to the use of
classical asymptotic approximations. Some parallel research (Fern)andez-Villaverde and
Rubio-Ram)0rez, 2002) tries to further advance the Bayesian approach, solving the nu-
merical problems associated with the evaluation of the likelihood of nonlinear repre-
sentations of a dynamic equilibrium models.
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Appendix A.

This appendix presents the omitted proofs from the text and oHers some additional
details about the computational procedures.

A.1. Proofs

Proof of Lemma 1. Let i∈M . We can rewrite fT (Y T |�; i) as
fT (Y T |�; i) =fT (Y T |�̂T (i; Y T ); i) exp[logfT (Y T |�; i)− logfT (Y T |�̂T (i; Y T ); i)]

=fT (Y T |�̂T (i; Y T ); i) exp[logfT (Y T |�∗
T (i); i)− logfT (Y T‖�̂T (i); i)]

×exp[logfT (Y T |�; i)− logfT (Y T |�∗
T (i); i)]

Then ∫
�∈�i\E(�̂T (i;Y T );!T (i))

�(�|Y T ; i) d�

=fT (Y T ; i)−1fT (Y T |�̂T (i; Y T ); i) exp[logfT (Y T |�∗
T (i); i)

− logfT (Y T |�̂T (i; Y T ); i)]
∫
�∈�i\E(�̂T (i;Y T );!T (i))

�(�; i) exp[logfT (Y T |�; i)

− logfT (Y T |�∗
T (i); i)] d� (27)

but conditions (1) and (2) imply that exp[logfT (Y T |�∗
T (i); i)−logfT (Y T |�̂T (i; Y T ); i)]=

Op(1) as T → ∞ in PT
0 -probability.

With this last statement, we only need to check that

fT (Y T ; i)−1
∫
�∈�i\E(�̂T (i;Y T );!T (i))

�(�; i) exp[logfT (Y T |�; i)

− logfT (Y T |�∗
T (i); i)] d� → 0

as T → ∞ in PT
0 -probability.

Then, by (8), for T large enough,

fT (Y T ; i)−1
∫
�∈�i\E(�̂T (i;Y T );!T (i))

�(�) exp[logfT (Y T |�; i)− logfT (Y T |�∗
T (i); i)] d�

6 exp[− kTT ]fT (Y T ; i)−1
∫
�∈�i\E(�̂T (i;Y T );!T (i))

�(�; i) d�

6 exp[− kT (!T ; i)T ]fT (Y T ; i)−1

but (8) also implies that exp[− kT (!T ; i)T ] → 0 as T → ∞ in PT
0 -probability and the

results follow.
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Proof of Lemma 2. By the application of the law of large numbers

1
T
logfT (Y T |�; i) →

∫
Rm×T

1
T
logfT (Y T |�; i)pT

0 (Y
T ) dvT

as T → ∞ in PT
0 -probability. Lemma 2.2 in White (1980) proves that, if �∗

T (i) is
unique, �̂T (i; Y T ) → �∗

T (i) as T → ∞ in PT
0 -probability. Since, �∗

T (i) → � ∗(i) the
lemma follows.

Proof of Lemma 3. Let 'T ↘ 0 and choose !T (i) such that

|�(�|i)− �(� ∗(i)|i)|6 'T�(� ∗(i)|i)

I − A('T )6− L′′
T (Y

T |�; i)&T (Y T |i)6 I + A('T )

∀�∈E(�̂T (i; Y T ); !T (i)) as T → ∞ in PT
0 -probability.

Note that we can write fT (Y T |i) as

fT (Y T |i) =
(∫

�i\E(�̂T (i;Y T );!T (i))
+

∫
E(�̂T (i;Y T );!T (i))

)
�(�|i) exp(logfT (Y T |�; i)) d�

= I1;T + I2;T :

Since we know by Lemma 1 that I1;T → 0 as T → ∞ in PT
0 -probability, we need to

concentrate only on the asymptotic behavior of I2;T .
Then

I2;T =
∫
E(�̂T (i;Y T );!T (i))

�(�|i) exp(logfT (Y T |�; i)) d�

=fT (Y T |�̂T (i; Y T ); i)
∫
E(�̂T (i;Y T );!T (i))

�(�|i) exp(logfT (Y T |�; i)

− logfT (Y T |�̂T (i; Y T ); i)) d�

=fT (Y T |�̂T (i; Y T ); i)
∫
E(�̂T (i;Y T );!T (i))

�(�|i) exp(F(�; Y T )) d�

where

F(�; Y T ) =−1
2
(� − �̂T (i; Y T ))′(I + RT (Y T |i))&T (Y T |i)−1(� − �̂T (i; Y T ))

and RT (Y T |i) =−L′′
T (y

T |�̃; i)&T (yT |i)− I , where �̃ lies between � and �̂T (i; Y T ).
Then we can bound I2;T in the following way:

(1− 'T )I3;T 6
I2;T

fT (Y T |�̂T (i; Y T ); i)�(� ∗(i)|i)6 (1 + 'T )I3;T ;

where I3;T =
∫
E(�̂T (i;Y T );!T (i))

exp(F(�; Y T )) d�.
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Let Z#T = ‖!T (i)‖∞
√
(1 + Z%('T ))=*T and #T = ‖!T (i)‖∞

√
(1− Z%('T ))=*T , where

Z%('T ) and %('T ) are the largest and the smallest eigenvalues of A('T ) and *T and
*T are the largest and smallest eigenvalues of &T and note that

{z; z′(I + A('T ))&−1
T z¡#T} ⊆ E

0; #T√
1− Z%('T )=*T


and

E

0; #T√
(1 + Z%('T )=*T )

 ⊆ {z; z′(I − A('T ))&T (Y T |i)−1z¡ Z#T}:

Thus,

|I + A('T )|−1=2|&T (Y T |i)|1=2
∫
E(0;#T )

exp
(

− 1
2
z′z

)
dz

6
∫
E(�̂T (i;Y T );!T (i))

exp
(

−1
2
(� − �̂T (i; Y T ))′(I + A('T ))&T (Y T |i)−1

× (� − �̂T (i; Y T ))

)
d�6 I3;T

6
∫
E(�̂T (i;Y T );!T (i))

exp
(

−1
2
(� − �̂T (i; Y T ))′(I − A('T ))&T (Y T |i)−1

× (� − �̂T (i; Y T ))

)
d�

6 |I − A('T )|−1=2|&T (Y T |i)|1=2
∫
E(0; Z#T )

exp
(

−1
2
z′z

)
dz

as T → ∞ in PT
0 -probability.

Since Z%('T ) ↓ 0, Condition 8 implies that Z#T → ∞ as T → ∞ in PT
0 -probability,

then

|I + A('T )|−1=2|&T (Y T |i)|1=2(2�)ki=26 I3;T 6 |I − A('T )|−1=2|&T (Y T |i)|1=2(2�)ki=2
as T → ∞ in PT

0 -probability, which implies the result of the lemma

fT (Y T |i) = I2;T = |&T (Y T |i)|−1=2(2�)−ki=2fT (Y T |�̂T (i; Y T ); i)�(� ∗(i)|i)
as T → ∞ in PT

0 -probability.

Proof of Theorem 2. From Lemma 3 we can write

lim
T→∞

P0T

(
fT (Y T |i)
fT (Y T |j) =

(2�)−ki=2|&T (Y T |i)|−1=2fT (Y T |�∗
T (i); i)�(�

∗(i)|i)
(2�)−kj=2|&T (Y T |j)|−1=2fT (Y T |�∗

T (j); j)�(� ∗(j)|j)
)
= 1:

(28)
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Now, to prove that

lim
T→∞

P0T

(
(2�)−ki=2|&T (Y T |i)|−1=2fT (Y T |�∗

T (i); i)�(�
∗(i)|i)

(2�)−kj=2|&T (Y T |j)|−1=2fT (Y T |�∗
T (j); j)�(� ∗(j)|j) = 0

)
= 1

and since
1
T
log(2�)−(ki=2)|&T (Y T |i)|−(1=2)fT (Y T |�∗

T (i); i)�(�
∗(i)|i)

− 1
T
log(2�)−(kj=2)|&T (Y T |j)|−(1=2)fT (Y T |�∗

T (j); j)�(�
∗(j)|j) =−∞


⊆

[
(2�)−(ki=2)|&T (Y T |i)|−(1=2)fT (Y T |�∗

T (i); i)�(�
∗(i)|i)

(2�)−(kj=2)|&T (Y T |j)|−(1=2)fT (Y T |�∗
T (j); j)�(� ∗(j)|j) = 0

]
we only need to show

lim
T→∞

P0T


1
T
log(2�)−(ki=2)|&T (Y T |i)|−(1=2)fT (Y T |�∗

T (i); i)�(�
∗(i)|i)

− 1
T
log(2�)−(kj=2)|&T (Y T |j)|−(1=2)fT (Y T |�∗

T (j); j)�(�
∗(j)|j)

=− ∞

= 1:

(29)

Conditions (5) and (9) allow us to use an argument similar to Wald (1949) to prove
(29) and the result from Lemma 3 to 5nish the proof.

A.2. Some computational details

The cattle cycle model was computed using Vaughan’s eigenvector method to solve
the Algebraic Riccati equation associated with the representative farmer problem. This
method exploits the linear restrictions that stability imposes among multipliers and the
state vector, resulting in an eLcient algorithm feasible for constant revaluation. As
suggested by Anderson et al. (1996), we checked the robustness of the Vaughan’s
eigenvector method comparing our results with those implied by alternative algorithms
(Schur generalized Schur, and Matrix Sign) since Vaughan’s algorithm, although fast,
may provide inaccurate answers when we have nearly repeated eigenvalues. This pos-
sibility may arise in our estimation procedure as we travel regions of the parameter
space far away from the MLE. We found, however, that the results using these diHerent
methods were nearly identical to the ones with Vaughan’s procedure. As mentioned
before, Anderson et al. (1996) provide further details on this issue.
The Metropolis–Hastings success depends on the ful5llment of a number of technical

conditions. In practice, however, the main issue is to assess the convergence of the
simulated chain to the ergodic density. In addition to the formal tests of convergence
discussed in the text, it is key to adjust the parameters of the transition density (in the
case of the random walk, the variance of the innovation term) to get an appropriate
acceptance rate. If the acceptance rate is very small, the chain will not visit a large
enough set in a reasonable number of iterations. If the acceptance rate is very high, the
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chain will not stay enough time in the high probability regions. Gelman et al. (1996)
suggest that a 20% acceptance rate tends to give the best performance. We found that
an acceptance rate of around 40% outperformed diHerent alternatives.
All the programs and their corresponding documentation, the simulation output (in-

cluding additional empirical distributions, time series graphs, trial runs, and additional
convergence assessments) are available upon request from the corresponding author.
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