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Abstract

In this paper we extend two classic results concerning the majority
rule to large classes of voting games. Condorcet studied an election
between two candidates in which the voters’ choices are random and
independent and the probability of a voter choosing the first candidate
isp > 1/2. Condorcet’s “Jury Theorem” (Condorcet (1785), see Young
(1988)) asserts that if the number of voters is sufficiently large, then the
first candidate will be elected. We prove the assertion of Condorcet’s
Jury Theorem for arbitrary voting games in which the Shapley-Shubik
power indez of each voter is sufficiently small.

McGarvey (1953) proved that for every asymmetric relation R on
a finite set of candidates there is a strict-preferences voter profile that
has the relation R as its strict simple majority relation. We prove that
McGarvey’s theorem can be extended to arbitrary neutral monotone
social welfare functions which can be described by a strong simple game
G if the Shapley-Shubik power index of each individual is sufficiently
small.

1 Introduction

In this paper we extend two basic results concerning the majority rule to
general voting schemes. The first is Condorcet’s Jury Theorem which as-
serts that for the majority rule, aggregation of information is asymptotically
complete. The second is McGarvey’s theorem, a far-reaching extension of
Condorcet’s paradox, which asserts that for every asymmetric relation R on
a finite set of candidates there is a strict-preferences (linear orders, no ties)
voter profile that has the relation R as its strict simple majority relation.
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Peres, Motty Perry, Ariel Rubinstein, Ran Spiegler and Leeat Yariv for helpful suggestions.



The motivation for studying general voting schemes which aggregate
individual preferences into the social decision is that simple majority is a
very limited model for describing general forms of aggregation of preferences.
More complex election rules involving two candidates or two alternatives are
common in actual elections. Examples include the U.S. electoral system and
the (idealized) Soviet multi-tier council system. In economic situations, even
more than in actual elections, it can be difficult to determine the precise
form of aggregation of individual preferences and it is therefore important
to understand general phenomena which do not depend on a specific form
of aggregation of preferences.

In Section 2, we consider an extension of Condorcet’s Jury Theorem
(hereon, CJT). It asserts that in an election between two candidates, say
Alice and Bob, if every voter votes for Alice with probability p > 1/2 and
for Bob with probability 1 — p and if these probabilities are independent,
then as the number of voters tends to infinity the probability that Alice will
be elected tends to one (see Young (1988)).

The reason usually given for the interest in CJT in economics and polit-
ical science is that it can be interpreted as saying that even if agents receive
very poor (independent) signals indicating which decision is correct, major-
ity voting will nevertheless result in the correct decision being taken with a
high probability if there are enough agents and each agent votes according
to the signal he receives. Specifically, CJT deals with the following scenario:
Every agent receives a single bit of information which is either ‘Vote for
Alice’ or ‘Vote for Bob’ and these signals are independent. When Alice is
the correct choice the probability of receiving the signal ‘Vote for Alice’ is
p > 1/2. The voters vote precisely as the signal dictates and the decision is
made according to the simple majority rule.

When we consider general political or economic situations the aggrega-
tion of agent’s choices can be much more complicated than simple majority,
the individual signal (or signals) may be more complicated than a single bit
of information and the distribution of signals among agents may be much
more general and, in particular, may violate independence. Furthermore,
voters may vote strategically by taking into account the entire situation
and not just their signal. We will deal with general forms of aggregation of
preferences while leaving unchanged the assumptions on individual signals
and the agent’s method of voting. I expect that our findings as well as the
technical tools we apply are also relevant in the case of more general signal
distributions and strategic voting. Our results and methodology may also be
relevant to other questions concerning the aggregation of information (even
in cases where different agents have different goals) which is an important



topic in theoretical economics (see e.g. Pesendorfer and Swinkels (1997)).

Suppose that the outcome of an election can be described in terms of a
strong simple game G defined on the set of voters. A simple game defined
on a set N of players (voters) is described by a function v that assigns to
every subset (coalition) S of players the value ‘1’ or ‘0’. We assume that
v(f) =0 and v(N) = 1. A candidate is elected if the set S of voters which
voted for him is a winning coalition in G, i.e., if ¥(S) = 1. A simple game G
is strong if v(S) +v(N\S) = 1 for every coalition S, i.e., if the complement
of a winning coalition is a losing one. We will further assume that the game
G is monotone i.e. the addition of an individual to a winning coalition does
not change it into a losing one. The assertion of CJT does not extend to all
strong monotonic simple games with a large number of players. Clearly, it
fails for a dictatorship or when the outcome of the game is decided (in all
cases or even only with high probability) by a small set of voters. We need
to replace the assertion that the number of voters is large by the assertion
that the “power” of each voter is small.

We rely on the Shapley-Shubik power index which assigns a real number
between 0 and 1 to every player in a simple game. This index measures
the power of the player in the game. A quick way to define the Shapley-
Shubik power index is as follows: Suppose that there are n voters. We say
that a voter ¢ is pivotal with respect to a set S of voters if v(SU {i}) =1
and v(S\{i}) = 0. In other words, player i makes a difference. For a
probability distribution P on all subsets of voters, the probability that a
voter is pivotal is called the influence of the voter (with respect to P). The
Shapley-Shubik power index of a voter measures his influence under the
following distribution: First, choose p uniformly between 0 and 1 and then
let a player 7 belong to S with probability p (independently of other players.)

Theorem 1.1. For every p > 1/2 and € > 0, there is § = d(p,€) > 0 such
that the following assertion holds:

For every election rule described by a monotone strong simple game G
for an election between two candidates, Alice and Bob, if the Shapley-Shubik
power indezx for each voter in G is at most § and if each voter votes for
Alice with probability p and for Bob with probability 1 — p and the votes are
independent, then Alice will be elected with probability of at least 1 — e.

The proof of Theorem 1.1 is given in Section 2 which also includes various
examples of aggregation of preferences modeled on simple games. These
models differ in nature from the simple majority model but do arise in real
economic and political decision making. Of particular interest is aggregation



based on multi-level hierarchical structures such as those in various types of
organizations and in the Soviet multi-tier council system.

The proof of Theorem 1.1 uses recent results in probability theory and
combinatorics concerning threshold phenomena. Threshold phenomena, refer
to situations in which the probability of an event changes rapidly as some
underlying parameter varies within some interval. Denote the probability
that Alice will be elected by P,(G). If G is a monotone simple game then
P,(G) is a monotone function of p. We wish to analyze the interval [p1, po] in
which Pp, (G) = € and Py, (G) = 1 — . This interval is called the threshold
interval for the game G. In the last two decades, conditions have been
found which guarantee that the derivative of Pj,(G) at a specific value of p is
large. For the proof of our theorem we need to supplement these results with
some observations concerning the behavior of the function at two different
points in the threshold interval. (Some technical parts of the proof are
presented in the appendix.) It is worth noting that for an election based on
a strong simple game G, if every voter votes (independently) for Alice with
probability p > 1/2, the probability that Alice will be elected (i.e., Pp(G))
is maximal when G is a simple majority game. (Further details can be found
in Section 2.)

The concepts of pivotal agents and influences are crucial to our analysis.
The mathematical study of pivotal agents and influences is fundamental in
the context of power indices in game theory, as well as in mechanism design
and auction theory (Pesendorfer and Swinkels (1997)), other areas of the-
oretical economics, (Al-Najjar and Smorodinsky (2000)), reliability theory,
statistical physics, probability theory and statistics, distributed computing
(Ben-Or and Linial (1985,1990)) and complexity theory.

In Section 3, we consider extensions of a theorem by McGarvey (1953).
Condorcet’s “paradox” demonstrates that given three candidates A, B and
C, the majority rule may result in the society preferring A to B , B to C and
C to A. Arrow’s theorem shows that under certain natural conditions, such
“paradoxes” cannot be avoided under any non-dictatorial voting method.

McGarvey (1953) proved another far-reaching extension of Condorcet’s
paradox: For every asymmetric relation R on a finite set of candidates,
there is a strict-preferences (linear orders, no ties) voter profile that has
the relation R as its strict simple majority relation. McGarvey’s theorem
is an early and simple manifestation of the phenomenon that choice aggre-
gated over many individuals may lead to arbitrary outcomes (or, in other
words, will not have any testable implications). Another example of this
phenomenon is the well-known result by Sonnenschein (1972) concerning
demand functions.



A social welfare function is a map which associates an asymmetric rela-
tion on the alternatives to every profile of individual preferences. We require
the condition of Independence of Irrelevant Alternative (ITA) which states
that the social preference between two alternatives a and b is determined by
the individual preferences between a and b. We also require the Pareto con-
dition (P) that if every individual prefers a to b then so will the society. A
social welfare function is called neutral if it is invariant under permutations
of the alternatives. A neutral social welfare function that satisfies conditions
(ITA) and (P) can be described by a strong simple game G defined on the set
of individuals. Thus, given the order relations R, Ry, ..., Ry, which repre-
sent the individual preferences, the social preference relation R is defined by
the following rule: For two alternatives ¢ and b, aRb if the set of individuals
for which aR;b is a winning coalition in G. (Without neutrality, a social
welfare function requires a simple game for every pair of alternatives; these
games can be distinct and not strong.)

Theorem 1.2. For every number m of alternatives, there is a real number
d = §(m) > 0 such that if a neutral social welfare function described by a
strong monotone simple game G in which the Shapley-Shubik power index
of each individual is at most §, then the social welfare function will lead to
all asymmetric preference relations.

While the statement of Theorem 1.2 does not involve any probability,
its proof is based on an analysis of the social choice under some proba-
bilistic assumptions on the individual preferences and on the extensions of
Condorcet’s Jury Theorem.

The extension of McGarvey’s theorem is the starting point for this paper.
My study of learnability and the testable implications of individual and
collective choice (see Kalai (2002)) led me to the conjecture that under very
general conditions, social choice leads to chaotic (highly non-learnable and
non-testable) social preferences. Arrow’s theorem asserts that for every non-
dictatorial social welfare function and under very general conditions, if we
observe that the society prefers alternative A over B and alternative B over
C we cannot deduce the society’s preferences between A and C. In other
words, if we seek a mechanism which guarantees that A is preferred over
C we must give one player all the power. Our theorem shows that if we
require from a monotone and neutral social welfare function that it allow us
to deduce anything from observing a sample of the society’s preferences on
some other society’s preferences, then we must give one player a substantial
amount of power (i.e. an amount of power which is bounded away from
zero regardless of the size of the society). In section 3, we will present



an application of Theorem 1.2 for social welfare functions with restricted
individual domains.

Both our theorems require that the Shapley-Shubik power index for each
voter be small. There are some cases in which this condition is automatically
satisfied. In one such case the individuals are classified by “type”, such that
two individuals of the same type are indistinguishable, and there are many
individuals of each type. Another such case arises when there is sufficient
symmetry between the individuals to guarantee that every two individuals
have the same power. Formally, “sufficient symmetry” means that there is
a transitive group of permutations I' on the alternatives such that the social
welfare function is invariant under permutations in I'.! In various political or
economic situations it can be evident that individual agents have very small
power even if it may be difficult to compute precisely the power indices of
agents and even to describe the precise form of aggregation.

The quantitative estimates we obtain for our two general theorems are
weak and probably not tight. For concrete examples, sharper threshold
behavior can often be proved and a consequently sharper form of Theorem
1.2 can be deduced. We point out that Theorems 1.1 and 1.2 hold when
we use the (non-normalized) Banzhaf power index rather than the Shapley-
Shubik power index. (The Banzhaf power index of a voter is his influence
with respect to the uniform probability distribution on all subsets of players.)

An interesting consequence of Theorem 1.1 and of the proof of Theo-
rem 1.2 is that in some situations and for large societies, election outcomes
hardly depend on the specific mechanism for aggregation and are primarily
determined by the probability distribution of individual votes.

In Section 4, we examine to what extent our extension of CJT can be
extended further to the cases of general distribution of signals and strate-
gic voting. We point out that the relation between a sharp threshold and
the asymptotically complete aggregation of information extends (though less
obviously) to the case of strategic voting when we allow the voting rule to
be biased towards one of the alternatives (as do Feddersen and Pesendorfer
(1996, 1997 and 1998)). Understanding the situation for general distribu-
tions (namely, when the assumption of probability independence between
individual signals is dropped) involves profound conceptual and technical
problems concerning the aggregation of information. When the distribution
of signals is not independent the notion of an agent’s “influence” (namely,
the probability of his being pivotal) can be extended in two different ways.

1A group T on the set of voters is transitive if for every two voters a and b, there is an
element g € I" such that g(a) = b.



We define the effect of a player (or, more precisely, the effect of knowing the
player’s vote) as the probability that Alice was elected conditioned on the
player voting for Alice minus the probability that Alice was elected condi-
tioned on the player voting for Bob. (The effect is a normalized form of the
correlation between the election’s outcome and the player’s vote.) When the
individual signals are independent, the effect is equal to the influence. We
propose a general conjecture asserting that Theorem 1.2 further extends to
large classes of distributions (FKG-distributions) under the condition that
individual effects are small.

2 Threshold phenomena, influences and Condorcet’s
Jury Theorem

2.1 The mathematics behind the proof of Theorem 1.1

Consider a simple game G =< N,v > with a set N = {1,2,...,n} of
players, where v is a function from subsets of N to {0,1}. A subset S of N
is called a winning coalition if »(S) = 1; otherwise it is a losing coalition.
We will assume that v(f) = 0 and v(N) = 1. We will also assume that G
is monotone which means that if R C T" and v(R) = 1 then v(T) = 1. The
game G is strong if v(N\S) = 1 — v(S) for every S.

The simple game G describes the way in which the individual preferences
between our two candidates, Alice and Bob, aggregate. Now we will discuss
how the voters are going to vote.

We suppose that the ith voter receives a signal s; where s; = 1 with
probability p > 1/2, s; = 0 with probability 1 — p and the signals are
independent. s; = 1 means “vote for Alice” and we assume that voters act
according to their signals. Therefore, the set S of voters who vote for Alice
is given by S = {i : s; = 1}. S is a random set of players such that for each
player 4, s € S with probability p, ¢ ¢ S with probability 1 —p and the events
“ € 8" are independent for 7 = 1,2,...,n. For a specific set S C N, the
probability that the set of Alice’s voters is precisely S is denoted by Pp(S)
and is equal to p/S/(1 — p)"~I5l. Denote by P,(G) the probability that the
random set S of Alice’s voters is a winning coalition, i.e. the probability
that Alice wins the election:

Py(G) =) {Py(S) : v(5) =1}.

The proofs of the following two simple lemmas are presented in the ap-
pendix.



Lemma 2.1. If G is a strong simple game, then:
Py(G) =1 - P15(G). (2.1)

Lemma 2.2. If G is a monotone simple game, then the function P,(Q) is
a strictly monotone continuous function of p in the interval [0, 1].

Let €, 0 < € < 1/2, be a real number. Since P,(G) is a strictly monotone
and continuous function of p, there is a unique value of p denoted by p; such
that Py, (G) = e. There is also a unique value of p denoted by ps such that
P,,(G) = 1 —e. The interval [p1,po] is called a threshold interval and its
length py — p1 is denoted by Te(G). The value p., at which P, (G) = 1/2,
is called the critical probability for G. It follows from relation (2.1) that if
G is a strong simple game, then p, = 1/2.

Let ¢x(G) denote the Shapley-Shubik power index for the k-th individual
in G. Define ¢(G) = max(¢1(G), $2(G), ...,¢,(G)). The main results
of this section assert that if the power of every individual is small, then
the threshold interval must also be. The following result is equivalent to
Theorem 1.1:

Theorem 2.3. For every e,6 > 0 there ezists v > 0 such that for every
monotone strong simple game G if $(G) < v, then T.(G) < 4.

The proof extends to the following more general result.

Theorem 2.4. For every a,_6,6 > 0 there exists v > 0 such that for every
monotone simple game G if $(G) < v and a < p.(G) < 1—a then T.(G) < 6.

We prove a similar result for the Banzhaf power index. Let 3(G) be the
maximum Banzhaf power index over all players in G.

Theorem 2.5. For every €,§ > 0 there ezists v > 0 such that for every
monotone strong simple game G if B(G) < v, then T.(G) < 6.

I will now present the mathematical concepts and results required for
proving Theorem 2.3 and leave detailed proofs to the appendix. The in-
fluence of the k-th player on G, denoted by I%(G), is the probability that
the player is pivotal, i.e., the probability that for a random coalition S (ac-
cording to the probability distribution Pp) which does not contain &, S is a
losing coalition and S U {k} is a winning one. The influence of a player is
a normalized version of the correlation between his vote and the election’s
outcome. The total influence I?(G) equals Y I¥(G). Define

1
o4(G) = /0 (G)dp.
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¢r(GQ) is the Shapley-Shubik power index of player k in G. This integral
representation of the Shapley value is due to Owen (1989). (Owen’s repre-
sentation of the Shapley-Shubik power index coincides with the description
given in the introduction but is different from Shapley’s original axiomatic
definition.) The Banzhaf index of the k-th player equals I,i/ %(@). (We will
omit the superscript p for p = 1/2.)

We require the following fundamental result:

Proposition 2.6. Russo’s lemma (see Grimmett (1989))

dPy(G)

2 =1(G). (2.2)

Russo’s lemma implies that if the total influence in the threshold interval
is large, then the threshold interval will be small. The lemma was discovered
independently by several authors (before and after Russo’s paper). The
rather simple proof is presented in the appendix.

Next we require a result that shows that for a specific value of p, if all
individual influences I} (G) are small, then their sum I?(Q) is large.

Theorem 2.7 (Russo-Talagrand). For some constant C > 0, if I (G) <
6 for every k =1,2,...,n, then:

IP(G) > Clog(1/5) - Py(G)(1 — Py(G)). (2.3)

We will not present the proof in this paper (though we will explain the
basic setting in the appendix). Russo’s original result (Russo (1982)) gave a
weaker lower bound on IP(G) and his proof was elementary, quite short and
a bit mysterious. Talagrand’s proof relies on harmonic analysis techniques
introduced in Kahn, Kalai and Linial (1988) (who essentially proved the case
of p = 1/2). Kahn, Kalai and Linial (1988) is a good source for the basic
mathematical tools. For a direct application of these harmonic analysis tools
to the probabilistic study of social choice, see Kalai (2002).

Note that this result is already sufficient to deal with the cases considered
in the introduction. Define a simple game to be weakly anonymous if the
game is invariant under a transitive group of permutations on the players.
(In this case, every two voters are equal; but not every two pairs of voters
are necessarily equal.) An example would be an electoral voting system
like that in the US where all states have the same number of voters and
electors. Simple majority is the only anonymous strong simple game but
the family of weakly anonymous strong simple games is very rich. For a



weakly-anonymous game, I,’: (@) must be equal for every k. Therefore, from
the Russo-Talagrand theorem, we have:

I*(G) > Clog(n)Py(G) (1 — P, (G)). (2.4)

From this inequality it follows immediately that when € is fixed, the
slope of P,(G) as a function of p is at least some constant times logn for
every point p in the threshold interval and therefore the threshold interval
is of length O(1/logn). With a slightly more delicate computation it can
be deduced that

T(GQ) < Clognlog(1l/e) (2.5)

(see Friedgut and Kalai (1996)). The bounds cannot be improved in this
case (apart from the value of the constant C). Finding general conditions
which guarantee that the length of the threshold interval will be as small as
n~P for B > 0 appears to be important but beyond reach at this time. A
similar argument applies to a different case mentioned in the Introduction
in which voters are “replicated” sufficiently many times.

In the proof of Theorems 2.3 and 2.5 presented in the appendix, we re-
quire some additional observations that will enable us to relate the influences
for one value of p to the influences for the entire threshold interval.

2.2 Multi-tier council democracy

Consider the following example from Ben-Or and Linial (1986,1990) whose
origins going back to von-Neumann (1956). The society is divided into three
parts, each of which is again divided into three parts, and so on and so forth
until every part is a single voter. (For simplicity assume that the number of
individuals is a power of three.) The election begins with voting according
to majority rule at the level of single voters followed by a majority vote at
the next aggregated level and continuing recursively to the top level.

This is a weakly-anonymous strong simple game but it is very different
from simple majority.

The threshold behavior in this example can be computed directly. (The
proof is presented in the appendix.)

Proposition 2.8. T,(G) < Clog(1/e)/n037-.

10



(The exponent is 1 — log 2/ log 3.)

Remark: This hierarchical voting method has an obvious resemblance
to the multi-tier system of councils (“soviets” in Russian). Lenin (and oth-
ers) advocated this system during the 1917 Russian revolution. Friedgut
(1979) is a good source for the early writings of Marx, Lenin and others and
for an analysis of the Soviet election systems in the 70’s. Lenin’s concept
of centralized democracy is based on a hierarchical method of voting and
was implemented in the Soviet Union and its satellites, for party institu-
tions, national bodies and labor unions. (For national bodies, the method
was changed in 1936.) For the party institutions there could be as many
as seven layers. For example, party members of the local organizations,
say, the department of mathematics in Budapest, elected representatives to
the science faculty party meeting who in turn elected representatives to the
university meeting. They elected representatives to the meeting of the 5th
district of Budapest who in turn elected representatives to the Budapest
meeting. This continued with the election of the party congress, the Central
Committee and finally the Politburo.

This recursive model can be regarded as an idealized version of cen-
tralized democracy. In the next example we consider, the power of voters
increases as we move up the hierarchy. This would appear to be closer to
how the system was actually implemented.

2.3 Aggregation of information in an hierarchical organiza-
tion

We will describe now a hierarchical method of aggregation of preferences
where people higher up in the hierarchy have more power. This example
also serves another purpose. Our extension of CJT allows for generalized
methods of aggregation of preferences but leaves unchanged the assump-
tion that the individual signals are independent. The example describes
here shows that general methods for aggregating preferences and general
distributions for signals can be at times interchangeable.

Consider a company with an hierarchical structure. Each first level man-
ager has K employees under him, and each second level manager is respon-
sible for K first level managers, and so on... decisions are made by the head
of the company who is at the top of the hierarchy.

The company is facing an important decision which involves choosing one
of two alternatives A and B. In order to make the example as concrete as
possible assume that the firm is a software company and that the decision is
whether Alice or Bob should write the core of the new generation operating

11



system. For such a crucial decision, everyone in the firm forms an opinion.

Suppose that the ith employee receives a signal s; indicating which is the
better alternative. The signals are not independent and are based on the fol-
lowing aggregation of individual assessments. To start with, every employee
of the company receives an independent signal s}. s; = 1 with probabil-
ity p and s, = 0 with probability 1 — p. The vector of independent signals
(8},85,...,s!) determines the actual signals (s1, s2, . . ., sp) as follows: Start-
ing from the bottom up every manager forms his opinion according to his
signal except for the case in which all the workers directly under him favor
the opposite alternative. In such a case he changes his mind. Formally, for
the simple workers %, s; = s, while for managers 4, s; = s} if for some of the
employees j directly below him, s} = s; and s; = 1 — s} otherwise.

We can regard the situation as a dictatorship with a rather complicated
structure of distribution of signals (given by the s;’s). We can also consider
it to be a rather complicated strong simple game (rather similar in nature to
the multi-tier council democracy) with independent individual signals (the
original s}’s).

In this game, if K > 2 is fixed then people higher up the hierarchy will
have more power. For example, for K = 2, the Banzhaf power index for the
boss is 1/2 while the Banzhaf power index for a manager r steps below the
boss is 1/27+1.

Proposition 2.9. For K = 2, asymptotic complete aggregation of informa-
tion will take place as the number of agents grows. This is not the case for
K =3.

Remark: Larger values of K and weaker conditions for the managers to
change their minds are perhaps more realistic. In such cases, the question
of when there will be asymptotically complete aggregation of information
may be subtle. For example, when K = 10 and when the opinions of seven
employees are sufficient to change their manager’s mind, then asymptotic
complete aggregation of information will take place (as the total number of
employees grows), however, if it takes eight opinions to change the manager’s
opinion then it will not take place. For mathematical models of aggregation
of information (from the leaves to the root) on tree-like structures (and the
mathematically similar problem of noisy information from the root to the
leaves), see Peres (1999).

12



2.4 Two further examples

The following two examples are useful in seeing more precisely how far our
extension of CJT can be extended when there are influential players.

In the first example there are n voters, one of whom is more distinguished
than the others (think of her as the Supreme Court Chief Justice). If the
gap between the number of votes for Alice and Bob is at least E = E(n),
then the election is decided by majority. If the gap is smaller than E, then
the outcome is determined by the preference of the distinguished voter. The
analysis depends on the value of E. Note that the Shapley-Shubik power
index of the distinguished voter is o(1) as long as E = o(n). It follows from
Theorem 1.1 (and can easily be derived directly) that when E = o(n), the
assertion of CJT holds. Note that if lim,_,o E(n)/y/n = oo, for example
if E(n) = n?/3, then the Banzhaf power index for the distinguished voter
tends to one as n tends to infinity.

When E(n) is proportional to n, then the CJT does not hold. When
E(n) =[a-n] and 0 < a < 1, then the Shapley-Shubik power index for the
distinguished voter tends to 8 where 8 = 8(a) and 0 < 8 < 1. In this case,
the example demonstrates that the assertion of CJT does not follow from
the assumption that no small set of voters has decisive power as measured
by their combined Shapley-Shubik power index.

In our second example, there are n voters, three of whom are more dis-
tinguished than the others. If these three are in agreement, they determine
the outcome of the election. Otherwise, the election is decided by simple
majority. In this case CJT does not hold and indeed the Shapley-Shubik
power index for each of the three distinguished voters is bounded away from
zero. Furthermore, the combined Shapley-Shubik power for these players
is bounded away from one and therefore no small set of voters has decisive
power as measured by their combined Shapley-Shubik power index.

Note also that in this example I(G) tends to infinity as does n. This
demonstrates that I(G) can be arbitrarily large and CJT may still not hold.
In the appendix, we will give conditions for CJT to hold even when some of
the voters do have a large amount of power. We will also state a theorem
which shows that the monotonicity assumption on the simple game can be
relaxed.
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2.5 Related phenomena: The superiority of simple majority
and sensitivity to noise

We mentioned in the Introduction that the study of pivotal agents and influ-
ences (under different names) is central in a number of areas in mathematics,
physics, statistics and economics. I will mention here four additional basic
phenomena concerning pivotal agents while leaving some technical explana-
tions to the appendix. A phenomenon that goes back to Banzhaf’s original
work (and perhaps earlier) and which is relevant to our discussion is the
following;:

e Simple majority maximizes total influence.

Remark: Here, when the number n of players is even we will regard
as simple majority game any strong simple game such that every coalition
with more than n/2 players is a winning coalition.

By Russo’s lemma it follows that:

Proposition 2.10. Let G be a monotone strong simple game G with n
players and let M be a simple majority game with n players. Then, for
every p > 1/2, P,(M) > Py(G). Equality holds if and only if G is a simple
magjority game (in the slightly more general sense mentioned above).

Thus, the threshold interval for every strong simple game of n players is
at least as large as the threshold interval in a simple majority game. In our
context we conclude that simple majority is superior in terms of aggregation
of information. (In contrast, Maug and Yilmaz (2002) describe a situation
in which splitting the voters into two groups yields better aggregation of
information (for strategic behavior) than simple majority. In their situation
the population is divided into two groups with different interests.)

Al-Najjar and Smorodinsky (2000) considered a general framework of
influence relative to a mechanism and proved a tight upper bound on the
average influence. They showed that every mechanism (in their sense) can
be replaced by another based on simple majority such that influence in-
creases. Their work was influenced by Mailath and Postlewaite (1990) who
considered applications to the problem of public goods. Fudenberg, Levine
and Pesendorfer (1998) proved a similar result (although it is harder to see
the connection from their formulation) and provided game-theoretic appli-
cations. Chayes, Chayes, Fisher and Spencer (1986) showed that the upper
bound of n!/2 on the average number of pivotal agents extends to various
probability distributions which exist in physics.

Another basic property of influences is the following:
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e For a fixed value of p, there cannot be more than a few agents with a
large amount of influence.

Al-Najjar and Smorodinsky (2000) consider this phenomenon (in a more
general context) and derive some economic consequences.
In our context, this property follows from the inequality:

D (I(@)? < 4/p(1 - p) (2.6)

which is a simple consequence of the basic (harmonic analysis) setting in
Kahn, Kalai and Linial (1988) (for p = 1/2) and Talagrand (1994) (for
general p).

A third basic phenomenon is the following:

e The sum of influences cannot be overly small.

For a strong simple game G,
I(G) >1. (2.7

(I(G@) =1 if and only if G is a dictatorship). This inequality has its origins

in the works of Whitney and Loomis, Harper, Bernstein, Hart and others

and has great importance in many mathematical contexts. A good reference

for the basic result is Hart (1977) who gives for arbitrary simple games, the

precise lower bound for I(G) in terms of the number of winning coalitions.
The fourth and last phenomenon is the following:

e Simple and weighted majorities are stable in the presence of noise.

Motivated by mathematical physics, Benjamini, Kalai and Schramm
(1999) studied the sensitivity of an election’s outcome to low levels of noise
in the signals (or, if you wish, to small errors in the counting of votes). Their
assumption is that there is a probability € > 0 for a mistake in counting a
vote and these probabilities are independent. Simple majority tends to be
quite stable in the presence of noise. T'wo-level majority like the US electoral
system is less stable and multi-tier council democracy is quite sensitive to
noise.

3 The chaotic nature of social preferences

3.1 Social welfare functions

We consider a social welfare function which, given a profile of n order rela-
tions R;, i = 1,2,...,n on m alternatives, yields an asymmetric relation R
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for the society. Thus, R = F(Ry, Ry,... R,) where F is the social welfare
function. aR;b states that the i-th individual prefers alternative a over alter-
native b. aRb indicates that the society prefers alternative a over alternative
b. The social preferences are not assumed to be transitive.

The condition of independence from irrelevant alternatives (IIA), states
that for every two alternatives a and b the individual preferences between
a and b determine the social preference between a and b. Formally, the set
{7 : aR;b} determines whether aRb. The social preference between a and
b can thus be described by a strong simple game G, as follows: Let S
be the set of individuals which prefer alternative a over alternative b (i.e.,
S = {i:aR;b}). Sis a winning coalition for the game G if aRb.

The Pareto condition is another standard assumption, which asserts that
if all individuals prefer alternative a over b then so will the society. This
means that for every two alternatives @ and b in the game G, the set of
all voters is a winning condition and the empty set of voters is a losing one.

We will also assume that the social welfare function is monotone which
means that if an individual who prefers an alternative a over alternative b
changes his preferences, this will not result in the opposite change in the
society’s preferences.

Finally, we assume that the social welfare function is neutral, namely
that it is invariant to permutations of the alternatives. Assuming neutrality
is equivalent to the assertion that all simple games G,p are strong and
identical. Therefore, a neutral social welfare function can be described in
terms of a simple game. (Our main result and its proof extend to the case
in which the games G, are strong simple games although they may be
distinct.)

A convenient way to think about the function is as a rule for elections
between two candidates. There is a pool of several candidates and every
individual has an order relation on all candidates. We wish to understand
the possible outcomes of two-candidate elections between pairs of candidates
within the pool.

3.2 An outline of the proof of Theorem 1.2

Let me first explain informally why our extension of CJT combined with
McGarvey’s theorem itself leads to an extension of McGarvey’s theorem to
arbitrary neutral social welfare functions in which each voter has a small
amount of power. Suppose we wish to realize an asymmetric relation R on
m alternatives. We start with a profile of preferences on M individuals such
that for every two alternatives a and b if a Rb then the majority of individuals
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prefer a to b. According to McGarvey’s theorem such a profile exists. Let
R; be the preference relation of the ith individual, i = 1,2,..., M. Next,
consider a much larger society with n individuals and for every individual
choose a preference relation which agrees with R; with probability 1/M.
Now suppose that aRb. The proportion of individuals which prefer a over b
in the small society is at least 1/2 + 1/M. Therefore, the probability that
an individual in the large society will prefer a to b is at least 1/2 + 1/M.
It follows from the extended version of CJT that for every ¢ > 0 when n
is sufficiently large the society will prefer a over b with a probability of at
least 1 — e. The probability that for every two alternatives ¢ and b we will
have that aRb is at least 1 —¢- (g‘), and this quantity is positive if € is small
enough. The detailed proof is given in the appendix.

3.3 Some quantitative estimates

Consider a profile P consisting of order relations of k£ individuals Ry, Ry, ... Rg
on a set X of m alternatives. For two alternatives a,b € X let p(a,b) be

the proportion of individuals that prefer alternative a over b. Suppose that

p(a,b) # 1/2 for every a and b. Let g(a,b) = p(a,b) —1/2. Let R be a

relation on X defined by aR,b if p,(a,b) > 1/2. Define

t = min{|q(a,b)| : a,b € X}.

We say that the profile P realizes the asymmetric relation R with quality t.
The quantitative estimates derived from our proof of Theorem 1.2 depend
on the quality required to represent an asymmetric relation.

McGarvey showed that every asymmetric relation R can be realized by
m(m — 1) voters. McGarvey’s proof relies on the following simple observa-
tion: Combining two voters with order relations 1 <; 2 <3 3 <1 +-- <1 m
and m <o m —1 <3<g --- <9 3 <2 1 <9 1 we reach a situation in which
these two voters combined prefer alternative ‘2’ to alternative ‘1’ but are
indifferent between every other pair. For every pair of alternatives a and
b, if aRb we can define order relations for two voters according to which
both prefer a to b but have the opposite preferences on every other pair of
alternatives. Combining such pairs of voters for every two alternatives a and
b such that aRb implies that R can be realized by m(m — 1) voters. Stearns
(1959) found a way to reduce the number of voters to m and noticed that a
simple counting argument implies that at least m/logm voters are needed.
Erdés and Moser (1964) were able to reduce the number of voters required
to realize every asymmetric relation to O(m/logm).
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The quality ¢ of a distribution based on McGarvey’s proof is 1/m? and
can be improved to 1/m and logm/m using the subsequent results by
Stearns and Erd6s-Moser. Alon (2002) recently showed that every asym-
metric relation can be realized with quality proportional to 1/4/m and that
this is the best result possible.

If we base our analysis on Alon’s result then for a neutral weakly anony-
mous social welfare function on m alternatives, it follows that the number
of voters required to realize all asymmetric relations is 2°V™)_ It is quite
possible that a number of voters which is only polynomial in m suffices but
I cannot prove it. I do not even have an example in which m voters are
not sufficient. As for Theorem 1.2, I conjecture that m can be taken as a
polynomial of 1/§. In specific cases for which we have better upper bounds
on the threshold interval, we can deduce that a smaller number of voters
suffices. For example, From the threshold behavior of the multi-tier system
which we proved in Proposition 2.8, we can deduce that for this case m3
agents suffice.

3.4 Social choice with restricted individual preferences

There has been intensive study of social choice when individual preferences
are restricted to a subset T of all order relations (see, for example Kalai and
Muller(1977)). One famous example is single-picked order relations. The
following Corollary to the proof of Theorem 1.2 is in the spirit of results by
Maskin (1995) and Dasgupta and Maskin (1997). Maskin’s theorem asserts
that if the number 7 of voters is odd and if for some restriction T of all order
relations on m alternatives some anonymous election rule always leads to
transitive social preferences, then the majority rule will also always lead to
transitive social preferences. (A social welfare function is anonymous if it is
invariant under all permutations of the voters.) The following Corollary to
the proof of Theorem 1.2 is in the same spirit.

Corollary 3.1. There ezists v = y(m) > 0 with the following property: Let
T be a set of linear orders on m alternatives. If the majority rule yields a
non-transitive social preferences for a profile restricted to T, then so does
every monotone neutral social welfare function based on a simple game G
for which the Shapley-Shubik power indez of every individual is at most 7.

This result is a weak form of a conjecture by Maskin (1995) which asserts
that in his theorem we can replace the condition that the social welfare
function be anonymous by the condition that it not be dictatorial and every
voter has some influence (in other words, there are no “dummies”).
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3.5 More general forms for aggregation of individual prefer-
ences

A far-reaching extension of McGarvey’s theorem by Saari (1989) asserts that
the plurality method for large societies gives rise to all choice functions. For
every choice function ¢ defined on subsets A of a finite set X of candidates,
Saari described voter profiles such that for every set A of candidates, the
candidate who is ranked first among the elements of A for the largest number
of voters is precisely c(A).

We have considered social welfare functions which associate an asym-
metric social preference to the individual preference relations. The plurality
rule is an example of a more general notion of social welfare functions which,
based on the individual preferences, define a choice function on every subset
of alternatives.

Consider the following setting: We have an election rule which allows for
an arbitrary number of candidates. Given the individual preferences on a
pool X of candidates, we wish to ascertain for every subset A of candidates,
who will win an election among the candidates in A. (We assume that people
vote naively.)

Saari’s conclusion regarding the plurality rule does not hold if we choose
for A the candidate who ranks first according to the Borda rule, another
well-known voting method. The Borda rule involves each individual ranking
the candidates of A by the numbers 1,2,...,|A| (the candidate ranked ‘1’
is the least favorable) and choosing the candidate for which the sum of the
individual ranks is maximal. In fact, the class of choice functions that arises
from the Borda rule is quite restricted. It is well-known (and perhaps was
already known to Borda himself) that the choices for the Borda rule cannot
be prescribed in an arbitrary manner. For example, if z = ¢(A) then z
cannot lose in a two-candidate election against any other element of A (see,
Saari (1995)).

What accounts for the difference in results between the Borda rule and
the plurality rule? According to the plurality rule, the society’s choice for
a set A depends only on the individual choices for A. According to the
Borda rule, the society’s choice for a set A also depends on the individual
preferences for the elements of A.

We say that a social welfare function (in the generalized form considered
here) satisfies the “Irrelevance of Rejected Alternatives” (IRA) condition
if the choice of the society depends only on the choices of the individuals.
TIRA is a natural assumption to make in political and economic situations in
which the society’s choice between several alternatives depends only on the
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individual choices and cannot take into account the individual preferences
among (relevant) alternatives that were not chosen. The results of this paper
can be extended to prove that, under fairly general conditions and when the
society is large, if (IRA) is assumed then the class of choice functions that
arises includes all choice functions. Extensions in this direction can be found
in Kalai (2001).

4 Influence without independence and strategic
voting.

4.1 The nature and role of independence in CJT

To make the discussion more concrete, suppose again that an institute has
to decide whether to hire Alice or Bob. The files of the two candidates
provide the data on which each individual in the institute bases his opinion.
The opinion of individual 7 is what we referred to as his signal s;. It consists
of a single bit of information: if s; = 1 then the ith individual favors Alice;
if s; = 0 he favors Bob. The probability p that an individual 7 will form an
opinion in favor of Alice depends on the strength of the evidence in her favor.
Given p we have assumed that the signals s; are identical and independent.

The assumption that the signals are identical does not appear to be a
severe restriction. A simple observation worth mentioning is that mono-
tonicity implies that if the probability of Alice being elected is at least 1 — ¢
when every voter votes (independently) for Alice with probability p, then
the same conclusion holds when voter i votes (independently) for Alice with
probability p; and p; > p for every i. For CJT it is sufficient to require that
the average value of py,...,p, be at least p (see Grofman, Owen and Feld
(1983)). It would be interesting to extend our result in this manner as well.

The key assumption in CJT, as it is in our generalization as well, is that
the signals s; are distributed independently. It is important to note that in
our setting when we consider the individual votes over many decisions, the
observed individual votes are not independent. Qur assumption is that the
only dependence between the votes is via the data. This form of “conditional
independence” is less damaging than, for example, assuming that the voters
vote identically and independently according to a fixed distribution (say,
equal probability for each candidate). The assumption that the decision
makers base their decision on some evidence and that the individual inter-
pretations of the evidence are independent from one another is reasonable
in various economic and political situations (see, for example, the discussion
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in Ladha (1992)). Nevertheless, to assume that voters are voting indepen-
dently is quite unrealistic in many circumstances. In fact, the independence
assumption seems especially unreasonable in “real” elections and is perhaps
more justified for mundane day-to-day forms of aggregation of individual
preferences. It can also be argued that when the voting rule is complex, the
assumption of the independence of signals is less realistic and the lack of
independence is more damaging than in cases of simple majority. (This last
statement, due to a referee, is far from obvious and warrants further study.)

Without the assumption of independence, CJT (for simple majority)
clearly does not hold. It is no longer the case that when each individual
votes for Alice with probability p > 1/2, Alice will win with high probability.

One extreme example is the case in which all voters vote with probability
p for Alice but they all vote the same way. Alice will be elected with prob-
ability p regardless of the number of voters when the election is based on
simple majority and for every other simple game. CJT for simple majority
does not hold in situations with high positive correlations between all voters
or between voters in a small number of sectors.

The following is a further example: Let p = 1/2 + ¢/2. Consider the
following distribution on individual signals: First choose a number ¢ in the
interval [e, 1] uniformly and then independently choose each voter’s signal
to be ‘1’ with probability ¢ and ‘0’ with probability 1 — ¢. The probability
for each individual signal to be ‘1’ is p. The outcome of the elections, even
with many players, will favor the election of Alice with probability p.

Alternatively, we can take ¢ to be 1/2 + € with probability 1/2 and
1/2 — €/2 with probability 1/2 and proceed as before.

One way to think about these last two examples is that we have an
asymptotic complete aggregation of information although the information
itself is not sufficient to determine the election’s outcome.

4.2 Influences and effects for general distributions

I expect that the mathematical methodology which enables us to move from
simple majority to general voting games is similar to that needed for deal-
ing with signals which are not independent and that the phenomenon we
describe based on the assumption of independence can be extended to more
general contexts.

Note that the notion of influence extends to arbitrary distributions in
two different ways:

Let P be an arbitrary distribution on signals for the voters, namely on
0-1 vectors of length n. Suppose that the voters vote according to their
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signals.

Define the influence of the k-th player as the probability that the kth
player is pivotal. Denote by If (G) the influence of the kth player for the
simple game G w.r.t. the distribution P.

Define the effect of the kth player on a strong simple game G as the
difference between the probability that S is a winning coalition conditioned
on k € S minus the probability that S is a winning coalition conditioned on
k ¢ S. Denote by ef (G) the effect of the kth player for the simple game G
w.r.t. the distribution P. (The effect is a normalized form of the correlation
between the individual’s vote and the election’s outcome.) More precisely,
eP (G) is the effect of knowing the kth player’s vote on the election outcome.
The effect is undefined if the probability that the kth player votes for Alice
is 1 or 0.

When P represents a product probability measure, namely when the
individual signals are independent, then the effect and the influence coincide.

Remarks and examples:

1. The effect of an agent’s vote on the election’s outcome is a measure
we can estimate or “get a feel for” in real life situations. In real life elections
the influence of each voter is small while the effect of each voter is large
(namely, it is bounded away from zero regardless of the number of voters).

2. For general distributions, the effect of an agent can be negative. This
will be the case for a voter who always votes for the candidate who is the
underdog in the election polls.

3. A dummy (a voter k such that v(S U {k}) = v(S) for every S) has
no influence but may have a large effect. This will be the case if he always
votes for the candidate who is expected to win according to election polls.
An observer on a committee without the right to vote but who is likely to
convince the committee of his opinion also has a large effect. Note that
in the first case we do not attribute to that player real “influence” (in the
(non-technical) English sense of the word) while in the second case we would
consider him “influential”.

4. In the three examples of the previous paragraph, in which CJT breaks
down for the simple majority rule, the effects of individuals were large. In
the first example, in which all voters voted identically, the effect of each
voter is 1 while the influence is 0. In the second and third examples the
effect of each voter is bounded away from zero as a function of e.

5. In Section 2.3, we considered the aggregation of information within a
firm. There we saw a very similar situation being described as a dictatorship
with a complex distribution of signals or as a complex strong simple game
with a distribution of independent signals.
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Consider the description as a dictatorship in which the distribution of
votes is complex. The influence of each employee, except the head of the
company, is, of course, 0. The influence of the head of the company is
1. His effect is also 1 although the effect of the other employees is still
positive. We might ask ourselves whether the other employees have any real
“influence” (in the daily non-technical sense of the word). In the scenario we
have described, it appears that the employees do have some real influence.
However, the same distribution could result in a different scenario in which
each employee has no “influence” and the head of the firm makes up his own
mind. His choice then influences the views of the employees below him.

6. The uncertainty in interpreting effects as real “influences” is genuine.
On the other hand, it can be argued that the effects of agents is a reasonable
measure of an agent’s “satisfaction” with the social decision process and his
ability to identify with the choice of the group. The distinction between
influence and effect may be relevant to the “voting paradox” which has
been extensively discussed in the political science and philosophy literature.

4.3 Asymptotically complete aggregation of information when
individual effects are small

The following general form of Theorem 1.1 proposes that for a large class
of probability distributions that describe voters’ behavior, if the individual
votes are biased towards Alice and individual effects are small, then Alice
will win the election with high probability.

A natural condition to impose on the distribution P is the FKG condition
(see Liggett (1985)). One definition of FKG measure on {0,1}" goes as
follows: A distribution P on {0,1}" (or on R") is called an FKG-distribution
if for every z,y € {0,1}"

P(2)P(y) < P(max(z,y))P(min(z, y)).

Here, for z = (z1,...,2Zn), ¥y = (Y1,.-.,Yn) max(z,y) = (max(z1,y1),---,
max(Zn,yn)) and min(z,y) = (min(z1,y1),...,min(z,,y,)). The FKG
property is a profound notion of non-negative correlations between agents’
signals. It implies (but stronger than) the following condition (known as
non-negative association): For all increasing real functions f and g, it holds
that E[fg] > E[f]E]g].- This is equivalent to the condition that for all in-
creasing events A and B it holds that P[AB]| > P[A]P|[B]. Under the FKG
property if the simple game is monotone, all effects are non-negative. This
form of non-negative correlation is a plausible assumption to make in the
context of collective choice.
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Remark: The FKG condition is defined in a similar way for R" rather
than {0,1}". A special case of FKG is the notion of MLRP (monotone
likelihood ratio property) which is heavily used in theoretical economics.

We propose the following far-reaching generalization of Theorem 1.1.

Conjecture 4.1. For every p > 1/2,¢ > 0 there is § = 6(p,€) > 0 such that
for every strong simple game G if P is an FKG-distribution on individual
votes such that the effect of every agent w.r.t. P is at most § and the
probability of each wvoter voting for Alice is at least p then Alice will be
elected with a probability of at least 1 — .

When we consider simple or weighted majority we can assume an arbi-
trary distribution of voters.

Theorem 4.2 (Kalai and Mossel (2003)). 1. For every p > 1/2,¢ > 0,
there is § = 0(p,€) > 0 such that for an election determined by a weighted
majority strong simple game if P is a distribution on the individual votes
such that the effect of every agent w.r.t. P is at most § and the probability
for each voter to vote for Alice is at least p, then Alice will be elected with a
probability of at least 1 — e.

2. If the outcome of the elections are determined by a strong simple game
which is not a weighted majority game (e.g., the US electoral method) then
there is a probability distribution P for the individual signals such that the
probability of every voter to vote for Alice is larger than 1/2 and Bob will
be elected with probability 1. (The effect of every voter is therefore 0.)

My interpretation of Theorem 4.2 and Conjecture 4.1 is that the di-
minishing effects of individual voters and biased marginal probabilities si-
multaneously guarantee two things: asymptotically complete aggregation
of information and the assertion that the information alone is sufficient to
decide the election.

4.4 Strategic voting

Another key assumption of CJT, as well as our generalization, is that each
agent votes according to his signal. There have recently been some inter-
esting papers on the case in which voters vote strategically based on their
signal. We return now to the case in which Alice is the better candidate
and each voter receives a signal telling him to vote for Alice with probability
p > 0.5 where these probabilities are independent. However, we now assume
that the voters vote strategically. We therefore need to specify what each
voter wishes to optimize and to assume that every voter wishes to minimize
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the probability of a mistake. This is a simplified version of the assumption
in Feddersen and Pesendorfer (1998) (see also Feddersen and Pesendorfer
(1996,1997)) who considered juries and naturally gave much larger weight
to an innocent person being convicted than to a guilty one being acquitted.
Note that all agents have a common goal. (This is another important as-
sumption which drew considerable criticism even in the original context of
Condorcet Jury theorem. ) Overall, it appears that asymptotic complete ag-
gregation of information becomes more likely when agents vote strategically
rather than naively.

Conjecture 4.3. For every strong simple game G when the agents wish to
minimize the probability for a mistake naive voting is a Nash-equilibrium
point.

An interesting result of strategic voting is that asymptotic complete ag-
gregation of information occurs even when the voting rule is biased towards
one outcome. Feddersen and Pesendorfer (1998) proved that an asymptotic
complete aggregation of information will take place when a proportion of «
jurors are needed to convict for every 0 < a < 1. However, when all jurors
are required for conviction, no matter how large is the jury, the probability
for a mistake is bounded away from zero.

It is interesting to note that the relation between a “sharp threshold” and
“asymptotically complete aggregation of information”, which was obvious in
our previous setting, extends to the case of strategic voting, though it is less
obvious.

Consider monotone simple games with arbitrary critical probabilities:
We say that a sequence of simple games G,, satisfies the sharp threshold
property if for every € > 0, the length of the threshold interval satisfies

Te(Gr) = o(min(pc(Gr), (1 — pe(Gn))),

as n tends to infinity. When we examine the argument of Feddersen and
Pesendorfer we realize that the reason for asymptotically complete informa-
tion aggregation is precisely the sharp threshold property which holds for
the majority rule and fails for the anonymous rule.

Proposition 4.4. A sequence of games G, display sharp threshold behavior
if and only if there are symmetric strategies which lead to asymptotically
complete aggregation of information.

I further conjecture that if G, displays sharp threshold behavior, there
are (not necessarily symmetric) Nash-equilibrium strategies which lead to
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asymptotically complete aggregation of information and that, for weakly-
anonymous games, these Nash-equilibrium strategies can be taken to be
symmetric. Proving this conjecture as well as Conjecture 4.3 seems to re-
quire further understanding of influences.

We will mention two examples in which modeling based on a simple game
is appropriate and for which our discussion appears to be relevant.

The HU tenure game

Returning to Alice and Bob, Alice was hired and she is now up for tenure.
For Alice to receive tenure at the Hebrew University she must go through a
procedure which involves four committees: The departmental committee has
to vote in favor of tenure; then a committee next to the dean of the faculty
has to approve it; next a nomination committee has to grant tenure; and
finally if the university rector or president objects to the decision they can
appeal to a higher university committee. Each of the first three committees
requires a 2/3 majority for a positive decision and the appeal committee
requires a 2/3 majority to reverse the earlier decision. With some simplifi-
cation this process can be modeled as a simple game. Thus, we assume that
tenure is decided in a somewhat complex way by the opinions of 40 or so
people on the various committees.? The rationale for such a complex tenure
procedure is certainly to avoid mistakes, especially that of awarding tenure
to candidates which do not deserve it and to a lesser extent not to reject
candidates who indeed deserve it.

In my opinion, modeling this procedure as a simple game, assuming that
agents vote strategically, that all voters have the same goal and the inde-
pendence of the individual signals is quite reasonable. (I am aware of the
arguments against each of these assumptions.) Voting naively might lead to
catastrophic outcomes so I assume that agents do indeed strategically: How-
ever, this does not mean that voters explicitly use randomization for mixed
strategies but rather that they are more open to the positive interpretation
of evidence and to arguments in favor of candidates. The correct strategy
is not deduced from complex computations but rather through adjustments
in strategy over time in order to achieve the common goal and the conven-
tional wisdom that one should sometimes vote in favor of a candidate that
one would have rejected were he the only judge.

2Note that modeling this procedure as a simple game is appropriate even if people in the
higher committees take into consideration (in a monotone way) the (numeric) outcomes
in the lower committees. Of course, other aspects of the sequential nature of this process
are neglected in the simple game model.
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A vaccination game

Finally, the following is an example of a different nature in which our anal-
ysis is relevant: Consider a population with a set N of n individuals that
is threatened by a contagious disease. For a subset S of the population,
let »(S) = 1 if when the individuals in S are immunized, then the whole
population is protected against the disease and v(S) = 0 otherwise. Let p,
be the critical probability for this monotone simple game and say p. = 0.6.
In such a scenario, it might be hard to identify the precise winning coalitions
but it is very realistic to assume that no individual will have a great deal of
“power”. It follows from Theorem 2.4 that if every individual decides ran-
domly and independently with probability p > 0.6 to take the vaccination,
then the society will be protected with a high probability and if p < 0.6
then, with a high probability, the society will not be protected.

We can add another ingredient to this story. Suppose further that each
individual has to decide whether to take the vaccination where the payoffs
are as follows: 0 if he does not take the vaccination and the population is
protected anyway, -1 if he does take the vaccination and -50 if he does not
take the vaccination and the population is not protected. (Note: this is not a
common-goal game.) I conjecture that there exists a Nash equilibrium point
at which the ith individual chooses to take the vaccination with probability
p; where the p;’s are very close to 0.6. A proof appears to require a deeper
understanding of influences.

5 Concluding remarks

Condorcet’s Jury Theorem provided an appealing philosophical justification
for democracy, which was a new idea at the time (with some old roots).
It does not appear to yield any verifiable predictions. The only way we
can estimate the value of p is by counting the votes but once we do so the
assertion of CJT becomes tautological. If we try to verify the assumptions of
CJT we will certainly identify patterns of voting which violate the condition
of independence. In short, the assumptions are false and the conclusions
cannot be tested. Our extension of CJT suggests something that we can in
fact test. When the power of voters is small, the choice of election method
does not matter that much. A referee pointed out that this “prediction” fails
in the case of elections for the US Senate which can be regarded as a choice
between two alternatives: a Democrat-controlled senate and Republican-
controlled senate. He proposed the explanation that voters in small states
tend to vote differently than voters in large states. This is an insightful
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remark and places this work on more realistic ground. Condorcet’s Jury
Theorem and our generalization are about “cleaning” the “noise” from the
signals to reveal the consequences of the underlying information.? For this
purpose, games in which agents have little power yield qualitatively similar
behavior to that under simple majority rule. There is much still to be
learned regarding quantitative aspects. I consider the link, even if only a
partial one, between Condorcet’s Jury Theorem and the power (or effects)
of agents to be an important one. I expect that this link will have a role to
play in other areas of theoretical economics which involve the aggregation
of information.

Condorcet’s Jury theorem and of our extension constitute an example
of a threshold phenomenon in which the probability of an event changes
rapidly as some underlying parameter varies within some interval. Identify-
ing threshold phenomena in other economic situations and especially in the
context of general equilibrium theory, is of particular interest.

The extension of CJT relies on known mathematical ideas and results
(Russo (1984), Ben Or and Linial (1985,1990) Kahn, Kalai and Linial (1988),
Talagrand (1994) and Friedgut and Kalai (1996)) with one crucial addition.
These mathematical results and methods are related to early works on the
indices of power in game theory as well as to more recent works in economics
on pivotal agents (such as Al-Najjar and Smorodinsky (2000)) and may find
further applications.

Our extension of McGarvey’s theorem is similar in spirit to Arrow’s
impossibility theorem. Arrow’s theorem asserts that the only way we can
force social preferences to be transitive (or rational) is by giving all the power
to one individual. We show that the only way we can force any restriction on
social preferences is by giving one individual a substantial amount of power
(i.e., an amount of power which is bounded away from zero independently
of the size of the society). Here as well, stronger quantitative versions of the
theorem are desirable.

A large number of agents, none of whom is too powerful, is an assumption
which lies at the heart of much of economic theory: Complete aggregation
of information as many aspects of perfect equilibrium theory can be re-

3For the US senate election, even if there was a clear answer to the question: “is a
Democrat-controlled senate superior?” and every voter would receive a signal with this
information, the information is not sufficient to determine the election’s outcomes since
the choice depends also on the question: “who will better represent the state of Texas?”.
Therefore, we cannot expect a very high correlation for Senate elections between the
popular vote and the outcomes. We can expect a much higher correlation between the
popular vote and the outcomes in presidential elections.
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garded as pleasant features of this scenario, while chaotic social preferences
as chaotic demand functions can be seen as unpleasant features. The sim-
ple link between the “pleasant” and “unpleasant” sides which we observed
in our extension of McGarvey’s theorem may also apply in other economic
situations.
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6 Appendix

6.1 Russo’s lemma and other basic facts

1. If G is a strong game then Py(G) =1 — P1_(G).
Proof: Let S = N\S. Note that for every subset S of N, Py(S) =
P1,(S) (both are equal to p!S/(1 — p)"~15!). Since G is strong, v(S) = 1 if

and only if v(S) = 0, therefore

P,(Q)+P1 ,(S) = Z plsl(l_p)nf|5\+ Z (1_p)|5|pn7\s\=
SCN,w(S)=1 SCN,w(S)=1

Z pSla —p)n 15l 4 Z pSl(—pn 18l =

SCN,w(S)=1 SCN,v(5)=0
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= Z p B —p) B = 1.
RCN
O

2. If G is a monotone simple game then the function P,(G) is a strictly
monotone continuous function of p in the interval [0, 1].

Proof: Let 0 < p < g < 1. Consider a random subset S of N according
to the probability measure P,. Let R be a random subset of N according to
the probability measure P, where r = (¢ —p)/(1 —p). Consider T = SUR.
The probability that a player ¢ belongs to T'is 1 — (1 — p)(1 — r) = ¢ and
the events ¢ € T' are independent. Pp(G) is the expected value of v(R) and
P,(G) is the expected value of v(T"). By monotonicity, v(T") > v(R) and
therefore Py(G) > Pp(G). Since there is a positive probability that R = )
and T = N, we conclude that P4(G) > P,(G). (The monotonicity of P,(G)
also follows from Russo’s lemma, but the direct argument used here will
serve us again in the proof of Theorem 1.1.) O

3. A proof of Russo’s lemma:

Let

PPLP2Pu(§) = l_[{pZ 1i€ S} H{(l —pi) i ¢ Sh

Let I§VP>P* (@) be the probability that the kth player is pivotal according
to the probability measure PP1P2--Pn(§S). Note that PP1P2P(S) is a linear
function of p; and 9PP1P2P(S)/0p; = I.'P*P"(G). By the chain rule,
dP,(G)/dp = dPppp.. p/dp is equal to

n

n
Z 0Py, ps,...pn ] OPk = Z I}I:nm,...pn (@),
k=1 k=1

at the point (p1,p2,...,pn) = (,D, - --,p). Therefore, dP,(G)/dp = >, I} (G) =
IP(G@). O
6.2 Proof of Theorem 1.1

We require the following result by Friedgut (1998) that asserts (in our termi-
nology) that a simple game with a small influence (w.r.t. Pp) is determined
with high probability (w.r.t. P,) by a small set of players.

Theorem 6.1. For every real numbers z > 0,A > 1 and v > 0, there is
C = C(v,A,z) such that if z < p < 1 — z the following assertion holds:
For a monotone simple game G =< N,v >, if IP(G) < A then there ezists
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a collection S of at most C players in N and a monotone simple game
H =< S,vy > such that

P{TCN:v(T)#w(TnNS)}<e (6.1)

Proof of Theorems 2.3 and 2.5: Since by Russo’s lemma I?(G) =
dP,(G)/dp Theorem 2.7 and 6.1 give conditions for the derivative of P,(Q)
to be large at a given point p, in order to prove that the threshold interval
is small we need to move from local information (for specific values of p) to
global information for the entire threshold interval.

Lemma 6.2. Let G be a monotone simple game. Let p < q € [1/3,2/3].
Suppose that Pp(G) > a > 0, IP(G) < A and that Py(G) <b< 1. Let S be
the set of players guaranteed by Theorem 6.1. Then max{I}(G) : k€ S} > U
where U > 0 depends only on a, A and B.

Proof: Let v = min((1 — b)/2,a/2). Theorem 6.1 guarantees the exis-
tence of a set S of at most C(v, A) players and a simple game H =< S, vy >
such that

P{TCN:v(T)#wn(TnNS)}<y.

Claim:
P{T:v(TuS)=1}>1-(2/a)-7.
Proof of the claim: Let Pg and PII, be the probability distributions

induced from P, on subsets of S and on subsets of N\S, respectively. Note
that whether v(7'N S) = 1 depends only on 7'\ S so we have to show that

PAT:TNS=0,v(TUS) =1} >1-(2/a) 7.

Now, P){R C S : »(R) = 0} > a/2 and therefore if T is disjoint from §
and v(T'NS) =1 then PY{R: R C §,v(T N R) # w(R)} > a/2. It follows
that indeed

1 . — —
P{T:TNS=0,v(TUS)=1}>1~-2/a-7.

We return now to the proof of the Lemma. Consider the following op-
eration: Start with a random subset R of players according to Pp,. For
j ¢ R add j to R with probability (¢ — p)/(1 — p). Let R* be the result-
ing set of players. The probability that v»(R*) = 0 is at least 1 — b and
the probability that also v(R* U S) = 1 is at least 1 — b — 2/ay. (since
v(RUS) = 1 implies v(R* U S) = 1). This means that when we draw a
coalition R* at random according to P, then the probability that »(R*) =0
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and ¥(R*US) =11is at least 1 —b—2/a-~. Now we can examine the effect
of adding the players in S one by one. Since g € [1/3,2/3] we deduce that
max{I}(G) : k€ S} >37“(1 —b—2/a- ), as required. O

We return now to the proof of Theorems 2.3 and 2.5. We can assume that
0 <1/10. Suppose that I.(G) > 6. By Russo’s lemma (and the mean-value
theorem) there exists p in [1/3,2/3] such that IP(G) < A, where A = 3/4.
Since G is a strong simple game we can assume that p < 1/2. By Theorem
6.1, there is a set S of players and a simple game H =< S,y > such that
relation 6.1 holds.The cardinality of S is bounded by a function C of A and
€. By our lemma, for every g > p in the threshold interval there is a player
k € S such that I}(G) > U, where U depends only on € and A. Taking
g = 1/2, we have §(G) > U. This proves Theorem 2.5. Since for every
g > p in the threshold interval there is a player in S whose influence is at
least U, we conclude that ¢(G) is larger than 1/2.6-C~1.U. O

The proof of Theorem 2.4 is identical. Just replace the interval [1/3,2/3]
by an appropriate interval around the critical probability of the game.

6.3 Allowing strong players and relaxing monotonicity

We will remark here on two possible extensions of Theorem 1.1. We have
already shown that we cannot replace the assertion in Theorem 1.1 that “no
player has a large power index” with the assertion that “No small group
of players has almost all the power”. However, by combining Theorem 6.1
with Russo’s lemma our theorem can be extended to the case in which for
every p there is no small set S of voters such that the combined influence of
voters outside S is small.

When we consider general schemes of aggregation, monotonicity is a
natural condition to demand but is not always realistic. The question of
whether this condition can be weakened is therefore of interest. Indeed for
the assertion of Theorem 1.1 a weaker condition suffices. Let p be fixed and
let I2(A,+) be the probability that adding player k& will change a losing
coalition into a winning one and let I¥(A, —) be the probability that it will
change a winning coalition into a losing one. The proof of CJT applies if
there is a constant 8 > 1 such that for every probability p in the threshold
interval and every k, I (A,+) > 6I;(A, —).

6.4 Analyzing the hierarchical voting methods

Proof of Proposition 2.8: Let z, be the probability that Alice will be
elected when the probability of every voter to vote for Alice is p and there
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are r levels of hierarchy. Recall that n = 3".
We obtain that z; = p and

Zr41 = zf + 322(1 — Zr).

Note that if we write 2, = 1/2 + ¢ then 2,41 = 1/2 + 3/2t — 2t3. It follows
immediately that if p = 1/2 + (2/3)" = 1/2 4+ n=%3™ then 2, > 3/4. If we
write z, = 1 — s then 2,41 = 1 — 35 + 353 and it again follows immediately
that if p > 3/4 then z, > 1 — € when 7 =log(1/¢). O

Proof of Proposition 2.9: Let z, be the probability that alternative A
is chosen for the case of a firm with r layers. For r = 1 we have a company
with a single employee and thus z; = p. When the number of layers is
r + 1 there are two possibilities for the CEO to decide on Alice: Either he
supported Alice to begin with and at least one of the employees below him
supported her or he supported Bob to begin with and all employees below
him supported Alice. This yields:

i =p (1= (1= 2)%) + (1—p)- 25 .
For K = 2 we get for every z, 1/2 < z < 1,
p-(1-1-2)%) + (1-p)-2? > x.
It follows that the sequence z, tends to 1 as r tends to infinity. For K = 3,
if p < 2/3, a simple calculation shows that z, tends to 3p — 1. O

6.5 Additional phenomena

1. Simple majority maximizes influence.
The influence I} (G) is equal to:

G = p1—-p)" S w(Su{k}) —v(S)).

SCN

Summing over all kK, £k =1,2,...,n we obtain:

S =Y A -p) Sl w(S Uik} - v(8) =
k=1 k=1SCN

n

D5 =p) Bu(Suk}) —n- Y Pl —p)™ Eln(S).

k=1SCN SCN

By inspection of the total contribution of »(S) we find that
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Y@= - S uS) (A -p)/p-1S| - (n~1S]) =
k=1

SCN

= 3 pS =) () (1/p- IS — ).
SCN

Suppose we want to maximize the sum of influences under the condition
that G is a strong game (or even that G has precisely 2"~! winning coali-
tions). We must let v(G) = 1 if |S| > n/2. (If n is even we can choose half
the coalitions of size /2 to be winning in an arbitrary way.)

2. The proof of relations (2.6) and (2.7):

Here we need to rely on the very basic harmonic analysis setting. For
simplicity I will present the proof for p = 1/2. A simple game can be de-
scribed by a Boolean function, namely f(z1,To,...,%,) where the variables
z take the values 0 or 1 and the value of f itselfis also 0 or 1. Every 0-1 vec-
tor = (z1,%2,...,Zy) corresponds to a subset of players S = {k : z = 1}
and we let f(z1,z9,...,22) = v(S). Let Q, denote the set of 0-1 vectors
(z1,-.-,%n)- Let La(2,) denote the space of real functions on €, endowed
with the inner product < f,g >= > 2""f(z1,...,2n)9(Z1,- ., Zn)- L2(Qp)
is a 2"-dimensional vector space.

For a subset S of N consider the function ug(z) = (—1)2{2i#€S} 1t
is not difficult to check that the 2" functions ug for all subsets S form an
orthonormal basis for the space of real functions on y,.

For a function f € Q,, let f(S) =< f,us > (f(S) is called a Fourier-
Walsh coefficient). Since the functions u, form an orthogonal basis it follows

that
ST S =Y 22 (a).

SCN LS9

(This relation is called Parseval’s formula.) If f is a Boolean function, then
f?(x) is either 0 or 1 and therefore ) ., 27" f*(x) is simply the probability
that f =1 (with respect to the uniform distribution).

We are ready to verify relation (2.6). Suppose that f is a Boolean
function which corresponds to a strong simple game G. wug is simply the
constant-one function and therefore f(0) = Py/5(G) = 1/2. Next, note that
Ui} (T1, @2, .., Tn) = 1 if 7 = 0 and ury (21,72, ., 2n) = —1if 2 = 1

and it follows that R s
kY = ().
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Parseval’s formula implies that

> 78 =1/2,

SCN

and since P((D) = 1/4 we conclude that:

n

ST =D kY <

k=1

< Y Pe=ua
SCN,S5#0
Let G be a strong simple game and f be the associated Boolean function.
A basic (but quite easy to prove) relation between influences and Fourier
coefficients from Kahn, Kalai and Linial (1988) is

1(@)=4) PSS (6.2)
SCN
Note that since ZSCNP(S) = 1/2 and f((l)) = 1/2 we obtain that
S scn.s20 F2(S) = 1/4 and this implies relation (2.7) I(G) > 1. (Various
proofs are known for this fundamental fact.) Relation (6.2) and its extension
to Py is the starting point for the proof of Theorem 2.7.

6.6 Proof of Theorem 1.2

In order to fill in the outline of the proof presented in Section 3 we will need
a few notations. For a real number v > 0, let G[y] denote the class of strong
simple games G such that ¢(G) < . Let F[y, m] denote the class of neutral
social welfare functions on m alternatives which are based on a simple game
G in G[y].

Let O(m) denote the set of order relations on a fixed set X of m alter-
natives. Let v be a probability distribution on O(m). Thus, v = (v(7) : 7 €
O(m)), 0 < vy(r) <1and ) {v(r): 7 € O(m)} = 1. For two alternatives
a,b € X let

pu(a,b) =Y {v(n) :m € O(m), a >y b}.
(For an order relation m and two alternatives a and b we denote that a is
preferred over b with respect to m by a >, b.) For example, if v is the

uniform distribution, then p,(a,b) = 1/2 for every two alternatives a and b.
Let ¢,(a,b) = py(a,b) —1/2. Let R, be a relation on X defined by aR,b if
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pu(a,b) > 1/2. If min{|g,(a,b)| : a,b € X} =t we say that the distribution
v realizes the asymmetric relation R, with quality t.

Recall now the function d(p, €) that appeared in Theorem 1.1, our ex-
tension of CJT. Consider a distribution » on O(m) which realizes an asym-
metric relation R with quality ¢ > 0. Theorem 1.1 asserts that if a strong
simple game G has the property that all individual powers are smaller than
6(1/2+t,€) then Py/y,4(G) > 1 —e. Consider now a social welfare function
in F[6(1/2 + t,€), m] and a pair of alternatives a and b. If the individual
preferences are independently drawn at random according to the distribu-
tion v, then the probability that aR;b is p,(a,b) > 1/2 + t. Therefore, the
social choice between a and b coincides with R with probability of at least
Pijp4(G) 21—

McGarvey’s theorem implies that for every asymmetric relation R there
is a distribution v which realizes the asymmetric relation R. Indeed, given
a set of orderings that yields the relation R by the majority rule, let v be
the uniform probability distribution on this set of orderings. The proof of
McGarvey’s theorem shows that m? voters are sufficient and therefore the
quality ¢ of the realization is at least 1/m2. Let

d(m) =0(1/2 +t,2¢/(m(m — 1)).

For every social welfare function in F[y,m], if the individual preferences
are drawn independently according to », then the probability that, for two
specific alternatives a and b, the social preference between a and b coincides
with R is at least 1 — 2¢/m(m — 1), and therefore the probability that the
social preferences will coincide with R is at least 1 —e. [0

6.7 Strategic voting

Proof of Proposition 4.4 (outline only): Suppose first that the sequence
of simple games G, displays the sharp threshold phenomena. Let p(n) be
the critical probability for G,,. Suppose that p(n) > 1/2 and consider the
following strategy: If the signal is ‘1’, vote ‘1’. If the signal is ‘0’ vote ‘1’
with probability ¢(n) = 2(p(n) — 1/2) and ‘0’ with probability 1 — g(n). A
cursory inspection shows that for this strategy the superior candidate will
be elected with probability tending to one as n tends to infinity. The proof
in the other direction is similar.
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Fig. 1: Multi tier counsil system with four

leyers. The signals of the 27 voters are
shown as well as how the votes aggregate.
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changed
his mind 0

0O 10 11 10 0

Fig. 2: Four level hierarchy, K=2. The
original {independent) signals of the 15
employees are described.



