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Abstract We explore the interaction between evolutionary stability and
lexicographic preferences. To do so, we define a limit Nash equilibrium
for a lexicographic game as the limit of Nash equilibria of nearby games
with continuous preferences. Nash equilibria of lexicographic games are
limit Nash equilibria, but not conversely. Modified evolutionarily stable
strategies (Binmore and Samuelson [2]) are limit Nash equilibria. Modified
evolutionary stability differs from “lexicographic evolutionarily stability”
(defined by extending the common characterization of evolutionary stability
to lexicographic preferences) in the order in which limits in the payoff space
and the space of invasion barriers are taken.
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1 Introduction

Lexicographic games have been used to model situations in which play-
ers face two (or more) objectives, one arbitrarily more important than the
other. For example, concerns about complexity have been addressed by
models of repeated games in which the players’ first objective is their mon-
etary repeated-game payoff and their lexicographically second objective is
the simplicity of their strategy.

Nash equilibria may not exist in lexicographic games. Further, different
plausible extensions of evolutionary stability to lexicographic games have
conflicting implications.

In this paper we take the view that lexicographic preferences are a lim-
iting case for situations where preferences are allow continuous trade-offs
over various objectives, such as monetary payoffs and complexity, but some
objectives are much more important than others. We explore the impli-
cations of this view for the appropriate formulation of equilibrium and of
evolutionary stability in lexicographic games.

We first define a limit Nash equilibrium for a lexicographic game as the
limit of Nash equilibria of a converging sequence of games with continuous
preferences. Limit Nash equilibria exist for finite normal form lexicographic
games. Nash equilibria are limit Nash equilibria but the converse relation-
ship does not hold, failing most obviously (though not only) in cases in
which Nash equilibria fail to exist.

Binmore and Samuelson [2] introduce the concept of a modified evolu-
tionarily stable strategy (MESS) for lexicographic games. One could also
simply apply the conventional ESS criterion to define a lexicographic ESS
(henceforth LESS) in such games. We show that a MESS (LESS) is a limit
Nash equilibrium (Nash equilibrium), with both converses failing. Neither
MESS nor LESS implies the other, with the two concepts corresponding to
differences in the order in which two limits are taken. MESS corresponds to
a situation in which the complexity cost is small compared to the mutation
barrier, while LESS corresponds to a situation in which the mutation barrier
is small compared to complexity costs. The appropriate stability concept
thus reduces to the relative magnitude of complexity costs and the invasion
barrier.



Section 2 presents the model. Section 3 examines the concept of a limit
Nash equilibrium. Section 4 explores evolutionary stability.

2 Lexicographic Games

Consider a game G with N players having finite pure strategy sets S1,...,Sn.
A typical pure strategy profile is denoted s, while o denotes a strategy pro-
file that may be either pure or mixed. To capture the idea that players may
have primary and secondary (tertiary...) objectives, assume there exist M

functions
N
Wm(s):HSiHRN, m=1,..., M,
i=1
where 7" is the outcome for player ¢ of objective m given s. Each 7™

is extended to mixed strategies in the standard way. In a lexicographic
game, each player i has lexicographic preferences, denoted by IT*(c), over
(m}(0),...,mM(0)). In a repeated game with complexity concerns, for ex-
ample, M = 2 with 7! identifying monetary payoffs and 72 reflecting com-
plexity.

A sequence of (non-lexicographic) games G, with players 1,..., N and
strategy sets Si,...,Sn approaches G if the payoff function for each G- is

given by

with A;(7) = 1 throughout.

3 Limit Nash Equilibria

Fix a lexicographic game G. Then, o; is a best response to o if for each o
there is an m € {0,..., M} such that 7¥(0) = 7F(o},0_;) for all k < m,
while 77 (o) > 7" (o), 0 ;) if m < M. That is, o; is a best response

if it does better than any other o} at the first level (if any) at which they
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Figure 1: Lexicographic payoffs for a game with no Nash equilibrium.

disagree. A Nash equilibrium of a lexicographic game is a profile where each
player is using a best response (Abreu and Rubinstein [1], Rubinstein [5]).

We first note that a lexicographic game may fail to have a Nash equi-
librium. Consider the payoff matrices shown in Figure 1. Consider the
first-level payoffs. Any strategy for player 1 which does not put probability
one on X induces player 2 to choose X, to which X is a strict best response
for 1. Hence, the only possible Nash equilibrium is (X, X), in which both
players choose X with probability one. But the second-level payoffs ensure
that X is not a best response for player 2 to player 1’s choice of X, ensuring
that (X, X) is not a Nash equilibrium.

This result is no surprise. Once payoffs are lexicographic, the best re-
sponse correspondence ceases to be upper hemicontinuous, precluding fixed
point arguments. For example, X is a (strict) best response for player 2 to
any player-1 strategy that attaches positive probability to Y, but is not a
best response to a strategy that plays Y with zero probability.

Our motivation throughout will be that lexicographic constructions are
interesting to the extent that they provide convenient approximations for
cases in which preferences are continuous, but some considerations are very
much more important than others. This prompts:

Definition 1 The strategy profile o* of a lexicographic game G is a limit
Nash equilibrium if 0* is the limit of Nash equilibria of an approximating
sequence {G7}2 ;.

In Figure 1, the unique limit Nash equilibrium calls for player 1 to choose

X and player 2 to mix equally over X and Y. To see this, note that for

each 7, player 2 prefers Y to X if player 1 chooses X. But player 1’s best

response to Y is Y, to which player 2’s best response is X. Hence, player 1

must mix in equilibrium. To get player 1 to mix in game G, player 2 must
1

play X with probability (1 4+ A2(7))/2, converging to 3 in the limit.
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Proposition 1
(1.1) A Nash equilibrium may fail to exist in a lexicographic game.
(1.2) A limit Nash equilibrium exists.
(1.3) Every Nash equilibrium is a limit Nash equilibrium, but the con-
verse fails.

Proof. (1.1) is shown by Figure 1. (1.2) follows from the fact that the
space of mixed strategy profiles is sequentially compact. The limit Nash
equilibrium of Figure 1 shows that not every limit Nash equilibrium is a Nash
equilibrium, giving the first part of (1.3). To see that a Nash equilibrium is
a limit Nash equilibrium, we note that for ¢* to be a Nash equilibrium, it
must be that, for each player ¢ and strategy o,

ni(o*) = wH(oy,0"—i)

' (o*) = 7w (o, 0% —1)

7T;-n+1 (c*) > WZ-”H (oi,0%;)

for somem € {0,..., M}. But then whenever 7 and hence Ay, 1/ A2 is suf-

ficiently large, the weighted payoff inequality A, 177 () > A1 7" (0, 0 —4)
overwhelms any payoff differences that appear for larger values of m, ensur-
ing that ¢* is a best response in G. I

Limit Nash equilibria thus capture the equilibria of the game the lexico-
graphic game was constructed to approximate.

It is interesting to note that different approximating sequences may gen-
erate different limit Nash equilibria. Consider a game with five players, 1,
1/, 2, 2" and 3, for whom M = 3. Figure 2 shows parts of the payoff function
for the first four players. Players 1 and 2 have payoffs that only depend
upon their actions, with 7 = 0 for these players. Player 1’ and 2’ have
payoffs that only depend upon their actions, with 7' = 0 for these players.
Player 3’s payoff function is such that player 3 prefers X (Y) if player 1 is
more (less) likely to choose X than is player 1’. It is now straightforward
to calculate that along an approximating sequence, there is a unique mixed
Nash equilibrium in which player 1 plays X with probability

1 =2)(7) — A3(7)
n) = T30
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Figure 2: Partial payoffs for game in which limit Nash equilibrium varies
with approximating sequence.

while player 1’ plays X with probability

)\2(T> — )\3(T>
X2 (T)

Let A\3(7) = A2(7)2. Then for sufficiently large 7, p1(X) < p1/(X), and hence

in the limit player 3 chooses Y. But if A3(7) = )\2(7)%, then for sufficiently
large 7, p1(X) > p1/(X), and hence in the limit player 3 chooses X.

pl’(X> =

4 Evolutionary Stability

Abreu and Rubinstein [1] and Rubinstein [5] examined two-player symmetric
lexicographic games with two levels in the lexicographic payoff hierarchy,
where the second-level payoff depends only upon one’s own strategy. A
strategy was interpreted as the choice of an automaton to play a repeated
game. The first payoff level was the limit-of-the-means monetary payoff in
the repeated game, while the second was a measure of the simplicity of the
player’s automaton. In particular, second-level payoffs depend only on one’s
own strategy.

In this section, we examine the issues raised by extending the concept
of evolutionary stability to such games. Binmore and Samuelson define the



concept of a modified evolutionarily stable strategy (MESS), which we extend
to a strict MESS:!

Definition 2 Pure strategy s* is a MESS if, for any mutant strategy o,
mi(s*,s*) > wl(o,s%)
{rl(s*,s") = 7l(0,s%)} = {rxl(s*,0)>nl(0,0)}
{rl(s*,s*) = nl(0,s*) and 7l(s*,0) = 1 (0,0)} = {n%(s*) > 7?(0)}.

Strategy s* is a strict MESS if one of the inequalities is strict.

A MESs is an analogue to a neutrally stable strategy (Maynard Smith
[4, p. 107]), while a strict MESS is an analogue to an evolutionarily stable
strategy. We focus on strict MESS and evolutionary stability, though similar
results could be obtained for MESS and neutral stability.

Let IT* denote the (lexicographic) payoff function of the lexicographic
game. Then an alternative approach to incorporating evolutionary stability
considerations would involve simply applying the standard definition of an
ESS to the function T (Volij [7]). We call the resulting concept a lexico-
graphic ESS, since it extends the commonly-used ESS formulation to games
with lexicographic preferences:

Definition 3 Strategy s* is a lexicographic ESS (LESS) of a lezicographic
game if, for any mutant o,

Ik (s*,s*) > O%(o,s)
(Tl (s*, s*) =TT (0,5%)} = {TI¥(s*,0) > 11" (0,0)}.
or, equivalently, if, for any mutant o,
ml(s*,s%) > w'(o,s%)
{r'(s"s") =ml(o,s")} = {r°(s") = 7*(0)}
{rl(s*,s%) = wl(0,5*) and 7%(s*) = 12(0)} = {nl(s*,0) > 7l(0,0)}.

Making the final inequality weak would give a lexicographic neutrally stable
strategy of a lexicographic game.? We have followed the standard practice

!Exploiting the symmetry of the game, we drop the player subscripts from our notation,
letting S denote a player’s strategy set and letting 7™ (o, 0’) be the m-level payoff to a
player choosing strategy o and facing an opponent who chooses o’.

2If we relaxed the assumption that 72 depends only upon one’s own strategy, this defi-
nition would require a fourth condition of the form {7 (s*,s*) = 7'(o, s*) and 7%(s*, s*) =
72(o,s*) and wt(s*,s) = 7 (0,0)} = {7%(s*,0) > 72(0,0)}.



Limit Nash equilibrium

STRICT MESS

Figure 3: Illustration of Proposition 2. A limit Nash equilibrium always
exists, while a Nash equilibrium, LESS and strict MESS need not exist. A
Nash equilibrium may fail to exist while a strict MESS exists, and a strict
MESS may fail to exist while a LESS exists.

in the complexity-in-repeated-games literature of focusing attention on pure
strategies in the automaton choice game as candidates for a MESS or LESS
(though retaining the standard equilibrium condition that mixed mutants
must also be repelled).

Proposition 2

(2.1) A LESS is a Nash equilibrium. A strict MESS is a limit Nash equi-
librium. FEach of the converses fails.

(2.2) A LESS or strict MESS may fail to exist.

(2.3) A LESS need not be a strict MESS, nor need a strict MESS be a LESS
or Nash equilibrium.

(2.4) A MESS may exist while a LESS does not, and a LESS may exist
while a strict MESS does not.

We summarize Proposition 2 in Figure 3.

Proof. (2.1)-(2.2) That a LESS is a Nash equilibrium follows from the first
requirement for a LESS given in Definition 3.



Next, letting strategy s* be a strict MESS, we show that it is a limit Nash
equilibrium. Let S be the set of all strategies o (including s*) for which

(o, s*) = 7l (s*, s%).

Fix an approximating sequence of games and, for each 7, let o(7) be an
equilibrium of the game obtained from G, by restricting strategies to be in
S.

We first claim that in the limit, o(7) allocates unitary probability to
s*. To show this, suppose that it is not true and note that because o(7) is
contained in S ,

ml(o(1),s%) = mt(s*,5%). (1)

Because o(7) is a Nash equilibrium, 7!(o(7),0(7)) > 7l(s*,0(7)). The
opposite inequality is implied by the fact that s* is a strict MESS, giving

w(0(7),0(r)) = 7 (s*,0(7)).
In light of the previous two equalities, s* can be a strict MESS only if
w?(s*) > 7(a (7). (2)

Combining (1) and (2), s* is a strict best response to o(7) among the strate-
gies in S, a contradiction which allows us to conclude that o(r) = s* for
all 7. Next, because s* is a strict best response to strategies outside 5’, s*
must be an unconstrained equilibrium for sufficiently large 7, ensuring that
a MESS is a limit Nash equilibrium.?

To show that each converse in (2.1) fails, and that a LESS and MESS
might fail to exist, consider a game in which 72 is degenerate. The LESS and
strict MESS concepts then coincide with that of an ordinary ESS. Thus, even
if we allow a MESS or LESS to be mixed, we need only let 7! be such that
the game has no EsS (e.g., Figure 9.2.1 in van Damme [6, p. 219]). Because
the game involves only one level in its lexicographic payoff hierarchy, it has
a Nash equilibrium that is also a limit Nash equilibrium, but is neither a
LESS nor a MESS.

(2.3)-(2.4) First, consider the game given in Figure 4. Strategy X is a
LESS that is not a MESS, while Y is both a strict MESS and a LESS. Next,
consider the game shown in Figure 5, due to Volij [7, Figure 1]. The strategy

3Tt is straightforward that these arguments carry over to the case of a mixed MESS.
We follow the standard practice (cf. Abreu and Rubinstein [1] and Rubinstein [5]) of
working with pure MESS or LESS to avoid difficulties in interpreting the complexity of
mixed strategies.
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Figure 4: Strategy X is a LESS that is not a strict MESS.

2 2

X Y X Y

) X [227]2,2 ) X [0,0]0,1

Y [2,21]0,0 Y | 1,0 1,1
7'(‘1 7'(‘2

Figure 5: The strategy X is a strict MESS, but (X, X) is not a Nash equi-
librium (though (X, X) is a limit Nash equilibrium) and X is not a LESS
(which does not exist).
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Figure 6: The strategy X is a LESS, Nash equilibrium, and limit Nash
equilibrium, but a strict MESS does not exist.



X is a strict MESS, but (X, X) is not a Nash equilibrium (though (X, X) is
a limit Nash equilibrium) and X is not a lexicographic evolutionarily stable
strategy (which does not exist). Finally, consider the game shown in Figure
6. The strategy X is a LESS, Nash equilibrium, and limit Nash equilibrium,
but a strict MESS does not exist. I

To illustrate Proposition 2, suppose that the underlying repeated game
is the infinitely repeated prisoners’ dilemma. Let the first place in the lexi-
cographic preferences be the limit-of-the-means payoff in the repeated game
and let the second be a function that is strictly decreasing in the number of
states in the automaton. Hence, simpler (i.e., fewer state) machines are pre-
ferred. Binmore and Samuelson [2] show that this game has no strict MESS,
while a MESS exists and any MESS must maximize the sum of the two players’
payoffs (and hence must feature mutual cooperation). A folk theorem for
payoffs of lexicographic neutrally stable strategies of the lexicographic game
follows from the results of Cooper [3]. Volij [7] shows that always defecting
is the unique lexicographic evolutionarily stable strategy.

How do we assess these evolutionary stability concepts? We return to
the principle that lexicographic preferences are tools to capture situations
in which preferences are continuous but the payoffs attached to some objec-
tives are very small. Similarly, Maynard Smith’s definition of an ESS (our
Definition 3) was a tool meant to capture a situation in which

I(c*, (1 —€)c* +ed’) > (0, (1 — €)0* + €d’) (3)

for all mutants ¢’ and for all sufficiently small €. Hence, evolutionary stabil-
ity is meant to ensure that the stable strategy earns a higher average payoff
than any mutant who mounts a tiny invasion in a population of the stable
strategy. The stipulation “for all sufficiently small €” is typically captured
by letting e approach zero.

When working with a continuous payoff function I, it is straightforward
that Definition 3 is equivalent to condition (3) as long as interest is restricted
to sufficiently small mutant proportions €. When applying evolutionary
stability conditions to games with lexicographic preferences, the appropriate
counterpart of condition (3) is less clear. The complications arise out of the
fact that the payoff function ITV is itself an approximation of a case with
nonzero but very small complexity costs. We thus have two limits to take,
one as the proportion of mutants approaches zero and one as preferences
become lexicographic, meaning in our case that complexity costs approach
zero. Let us represent the former limit as € — 0 and the latter limit as 7 —
00. The following is then a straightforward manipulation of the definitions:
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Proposition 3 Strategy o* is a strict MESS if there exists €* such that,
for any € < €*, there is a T(€) such that, for all T > 7(€) and all mutants o’,

(o, (1 —€)o* +ed’,7) > (o, (1 — €)o* + ed’, 7).

Strategy o* is a LESS if there exists T* such that, for any ™ > 7%, there is
an €(T) such that, for all € < €(T) and all mutants o',

(o, (1 —€)o* +ed’,7) > (o, (1 — €)o* + ed’, 7).

Both a strict MESS and a LESS thus reproduce the ordinary ESS requirement
that the candidate for stability achieve a higher expected utility than any
mutant in a population characterized by small complexity costs and a small
mutant invasion. The two concepts differ in which of these, the mutant
invasion or the complexity cost, is relatively small. The strict MESS concept
features complexity costs that are arbitrarily small compared to the (small)
size of a mutant invasion, while LESS features mutant invasions that are
arbitrarily small compared to (small) complexity costs. Given that there
are two possible orders for these limits, it is not surprising that we can
find some discontinuities, including the potential nonexistence of a Nash
equilibrium in the limiting lexicographic game.

For example, consider the game given in Figure 4. We can think of these
payoffs as being derived from a choice of automata for an infinitely repeated
prisoners’ dilemma with limit-of-the-means payoffs. Strategy X represents a
single-stage machine that always defects and strategy Y represents the two-
state machine TIT-FOR-TAT. Given that mutual defection produces payoffs
of (0,0) and mutual cooperation (2,2), 7! gives the limit-of-the-means pay-
offs for these strategies. At the second level, 72 represents complexity costs,
with always defecting preferred because it is simpler.

Now consider an approximating sequence {G; } where payoffs in game G
are given by 7! minus A times the number of states in the automaton. If we
fix the size of a mutant invasion and let A — 0 and hence complexity costs
go to zero, then eventually the average payoff of an invading TIT-FOR-TAT
exceeds that of DEFECT, disrupting a monomorphic population of defectors.
This is consistent with the observation that (YY) is the unique MESS in
Figure 4. If instead we fix the game GG, and let the size of a mutant invasion
go to zero, then eventually the invading TIT-FOR-TAT players fare worse then
defectors. This is consistent with the fact that (X, X) is a LESS of Figure
4. Intuitively, TIT-FOR-TAT secures a payoff advantage against its fellow
mutants while incurring a complexity cost, and hence fares better (worse)
than DEFECT if complexity costs (numbers of mutants) are relatively small.
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Finally, it is important to note that neither of the implicit limits in
Proposition 3, in which either the complexity cost of size of a mutant invasion
is first allowed to approach zero, is equivalent to examining simply the limit
of evolutionary stable strategies of the approximating sequence. Each game
in the approximating sequence for Figure 5 features a unique mixed Nash
equilibrium and evolutionarily stable strategy that converges to the MESS
in which X is played with probability one, but does not converge to a LESS
(which does not exist). Alternatively, strategy X is an ESS in each game in
the approximating sequence for Figure 4, converging to a LESS that is not a
MESS.
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