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Abstract

Functional experience weighted attraction (fEWA) is a one-parameter theory of learning

in games. It approximates the free parameters in an earlier model (EWA) with functions

of experience. The theory was originally tested on seven di®erent games and compared to

four other learning and equilibrium theories, then three more games were added. Generally

fEWA or parameterized EWA predict best out-of-sample, but one kind of reinforcement

learning predicts well in games with mixed-strategy equilibrium. Of the learning models,

belief learning models ¯t worst but ¯t better than noisy (quantal response) equilibrium

models. The economic value of a theory is measured by how much more sub jects would

have earned if they followed the theory's recommendations. Most learning theories add

value (though equilibrium theories often subtract value) and fEWA and EWA usually add

the most value.
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\In nature hybrid species are usually sterile, but in science the reverse is often true"{

Francis Crick (1988, p. 150)

The power of equilibrium models of behavior in strategic interactions comes from their

ability to produce precise predictions using only the structure of a game and assumptions about

rationality. Statistical models of learning should strive to be as parsimonious and precise, while

also predicting the time path of actual observations more accurately than equilibrium theories

can. Most learning models do this by specifying a formula for predicting future choices from

past experiences (often at the population level), using one or more free parameters which are

typically estimated from data. This paper describes a theory of learning in decisions and games

called fEWA, with only one parameter. fEWA predicts the time path of individual behavior

in any normal-form game as a function of previous history (given initial conditions). It is also

easily extended to extensive-form games and games with incomplete information.

The key innovation in fEWA is the replacement of parameter values with functions of players'

experience, which can vary across games, individuals, and time periods. Replacing parameters

with functions kills two birds with one stone. The ¯rst bird is explaining why estimated model

parameter values vary signi¯cantly across games (as earlier research showed). The functions in

fEWA reproduce these cross-game di®erences endogenously, through the interaction between

experience and game structure. The second bird is econometric parsimony. By replacing

parameters with functions, only one free parameter needs to be estimated or ¯xed a priori.

(The parameter captures sensitivity of players to di®erences in numerical ratings of strategies;

it is essentially impossible to ¯t data well, and hence have a zero-parameter theory, without

it.2) There are other one-parameter theories but they do not predict as well across games as

fEWA does because best-¯tting parameters tend to vary systematically across games.

fEWA was developed to ¯t and predict data from seven experimental data sets, and is com-

pared to general versions of belief and reinforcement learning, and quantal response equilibrium.

In out-of-sample forecasting, either fEWA or its parameterized precursor, EWA, tend to predict

best, although a version of reinforcement predicts as well in some cross-game forecasting.

The paper makes three distinct contributions. First, the fEWA model is introduced to

minimize the number of parameters which must be estimated (there is only one) and to allow

parameters to °exibly self-adjust over time and across games.

2If the goal is to predict the most likely choice, fEWA can be reduced to a zero-parameter theory by setting

the experience weight N(0) to 0 (see below).



Second, the model is estimated on seven games and compared to four other models. fEWA

is simpler than most other models and usually ¯ts as well or better. In addition, because

readers of the ¯rst version of this paper were concerned that the model was over¯tted to the

seven games we studied, we collected an (essentially) random sample of three new games and

estimated all ¯ve models on those data too. This sort of statistical model competition is most

useful when many di®erent models are being tested on di®erent sets of data, which is precisely

the case currently in research on learning in game experiments.

Third, we introduce a new criterion for judging usefulness of theories{ economic value. The

economic value of a theory is measured by how well model forecasts of behavior of other players

would improve a player's pro¯tability if best responses to those forecasts were substituted for

the player's actual choices. Most learning theories have positive economic value, and EWA or

fEWA add the most economic value in most of the seven games we study.

Economists of all sorts should be interested in this paper because learning is important for

economics. Laboratory control over information and incentives enables precise testing of which

statistical models describe the path of learning best. Much as in physical sciences, in the lab

we can see how theories perform in describing behavior (and giving valuable advice) cheaply

before using them in more complex applications. While fEWA is crafted to explain learning in

repeated games, sensible extensions of it could be applied to ¯eld settings such as evolution of

economic institutions (e.g., internet auctions or pricing), investors and policymakers learning

about equity market °uctuations or macroeconomic phenomena, and consumer choice. For

example, a variant of the EWA theory is used by Ho and Chong (2002) to ¯t and predict

130,000 product choices by consumers. Their theory uses 80% fewer parameters than the

leading theory used in marketing and predicts 20% better; it is also being used by supermarket

chains to forecast sales. Readers who are interested in learning in ¯eld settings should be

interested in how subjects learn in experimental games because understanding learning in the

lab will surely help us understand learning in the ¯eld.

1 EWA learning and its limits

In earlier work, we proposed a model of learning called experience-weighted attraction (EWA)

theory (Camerer and Ho 1998, 1999). Learning in EWA is characterized by changes in (un-

observed) attractions based on experience. EWA was designed to be a gene-splice or hybrid



of two models, reinforcement and belief learning, which have been used to study learning in

games. The EWA model wraps a parametric skin around both of those theories, which are

historically-interesting special cases on the boundary of the parameter space.

Attractions determine the probabilities of choosing di®erent strategies through a logistic re-

sponse function. For player i, there aremi strategies (indexed by j) that have initial attractions

denoted Aji (0) (either estimated as free parameters from the data, speci¯ed by some theory of

initial conditions, or \burned in" using the ¯rst period data). Denote i's j'th strategy by sji ,

chosen strategies by i and other players (denoted ¡i) by si(t) and s¡i(t), and player i's payo®s

by ¼i(s
j
i ; s¡i(t)). De¯ne an indicator function I(x; y) to be zero if x6= y and one if x= y. The

EWA attraction updating equation is3

Aji (t) =
Á ¢N (t ¡ 1) ¢ Aji (t ¡ 1) + [±+ (1¡ ±) ¢ I(sji; si(t))] ¢ ¼i(sji ; s¡i(t))

N(t¡ 1) ¢ Á ¢ (1¡·) + 1
(1.1)

and the experience weight is updated according to N (t) = N(t¡ 1) ¢ Á(1¡·) + 1.

The parameter ± is the weight placed on foregone payo®s. It presumably is a®ected by

imagination (in psychological terms, the strength of counterfactual simulation) and reliability

of information about foregone payo®s (Heller and Sarin, 2000). The parameter Á re°ects decay

of previous attractions due to forgetting or to deliberate ignorance of old experience when the

learning environment is changing. The parameter · controls the rate at which attractions grow.

When · = 0 attractions are weighted averages of reinforcements and decayed lagged attractions;

when · = 1 attractions cumulate. The growth rate of attractions is important because in the

logit model the di®erence in attractions determines the spread of choice probabilities. The initial

experience weight N(0) is like a strength of prior beliefs and is estimated using data. Since it

usually plays a minor role in predicting learning, we restrict N(0) = 1 in our speci¯cation of

fEWA.4

A logit response function is used to map attractions into probabilities:

Pji (t+ 1) =
e ¢̧A

j
i (t)

Pmi
k=1 e

¸¢Aki (t)
(1.2)

3This updating equation assumes that subjects know the payo®s of strategies that were not chosen. In Ho,

Wang and Camerer (1999), we apply EWA model to games where such payo®s are not available by allowing

subjects to learn about them through experience. See Chen and Khoroshilov (2000) for a similar extension.
4We switched notation in the denominator (previously we denoted the product Á ¢ (1¡ ·) by a single variable

½), because using · makes cumulation versus averaging more transparent.



where ¸ is the response sensitivity.

A key insight from our earlier work is that reinforcement and belief learning approaches

are closely related in an interesting way.5 When ± = 0, the EWA rule is the same as models

in which only chosen strategies are reinforced, originating in studies of animal learning. When

· = 1 the rule is a simpler form of cumulative reinforcement model studied by Harley (1981)

and Roth and Erev (1995) (see also Bush and Mosteller, 1955; Cross, 1983; McAllister, 1991;

Arthur, 1991). When · = 0 the rule is like the averaging reinforcement model of Roth, Barron,

Erev and Slonim (2002).

When ± = 1 and · = 0, the EWA rule is equivalent to belief learning using weighted

¯ctitious play (Fudenberg and Levine, 1998). The EWA rule shows that belief learning is not

fundamentally di®erent than reinforcement. Instead, belief learning is a kind of reinforcement

in which unchosen strategies are reinforced just s strongly as chosen ones, and attractions are

averages of reinforcements rather than cumulations.

A graphical way to see the relation of di®erent learning rules is a cube showing con¯gurations

of parameter values (see Figure 1). Each point in the cube is a triple of parameter values which

speci¯es a precise updating equation (leaving aside ¸ and initial conditions). The cube shows the

EWA family of learning rules. Corners and vertices of the EWA cube correspond to boundary

special cases.

The corner of the cube with Á = · = 0; ± = 1, is Cournot best-response dynamics. The

corner · = 0; Á = ± = 1, is standard ¯ctitious play (Brown, 1951 and Robinson, 1951). The

edge connecting these corners, ± = 1;· = 0, is the class of weighted ¯ctitious play rules (e.g.,

Fudenberg and Levine, 1998). The edges with ± = 0 and · equal to zero or one are averaging

and cumulative choice reinforcement rules.

The EWA cube is a visual aid to show the relations and di®erences among theories. But

EWA is also a bet that the learning rules people actually use have parameter values which are in

the interior of the cube rather than on vertices and corners. (That is, as Francis Crick suggested

in the quote that opened this paper, a scienti¯c hybrid may work better.) Reinforcement

theories with ± = 0 ignore foregone payo®s entirely.6 Belief learning using weighted ¯ctitious

5See also Cheung and Friedman, 1997, pp. 54-55; Fudenberg and Levine, 1998, pp. 1084-1085; Hopkins, in

press.
6This assumption is implausible when foregone payo®s are known, and has been rejected by several studies

comparing di®erent information conditions, e.g., Mookerjhee and Sopher (1994), and Rapoport and Erev (1998);



play (± = 1) ignores the di®erence between received and foregone payo®s, which is also unlikely.7

Put di®erently, reinforcement models assume that received payo®s matter more than foregone

payo®s (± < 1) and belief learning says that foregone payo®s do matter (± > 0). Both intuitions

are plausible. EWA allows them both if ± is between zero and one. Intermediate estimated

values of ± could result if some subjects learn according to reinforcement and others according

to weighted ¯ctitious play, but direct tests allowing \latent class" heterogeneity show this is

not so (Camerer and Ho, 1998).

Estimates by ourselves and others (see Camerer, Hsia, and Ho, in press, for a summary)

have shown in 31 data sets that EWA generally ¯ts (adjust for degrees of freedom) and predicts

out-of-sample more accurately than the special cases of reinforcement and weighted ¯ctitious

play, except in games with mixed-strategy equilibrium (where all models only improve a little

on Nash equilibrium, as we see below).

However, EWA is subject to two criticisms (which fEWA addresses). The ¯rst is that it

has too many free parameters. Our empirical work anticipated this criticism by penalizing

more complex theories for extra parameters, and measuring the ability of both simple and com-

plex theories to forecast out-of-sample (where complex models have no automatic advantage).

Nonetheless, having fewer parameters to estimate is often helpful. fEWA has only one, which

is fewer than most other theories have.

The second criticism is that estimated parameter values vary across games.8 Figure 1 also

shows estimated EWA parameter triples from twenty games (see Camerer, Hsia, and Ho, in

press). Each point corresponds to estimates from a di®erent game. If one of the special case

theories is a good approximation to how people generally behave across games, the parameters

will cluster in the corner or vertex corresponding to that theory. In fact, parameters tend to

be sprinkled around the cube. Estimates from coordination games usually have high values of

± and ·. Estimates from games with mixed equilibria tend to have low ± and · (close to the

averaging reinforcement corner with Á close to one). Roth, et al. (2002) note that our earlier

work found \very di®erent parameters in, apparently, very similar constant sum games. Their

and Van Huyck, Battalio and Rankin (1996).
7There is substantial evidence that people underweight opportunity costs compared to out-of-pocket costs

(e.g., Kahneman, Knetsch, and Thaler, 1991). Since the di®erence between foregone and received payo®s is an

opportunity cost (or gain), if it is underweighted then ± < 1.
8Note that parametric variation across games is common when other learning models are estimated, e.g.,

Crawford (1995); Cheung and Friedman (1997), so it is not only a feature of the EWA estimates.



[Camerer and Ho's] research leads to the pessimistic conclusion that, at least currently, it is

impossible to predict behavior in a new situation." fEWA is designed to meet this prediction

challenge because it generates di®erent parameter values from the interaction between speci¯ed

functions and experience, and hence generates di®erent parameters in di®erent games.

2 fEWA

fEWA replaces the three central parameters of EWA, Á; ±;· with deterministic functions Ái(t);

±i(t); ·i(t) of player i's experience up to period t. These functions determine parameter values

for each player and period, which are then plugged into the EWA updating equation to de-

termine attractions. Updated attractions determine choice probabilities according to the logit

rule, given a value of ¸. Standard methods for optimizing ¯t given ¸ can then be used to ¯nd

which ¸ ¯ts best.

2.1 The change-detector function Ái(t)

The decay rate Á is sometimes interpreted as forgetting, an interpretation carried over from

reinforcement models of animal learning. Certainly forgetting does occur, but the more im-

portant variation in Ái(t) across games is probably a player's perception of how quickly the

learning environment is changing. The function Ái(t) should therefore \detect change". As in

physical change detectors (e.g., security systems or smoke alarms), the challenge is to detect

change when it is really occurring, but not falsely mistake noise for change too often.

The core of the function is a \surprise index", the di®erence between the other players'

strategies in the window of the last W periods and the average strategy of others in all previous

periods (where W is the minimal support of Nash equilibria). We specify the function in

terms of relative frequencies of strategies, without using information about how strategies are

ordered, so it can be applied to non-ordered strategies (e.g., rows in a normal-form game). The

change-detector function Ái(t) is

Ái(t) = 1¡ :5(

m¡iX

j=1

[

Pt
¿=t¡W+1 I(s

j
¡i; s¡i(¿))

W
¡
Pt
¿=1 I(sj¡i; s¡i(¿))

t
]2) (2.1)

The term

Pt

¿=t¡W+1
I(sj¡i;s¡i (¿))

W is the j-th element of a vector that simply counts how often

strategy j was played by the others in periods t ¡W + 1 to t, and divides by W . The term



Pt

¿=1
I(sj¡i;s¡i (¿))

t is the relative frequency count of the j-th strategy over all t periods.9 To

measure change, we take the di®erences in corresponding elements of the two frequency vectors,

square them, and sum over strategies. Since the maximum di®erence is two, the function is

normalized by dividing the sum of squared di®erences by two, and subtracting the normalized

¯gure from one. When recent observations of what others have done deviate a lot from all

previous observations, the deviations in strategy frequencies will be high and Á will be low.

When recent observations are like old observations, Á will be high.

While the change-detector was not derived explicitly from axioms, it was crafted to have

some simple properties that are appealing. For example, the normalization simply ensures that

Á is always (weakly) between zero and one. Another sensible property is that a long sample of

previous experience should be used (i.e., Á close to one) when the environment is noisy. This

requires Á to be larger when there is more dispersion in previous choices, which is guaranteed

by squaring the deviations between current and previous history. Consider the limiting case

where there is much experience. The period-t frequency vector is (0; 0; ¢ ¢ ¢ ;1; ¢ ¢ ¢ ; 0). The

sum (across vector elements) of the squared deviations between this and any history vector

(1=f1;1=f2; ¢ ¢ ¢ ;1=fk) (where fk represents previous frequency of choice k) is minimized when

all frequencies are equal (fi = 1=k), which gives the highest Á.10

Another property Á was designed to have is that it sticks close to one unless there is an

unmistakably persistent change in what others are doing. It is dangerous to let Á become too

low because doing so erases everything that has been learned, by giving a low weight to the

previous attractions which summarize previous experience. The Ái(t) function dips lowest in

the extreme case in which one strategy is played until t¡1, and then a surprise occurs and a new

strategy is played. In that case, Ái(t) is 2t¡1
t2 . This expression declines gracefully toward zero as

the string of identical choices up to period t grows longer. (For t=2, 3, and 10 the Ái(t) values

are .75, .56, and .19.) This embodies the principle that a new choice is bigger surprise (and

should have lower Á) if it follows more identical choices in a row. Another interesting special

case is when di®erent strategies have been played in every period up to t ¡ 1, and another

di®erent strategy is played in period t. (This is often true in games with large strategy spaces.)

Then Ái(t) = :5 + 1
2t , which starts at :75 and asymptotes at :5 as t increases.

9In the case of games with multiple players, frequency count of the relevant aggregate statistics is used. For

example, in median action game, frequency count of the median strategy by all other players in each period is

used.
10This example excludes the knife-edge case in which the previous frequency of the period-t choice is one, so

the sum of squared deviations is zero and Á = 1.



So far we have neglected an important detail: What's W? W is the smallest support of all

the Nash equilibria (the number of strategies played with positive probability). In games with

a pure strategy equilibrium, W = 1. In games with mixed equilibria W is larger than one. In

these games, a certain amount of period to period change is expected. The number of strategies

with positive probability, W, tells us roughly \how much" variation to expect, and hence, how

many previous observations to average over to smooth perceived change.

2.2 Responsiveness ±i(t)

The parameter ± is the weight on foregone payo®s. We use ±i(t) = Ái(t)=W . Frankly, the

speci¯cation ± = Á
W is the feature of the fEWA model that is hardest to interpret or defend.

It simply ¯ts better than some other simple functions we tried, like setting ± = 1 for better-

responses or trying to track how responsive players were and adjusting their ±'s accordingly.

This speci¯cation embodies two separate properties{ ± is tied to Á; and ± is decreasing in W.

Tying ± to the change measure Á recognizes the fact that best-responding to foregone payo®s

is a good strategy when the environment is stable, so that ± should be near one when Á is near

one. But when Á is low, the strategic environment is changing and information about past

foregone payo®s is not likely to be a good guide to future choices. But then why should

received payo®s be reinforced relatively more strongly than foregone payo®s (by a weight of

one rather than low ±) when Á is low? There are two reasons. One is essentially econometric:

When Á is low, then attractions from period t¡ 1 are largely erased during the updating before

period t. Reinforcing the chosen strategy from period t payo® with a weight of one partially

\restores" information about what players are likely to do (since the erased lagged attractions

and the previous choice which is strongly reinforced are likely to be correlated). The second

reason is behavioral: Reinforcing chosen strategies more strongly than unchosen ones in low-Á

environments models behavior of players who are especially likely to repeat what they did, like

a \freezing" response to danger or \status quo bias", when the environment is changing.11

11Freezing is an immediate response to danger which is nearly universal across species (including humans,

who instinctively sti®en when somebody sneaks up behind them and says \Boo!"). Freezing is presumably an

adaptive response when predators are better at detecting movement than recognizing prey. Such a deep-seated

response may lurk in the \old" or \animal" part of the human brain (the limbic system, which processes emotion

and communicates with the prefrontal cortex that controls action; see LeDoux, 1996). Status quo bias refers to

an exaggerated preference for the choice one has made in the past, even if the choice is assigned randomly (e.g.,

Samuelson and Zeckhauser, 1988; Kahneman, Knetsch, and Thaler, 1991). Experiments show that status quo



The reason why Á is divided by W to generate ± is that estimates of ± in games with mixed

equilibria are generally lower than in games with pure equilibria. In fact, estimates of ± are

often close to zero when the number of strategies in the mixed equilibrium is more than three

or so. Dividing Á by W therefore creates values of ± which approximate those estimated in

these games.

2.3 The exploitation parameter ·i(t)

The parameter · controls the growth rate of attractions. When · = 0 attractions are weighted

averages of lagged attractions and (±¡weighted) payo®s, so (if initial attractions are scaled

to payo®s) the attractions are bounded by payo®s. If · = 0 attractions cannot grow too far

apart. Fixing ¸ across periods, this means it is di±cult to predict very sharp convergence

in later periods (as we sometimes see in the lab). That's because using the logit probability

function, the degree of sharpness or convergence in probability (i.e., the di®erence between the

highest and lowest choice probabilities) depends only on the di®erence in attractions, which is

multiplied by sensitivity parameter .̧ When attractions are bounded by payo®s, attractions

cannot grow too far apart so the ¸¡weighted di®erences cannot be too large. (This could be

remedied by choosing a higher ¸ but that predicts behavior which is sharp early one, contrary

to observations.) When · = 1, however, attractions are (decayed) cumulations of previous

(weighted) payo®s. Then attractions can grow larger and larger{ they can be multiples of

payo®s{ and consequently, choice probabilities can grow further apart.

Psychologically, · can be interpreted as the extent to which players \explore" by choosing

di®erent strategies, relative to how quickly they \exploit" what they have learned by switching

to a constant choice of the strategy which has performed the best in the past.12 Players with

low · are constantly exploring{ they just keep track of average (±-weighted) payo®s. When

players \exploit" they commit to a strategy, even if its average previous payo® is not much

larger than the average payo®s of other strategies. One way to model this is to let · move

toward one as players shift toward exploiting what they have learned. If payo®s are positive, a

bias is stronger when there are more sensible options available to switch to (loosely corresponding to W). This

number-of-option e®ect can be captured in a model like ours by putting more reinforcement on the previous,

status quo, choice, and putting reinforcement on alternative strategies which declines with W , precisely as in our

model.
12The exploration- exploitation tradeo® is studied formally in the multi-armed bandit literature (Gittins, 1989),

and is also of interest to computer scientists designing machines to learn, see Sutton and Barto (1998).



higher · means players are basically rewarding a strategy they choose a lot, simply for being

chosen (assuming ± < 1). This is one way of characterizing lock-in empirically.

This line of argument suggests using variation in how frequently a player uses di®erent

strategies to track when they explore and when they exploit. We use the player's past behavior

to tell us whether they explore or exploit and when they switch. The degree of exploration versus

exploitation can be measured by the spread in probability of a player's observed choices. A

standard measure of spread is the Gini coe±cient, typically used to measure income inequality.

We use the Gini coe±cient too, where choice proportion is akin to income: When a player is

exploring, the probabilistic `income' will be spread to many strategies, and the Gini will be low.

When a player has locked into one strategy, all her probability is allocated to that strategy and

the Gini will be high (close to one).13

To calculate the Gini coe±cient for subject i, ¯rst rank strategies from most-probable to

least-probable (using observed choice frequencies). Denote the rank-ordered choice propor-

tions of these strategies by f
(1)
i (t) to f

(mi)
i (t). Then plot a cumulative probability distribution

which measures the total probability of the strategies used as frequently as j or less frequently,

Ci(j; t) =
Pj
k=1 f

(k)
i (t). This calculation gives j points; use linear interpolation to create a

piecewise-linear function connecting the points. The Gini coe±cient is then the area between

the identity line and the interpolated function passing through the Ci(j; t) points, normalized so

that Gini coe±cients range from zero (when all strategies are played equally often) to 1 (when

one strategy is played all the time).

The normalized Gini coe±cient on strategy frequencies is then:

·i(t) = 1¡ 2 ¢ f
miX

k=1

f (k)
i (t) ¢ mi ¡k

mi ¡ 1
g (2.2)

where fki (t) are ranked from the lowest to the highest.14

This · function re°ects the following thought process: A player tracks her actual choice

frequencies. When the spread is low, the player is still exploring and wants to keep attractions

13We also tried the sum of squared probabilities, a Her¯ndahl index often used to measure industrial concen-

tration. This number is usually too low to t̄ well.
14For instance, in the median action game, suppose the relative choice frequencies for player i up to period

t for actions 1-7 are 0, .0, .2, .4, .3, .0, and .1 respectively. Then we have f(1)
i (t) = f(2)

i (t) = f (3)
i (t) = 0:0,

f(4)
i (t) = 0:1, f(5)

i (t) = 0:2, f(6)
i (t) = 0:3, and f(7)

i (t) = 0:4.

Consequently, we have: ·i(t) = 1¡ 2 ¢ f0 + 0 + 0 + 0:1 ¢ 7¡4
7¡1 + 0:2 ¢ 7¡5

7¡1 + 0:3 ¢ 7¡6
7¡1 + 0g, which is 2

3 .



from cumulating, so she chooses a low · so that attractions continue to be averages. How-

ever, as she learns and chooses one strategy more often, she begins to exploit what she has

learned. Exploitation requires a way of guaranteeing that the most frequently-chosen strategies

get chosen more and more often. One way to do this is to let attractions cumulate, so that

frequently-chosen strategy attractions will grow larger and larger simply because they are cho-

sen more often (assuming ± < 1). Letting · be a function of strategy \concentration" is one

way to do this.

Using cumulation to capture exploitation of high-payo® strategies is related to other ideas.

One may be familiar to economists{ Polya urns, which have been used to explain economies

from increasing returns (Arthur, 1989) A Polya urn starts with a distribution of balls (e.g.,

some red and some black). When a red ball is drawn, it is replaced, along with another red

ball. Draws therefore generate a payo® and increase the chance that the same payo® will occur

again. This is a simple model of increasing returns or learning-by- doing (drawing a red makes

red more likely) with interesting mathematical properties.

The Gini coe±cient captures a similar process. If one strategy is chosen often those choices

lead to large ·, which means that strategy payo®s cumulate. When ± < 1 (as is common),

cumulation favors chosen strategies; so strategies which are chosen often get chosen more often

in the future, as in the Polya urn.

2.4 Interpretation of the fEWA functions

The fEWA parameter functions are not grounded in familiar principles of rationality (like

Bayesian updating). Since fEWA strives to outpredict models which are based on those prin-

ciples, it is necessary to appeal to di®erent principles. Furthermore, other speci¯cations were

tried (detailed in the previous draft of this paper, Ho, Camerer and Chong, 2001) and the ones

described above ¯t substantially better than others. (Note that the sample of three new games

we estimated after our earlier draft was written measures the extent to which the functions we

chose might have over¯t the seven games reported in the earlier draft.)

While the fEWA parameter functions are not derived from rationality principles-on purpose{

, they can be thought of as procedurally rational (in Herbert Simon's language) because they are

precise and are designed to accomplish a speci¯c goal: Namely, to predict and perform well in a

wide range of games. One can imagine a truly optimal learning rule which maximizes expected



payo®s across a wide range of games.15 However, we conjecture that such a rule would look

more like fEWA than like other familiar rules. For example, ¯ctitious play has good long-run

properties in some environments but will not respond rapidly enough to changes in an environ-

ment. Cournot best-response changes too quickly in games with mixed equilibria. Weighted

¯ctitious play is °exible enough to do well in both stationary environments and mixed games,

but how does one pick the right weights, and let them self-adjust over time? fEWA does so

automatically based on what is observed. Rather than derive a globally rational approach from

axioms, our approach is like work in machine learning, which tries to develop robust heuristic

algorithms which learn e®ectively in a wide variety of low-information environments (see Sutton

and Barto 1998). Good machine learning rules are not provably optimal but perform well on

tricky test cases and lifelike problems like those which good computerized robots could perform

(navigating around obstacles, hill-climbing on rugged landscapes, di±cult pattern recognition,

and so forth).

The functions in fEWA have three advantages over many other theories.

First, fEWA is not simple in complexity (measured by lines of computer code to implement

it, for example) but it is easy to estimate because it has only one free parameter, ¸ (which is

hard to do without in empirical work16. The use of simple ¯ctitious play and reinforcement

theories in empirical analysis are often justi¯ed by the fact that they have few free parameters.

By that criterion, fEWA should be used too.

A second advantage is that parameters in fEWA naturally vary across time, people, and

games. In principle this variation might capture individual di®erences if they arise from experi-

ence. For example, some experiments on games with mixed-strategy equilibria allow subjects to

15See Josephson, 2001, who asks which parameter values emerge when players with di®erent parameter values

compete over time (a kind of \evolution of learning"). He generally ¯nds that large ± values persist.
16It is conceivable that ¸ could also be speci¯ed ex ante but doing so will be di±cult. The problem is

that comparing values across games requires a standard unit of payo®s (we use dollars). However, changes in

experimental currency which keep money earnings constant are likely to produce di®erent behavior and require

di®erent values of ¸ (see McKelvey, Palfrey, and Weber, 2000). Furthermore, the model implicitly assumes that

di®erences in strategy attraction calibrated in money terms drive di®erences in choice probability but other

framing e®ects may matter. For example, if players are sensitive to percentage di®erences in payo®s rather than

absolute di®erences, then using a ¯xed ¸ across games will not explain what they choose (they will act like they

use a lower ¸ when a positive constant is added to payo®s). Pratt, Wise, and Zeckhauser (1979) show this e®ect

using ¯eld data on price dispersion across product categories. If all these e®ects are eventually understood a

theory of how ¸ varies across games could be developed but such a goal is ambitious and beyond the scope of

this paper.



explicitly choose randomized strategies (see Camerer, 2002, chapter 2). In these experiments,

some subjects play pure strategies and some play mixtures (e.g., Shachat, 2002). This di®er-

ence in individual play is easily expressed by our ·i(t) function, which will tend toward one for

purists and toward zero for mixers.

Because parameters can vary across time, a third advantage is that fEWA can mimic a very

reduced form of \rule learning". Recall that di®erent EWA parameter con¯gurations correspond

to specialized rules (such as cumulative choice reinforcement, ¯ctitious play, or Cournot best-

response dynamics). If parameters change throughout the game, those changes are like rule

switching or rule learning, in which the rules players use change due to experience (as in Stahl,

1996, 1999, forthcoming, and Salmon, 1999). For example, if Á rises over time from 0 to 1,

players are e®ectively switching from Cournot-type dynamics to ¯ctitious play. If ± rises from

0 to 1, players are switching from reinforcement to belief learning. Rule learning is, of course,

more general than the range of learning permissible in fEWA, and is an important competitor

among those models which have many more parameters.

Robustness of physical materials and scienti¯c models is usually de¯ned as working well

under a wide range of conditions (or, rarely \breaking"). One way to think about fEWA is that

it achieves robustness by repair the main weaknesses in reinforcement and belief learning.

Reinforcement learning assumes players only use information about the payo®s they re-

ceived, even when they know foregone payo®s. As a result, choice reinforcement sometimes

underpredicts the rate of learning in games with large strategy spaces, in which players initially

choose strategies in one part of the space then switch to strategies in an entirely di®erent part

of the space. The problem is that those strategies which are chosen late in the game were rarely

picked early on so they were not reinforced (Camerer and Ho, 1998; and see the traveler's

dilemma games below). Reinforcement also severely underpredicts learning in n-player games

where most players earn no pro¯ts in a period and get no reinforcement (such as auctions or

\winner-take-all" labor tournaments). This is evident below in beauty-contest games.17

Belief learning has a di®erent weakness. Unlike reinforcement, belief models do learn quickly

17Of course, reinforcement learning can be speeded up if players reinforce payo®s relative to an aspiration

level. But specifying aspiration levels requires two parameters{ an initial aspiration level and an adjustment rate.

EWA generates aspiration-based reinforcement with no extra parameters: Strategies only increase in probability

(holding their lagged attractions constant) if their ±¡weighted payo®s are above the average ±¡weighted payo®.

Thus, the ±-weighted payo® is is an aspiration level, which evolves endogenously over time without requiring any

free parameters.



in games with shifting support and with many zero-payo® players, but belief learning gives no

ready explanation for why the decay rates on previous observations di®er across games. For

example, old observations are decayed more rapidly in the continental divide and beauty contest

games than in games with mixed equilibria and patent race games. Confronted with a brand new

game, belief learning theories have no built-in way of guessing whether Cournot-like responsive

dynamics (Á = 0) or standard ¯ctitious play (Á = 1) will predict best. fEWA can do better by

automatically adjusting Á as a function of initial conditions and game structure.

In the form we use, the fEWA model does require information about initial conditions

(i.e, relative frequencies of ¯rst-period play) and information about the structure of the game{

namely, the minimal support of Nash equilibria (W). As a practical matter, pinning down

W boils down to guessing whether a game has a pure-strategy equilibrium, and whether it is

symmetric or not, or has only mixed equilibria (and if so, how many strategies are used in the

mixture). Even in ¯eld applications where the game is not controlled as in the lab, guessing

whether W is one or is much larger is not hard to do.

3 fEWA predictions within and across games

In this section we compare in-sample ¯t and out-of-sample predictive accuracy of di®erent

learning models when parameters are freely estimated, and check whether fEWA functions can

produce game-speci¯c parameters similar to estimated values.

We use seven games: Games with unique mixed strategy equilibrium (Mookerjhee and

Sopher, 1997); R&D patent race games (Rapoport and Amaldoss, 2000); a median-action or-

der statistic coordination game with several players (Van Huyck, Battalio, and Beil, 1990); a

continental-divide coordination game, in which convergence behavior is extremely sensitive to

initial conditions (Van Huyck, Cook, and Battalio, 1997); a coordination game about entry to

two markets of di®erent sizes (Amaldoss and Ho, 2001); dominance-solvable p-beauty contests

(Ho, Camerer, and Weigelt, 1998); and a traveler's dilemma game (Capra, Goeree, Gomez and

Holt, 1999). Table 1 summarizes features of these games and the data. Three of the games are

described in detail below.18 Since one of our goals is to see whether fEWA can explain cross-

18The other four games are: Mixed-equilibrium games studied by Mookerjhee and Sopher (1997) which have

four or six strategies, one of which is weakly-dominated; the nine-player median-action game studied by Van

Huyck et al. (1990), in which players choose integer strategies 1-7 and earn payo®s increasing linearly in the



game variation in model parameters, we sample di®erent classes of games. Sampling widely is

also a good way to test robustness of any model of learning or equilibrium.19

3.1 Estimation method

The estimation procedure for fEWA is sketched brie°y here and detailed in Appendix 7. Con-

sider a game where N subjects play T rounds. For a given player i, the likelihood function of

observing a choice history of fsi(1); si(2); : : : ; si(T ¡ 1); si(T )g is given by:

¦T
t=1P

si(t)
i (t): (3.1)

The joint likelihood function L of observing all players' choice is given by

L(¸) = ¦N
i f¦T

t=1P
si(t)
i (t)g (3.2)

We \burn in" the model by choosing the initial attractions Aji (0) (the same for all i) that

correspond to choice probabilities that match the actual population frequency of choices in the

¯rst period (given the estimate of ¸).20 (When data on initial choices are unavailable some

theory of initial play could be used instead.21) Details of the \burn-in" are given in Appendix

7.1. The initial parameter values are Ái(0) = ·i(0) = :5 and ±i(0) = Ái(0)=W . These initial

values are averaged with period-speci¯c values determined by the functions, weighting the initial

value by 1
t and the functional value by t¡1

t .

group median and decreasing linearly in the squared deviation from the median; dominance-solvable p-beauty

contest games in which players choose numbers from 0 to 100 and the player closest to p times the average earns

a ¯xed prize (for p equal to .7 or .9); and a coordination game in which n players simultaneously enter a large

or small market and earn 2n (n) divided by the number of entrants if they enter the large (small) market.
19Another approach is to sample randomly within a class of games, although results are likely to be sensitive

to which class of games is chosen.
20This is a small departure from some of our earlier work in which the Aji(0) are estimated as free parameters.

Estimation is infeasible in some of the games we study because there are many strategies (e.g., integer prices

from 80 to 200) and we were reluctant to impose ad hoc functional forms to generate a parsimonious Aji(0)

distribution.
21A mixture of random behavior and \level-1" reasoning{ best-responses to the belief that others will behave

randomly{ will generally be a good guess about what players would do in the ¯rst period (see Haruvy and

Stahl, 1998). In the games we study, for example, level-1 behavior predicts choices of 35 in beauty contests, 7 in

continental- divide games, 4 in median-action games, the large pot in entry-choice games, 5 and 4 in patent-race

games for strong and weak players, and 200 ¡ 2R in traveler's dilemma games. Combining these guesses with

random initial behavior gives a good approximation to what players actually do in the r̄st period.



Given the initial attractions and initial parameter values, attractions are updated using the

EWA formula. fEWA parameters are then updated according to the functions above. Maximum

likelihood estimation is used to ¯nd the best-̄ tting value of ¸ (and other parameters, for the

other models) using data from the ¯rst 70% of the subjects. Then the value of ¸ is frozen and

used to forecast behavior of the entire path of the remaining 30% of the subjects.22 Payo®s

were all converted to dollars (which is important for cross-game forecasting).

In addition to fEWA, we estimated the EWA model in Camerer and Ho (1999) and versions

of belief-based (weighted ¯ctitious play) and reinforcement models.23 To put the models on

a more even footing, we did not force the belief model to have initial attractions which are

consistent with a common initial belief (as in our earlier work); we simply burned in the ¯rst-

period data as for the other models.24 We ¯t three versions of reinforcement (± = 0). Two

versions included an experience weight N (0) (which our 1999 paper did not) and ¯xed · to be

either zero or one (the latter is a simpli¯ed form of the model in Erev and Roth (1998)). A

third version, which is quite di®erent, is the two-parameter model used by Erev, Bereby-Meyer,

and Roth (1999) and Roth et al. (2002). Their new approach sets Á = 1 and · = 0, updates

only chosen strategies, uses logit probability instead of power, and divides attractions by a

measure of payo® variability (see Appendix 7.3 for details). We report only results from this

latest payo®-variability (PV) reinforcement model but performance of the earlier reinforcement

models is similar. We also ¯t the one-parameter quantal response equilibrium (QRE) model

(McKelvey and Palfrey, 1995, see Appendix 7.2 for details) as a static benchmark, which is

tougher competition than Nash equilibrium.

22This is another departure from our earlier work, in which we used the r̄st 70% of the observations from

each subject, then forecasted the last 30%. We also tried our earlier method, and a hybrid in which the holdout

sample consisted of both later periods for some subjects, and the entire path for new subjects. The results from

the two di®erent methods are not interestingly di®erent.
23For simplicity, we ignore two other interesting approaches to individual learning{ rule learning or \learning

to learn" (e.g., Stahl 1999; Salmon, 1999); and \direction learning" (Selten and Stoecker, 1986). See Camerer

(2002, chapter 6) for more details.
24This switch helps belief models a lot in some games. For example, in the Mookerjhee-Sopher games with

mixed equilibrium one strategy is only weakly dominated, and is rarely chosen. Most prior belief speci c̄ations

will assign an expected payo® to that strategy which is only a little less than the expected payo®s of undominated

strategies and given stochastic response, will overpredict how often the dominated strategy is chosen.



3.2 Model ¯t and predictive accuracy

The ¯rst question we answer is how well models ¯t and predict on a game-by-game basis (i.e.,

parameters are estimated separately for each game). To guard against over¯tting we estimate

parameters using 70% of the subjects (in-sample calibration) and use those estimates to predict

choices by the remaining 30% (out-of-sample validation). For in-sample estimation we report

both hit rates (the fraction of choices predicted to be most likely which are actually picked)

and a Bayesian information criterion (BIC) which subtracts a penalty k¢ln(NT)
2 from the LL.

(Note that the BIC imposes a sti®er penalty than other information criteria like Akaike.25) For

out-of-sample validation we report hit rates and LL.

Table 2 shows the results. The best ¯ts for each game and criterion are printed in bold;

hit rates which are less than the best but are statistically indistinguishable (by the McNemar

test) are underlined. Across games, EWA is better or as good as all other theories judging by

hit rate, and ¯ts better according to BIC or LL in four of seven games. fEWA also has higher

or equal hit rates than other models in most games. Reinforcement with PV has the best BIC

and LL in two games. Of the learning models, belief learning ¯ts worst (it never has the best

BIC or LL and is only best on hit rate in forecasting the median-action game). QRE ¯ts worst

of all, except in games with mixed equilibria where most models are about equally good.

The bottom line of each panel in Table 2, labeled \pooled", shows results when a single

set of common parameters is estimated for all games (except for game-speci¯c ¸). If fEWA is

capturing parameter di®erences across games e®ectively, it should predict especially accurately,

compared to other models, when games are pooled. Indeed, fEWA ¯ts and predicts best by

both criteria when data are pooled.

A tough test of robustness is to estimate all parameters on six of the seven games and

use those parameters to predict choices in the remaining game for all subjects, for each of the

seven games. Cross-game prediction has been used by others but only within a narrow class

of games (2x2 games with mixed equilibria, Erev and Roth, 1998; and 5x5 symmetric games,

Stahl, forthcoming). Our results test whether ¯tting a model on a coordination game, say, can

25Myung (2000) discusses model selection, including some recent measures which penalize theories for the

°exibility of their functional form as well as for number of free parameters. He notes in an example that the

squared deviation or squared error criterion (MSD, or MSE) is the measure which penalizes complex theories the

least e®ectively. A very sensible measure, Bayesian model selection (BMS) reduces to the BIC when the modeler

has a di®use prior over parameter values.



predict behavior in a game with mixed equilibrium. Table 3 reports results from this kind of

cross-game prediction. fEWA has the highest hit rate in four games; EWA is highest in two

other games. Reinforcement with PV also predicts across games reasonably well; it has the

best LL in three games. The biggest losers are belief models and QRE, which are usually much

lower than the other models by any criterion.

The point of fEWA is to use only structural features of games and players' experience to

create parameter values which are close to the EWA estimates across games. Figure 2 shows

how well fEWA functional values of ± and Á match the estimates from EWA. Each pair of

connected points represents one of the seven games and the pooled estimates. Open (closed)

circles are EWA estimates (fEWA functional values). If the two are close together within each

game the chords connecting points should be short, and if they are di®erent across games they

should be sprinkled around the square. The chords are short in about half the games (most of

the long-chord deviation between the function averages and estimate are on the Á dimension

rather than ±). The correlation of the parameter estimates and functional averages across the

seven games is .92 for ± and .78 for Á.26 The pooled estimates only di®er by .01 and .02,

respectively. Details are reported in Table A.1 in Appendix 7.4 (along with estimates for other

models and standard errors).

In addition, Table A.2 in Appendix 7.4 shows how much fEWA functional values vary across

time periods and across people. The variation is usually not very large; the interquartile range

is typically from zero to .10. An interesting exception is · in the three games with mixed

equilibria. The interquartile range for average · within subject (i.e., averaged across periods

for each subject) is .20 or more in these games. That means some subjects are roughly choosing

pure strategies while others are mixing across all strategies which shows the potential for the

fEWA approach to detect individual di®erences.

Next we will show predicted and relative frequencies for three games. Corresponding graphs

for all games can be seen at http://www.bschool.nus.edu.sg /depart/mk/bizcjk/fewa.htm. We

chose these three games because each has interesting di®erences visible to the naked eye and

each is representative of a di®erent class{ one has a unique mixed-strategy equilibrium, one has

multiple Pareto-ranked pure equilibria, and one is dominance-solvable.

26The correspondence is much worse for ·, which is basically estimated to be either zero or one in EWA but

only varies from around .4 to .8 in fEWA.



3.3 Games with unique mixed strategy equilibrium: Patent race

In the patent race game (Rapoport and Amaldoss, 2000), two players, one strong and one weak,

are endowed with resources and compete in a patent race. The strong (weak) player has an

endowment of 5 (4) and can invest an integer amount from zero to their endowments. Players

invest simultaneously. They earn 10 minus their investment if their investment is strictly largest,

and lose their investment if it is less than or equal to the other player's.

The game has an interesting strategic structure. The strong player can guarantee a payo® of

¯ve by investing the entire endowment (outspending the weak player), which strictly dominates

investing zero. Eliminating the strong player's dominated (zero) strategy then makes investing

one dominated for the weak player. Iterating in this way, both players can delete three strategies

by iterated application of strict dominance. There is a unique mixed equilibrium in which strong

(weak) players invest 5 (0) 60% of the time and play their other two (serially) undominated

strategies 20% of the time.

Thirty six pairs of subjects played the game in a random matching protocol 160 times (with

the role switched after 80 rounds); the 36 pairs are divided into 2 groups where random matching

occurs within group. Choice frequencies do not change visibly across time so we plot frequencies

of transitions between period t¡1 and period t strategies instead, for strong players, using the

within-game estimation and pooling across all subjects. (Weak player results are similar.)

Figures 3a-f show the empirical transition matrix and predicted transition frequencies for ¯ve

models on strong players. The key features of the data are a lot of transitions from 5 to 5,

almost 40%, and roughly equal numbers of transitions (about 5%) from 1 to 1, and from 1 to

5 or vice versa.

Two models are clearly inferior: QRE does not predict di®erences in transitions at all (it is

a benchmark, not a learning theory); and the belief-based model predicts too few 5-to-5 and

1-to-1 transitions. (Table 2 con¯rms that belief learning ¯ts relatively poorly here.) Where does

belief learning go wrong? Since belief learning assumes full responsiveness to foregone payo®s,

it will often predict that players should move away from chosen strategies which were winners,

if other strategies would have been even better. Note that (as the equilibrium predicts) weak

players abandon hope and invest zero about half the time. As a result, when strong players

invest 5, half the time they earn a payo® of 5 but they could have earned more by investing

less (because the weak player invested nothing). Belief models therefore predict more switching

away from investing 5 than is evident in the data. Both EWA and reinforcement approaches



can explain the infrequency of transitions by multiplying the higher foregone payo®s, in the

case where the strong player invests 5 and the weak player invests nothing, by ±. A low value

of ± (estimated to be .36 in EWA and .31 in fEWA) therefore characterizes the sluggishness in

switching and avoids the predictive mistake inherent in belief learning.

3.4 Games with multiple pure strategy equilibria: Continental divide game

Van Huyck et al. (1997) studied a coordination game with multiple equilibria and extreme

sensitivity to initial conditions, which we call the continental divide game (CDG). The payo®s

in the game are shown in Table 4. Subjects play in cohorts of seven people. Subjects choose an

integer from 1 to 14, and their payo® depends on their own choice and on the median choice of

all seven players.

The payo® matrix is constructed so that there are two pure equilibria (at 3 and 12) which

are Pareto-ranked (12 is the better one). Best responses to di®erent medians are in bold. The

best-response correspondence bifurcates in the middle: If the median starts at 7 virtually any

sort of learning dynamics will lead players toward the equilibrium at 3. If the median starts at 8

or above, however, learning will eventually converge to an equilibrium of 12. Both equilibrium

payo®s are shown in bold italics. The payo® at 3 is about half as much as at 12. This game

captures the possibility of extreme sensitivity to initial conditions (or path-dependence).

Their experiment used 10 cohorts of seven subjects each, playing for 15 periods. At the end

of each period subjects learned the median, and played again with the same group in a partner

protocol. Payo®s were the amounts in the table, in pennies.

Figures 4a-f show empirical frequencies (pooling all subjects) and model predictions. The

key features of the data are: Bifurcation over time from choices in the middle of the range (5-

10) to the extremes, near the equilibria at 3 and 12; and late-period choices are more clustered

around 12 than around 3. (Figure 4a disguises the extreme path-dependence: Groups which

had ¯rst-period medians below (above) 7 always converged toward the low (high) equilibrium.)

Notice also that strategies 1-4 are never chosen in early periods, but are frequently chosen in later

periods; and notice that strategies 7-9 are frequently chosen in early periods but never chosen in

later periods. A good model should be able to capture these subtle e®ects by "accelerating" low

choices quickly (going from zero to frequent choices in a few periods) and "braking" midrange

choices quickly (going from frequent choices to zero).



QRE ¯ts poorly because it predicts no movement.

Belief learning does not reproduce the asymmetry between sharp convergence to the high

equilibrium and °atter convergence around the low equilibrium, because of a subtle weakness

in belief learning. Note from Table 4 that the payo® gradients around the equilibria at 3 and 12

are exactly the same{ choosing one number too high or low \costs" $.02; choosing two numbers

too high or low costs $.08, and so forth. Belief learning computes expected payo®s, and the

logit rule means only di®erences in expected payo®s in°uence choice probability. The fact that

the payo® gradients are the same therefore means the spread of probability around the two

equilibria must be the same; so belief learning predicts similar probability distributions around

the high and low equilibria.

Then how do the EWA and reinforcement models generate the asymmetry? The trick is

± < 1. At the high equilibrium, the payo®s are larger and so the di®erence between the received

payo® and ± times the foregone payo® will be larger than at the low equilibrium if ± < 1. This

explains the sharper convergence around 12.27

Reinforcement with PV ¯ts reasonably well, except it predicts frequencies for choices 3-5

which are too low (10% instead of 15%) and it predicts substantial early choice of strategies 1-2

which declines over time. (The EWA models smear a little probability at 1-2, and grow over

time, to avoid a large likelihood penalty from missing the rare choices of 1 and 2 which come

in later periods.)

3.5 Games with dominance-solvable pure strategy equilibrium: Traveler's

dilemma

Capra et al. (1999) studied a dominance-solvable \traveler's dilemma" (introduced by Basu,

1984) in which two players must choose a number or `claim' between 80 and 200. If the claims

are equal, each player receives the amount claimed. If the claims are unequal, each of them

receives the lower of the two claims. In addition, the person who makes the lower claim receives

27Numerically, a player who chooses 3 when the median is 3 earns $.60 and has a foregone payo® from 2 or 4 of

$.58 ¢±. The corresponding ¯gures for a player choosing 12 are $1.12 and $1:10 ¢±. The di®erences in received and

foregone payo®s around 12 and around 3 are the same when ± = 1 but the di®erence around 12 grows larger as

± falls (for example, for the fEWA estimate ±̂ = :69, the di®erences are $.20 and $.36 for 3 and 12.) Cumulating

payo®s rather than averaging them contributes to explaining the di®erence by \blowing up" the expected payo®

di®erences over time.



a bonus R and the person who makes the higher claim pays a penalty of R. Let these claims

be x1 and x2 respectively. Formally, the payo® to each player i is de¯ned as follows:

¼i(xi;x¡i) =

8
>>><
>>>:

xi if xi = x¡i
xi +R if xi < x¡i
x¡i¡R if xi > x¡i

(3.3)

The game is like one of imperfect competition in which two sellers both sell products at the

lowest price (due to consumer shopping or \meet-or-release" clauses) and the seller who names

the lowest price earns a goodwill reward while the high-price sellers su®ers a reputational loss.

The Nash equilibrium predicts that the lowest possible claim of 80 will be chosen by both

players. This prediction is also insensitive to R. Their experiment used six groups of 9-12

subjects. The reward/penalty R was varied at 6 levels (5, 10, 20, 25, 50, 80). Each subject

played 10 times (and played with a di®erent R for ¯ve more rounds; we use only the ¯rst 10

rounds).28 Figures 5a-f show empirical frequencies and model ¯ts for R=50. (Other values of R

give roughly similar results although R=50 illustrates di®erences across models best.) A wide

range of prices are named in the ¯rst round. Prices gradually fall, between 91-100 in rounds

3-5, 81-90 in rounds 5-6, and toward the equilibrium of 80 in later rounds.

QRE predicts a spike at the equilibrium of 80. As ¸ rises, the QRE equilibria move sharply

from smearing probability throughout the price range to a sharp spike at the equilibrium; there

is no intermediate value of ¸ which can explain the combination of initial dispersion and sharp

convergence in later periods.

The belief-based model predicts the correct direction of convergence, but overpredicts num-

bers in the interval 81-90 and underpredicts choices of precisely 80. The problem is that the

incentive in the traveler's dilemma is to undercut the other player's price by as little as possible.

Players only choose 80 frequently in the last couple of periods; before those periods it pays to

choose higher numbers. The belief model also estimates Á̂ = :85 and does not allow payo®s

to cumulate, so there is a large burden of historical information which keeps the model from

reacting quickly to frequent choices of 80 which come late in the game. EWA models explain

the sharp convergence in late periods by cumulating payo®s and estimating ± = :63 (for fEWA).

Consider two players who choose 80 and 90 when R=50. The player who chose 80 is reinforced

by 130, and choosing the best response 89 is reinforced by 139 ¢ :63, or 88.1, so choosing 80

28We did not use R = 10 with 9 subjects, where there is always one subject gone unmatched in each round,

to avoid making ad hoc assumptions on the learning behavior of the unmatched subjects.



is more strongly reinforced and she is likely to repeat that choice. In belief learning, the best

response of 89 is reinforced by 139 so she is predicted to move away from 80, contrary to what

happens.

The reinforcement model has a reasonable hit rate because the highest spikes in the graph

often correspond with spikes in the data, but predicted learning is clearly more sluggish than

in the data (i.e., the spikes are not high enough). Because e®ectively Á= 1 and players are not

predicted to move toward ex-post best responses, the model cannot explain why players learn

to choose 80 so rapidly. (Reinforcement models with variable Á and no payo® variability term

predict much better when R=50.)

4 The economic value of learning models

Most criteria used to judge ¯t and predictive accuracy of models are purely statistical, or

are roughly equivalent to familiar statistics. But economic applications of theories demand a

¯nancial measure of what good theories are worth.

In this section we measure the economic value of a learning theory. Camerer and Ho (2001)

de¯ned a theory's economic value as the increase in a subject's pro¯t from substituting learning

theory recommendations{ i.e., best responses based on the theory's prediction about what others

will do{ for their actual choices. This de¯nition treats a theory as similar to the advice service

professionals like consultants sell. The value of the advice is the di®erence in economic quality

of the client's decisions with and without the advice.

To measure economic value, we use model parameters and a player's observed experience

through period t to generate model predictions about what others will do in t + 1. That

prediction is a probability distribution over choices by others; optimizing using this predicted

distribution produces a choice with the highest expected value. We then compare the pro¯t

from making that choice in t + 1 (given what other players actually did in t + 1) with pro¯t

from the target player's actual choice.

Economic value is a good measure because it uses the distribution of predictions about what

other players are likely to do, and the economic impact of those possible choices. A model could

be statistically accurate, but not improve expected pro¯ts much, and will therefore have a low

economic value. Oppositely, a model with a small improvement in statistical accuracy could



have substantial economic value if the payo® landscape is \rugged" (sharply-peaked). An equi-

librium theory that is correct has little economic value, by de¯nition, since its recommendations

will match the choices subjects make.

We use two methods to estimate model parameters and compute model recommendations:

Using in-game estimated parameters (see Appendix Table A.1); and using estimates from the

six other games to compute economic value in the seventh game, for each of the seven games

(as in Table 3). Using all the data from a game to give advice to subjects in that game is like

advising a client who has a large sample of experience in a particular situation for the analyst

to estimate parameters with. Using only data from other games is like advising a client in a

new situation who has no direct experience for the analyst to use to estimate parameters. In

practice, economic value would generally fall between the bounds of economic value computed

these two ways.

Table 5 shows the overall economic value{ the percentage improvement (or decline) in payo®s

of subjects from following a model recommendation rather than their actual choices. Most

models have positive economic value in most games. Value generated from in-game estimates

is usually higher than when parameters are estimated from di®erent games.

Using either method of parameter estimation, either fEWA or EWA have the most economic

value in ¯ve to seven of the seven games. Subject-by-subject analysis further show that EWA

and fEWA (weakly) add value for a large majority of subjects29, from 48% to 97% for out-of-

game estimates.

In some games, the percentage improvement from economic value is small because the

di®erence between observed payo®s and ex-post optimal payo®s{ the payo®s that a perfectly

clairvoyant player would have earned{ is low, which puts an upper bound on economic value.

(Any theory's economic value is bounded by the value of a clairvoyant theory.) In the continental

divide game, for example, perfect forecasts would have improved pro¯ts by only 6.58% and

fEWA improved pro¯ts (out-of-game) by 4.98%. So the fEWA forecast improves pro¯ts by only

a small percentage, but achieves about 80% of the largest possible improvement.

Belief learning has positive economic value in most games. Reinforcement actually has

negative economic value in one to three games. In continental divide games, reinforcement

29See our working paper at www.bschool.nus.edu.sg/depart/mk/bizcjk/fewa.htm for details. In some games,

like coordination games which equilibrate quickly, estimates of economic value are often zero because subjects

make precisely the same choices the learning theories recommend.



tends to underpredict how rapidly players move away from middle strategies. It therefore

advises players to switch to low or high strategies less quickly than they actually do, which

turns out to be bad advice. The beauty contest game is similar. Reinforcement predicts hardly

any learning by other players, so it never advises players to chose numbers which are low enough.

The way economic value is computed in the analyses just described does not control for

the boomerang e®ect of a recommended choice in period t on future behavior by others in

periods t + 1 and beyond. As a result, it is possible that a subject who adopted a theory's

recommendation would make choices that would reduce long-run payo®s. (In coordination

games of common interest, the boomerang e®ect could also be positive by teaching others to

expect behavior which is mutually-bene¯cial.) Choices which are economically-valuable in the

short run will also distort what others do in the future which may alter the statistically accuracy

of estimated parameters, as in the Lucas critique of macroeconomic forecasting. The boomerang

and Lucas-critique e®ects will be small in some of the games we study. In the coordination and

p-beauty contest games the medians and averages are computed for groups of 7-9 players, so

substituting one player's theoretically-optimal choice for the actual choice will not a®ect the

median or average much, and hence does not a®ect future behavior much. In the traveler's

dilemma players are randomly rematched so changing one player's current choice may a®ect

her current partner's future behavior, but she is unlikely to be rematched with same partner

again.

The ideal way to adjust for both the boomerang and Lucas-critique e®ects is to run exper-

iments in which subjects who are programmed with updated learning rules, and choose best

responses, compete with actual human subjects. Such a study is technically di±cult30 and

beyond the scope of this paper.

A proxy is to divide actual subject choices into those that are consistent with the model

advice and those that are not, and see which choices earn more. If the advice is good, the

subjects who \coincidentally" followed the advice should earn more.

The comparison we make is analogous to a common consulting practice that divides compet-

ing ¯rms in an industry into groups based on their organizational practices and then determines

whether one group is superior to the rest, and hence which organizational practice is associated

30The technical di±culty is that best responses must be computed by computerized subjects as rapidly as

human responses, which is challenging even with modern computing. Any integrated man-machine design also

raises a question of what human subjects should be told about who they are playing with.



with high performance. Table 6 shows the results. The results are divided into ¯ve triples of

columns, one triple for each learning model. The ¯rst column in each triple shows the di®er-

ence between average payo®s of choices that are consistent with the model advice and of those

that are not. (If the model advice is good these di®erences should be positive.) The second

column in each panel is the p-value of the t-statistic testing whether the average payo®s from

advice-consistent and advice-inconsistent choices are the same. The third column is the per-

centage of actual choices that are consistent with model advice.31 Except for beauty contests

(where advice-consistent choices are rare), there are large enough samples of advice-consistent

and -inconsistent choices to permit powerful tests.

The crucial question is whether conclusions about economic value from the Table 5 measure{

is economic value positive?, and how does it vary across theories?{ are replicated when this

coincidence measure is used. Most conclusions are the same using either method.

The learning theories add comparable amounts of positive economic value using the coin-

cidence measure. Of the learning theories, reinforcement adds less value in three games (and

subtracts value, insigni¯cantly, in beauty contests) but adds the most value in pot games. QRE

adds the least value in every game but one, and subtracts value in three of seven games.

5 Robustness of fEWA

An obvious concern about fEWA is that the speci¯cation search for the three parametric func-

tions (Ái(t); ±i(t);·i(t)) was conducted on empirical rather than theoretical grounds, and cre-

ated over¯tting. Three mechanisms were used to guard against over¯tting. Our earlier pa-

per (electronically \published" at www.bschool.nus.edu.sg/depart/mk/bizcjk/fewa.htm.) be-

gan with four games (mixed strategies, continental divide, median action, and p-beauty con-

tests). Frankly, several di®erent speci¯cations were explored to ¯t those four games best. Plau-

sible functional forms were then `frozen' and used on three more games (patent race, pot games,

and traveler's dilemma). The fact that fEWA ¯ts out-of-sample about as well as more complex

theories in those three games (see Tables 2-3) suggests that searching across speci¯cations on

the ¯rst four games did not lead to much over¯tting.

31This number is important because in some cases the payo® di®erence is large but the sample sizes which

produce either model-consistent or model-inconsistent advice are small, so the statistical tests for di®erences lack

power.



In addition, in public seminars and dissemination of our earlier draft (see its footnote 26)

we encouraged other researchers to submit datasets to test the robustness of fEWA and other

theories. We promised to run parallel analyses on all the models we initially estimated, and

both report results and allow authors submitting data to report the results in their own papers.

By the end of 2001, we received three such datasets.

The ¯rst dataset is from Kocher and Sutter (2000). Their data are choices made by indi-

vidual and three-person groups in p-beauty contests. Competing groups appear to learn much

faster than individuals. The second dataset is from Cabrales, Nagel, and Armenter (2001).

They report data from a 2x2 coordination game with incomplete information, studying theories

of \global games". In their games, players receive a private signal (knowing the distribution

of private signals) which shows the payo®s in a signal-dependent stag-hunt coordination game.

The game was designed so that iterated dominance leads subjects to select the risk-dominant

outcome. The third dataset is from Sovik (2001). She reports data from a zero-sum betting

game with asymmetric information. Two players simultaneously choose between a safe outside

option and a zero-sum game based on their information sets. The information sets were chosen

such that the game is dominance solvable. Players should ¯gure out that they should never

bet because they can only bet against players with better information. The \Groucho Marx

Theorem" applies and the equilibrium is for no pair of agents to agree to bet in any information

set. The observed rate of participation in the zero-sum game appears to be a function of the

information set, which runs counter to the equilibrium prediction.

These three games check robustness of fEWA (and other models) in two directions: The

Kocher and Sutter (2000) data stretch the models to explain choices made by groups; and the

other two datasets are games of incomplete information. (All the seven games we studied in

Section 3 are games with complete information.) Furthermore, since we announced a willingness

to estimate models on any submitted data, there is no chance that we chose data which would

bias results in any particular direction.

Table 7 reports results from the three new games. EWA ¯t best in LL for all three games

and best in hit rate in two of the three games. fEWA did best in hit rate in the Kocher-Sutter

beauty contests and was close to EWA in the remaining two. QRE was worst in Kocher and

Sutter (2000) and Sovik (2001). Reinforcement was worst in the Cabrales et al global games.

If fEWA was created by a speci¯cation search which overstated model performance in the ¯rst

seven games, it should ¯t much worse in these three new games. In fact, it ¯ts reasonably

well. The functional forms of fEWA therefore show promise for predicting behavior in brand



new games with incomplete information and games with choices made by groups rather than

individuals.

Finally, fEWA seems to work almost as well as parametric EWA in modeling adaptive

learning of short-term players in repeated trust and entrty games. In Camerer, Ho, and Chong

(2002), we extend EWA to include sophisticaed players who believes others are learning. These

sophisticated players who realize they are matched with others repeatedly often have incentives

to \teach" as in the theory of repeated games. We show that our teaching model ¯ts better

than a generalized equilibrium model called quantal response equilibrium in explaing behaviors

in repeated trust games. In Camerer, Ho, Chong and Weigelt (2002), we replace parametric

EWA by fEWA (resulting in a saving of 15 learning parameters) and apply the teaching model

to both the repeated trust and entry games (about 20,000 stage games). The teaching model

with fEWA predicts behavior almost as well as the original teaching model. This provides an

indirect but powerful robustnesss test for the fEWA model in two completely di®erent games.

6 Conclusion

Learning is important for economics. Equilibrium theories are useful because they suggest a

possible limit point of a learning process and permit comparative static analysis. But if learning

is slow, or the time path of behavior selects one equilibrium out of many, a precise theory of

equilibration is crucial for knowing when or which equilibrium will result.

In the last ten years, many theories of individual learning in games have been proposed

and ¯t to data from laboratory games in which experimenters have good control over players'

information and incentives. Some of these theories, particularly reinforcement learning and

¯ctitious play or Cournot belief learning, are very simple (i.e., they have only one or two

free parameters which have to be speci¯ed or estimated from data). Simple theories have the

advantage of econometric parsimony but often miss important features of empirical data and,

importantly, can be improved by adding features judiciously. Other theories are quite complex

(e.g., Crawford, 1995; Stahl, 1999).

Because there are many theories, applied to di®erent games using di®erent scienti¯c stan-

dards of proof or utility, some healthy controversy has emerged about which models are best

for which purposes. Parametric EWA (EWA for short) takes a middle road by hybridizing

features of reinforcement and belief learning, which necessarily adds parameters (Camerer and



Ho, 1999). Estimates across around 30 experimental data sets show that adding these features

improves ¯t and predictive accuracy, but the parameter values which maximize ¯t are typically

signi¯cantly di®erent in di®erent games. This ¯nding raises the question of how to predict in

advance which parameter values will ¯t best in a particular game.

The theory described in this paper, fEWA, replaces three parameters in the EWA learning

models with three functions that change over time in response to experience. One function is a

\motion detector" Á which goes up (limited by one) when behavior by other players is stable,

and dips down (limited by zero) when there is surprising new behavior by others. When Á

dips down, the e®ects of old experience (summarized in attractions which cumulate or average

previous payo®s) is diminished by decaying the old attraction by a lot. The second function

± is simply Á divided by W, the minimal number of strategies in equilibrium. This function

ties responsiveness to foregone payo®s to environmental stability, and also lowers ± in games

with mixed equilibria (W > 1). The third function · is an index of concentration of choices

(a normalized Gini coe±cient). This characterizes players who \explore" a lot (trying di®erent

strategies, yielding a low ·) and those who \exploit" by locking in to a single choice (high ·).

fEWA is more parsimonious than most learning theories because it has only one free parameter{

the response sensitivity ¸.

We report ¯t and prediction of data from seven experimental games using fEWA, the pa-

rameterized EWA model, and three other models (belief learning, reinforcement with payo®

variability, and quantal response equilibrium (QRE)).

Note that QRE and fEWA have one free parameter, reinforcement has two, belief learning

has three, and EWA has ¯ve. We report both in-sample ¯t (penalizing more complex theories

using the Bayesian information criterion) and out-of-sample predictive accuracy, to be sure that

more complex models do not necessarily ¯t better.

There are three key results.

First, fEWA ¯ts and predicts about as accurately as EWA in all seven games; and it produces

functional parameter values for ± and Á which track the estimated values of ¯xed parameters

quite closely across games. fEWA therefore represents one solution to the central problem

of °exibly generating EWA-like parameters across games. Because fEWA generates sensible

cross-game parameter variation automatically, it ¯ts and predicts better than other models

when games are pooled and common parameters are estimated.



Second, we propose a new criterion for judging the usefulness of theories, called economic

value. A theory's economic value is the incremental pro¯t a subject would earn from following

the theory's advice rather than making their own choices. Most learning models add economic

value in most games, although equilibrium theory does not. Either EWA or fEWA add the most

economic value (and add positive value for a majority of subjects), in ¯ve or seven of the seven

games, depending on how parameters are estimated to provide advice. Similar conclusions are

drawn when boomerang and Lucas-critique e®ects are controlled by simply comparing pro¯ts

from choices consistent with model advice with pro¯ts from inconsistent choices.

Third, the functions in fEWA are robust across games. The earlier draft of this paper

used three games to validate the functional forms. This paper added three brand new games

(after the ¯rst version was written and circulated) to test robustness. The basic conclusions are

replicated in these games, which have incomplete information and choices are made by groups

rather than individuals.

What's the bottom line? Because we used many criteria and games, it is not surprising

that no one theory is always best by every criteria in every game. The results are sensitive to

which games are used, but not particularly sensitive to performance criteria. In coordination

and dominance-solvable games, either EWA or fEWA ¯t and predict best and add the most

economic value. In mixed-strategy games reinforcement ¯ts a little better than the EWA models

by statistical criteria, and adds similar economic value. Belief models hardly ever ¯t best (fEWA

is simpler and almost always ¯ts better). And all learning theories ¯t reliably better than QRE.

A next step in this research is to apply fEWA to a wider set of games. We would also

like to ¯nd some axiomatic underpinnings for the functions, which are admittedly ad hoc.

Extending the Á function to exploit information about ordered strategies might prove useful.

And since fEWA is so parsimonious, it is useful as a building block for extending learning

theories to include sophistication (players anticipating that others are learning; see Stahl, 1999)

and explain \teaching" behavior in repeated games (Camerer, Ho and Chong 2002; Cooper and

Kagel, 2001).

The theory is developed to ¯t experimental data, but the bigger scienti¯c payo® will come

from application to naturally-occurring situations. If learning is slow, a precise theory of eco-

nomic equilibration is just as useful for predicting what happens in the economy as a theory of

equilibrium. For example, institutions for matching medical residents and medical schools, and

analogous matching in college sororities and college bowl games, developed over decades (Roth



and Xing, 1994). Bidders in eBay auctions learn to bid late to hide their information about an

object's common value (Bajari and Hortacsu, 1999). Consumers learn over time what products

they like (Ho and Chong, 2002). Learning in ¯nancial markets can generate excess volatil-

ity and returns predictability, which are otherwise anomalous in rational expectations models

(Timmerman, 1993). Sargent (1999) argues that learning by policymakers about expectational

Phillips' curves and the public's perceptions of in°ation explains macroeconomic behavior in

the last couple of decades. Good theories of learning should be able to explain these patterns

and help predict how new institutions will evolve, how rapidly bidders learn to wait, and which

new products will succeed. Applying fEWA, and other learning theories, to ¯eld domains is

therefore an important goal of future research.

References

[1] Amaldoss, Wilfred and Ho, Teck-Hua, \EWA Learning in Games with Di®erent Group

Sizes," Marketing Department Working Paper, The Wharton School, 2001.

[2] Arthur, Brian, \Competing Technologies, Increasing Returns, and Lock-in by Historical

Events," Economic Journal, 1989, 99, pp. 116-131.

[3] Arthur, Brian, \Designing Economic Agents That Act Like Human Agents: A Behavioral

Approach to Bounded Rationality," American Economic Review, 1991, 81(2), pp. 353-359.

[4] Bajari, Patrick and Hortacsu, Ali, \Winner's Curse, Reserve Prices and Endogenous En-

try: Empirical Insights from Ebay Auctions," Working Paper, Department of Economics,

Stanford University, 1999.

[5] Basu, Kaushik, \The Traveler's Dilemma: Paradoxes of Rationality in Game Theory,"

American Economic Review, May 1984, 84(2), pp. 391-395.

[6] Brown, George, \Iterative Solution of Games by Fictitious Play," in Activity Analysis of

Production and Allocation, New York: John Wiley & Sons, 1951.

[7] Bush, Robert and Mosteller, Frederick, Stochastic models for learning, New York: Wiley,

1955.

[8] Cabrales, Antonio, Nagel, Rosemarie and Armenter, Roc, \Equilibrium Selection through

Incomplete Information in Coordination Games: An Experimental Study," Universitat

Pompeu Fabra working paper, 2001.



[9] Camerer, Colin F., Behavioral Game Theory: Experiments on Strategic Interaction, Prince-

ton:Princeton University Press, 2002.

[10] Camerer, Colin and Ho, Teck-Hua, \Experience-Weighted Attraction Learning in Coordi-

nation Games: Probability Rules, Heterogeneity and Time-Variation," Journal of Mathe-

matical Psychology, 1998, 42, pp. 305-326.

[11] Camerer, Colin and Ho, Teck-Hua, \Experience Weighted Attraction Learning in Normal

Form Games," Econometrica, 1999, 67, pp. 827-873.

[12] Camerer, Colin and Ho, Teck-Hua, \Strategic Learning and Teaching in Games," in S.

Hoch and H. Kunreuther, eds., Wharton on Decision Making, New York: Wiley, 2001.

[13] Camerer, Colin F., Teck-Hua Ho and Juin-Kuan Chong, \Sophisticated EWA Learning and

Strategic Teaching in Repeated Games," Journal of Economic Theory, 2002, 104, 137-188.

[14] Camerer, Colin F., Teck-Hua Ho, Juin-Kuan Chong and Keith Weigelt, \Strategic Teaching

and Equilibrium Models of Repeated Trust and Entry Games," CalTech Working Paper,

2002, http://www.hss.caltech.edu/ camerer/camerer.html

[15] Camerer, Colin, Hsia, David and Ho, Teck-Hua, \EWA Learning in Bilateral Call Markets,"

in Experimental Business Research, ed. by A. Rapoport and R. Zwick, in press.

[16] Capra, Monica, Goeree, Jacob, Gomez, Rosario and Holt, Charles, \Anomalous Behavior

in a Traveler's Dilemma," American Economic Review, 89(3), June 1999, pp. 678-690.

[17] Chen, Yan and Khoroshilov, Yuri, \Learning under Limited Information," working paper,

Department of Economics, University of Michigan, Ann Arbor, 2000.

[18] Cheung, Yin-Wong and Friedman, Daniel, \Individual Learning in Normal Form Games:

Some Laboratory Results," Games and Economic Behavior, 1997, 19, pp. 46-76.

[19] Cooper, David and Kagel, John, \Learning and Transfer in Signalling Games," working

paper, Department of Economics, Case Western Reserve University, 2001.

[20] Crawford, Vincent P., \Adaptive Dynamics in Coordination Games," Econometrica, 1995,

63, pp. 103-143.

[21] Crick, Francis, What Mad Pursuit? A Personal View of Scienti¯c Discovery. New York:

Basic Books, 1988.



[22] Cross, John, A Theory of Adaptive Learning Economic Behavior, New York: Cambridge

University Press, 1983.

[23] Erev, Ido and Roth, Alvin E., \Predicting How People Play Games: Reinforcement Learn-

ing in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic

Review, 1998, 88(4), pp. 848-81.

[24] Erev, Ido, Bereby-Meyer, Yoella and Roth, Alvin E., \The E®ect of Adding a Constant to

All Payo®s: Experimental Investigation, and a Reinforcement Learning Model with Self-

Adjusting Speed of Learning," Journal of Economic Behavior and Organization, 1999, 39,

pp. 111-128.

[25] Fudenberg, Drew and Levine, David K., The Theory of Learning in Games, Boston: MIT

Press, 1998.

[26] Gittins, John, Multi-armed Bandit Allocation Indices, New York: Wiley, 1989.

[27] Haruvy, Ernan and Stahl, Dale O., \ An Empirical Model of Equilibrium Selection in

Symmetric Normal-form Games," University of Texas Department of Economics Working

Paper, January 1998.

[28] Harley, Calvin, \Learning the Evolutionary Stable Strategies," Journal of Theoretical Bi-

ology, 1981, 89, pp. 611-633.

[29] Heller, Dana and Sarin, Rajiv, \Parametric Adaptive Learning," University of Chicago

Working Paper, 2000.

[30] Ho, Teck-Hua, Camerer, Colin and Chong, Juin-Kuan, \Economic Value of fEWA: A

Functional Theory of Learning in Games," May, 2001. http://www.bschool.nus.edu.sg /de-

part/mk/bizcjk/fewa.htm

[31] Ho, Teck-Hua, Camerer, Colin and Weigelt, Keith, \Iterated Dominance and Iterated Best

Response in Experimental \p-Beauty Contests"," American Economic Review, 1998, 88,

pp. 947-969.

[32] Ho, Teck-Hua and Chong, Juin-Kuan, \A Parsimonious Model of SKU Choice," Journal

of Marketing Research, 2002, in press.

[33] Ho, Teck-Hua, Wang, Xin and Camerer, Colin, \Individual Di®erences in EWA Learn-

ing with Partial Payo® Information," Marketing Department Working Paper 99-010, The

Wharton School, 1999.



[34] Hopkins, Edward, \Two Competing Models of how People Learn in Games," Econometrica,

2002, in press.

[35] Josephson, Jens, \A Numerical Analysis of the Evolutionary Stability of Learn-

ing Rules," Stockholm School of Economics SSE/EFI paper no. 474, 2001,

http://swopec.hhs.se/hastef/abs/hastef0474.htm.

[36] Kahneman, Daniel, Knetsch, Jack L. and Thaler, Richard H.,\The Endowment E®ect, Loss

Aversion, and Status Quo Bias: Anomalies," Journal of Economic Perspectives, Winter

1991, 5(1), p.193-206.

[37] Kocher, Martin and Sutter, Matthias, \When the 'Decision Maker' Matters: Individual

versus Team Behavior in Experimental 'Beauty-Contest' Games," University of Innsbruck

working paper, 2000.

[38] LeDoux, Joseph, The Emotional Brain: The Mysterious Underpinnings of Emotional Life,

New York : Simon & Schuster, 1996.

[39] McAllister, Patrick H., \Adaptive Approaches to Stochastic Programming," Annals of

Operations Research, 1991, 30, pp. 45-62.

[40] McKelvey, Richard and Palfrey, Thomas, \Quantal Response Equilibria for Normal Form

Games," Games and Economic Behavior, 1995, 10, 6-38.

[41] McKelvey, Richard, Palfrey, Thomas and Weber, Roberto, \The E®ects of Payo® Magni-

tude and Heterogeneity on Behavior in 2x2 Games with Unique Mixed Strategy Equilibria,"

Journal of Economic Behavior and Organization, 2000, 42(4), pp.523-548.

[42] Mookerjhee, Dilip, and Sopher, Barry, \Learning Behavior in an Experimental Matching

Pennies Game," Games and Economic Behavior, 1994, 7, pp. 62-91.

[43] Mookerjhee, Dilip, and Sopher, Barry, \Learning and Decision Costs in Experimental

Constant-sum Games," Games and Economic Behavior, 1997, 19, pp. 97-132.

[44] Myung, In Jae, \The importance of complexity inn model selection," Journal of Mathe-

matical Psychology, 2000, 44, pp. 190-204.

[45] Pratt, John, Wise, David and Zeckhauser, Richard, \Price Di®erences in Almost Compet-

itive Markets," Quarterly Journal of Economics,, May 1979, 93(2), pp. 189-211.



[46] Rapoport, Amnon and Erev, Ido, \Coordination, \magic", and reinforcement learning in

a market entry game," Games and Economic Behavior, 1998, 23, pp. 146-175.

[47] Rapoport, Amnon and Amaldoss, Wilfred, \Mixed Strategies and Iterative Elimination of

Strongly Dominated Strategies: An Experimental Investigation of States of Knowledge,"

Journal of Economic Behavior and Organization, 2000, 42, pp. 483-521.

[48] Robinson, Julia, \An Iterative Method of Solving a Game," Annals of Mathematics, 1951,

54(2), pp. 296-301.

[49] Roth, Alvin E. and Xing, Xiaolin, \Jumping the Gun: Imperfections and Institutions Re-

lated to the Timing of Market Transactions," American Economic Review, 84, September,

1994, 992-1044.

[50] Roth, Alvin E. and Erev, Ido, \Learning in Extensive-Form Games: Experimental Data

and Simple Dynamic Models in the Intermediate Term," Games and Economic Behavior,

8(1), 1995, pp. 164-212.

[51] Roth, Alvin, Barron, Greg, Erev, Ido and Slonim, Robert, \Equilibrium and Learning in

Economic Environments: the Predictive Value of Approximations," Harvard University

Working Paper, 2002.

[52] Salmon, Tim, \Evidence for Learning to Learn Behavior in Normal Form Games," Caltech

Working Paper, 1999.

[53] Samuelson, William and Zeckhauser, Richard, "Status Quo Bias in Decision Making,"

Journal of Risk and Uncertainty, March 1988, 1, pp. 7-59.

[54] Sargent, Thomas, The Conquest of American In°ation, Princeton: Princeton University

Press, 1999.

[55] Selten, Reinhard and Stoecker, Rolf, \End Behavior in Sequences of Finite Prisoner's

Dilemma Supergames: A Learning Theory Approach," Journal of Economic Behavior and

Organization, 1986, 7, pp. 47-70.

[56] Shachat, Jason, "Mixed Strategy Play and the Minimax Hypothesis," Journal of Economic

Theory, 2002, 104, pp. 189-226.

[57] Sovik, Ylva, \Impossible Bets: An Experimental Study," University of Oslo working paper,

2001.



[58] Stahl, Dale O, \Boundedly Rational Rule Learning in a Guessing Game," Games and

Economic Behavior, 1996, 16, pp. 303-330.

[59] Stahl, Dale O., \Sophisticated Learning and Learning Sophistication," University of Texas

at Austin Working Paper, 1999.

[60] Stahl, Dale O, \Local Rule Learning: Theory and Evidence," Games and Economic Be-

havior, forthcoming.

[61] Sutton, Richard and Barto, Andrew, Reinforcement Learning: An Introduction, Boston:

MIT Press, 1998.

[62] Timmerman, Allan G, \How Learning in Financial Markets Generates Excess Volatility

and Predictability in Stock Prices.' Quarterly Journal of Economics, November 1993, 108,

pp. 1135-1145.

[63] Van Huyck, John, Battalio, Raymond and Beil, Richard, \Tacit Cooperation Games,

Strategic Uncertainty, and Coordination Failure," The American Economic Review, 1990,

80, pp. 234-248.

[64] Van Huyck, John, Battalio, Raymond and Rankin, Frederick, \Selection Dynamics and

Adaptive Behavior Without Much Information," Working Paper, Department of Eco-

nomics, Texas A & M University, 1996.

[65] Van Huyck, John, Cook, Joseph and Battalio, Raymond, \Adaptive Behavior and Coor-

dination Failure," Journal of Economic Behavior and Organization, 1997, 32, pp. 483-503.

7 Appendix

7.1 Calculating the Initial Attractions

We \burn in" the initial attractions Aj(0), 8j, by using the actual observed frequency of choices

by all subjects in the ¯rst period. The same initial attractions are used for all subjects, except

for games with more than 2 players such as continental divide, median action and p-beauty

contest. For the exceptions, each group of players has a di®erent initial attractions based on

the group's observed frequencies. For a particular response sensitivity ¸, the initial attractions



are chosen so that the predicted probabilities of choices match the actual relative frequencies

of choices.

Denote the empirically observed frequency of strategy j in the ¯rst period by fj . Then

initial attractions are recovered from the equations

e ¢̧A
j(0)

P
k e
¢̧Ak(0)

= f j ; j = 1; : : : ;m: (7.1)

(This is equivalent to choosing initial attractions to maximize the likelihood of the ¯rst-period

data, separately from the rest of the data, for a value of ¸ derived from the overall likelihood-

maximization.) Some algebra shows that the initial attractions can be solved for, as a function

of ,̧ by

Aj(0)¡Ak(0) =
1

¸
ln(f j)¡ 1

¸
ln(fk); j;k = 1; : : : ;m (7.2)

We ¯x the initial attraction of the strategy j with the lowest frequency Aj(0) to a constant

value for identi¯cation. Frequently, the lowest frequency is zero. We circumvent this problem

by adding a constant W
m to all frequencies and renormalizing them.

~fj =
f j + W

mP
k f

k + W
m

; j = 1; : : : ;m (7.3)

W
m is chosen to re°ect the relative proportion of equilibrium points with respect to number of

strategies. With ~fj in place of fj in (7.2), we then solve for the other attractions as a function

of ¸ and the modi¯ed frequencies ~f j .

To ensure no model obtains any unfair advantage from the burn in procedure, we use (7.1)

as the ¯rst period prediction for all models.

Since the model speci¯cations for fEWA, EWA and Belief-based learning have been discussed

in the text, we only provide the model speci¯cations for the remaining models, Quantal Response

and Reinforcement with Payo® Variability, below.

7.2 Quantal Response Model

The updating rule and predicted probability are given as follows:

Aji(t) =
m¡iX

k=1

P k
¡i(t + 1) ¢ ¼i(sji ; sk¡i(t)) (7.4)

P j
i (t + 1) =

e ¢̧A
j
i (t)

Pmi
k=1 e

¸¢Aki (t)
(7.5)



As evident from (7.5), the predicted probability is a function of other player(s) predicted

probabilities. For a given sensitivity parameter ¸, predicted probabilities are derived from

solving N nonlinear simultaneous equations. We solve the nonlinear simultaneous equations

numerically by iterative substitutions until we converge to a set of consistent predicted proba-

bilities.

7.3 Reinforcement Model with Payo® Variability

The updating rule is:

Aji (t) =
(N(0) + Cij(t)¡ 1) ¢Aji (t¡ 1) + I(sji; si(t)) ¢ ¼i(sji ; s¡i(t))

N(0) + Cij(t)
(7.6)

where Cij(t) (with Cij(0) = 0; 8i; j) is updated as follows:

Cij(t) =

8
<
:
Cij(t ¡ 1) + 1 if j is chosen in t

Cij(t ¡ 1) if j is not chosen in t
(7.7)

In addition, ¸ is replaced by ¸
Si(t)

where

Si(t) =
(t¡ 1 +m ¢N(0))Si(t¡ 1) + j¼i(t¡ 1)¡ ¼i(si(t); s¡i(t))j

t +m ¢ N(0)
(7.8)

where m is the number of strategies and Ai(t) is updated as follows:

¼i(t) =
(t¡ 1 +m ¢N(0))¼i(t ¡ 1) + ¼i(si(t); s¡i(t))

t+m ¢N (0)
(7.9)

where ¼i(0) is the expected payo® given random choice.

Instead of assuming random choices by other players in the computation of ¼i(0), we use

empirical distribution of other players' ¯rst period choices to increase the potency of the model.

This also ensures that the Reinforcement Model with Payo® Variability is placed on the same

footing as other models where ¯rst period is used to burn in initial attractions. Si(0) is the

expected absolute di®erence between payo® from each strategy and ¼i(0).

7.4 Parameter Estimates and Functional Values

Table A.1 gives the parameter estimates and their standard errors of all learning models. Note

that the standard errors are small, suggesting that these parameters are statistically di®erent



from zero. Table A.2 shows the inter-quartile ranges of fEWA functional values across time

and subjects. Except for · in some games, the ranges are relatively small. Table A.3 gives the

parameter estimates for the three new games that are used to test the robustness of fEWA.



Table 1: A Description of the Seven Games Used in the Estimation of Various Learning Models

Game Number of Number of Number of Pure Number of Number of Matching Experimental Description of Games
Players Strategies Strategy Equilibria Subjects Rounds Protocol Treatment

Mixed Strategies 2 4,6 0 80 40 Fixed Stake Size A constant-sum game with unique mixed
Mookerjhee and Sopher (1997) strategy equilibrium. 

Patent Race 2 5,6 0 36 80 Random Strong vs Weak Strong (weak) player invests between
Rapoport and Amaldoss (2000) 0 and 5 (0 and 4) and the higher investment

wins a fixed prize.

Continental Divide 7 14 2 70 15 Fixed None A coordination game with two pure strategy 
Van Huyck et al. (1997) equilibria

Median Action 9 7 7 54 10 Fixed None A order-statistic game with individual payoff
Van Huyck et al. (1990) decreases in the distance between individual

choice and the median

Pot Games 3,6,9,18 2 1 84 25 (manual) Fixed Number of Players An entry game where players must decide
Amaldoss and Ho (2001) 28 (computer) which of the two ponds of sizes 2n and n 

they wish to enter. Payoff is the ratio of the pond
size and number of entries.

p-Beauty Contest 7 101 1 196 10 Fixed Experienced vs. Inexperienced Players simultaneously choose a number
Ho et al. (1998) from 0 to 100 and the winner whose number is

closet to p (<1) times the group average

Traveler's Dilemma 2 1211 1 52 10 Random Penalty Size Players choose claims between 80 and 200.
Capra et al. (1999) Both players get lower claim but the high-claim

player pays a penalty to the low-claim player.
 

Note 1: Continuous strategies of 80 to 200 are discretized to 121 integer strategies



Table 2: Model Fit (% Hit Rate, BIC and Log Likelihood)

Sample Random

Size5 %Hit %Hit1,4 BIC2 %Hit BIC %Hit BIC %Hit BIC %Hit BIC

Mixed Strategies 2240 21% 40% -3192 41% -3074 38% -3129 41% -3051 30% -3342

Patent Race 6 4000 18% 62% -4442 61% -4411 52% -5506 62% -4367 38% -6682

Continental Divide 735 7% 50% -1081 51% -1062 30% -1288 47% -1293 7% -1890

Median Action 380 14% 69% -313 75% -272 74% -348 69% -343 50% -560

Pot Games 1478 50% 68% -905 67% -937 65% -982 66% -907 62% -1018

p-Beauty Contest 1380 1% 13% -4567 13% -4544 13% -4571 10% -5741 3% -5849

Traveler's Dilemma 360 1% 51% -890 50% -873 31% -1120 46% -1069 32% -1613

Pooled 3 10573 20% 51% -15389 48% -15906 40% -17960 44% -20182 33% -21055

Sample Random

Size %Hit %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL

Mixed Strategies 960 21% 36% -1382 36% -1387 34% -1404 33% -1392 35% -1398

Patent Race 1760 18% 65% -1897 65% -1878 52% -2279 65% -1864 19% -2978

Continental Divide 315 7% 47% -470 47% -460 25% -564 44% -573 5% -808

Median Action 160 14% 74% -104 79% -83 82% -95 74% -105 49% -196

Pot Games 739 50% 70% -436 70% -437 66% -471 70% -432 65% -505

p-Beauty Contest 580 1% 8% -2119 6% -2046 7% -2037 7% -2498 3% -2507

Traveler's Dilemma 160 1% 46% -446 43% -445 36% -465 41% -564 31% -699

Pooled 4674 20% 51% -6853 49% -7100 40% -7935 46% -9128 36% -9037

Note 1: Number of hits counts the occasions when prob(chosen strategy) = maximum (predicted probabilities). Each count is adjusted by number of strategies sharing the maximum.  

Note 2: BIC (Bayesian Information Criterion) is given by LL - (k/2)*log(N*T) where k is the number of parameters, N is the number of subjects and T is the number of periods.

Note 3: A common set of parameters, except game-specific lambda, is estimated for all games. Each game is given equal weight in LL estimation.

Note 4: Entries in bold denote the best measures for each game. In case of hit rate, multiple models might share the top rank when differences in hit rates of 

these models are not statistically significant by McNemar test (Chi-sq at 5%); these entries are underlined .

Note 5: Calibrated on all observations for 70% of the subjects instead of 70% observations of all subjects as in Camerer and Ho (1999).

Note 6: Games in bold were added after the functional forms of the parameters were adopted.

Reinforcement with PV QREfEWA EWA Belief-based
In-sample Calibration

Out-of-sample Validation
fEWA EWA Belief-based Reinforcement with PV QRE



Table 3: Model Robustness (Out-of-sample Prediction for Entire Game)

Sample 

Size %Hit 2 LL %Hit LL %Hit LL %Hit LL %Hit LL

Mixed Strategies 3200 39% -4662 34% -4867 35% -4832 38% -4697 31% -5049

Patent Race 5760 62% -8009 59% -9296 55% -9112 63% -6588 39% -9745

Continental Divide 1050 48% -1741 50% -1635 27% -2147 32% -2403 6% -2695

Median Action 540 69% -523 74% -491 60% -711 70% -479 50% -990

Pot Games 2217 68% -3976 67% -5084 65% -3474 67% -1387 63% -1491

p-Beauty Contest 1960 12% -6681 10% -6819 8% -7715 9% -11361 3% -8342

Traveler's Dilemma 520 50% -1825 46% -1874 33% -1933 36% -1841 21% -2325

Note 1:Prediction for a game is made using out-of-game estimates derived from pooling the other 6 games.

Note 2: Entries in bold denote the best measures for each game. In case of hit rate, multiple models might share the top rank when differences in hit rates of 

these models are not statistically significant by McNemar test (Chi-sq at 5%); these entries are underlined .

Reinforcement with PV QRE
Out-of-sample Prediction using Out-of-game Estimates1 

fEWA EWA Belief-based



Table 4: Payo®s in `continental divide' experiment, Van Huyck et al. (1997)
Median Choice

choice 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142

2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98

3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10

6 23 33 42 52 62 72 82 62 53 47 43 41 39 38

7 7 18 28 40 51 64 78 75 69 66 64 63 62 62

8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82

9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98

10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110

11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119

12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123

13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123

14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120



Table 5: Economic Values with In-game and Out-of-game Estimates

Observed
Payoff %Improve %Improve 3 %Improve %Improve %Improve %Improve

Mixed Strategies 334 100.0% 7.5% 3.0% 1.1% 5.8% -1.8%
Patent Race 467 44.2% 1.7% 1.2% 1.3% 2.9% 1.2%

Continental Divide2 837 6.6% 5.0% 5.2% 4.5% -9.4% -30.5%
Median Action2 503 1.8% 1.5% 1.5% 1.2% 1.3% -1.0%
Pot Games 4244 29.9% -2.7% -1.1% -1.3% -1.9% 9.9%

p-Beauty Contest2 519 585.4% 49.9% 40.8% 26.7% -7.2% -64.0%
Traveler's Dilemma 541 26.2% 10.3% 9.8% 9.4% 3.4% 2.7%

Observed
Payoff %Improve %Improve %Improve %Improve %Improve %Improve

Mixed Strategies 334 100.0% 13.0% 15.9% 14.0% 13.0% -1.8%
Patent Race 467 44.2% 2.4% 2.0% 2.4% 2.0% -9.6%

Continental Divide2 837 6.6% 4.8% 4.9% 4.9% 3.2% -32.0%
Median Action2 503 1.8% 1.5% 1.5% 1.4% 1.5% -1.0%
Pot Games 4244 29.9% 7.7% 11.1% 7.4% 9.3% 9.9%

p-Beauty Contest2 519 585.4% 48.8% 49.1% 51.1% -57.5% -65.0%
Traveler's Dilemma 541 26.2% 11.1% 11.1% 9.5% 8.2% 7.9%

Note 1: We assume that each "bionic" subject uses the respective model to predict other's behavior and best responds with the strategy that yields the highest expected payoff.

Note 2: The expected value of each strategy in these games is computed with 1000 simulated instances for a given round due to the combinatorial nature of determining payoff and probability of each strategy combination.

Note 3: Entries in bold denote the best improvement for each game.

Total Payoff and Percentage Improvement for Bionic Subjects using Out-of-game Estimates1 

Total Payoff and Percentage Improvement for Bionic Subjects using In-game Estimates1 

QREfEWA EWA Belief-based Reinforcement with PVEx-post Maximum

Ex-post Maximum Reinforcement with PV QREfEWA EWA Belief-based



Table 6: Economic Values (Expected Payoff Differences of Model-consistent Choices vs Other Choices) with In-game Parameter Estimates

 Πdiff 
1 p -value 3 %BR 4 

 Πdiff  p -value %BR  Πdiff  p -value %BR  Πdiff  p -value %BR  Πdiff  p -value %BR

Mixed Strategies 0.02 0.00 32% 0.02 0.00 31% 0.02 0.00 27% 0.02 0.00 32% 0.00 0.38 31%
Patent Race 0.01 0.00 37% 0.01 0.00 37% 0.02 0.00 42% 0.01 0.00 37% 0.01 0.00 34%

Continental Divide2 0.14 0.00 37% 0.15 0.00 37% 0.15 0.00 36% 0.10 0.00 38% -0.21 1.00 5%
Median Action2 0.05 0.00 81% 0.05 0.00 81% 0.05 0.00 81% 0.05 0.00 81% -0.06 1.00 51%
Pot Games 0.25 0.00 63% 0.23 0.00 60% 0.12 0.00 59% 0.35 0.00 64% 0.40 0.00 63%

p-Beauty Contest2 0.19 0.03 4% 0.07 0.20 5% 0.01 0.43 5% -0.07 0.68 1% -0.17 0.93 1%
Traveler's Dilemma 0.44 0.00 26% 0.43 0.00 26% 0.44 0.00 25% 0.41 0.00 25% 0.10 0.00 32%

Note 1: We split the choices into 2 sets: one set contains choices that best respond to predicted behavior of others while the other set contains choices that do not. We derive the difference in mean payoff between the 2 sets.

Note 2: The expected value of each strategy in these games is computed with 1000 simulated instances for a given round because of the combinatorial nature of detrmining payoff and probability of the various strategy combinations.

Note 3: We assume unequal variances for the 2 sets of choices. Student-t distribution is used to derive the p-value. 

Note 4: Percentage of choices that best respond to model-predicted behaviors of others.

Reinforcement with PV QREfEWA EWA Belief-based



Table 7: Model Robustness Test for 3 New Data Sets (% Hit Rate, BIC and Log Likelihood)

Sample 
Size3 %Hit1,4 BIC2 %Hit BIC %Hit BIC %Hit BIC %Hit BIC

Cabrales, Nagel & Armenter (2001) 1200 86% -364 88% -353 85% -407 83% -423 86% -453

Kocher & Sutter (2000) [individual] 100 8% -400 7% -365 7% -362 5% -445 1% -459
Kocher & Sutter (2000) [group] 100 4% -403 3% -343 3% -339 2% -437 1% -455

Sovik (2001) 864 65% -568 66% -553 64% -552 64% -554 58% -579

Sample 
Size %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL

Cabrales, Nagel & Armenter (2001) 400 87% -124 88% -112 88% -126 87% -130 89% -124

Kocher & Sutter (2000) [individual] 40 5% -150 3% -136 3% -137 3% -170 1% -180
Kocher & Sutter (2000) [group] 40 8% -159 3% -142 3% -142 5% -182 1% -180

Sovik (2001) 288 70% -174 78% -162 74% -165 73% -170 71% -175

Sample 
Size3 %Hit1 LL %Hit LL %Hit LL %Hit LL %Hit LL

Cabrales, Nagel & Armenter (2001) 1600 86% -484 88% -448 86% -523 84% -546 87% -574

Kocher & Sutter (2000) [individual] 140 8% -550 6% -501 6% -498 4% -615 1% -639
Kocher & Sutter (2000) [group] 140 5% -562 3% -485 3% -480 3% -619 1% -635

Sovik (2001) 1152 66% -738 69% -699 67% -707 66% -717 62% -750

Note 1: Number of hits counts the occasions when prob(chosen strategy) = maximum (predicted probabilities). Each count is adjusted by number of strategies sharing the maximum. 

Note 2: BIC (Bayesian Information Criterion) is given by LL - (k/2)*log(N*T) where k is the number of parameters, N is the number of subjects and T is the number of periods.

Note 3: Calibrated on 70% of the subjects and validated on remaining 30%.

Note 4: Entries in bold denote the best measures for each game.

Reinforcement with PV QRE
Out-of-sample Validation

fEWA EWA Belief-based

Reinforcement with PV QRE
In-sample Calibration

fEWA EWA Belief-based

Total Log-Likelihood (in and out-of-sample) and Hit Rate

Reinforcement with PV QREfEWA EWA Belief-based



Table A.1: Parameter Estimates of Learning Models

φ κ δ N0 3 λ 5 

Mixed Strategies 0.89 - 0.52 - 0.28 - 1.00 - 3.78 0.17
Patent Race 0.89 - 0.72 - 0.32 - 1.00 - 7.87 0.17

Continental Divide 0.69 - 0.77 - 0.69 - 1.00 - 4.46 0.18
Median Action 0.85 - 0.78 - 0.85 - 1.00 - 5.00 0.33
Pot Games 0.80 - 0.44 - 0.44 - 1.00 - 0.33 0.03

p-Beauty Contest 0.58 - 0.82 - 0.58 - 1.00 - 2.11 0.05
Traveler's Dilemma 0.63 - 0.84 - 0.63 - 1.00 - 4.99 0.20

Pooled 0.76 - 0.64 - 0.48 - 1.00 - 3.26 0.05

φ κ δ N04  λ
Mixed Strategies 0.98 0.00 1.00 0.04 0.27 0.07 0.82 0.00 1.15 0.10
Patent Race 0.92 0.01 0.05 0.02 0.36 0.25 1.37 0.02 42.21 4.57

Continental Divide 0.74 0.03 1.00 0.02 0.73 0.09 0.25 0.00 3.98 0.30
Median Action 0.71 0.07 1.00 0.02 0.89 0.00 0.00 0.00 8.90 1.12
Pot Games 0.81 0.04 1.00 0.09 0.42 0.00 0.00 0.00 0.19 0.03

p-Beauty Contest 0.36 0.02 0.00 0.04 0.78 0.05 1.56 0.00 3.44 0.00
Traveler's Dilemma 0.77 0.02 1.00 0.02 0.53 0.07 0.62 0.00 3.53 0.22

Pooled 2 0.78 0.01 0.99 0.01 0.49 0.00 0.01 0.00 2.95 0.02

φ κ 3 δ 3 N04  λ
Mixed Strategies 1.00 0.00 0.00 - 1.00 - 70.58 2.12 43.40 0.24
Patent Race 1.00 0.00 0.00 - 1.00 - 27.77 141.07 85.09 0.01

Continental Divide 0.99 0.05 0.00 - 1.00 - 1.05 0.25 14.74 1.26
Median Action 1.00 0.00 0.00 - 1.00 - 5.86 9.10 75.84 0.08
Pot Games 0.98 0.04 0.00 - 1.00 - 0.40 0.17 0.87 0.13

p-Beauty Contest 0.33 0.02 0.00 - 1.00 - 0.85 0.36 2.57 0.08
Traveler's Dilemma 0.85 0.01 0.00 - 1.00 - 6.69 1.50 13.97 0.85

Pooled  0.81 0.02 0.00 - 1.00 - 5.36 0.49 11.59 0.48

φ 3 κ 3 δ 3 N0 λ
Mixed Strategies 1.00 - 0.00 - 0.00 - 31.47 0.91 4.39 0.52
Patent Race 1.00 - 0.00 - 0.00 - 6.58 0.03 1.48 0.05

Continental Divide 1.00 - 0.00 - 0.00 - 1.81 0.13 2.59 0.03
Median Action 1.00 - 0.00 - 0.00 - 3.95 0.24 1.27 0.19
Pot Games 1.00 - 0.00 - 0.00 - 0.49 0.03 0.39 0.03

p-Beauty Contest 1.00 - 0.00 - 0.00 - 1.78 0.01 0.22 0.01
Traveler's Dilemma 1.00 - 0.00 - 0.00 - 3.90 0.03 3.21 0.03

Pooled  1.00 - 0.00 - 0.00 - 188.10 0.24 24.49 0.10

φ 3 κ 3 δ 3 N03 λ
Mixed Strategies 0.00 - 0.00 - 0.00 - 0.00 - 10.53 0.08
Patent Race 0.00 - 0.00 - 0.00 - 0.00 - 4.67 0.04

Continental Divide 0.00 - 0.00 - 0.00 - 0.00 - 0.50 0.01
Median Action 0.00 - 0.00 - 0.00 - 0.00 - 20.00 0.00
Pot Games 0.00 - 0.00 - 0.00 - 0.00 - 0.04 0.00

p-Beauty Contest 0.00 - 0.00 - 0.00 - 0.00 - 0.00 0.00
Traveler's Dilemma 0.00 - 0.00 - 0.00 - 0.00 - 20.00 0.00

Pooled  0.00 - 0.00 - 0.00 - 0.00 - 7.78 0.01

Note 1: Average parameters across subjects and time.

Note 2: For all models except fEWA, a common set of estimates, except lambdas, is estimated for all games pooled.

Note 3: Fixed parameters

Note 4: N0 bounded by 1/(1-phi(1-kappa)).

Note 5: Payoffs in all games have been rescaled to USD equivalent. Average of game specific lambda is reported for pooled games.

Reinforcement with PV

QRE

fEWA 1 

EWA

Belief-based



Table A.2: Variations of fEWA Functional Values

Median3 Range4 Median Range Median Range
Mixed Strategies 0.91 0.0396 0.50 0.1027 0.30 0.1137
Patent Race 0.90 0.0200 0.73 0.0151 0.31 0.0078

Continental Divide 0.69 0.0806 0.78 0.0165 0.69 0.0806
Median Action 0.91 0.1875 0.81 0.1513 0.91 0.1875
Pot Games 0.81 0.0635 0.44 0.1329 0.44 0.0464

p-Beauty Contest 0.58 0.0375 0.88 0.0673 0.58 0.0375
Traveler's Dilemma 0.62 0.0722 0.89 0.0926 0.62 0.0722

Pooled 0.87 0.1218 0.57 0.2610 0.35 0.1512

Median Range Median Range Median Range
Mixed Strategies 0.89 0.0357 0.52 0.1504 0.27 0.1026
Patent Race 0.89 0.0133 0.74 0.2036 0.32 0.0044

Continental Divide 0.68 0.0820 0.78 0.0835 0.68 0.0820
Median Action 0.85 0.0000 0.79 0.0432 0.85 0.0000
Pot Games 0.78 0.0167 0.38 0.3247 0.43 0.0074

p-Beauty Contest 0.58 0.0156 0.82 0.0139 0.58 0.0156
Traveler's Dilemma 0.62 0.0830 0.84 0.0121 0.62 0.0830

Pooled 0.76 0.2694 0.82 0.2057 0.57 0.2664

Note 1: Average value for each time period is calculated, then the 25% and 75% percentile are used to derive the range.
Note 2: Average value for each subject is calculated, then the 25% and 75% percentile are used to derive the range.
Note 3: Overall medians on the average values calculated with respect to Note 1 and 2.
Note 4: The 25% and 75% percentile are respectively 0.5*Range below and above the median.

φ κ δ

Interquartile Range Across Time1 

Interquartile Range Across Subjects2 

φ κ δ



Table A.3: Parameter Estimates of Learning Models for 3 New Data Sets1

φφ κκ δδ N03 λλ
fEWA 2 Cabrales, Nagel & Armenter (2001) 0.86 - 0.58 - 0.86 - 1.00 - 9.95 0.05

Kocher & Sutter (2000) [individual] 0.58 - 0.73 - 0.58 - 1.00 - 0.49 0.06
Kocher & Sutter (2000) [group] 0.58 - 0.73 - 0.58 - 1.00 - 0.43 0.05

Sovik (2001) 0.74 - 0.39 - 0.74 - 1.00 - 2.38 0.17

EWA Cabrales, Nagel & Armenter (2001) 0.63 0.02 0.99 0.04 0.27 0.00 0.01 0.00 8.19 0.00

Kocher & Sutter (2000) [individual] 0.71 0.06 0.00 0.00 0.88 0.02 0.32 0.00 0.59 0.03
Kocher & Sutter (2000) [group] 0.64 0.09 0.09 7.86 1.00 48.43 0.44 1.08 0.53 0.05

Sovik (2001) 1.04 0.00 0.13 0.05 0.59 0.42 0.88 0.00 5.26 0.10

Belief-based Cabrales, Nagel & Armenter (2001) 0.83 0.02 0.00 - 1.00 - 3.22 1.27 28.89 0.08

Kocher & Sutter (2000) [individual] 0.70 0.05 0.00 - 1.00 - 0.31 0.05 1.06 0.05
Kocher & Sutter (2000) [group] 0.64 0.08 0.00 - 1.00 - 0.44 0.91 0.52 0.08

Sovik (2001) 1.00 0.00 0.00 - 1.00 - 1.89 0.06 8.13 0.24

Reinforcement with PV Cabrales, Nagel & Armenter (2001) 1.00 - 0.00 - 0.00 - 316.74 0.01 119.57 0.01

Kocher & Sutter (2000) [individual] 1.00 - 0.00 - 0.00 - 0.99 0.16 0.15 0.41
Kocher & Sutter (2000) [group] 1.00 - 0.00 - 0.00 - 0.89 0.12 0.19 0.15

Sovik (2001) 1.00 - 0.00 - 0.00 - 1.89 0.91 2.09 0.52

QRE Cabrales, Nagel & Armenter (2001) 0.00 - 0.00 - 0.00 - 0.00 - 11.37 3.18

Kocher & Sutter (2000) [individual] 0.00 - 0.00 - 0.00 - 0.00 - 0.50 0.00
Kocher & Sutter (2000) [group] 0.00 - 0.00 - 0.00 - 0.00 - 0.00 0.01

Sovik (2001) 0.00 - 0.00 - 0.00 - 0.00 - 2.75 0.04

Note 1: Underscored are fixed parameters

Note 2: Average parameters across subjects and time.

Note 3: N0 is bounded by 1/(1-phi(1-kappa)) for EWA and Belief-based Models



Figure 1: EWA’s Model Parametric Space 
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Figure 3 Transition Matrices for Patent Race
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Figure 3a: Empirical Transition
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Figure 3b: fEWA
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Figure 3c: Parametric EWA
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Figure 3d: Belief-based
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Figure 3e: Choice Reinforcement with PV
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Figure 3f: Quantal Response Equilibrium



Figure 4: Empirical Frequency and Model Predictions for Continental Divide
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Figure 4a: Empirical Frequency
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Figure 4b: fEWA
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Figure 4c: Parametric EWA 
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Figure 4d: Belief-based

1

3

5

7

9 1
1 1

3 1
5

S1

S4

S7

S10

S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Figure 4e: Choice Reinforcement with PV 
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Figure 4f: Quantal Response Equilibrium 



Figure 5: Empirical Frequency and Model Predictions for Traveler's Dilemma
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Figure 5a: Empirical Frequency
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Figure 5b: fEWA
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Figure 5c: Parametric EWA
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Figure 5d: Belief-based
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Figure 5e: Choice Reinforcement with PV 
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Figure 5f: Quantal Response Equilibrium 


