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Econometrica, Vol. 54, No. 6 (November, 1986), 1375-1385

AN APPROACH TO COMMUNICATION EQUILIBRIA'
By FrANcCOISE FORGES

The Nash equilibrium concept may be extended gradually when the rules of the game
are interpreted in a wider and wider sense, so as to allow preplay or even intraplay
communication. A well-known extension of the Nash equilibrium is Aumann’s correlated
equilibrium, which depends only on the normal form of the game. Two other solution
concepts for multistage games are proposed here: the extensive form correlated equilibrium,
where the players can observe private extraneous signals at every stage and the communica-
tion equilibrium, where the players are furthermore allowed to transmit inputs to an
appropriate device at every stage.

We show that the set of payoffs associated with each solution concept has a canonical
representation (in the spirit of the revelation principle) and is a convex polyhedron. We
also provide for each concept a “super-canonical” game such that the set of payoffs
associated with the solution concept is precisely the set of Nash equilibrium payoffs of
this game.

KEYwoRDSs: Communication, correlated equilibrium, multistage game, Nash equilib-
rium, noncooperative game.

1. INTRODUCTION

THE PURPOSE OF THIS PAPER is to integrate in a synthetic presentation various
equilibrium concepts involving preplay or intraplay communication between the
players. We will distinguish several classes of such noncooperative solution
concepts associated with communication, by relating their use to the interpretation
of the rules of the game. Three successive extensions of the Nash equilibrium
will be considered: the “(normal form) correlated equilibrium”, the “extensive
Jorm correlated equilibrium™ and the “communication equilibrium.” The first notion
is due to Aumann (1974); the other two were first introduced for repeated games
with incomplete information (in Forges (1984) and Forges (1982) respectively).
Myerson (1986) also studied multistage games with communication and proposed
a sequential rationality criterion in this context.

The correlated equilibrium appears as an appropriate solution concept as soon
as preplay communication is taken seriously. In this case, one cannot forbid the
players to use a ‘““correlation device” selecting a vector of signals, one for every
player, before the beginning of the game. So one is led to the (Nash) equilibria
of the extended game including the preliminary lottery, which is a way of defining
correlated equilibria. (See Aumann (1985) for a stronger foundation for this
solution concept.)

Since in this first approach signals are only sent in the preplay phase, the
corresponding solution concept depends only on the normal form of the game;
it can thus be referred to as ‘“‘normal form correlated equilibrium.” If, however,
the situation to be analyzed has some duration (like a multistage game), one is
tempted to extend the game by adding a lottery at every stage (not only at the

! This paper is based on the introduction of my Ph.D. thesis. I am very indebted to J.-F. Mertens,
my thesis advisor, for his valuable suggestions; I also wish to acknowledge helpful comments from
C. d’Aspremont.
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1376 FRANCOISE FORGES

beginning), each player receiving a signal about its outcome. Or, in a more
descriptive vein, it seems natural that in a multistage game the players’ knowledge
of the state of the world can increase over time. One is led to allow each player
to observe privately extraneous signals, such as “sunspots”,” at every stage of
the game. A notion generalizing the correlation device can be introduced: the
autonomous device, which selects a vector of signals, one for each player, at every
stage of the game (we will assume that such a device recalls its past outputs, so
that the signals of different stages may be correlated). A (Nash) equilibrium of
the game extended by means of an autonomous device will be called an *“extensive
form correlated equilibrium.”

Now, if the problem is to enable the players to coordinate their strategies at
every stage of the game, why not go one step further and add to the game a
general “communication device™, selecting outputs for the players at every stage
but also receiving inputs from them? Such machines could be programmed so
that the signals that are sent depend on all the past inputs and outputs; this
involves both preplay and intraplay communication. In the same way as above,
a solution concept can be associated; it will be referred to as ‘“communication
equilibrium.”

The use of communication devices acting at every stage of the game (including
autonomous devices), though attractive, is hard to justify if the rules of the game
are interpreted in a strict sense. In this case, there are no other intraplay communi-
cation possibilities than those consigned in the tree, so that the game is played
following a scenario of the form: before the beginning of the game, the players
eventually meet and communicate; next, they go into separate cubicles where all
their information comes from a central machine that controls the game. If such
a strict point of view is adopted, the only communication that seems legitimate
is preplay communication, corresponding to the normal form correlated equili-
bria. (Autonomous devices and their associated extensive form correlated equili-
bria can be justified with an intermediate interpretation of the game tree: in the
previous scenario, the cubicles would have (differently oriented) windows through
which the players could observe the course of the clouds ... or sunspots.)

Another point of view can be adopted: the specified rules of the game can be
interpreted as providing a “reduced form” framework within which the players
must interact, yet which does not preclude them from engaging in various forms
of communication. While the analysis of the tree containing all the communication
moves could be very complex, the solution concepts considered here enable a
manageable description. The different classes of equilibria correspond to various
restrictions on the communication possibilities. Obviously, many other variants
are conceivable: one could focus on memoryless communication devices
(modelling telephone networks), or on “direct communication,”” where the players

2 The idea of referring to extrinsic signals as “sunspots” is taken from Cass and Shell (1983). The
possibility of a connection between sunspot equilibria and (extensive form) correlated equilibria was
pointed out to me by J.-F. Mertens. Notice that sunspot equilibria were developed in a context
completely different than the present one and from here the players may have private observations
on the sunspots. )
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are restricted to public announcements, heard exactly as they are made (see
Farrell (1984)), and so on.

In the next sections, we formalize the solution concepts and show, for each of
them, that the set of corresponding equilibrium payoffs has a canonical representa-
tion (in the spirit of the revelation principle) and is a convex polyhedron. We
also provide for each concept a ‘“‘super-canonical”” game such that the set of
payoffs associated with the solution concept is precisely the set of standard Nash
equilibrium payoffs of this game.

2. BASIC DEFINITIONS

We concentrate on a multistage game G with perfect recall, played by N players
(indexedbyn=1,2,..., N)during T periods (indexedbyt=1,2,..., T). Period
t of G begins with a move of nature; then every player n gets additional
information, which concerns the past moves, including those of nature; finally,
the players move simultaneously to conclude period t. Let S7 be the (finite) set
of possible additional information of player n at period t; the set of information
of player n at period t is thus H} =[];-, S7; let M be the (finite) set of possible
moves for player n at period . We use X7 to denote the set of all the pure
behaviors available to player n at time ¢, i.e. the set of all mappings from H?7 to
M7, The description of the game is completed by real payoff functions defined
on the space of all histories (i.e., sequences of moves of all players, including
nature). This is very close to von Neumann’s definition of an extensive form; we
discuss extensions to the more general extensive form of Kuhn in the concluding
remarks.

To refer to events occurring before the beginning of the game G, it will be
convenient (but in fact not necessary (see Proposition 1)) to add a preliminary
stage (denoted ‘“‘stage 0’’) to the description above. At stage 0, no information
is given and no move is made; we take thus the convention that Sg and Mg are
singletons for every n=1,...,N.

DEFINITION 1: A communication device d for G is a collection {I}, O}, P,:t=
0,...,T; n=1,...,N} where I} (resp., O}) is a set of inputs (resp., outputs) for
player n in period ¢t and P, is a transition probability that chooses the outputs
(in [, O7) as a function of the past and present inputs (in [[;—o [], I7) and the
past outputs (in []._, [T, OF).

A communication device is called autonomous if it does not involve any set
of inputs (that is, I7 is a singleton set, for every n and t).

A correlation device is an autonomous device where all outputs precede the
beginning of the game: it is completely described by sets O" of outputs for every
player n(n=1,...,N) together with a probability distribution P on [], O" (i.e.,
O"=0g; O}, t=1, and I}, t=0, are singleton sets).

Given a communication device d, one can define the extension G, of G as
the new game with perfect recall obtained by adding d to G. Forevery t =0, ...,T,
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period t of G, can be described as follows: All players n=1,...,N get simul-
taneously their new information in S7. They transmit simultaneously an input in
I to the device d, which then selects a vector of outputs in [], O, one for every
player n=1,..., N, using P,. The players n=1,...,N make their move in M.

REMARK 1: For the sake of simplicity and brevity, the sets I7 and O7 will be
assumed to be finite. Using the results of Aumann (1964), the same analysis could
be done for probability spaces (which could be required in a Bayesian approach).
In particular, Proposition 1 holds in the general context, which justifies a posteriori
the finiteness assumption. (Further details can be found in Forges (1985b).)

REMARK 2: If d is an autonomous device, the outputs of stage 0 (before the
players get their information in S7) can as well be sent at stage 1 (after they get
their information in S7) because the players cannot make any input in between.
But it may be easier to think in terms of the events “preceding the beginning of
the game.”

Now we turn to the associated solution concepts.

DEFINITION 2: A communication equilibrium (resp., extensive form correlated
equilibrium; resp., normal form correlated equilibrium) in G is a Nash equilibrium
in the extended game G, obtained by adding a communication (resp.,
autonomous; resp., correlation) device d to the game G.

A set of equilibrium payoffs can be associated with every class of devices; we
denote by D (resp., Dy; resp., C) the set of payoffs from communication equilibria
(resp., extensive form correlated equilibria; resp., (normal form) correlated equili-
bria). Obviously, C is a subset of D, which is itself included in D; these inclusions
may be strict as the following examples show.

ExAMPLE 1: D is not included in D,.

Nature selects at random one of the two following payoff matrices shown in
Figure 1, and informs player 1 of its choice. At the first stage, player 2 chooses
L or R without knowing the true matrix. The pair of payoffs (0, 1) is not in D,
but it is in D where player 1 can reveal the choice of nature to a device which
suggests to player 2 to choose L if T, R if B. This example illustrates that general

L R
ve- Tt Lot ] 00

<o s

Y2
Ng: |0,0] 04

FIGURE 1.
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FIGURE 2.

communication devices (with inputs) are not legitimate when the rules of the
game are interpreted in a strict sense: in the original game tree, player 1 is a
dummy player; the situation changes completely if a communication device is
added.

ExampLE 2 (Myerson, 1986): D, is not included in C.

At stage 1, player 1 has two possible actions, L and R; if player 1 chooses L,
the two players must move simultaneously at stage 2. The payoffs are as shown
in Figure 2. Here, the pair of payoffs (3, 3) is in D, but not in C; indeed, if the
game is described in normal form, (L, r) is strictly dominated by R so that in
any correlated equilibrium, player 2’s payoff cannot exceed 2. But (3, 3) can be
achieved by means of a device choosing (], A) or (r, p) at random just before
stage 2.

3. A CANONICAL REPRESENTATION

We will now establish that every set of equilibrium payoffs has a canonical
representation. This shows in particular that the ‘“descriptive approach” to
autonomous devices (where the players can observe extraneous signals from their
outside environment) is fully equivalent to the “normative approach” (where
devices are used for strategic coordination, i.e., recommendations are given to
the players). In the case of normal form correlated equilibria, the canonical
representation was obtained by Aumann (1974, 1985). Various other particular
cases are known under the name “revelation principle” (see, for instance,
Myerson, 1982). To get a precise statement, we need some terminology.

DEFINITION 3: A communication device is. called canonical if the set of inputs
of every player n in period ¢ is a copy of his set of additional information at
that time (I = S7%) and his set of outputs is a copy of the corresponding set of
moves (O = M?%).
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An autonomous device is called canonical if the output to every player n in
period t consists of a pure strategy (in G) for stage t (O7=27).

A correlation device is called canonical if the output to every player n consists
of a pure strategy in G (O" =[], 27).

A communication (resp., extensive form correlated; resp., normal form corre-
lated) equilibrium is called canonical if it uses a canonical communication (resp.,
autonomous; resp., correlation) device and if every player reveals truthfully his
knowledge (in the nonautonomous case) and follows the recommendation of the
device.

PROPOSITION 1: D (resp., Dy; resp., C) is the set of canonical communication
(resp., extensive form correlated; resp., normal form correlated) equilibrium payoffs.

ProoF: The proof follows the scheme of the standard proof of the revelation
principle. For example, in a communication equilibrium using an arbitrary
communication device d, the strategy of player n can be used to program a device
d" which first receives as input from player n his private information, next
evaluates the input player n would originally have sent to d and transmits it to
d, then receives the output d would originally have sent to player n, and finally
evaluates the move to be made by player n, constituting its output to player n.
The communication device d’ formed by d and the d™’s considered as a whole
is clearly canonical. The N-tuple of strategies where every player reports truthfully
his knowledge and plays the suggested move is an equilibrium in G,; indeed,
the players have less information, and thus less possible deviations, in G4 than
in G,. For extensive and normal form correlated equilibria, a similar construction
goes through (or, in the latter case, see Aumann, 1985). Q.E.D.

Proposition 1 provides several corollaries. The first one® states that to realize
an equilibrium payoff in D,, the players do not need to observe private signals
at every stage of the game: provided that they receive a private signal before the
beginning of the game, one can restrict to public lotteries at the next stages. This
strengthens the analogy with sunspot equilibria, sunspots being usually thought
of as publicly observable.

CorROLLARY 1: Every equilibrium payoff in D, can be achieved using an
autonomous device where all outputs from stage 1 on are public ( private outputs
being sent at stage 0).

ProOOF: Let x € Dy; x can be achieved by means of a canonical device d. Let
us modify it into a new autonomous device d’. At stage 0, d’ selects independently
for every n and t=1 a random permutation [[7 of X 7; the sequence ([[?),=, is
only transmitted to player n. At every stage ¢t =1, d’ selects outputs o in 37 as
d but announces publicly []7 (o7),n=1,...,N. It is easily checked that d’
satisfies our requirements. Q.E.D.

3 Corollary 1 is a corollary of Proposition 1 in the sense that it uses the result that the sets of
outputs of an autonomous device can be assumed to be finite (see Remark 1 after Definition 1).
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4. THE STRUCTURE OF D, D,, AND C, AND A SUPER-CANONICAL
REPRESENTATION

We will now show that, from a computational point of view, the concepts
introduced here are more tractable than the Nash equilibrium. The sets of
equilibrium payoffs considered here have indeed a very simple structure. For C,
this property was established by Aumann (1974, 1985).

CoROLLARY 2: The sets D, D,, and C are (compact) convex polyhedra.

Proor: The proof is given for D; it is similar for D, and C (see also Aumann,
1985). Let us add to G an N + 1st player with zero payoff on every history and
pure strategies (o] *'),~, where

N N -1 N

ot (1 a1 mz) = 11w

n=1 n=1r=1 n=1
Every canonical communication device for G can be described by a mixed strategy
P of player N+1. Indeed, o™*' is the typical mapping that would be used by
a deterministic canonical device at stage ¢ and even if Definition 1 was rather in
terms of behavioral strategies, Kuhn’s theorem (see Kuhn, 1953) is applicable
(since the devices have perfect recall).

Let o,= (o) be the N-tuple of pure strategies of players 1,...,N consisting
of reporting the truth and playing the suggested move at every stage. The set of
canonical communication equilibria in G can be represented as the set of all
mixed strategies P of player N+1 such that (o, P) is an equilibrium in the
N +1 person game. This set is a convex polyhedron since it is described by
finitely many linear inequalities (expressing that for every n, o is preferable to
any other pure strategy). The same property holds for the set of associated
payoffs, this being the image of the polyhedron by a linear mapping, and
hence for D. Q.E.D.

This characterization enables us to construct, for each given game G, a single
communication (resp., autonomous; resp., correlation) device d such that D (resp.,
D; resp., C) is precisely the set of Nash equilibrium payoffs of G,. To see why
such a “super-canonical form” may be useful, observe that each canonical device
constructed in Proposition 1 is designed with a particular communication (resp.,
autonomous; resp., correlation) equilibrium in mind. Suppose that the players
have to negotiate over and agree upon the design of the communication (resp.,
autonomous; resp., correlation) device. Then one might worry that these
negotiations would lead to a leaking of private information (see Holmstrom and
Myerson (1983) for a discussion of this problem). With the super-canonical form
we will construct, the players do not have to bargain about the device to be used:
one single extension of the underlying game G serves for all equilibrium payoffs
in D (resp., Dy; resp., C).

To construct a super-canonical communication device d, let x,,...,x, denote
the extreme points of D; they can be achieved by canonical communication



1382 FRANCOISE FORGES

devices d,, ... ,d, respectively. d corresponds to the following: before the first
stage, every player transmits to d the weights w,,...,w, corresponding to the
payoff ), w;x; to be achieved; d chooses then among d,,..., d; using the
probability distribution wy,...,w,. If all the players do not report the same
weights, d chooses according to the majority rule; this works for N=3; if N=2
and the two vectors of weights are not identical, d sends a specific output to
both players. The equilibrium strategy of every player (in the extended game)
may then include applying a punishment strategy (minmax in the original game)
when the specific output is sent, preventing the opponent from reporting ‘“wrong
weights.”

For D, and C, consider the following autonomous device d: d selects a
(k+1)-tuple of signals, independently of each other; for the £th component
(1=s¢<k), d proceeds as d,; the last component consists of a random variable
x uniformly distributed on [0, 1] and is transmitted to every player at the first
stage of the game; every player receives in addition his k-tuple of signals selected
above (for C, all the signals are sent at the first stage; for -D,, the procedure goes
on at every stage). The players can thus decide to use the £th (1< ¢=< k) component
of their information if

-1 £

Yy wisx<y w

i=0 i=0
where we set w, = 0. Using the result of Blackwell (1953), the uniform distribution
on [0, 1] can be replaced by an appropriate distribution on the positive integers
so that d uses only countably many outputs.

ReMARK: The latter construction cannot be used for D because then outputs
are selected as a function of inputs from the players and a vector of outputs
associated with different canonical devices d,,...,d; can reveal much more
information than a single output from one of the d;’s (think of the nonrevealing
equilibrium and the completely revealing equilibrium in Example 1).

5. CONCLUDING REMARKS

REMARK 1: We have seen that in general D is strictly larger than D, and D,
is strictly larger than C. There are however classes of games where C = D. This
has some importance since the computations needed for C are conceptually less
difficult. Also, if C = D, one can get the effect of a general communication device
without violating the rules of the game. Such an equivalence result was first
established for a class of repeated games with incomplete information (Forges,
1982, 1985a). Similar arguments can be applied to show that C = D in (one-shot)
games of information transmission, a model studied for instance by Green and
Stokey (1980) and Crawford and Sobel (1982), where one player has private
information and sends a signal to a second player who then takes an action.*
(See also Forges, 1985b.)

“# This result requires the use of costless signals; therefore, it does not directly pertain to signalling
games where signals are costly.
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REMARK 2: One may wonder whether the communication equilibrium is a
strictly noncooperative solution concept. Obviously, it is defined as a noncoopera-
tive solution (Nash equilibrium) of an extension of the game. On the other hand,
a communication device is a kind of outside enforcement mechanism, requiring
some commitment of the players, in the sense that they are asked to make inputs.
Now, one can always give every player the option of not sending any input,
provided that the device has a default message procedure, consisting of acting
as if the player had sent some specified input. In any case, the communication
devices are not directly connected to the original game; the only connection is
through the players. In particular, if the device makes recommendations, the
move remains the choice of the player. Our extensions of Aumann’s correlated
equilibrium are thus completely different from the one proposed by Moulin and
Vial (1978) and Gérard-Varet and Moulin (1978): there, explicit commitments
are required because the devices may play for the players. Finally, let us recall
that the cooperative aspect of the mechanism design phase can be avoided by
using the “super-canonical form” of Section 4.

REMARK 3: A last remark concerns general extensive games. We focused on
games with a time structure, which is not the most general model for games in
extensive form (unlike von Neumann’s extensive games, Kuhn’s extensive games
are not endowed with a chronological order: see von Neumann and Morgenstern
(1953, pp. 73-76), and the discussion in Kuhn (1953)). To extend the analysis
to arbitrary extensive games, one is tempted to allow the output of the devices
at any node to depend on the information set containing that node (the devices
would be “attached” to the information sets as before to the stages; this amounts
to working with the agent normal form of the game, which is obtained by giving
the running of every information set to a different agent). But even for games
with the simple temporal structure used here, this extension raises grave questions.
To see this, let us consider an example. At the beginning of the game, nature
chooses one of two payoff matrices, T or B, with probability 1/2 and informs
player 1 of its choice. Player 1 then sends a message to his uninformed opponent,
who has to take one of two possible actions, L or R. Here, we want signalling
to model the idea that player 1 can “talk” to player 2: we allow thus a large set
M of messages, say M =[0, 1] to simplify the analysis (we will come back to
this later on), and we assume that signalling is costless. The payoffs are as shown
in Figure 3.1t is easily checked that D = {(0, 1)}, every communication equilibrium
being necessarily nonrevealing: independently of his type, player 1 wants to
induce action L with the highest probability; hence player 2 can just maximize
his expected payoff, leading him to play R (this holds for every set M).

Now, let us describe an autonomous device attached to the information sets
and analyze its effects. As before, the device is not connected with the game, in
the sense that it does not have access to the information of the players; in
particular, it does not know whether T or B has been chosen by nature. Being
autonomous, the device can only send outputs, it cannot get any information
from the players. But the device consists of “connected branches,” each branch
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FIGURE 3.

acting at an information set, so that it can send a different output to player 1 at
the information set “T” and at the information set “B.”

Let us show that this enables achievement of a completely revealing equilibrium,
where player 2 plays L if T and R if B. For this, let the autonomous device select
a message u uniformly in M and transmit it as an output to player 1 at his
information set T and to player 2 at any information set. No output is sent to
player 1 at the information set B. The equilibrium strategies are: for player 1, at
T, send the message u received from the device; at B, send an arbitrary message
in M; for player 2, play L on w, R on all the other messages. The associated
payoft is (0.5,1.5). Here, one uses that u is chosen uniformly in [0, 1], so that
player 1 at B cannot “guess” u (the probability that a message m coincides with
u is zero). But the same analysis can be done with a large finite set M, in which
case the equilibrium payoff has the form (0.5+¢/2,1.5—¢).

Notice that this scenario is equivalent to the one corresponding to the “agent
normal form” of the game where nature chooses between two individuals 1, and
1p at the beginning. The autonomous device would not know whether player 1
or 1 has been selected to play the game but could transmit different outputs to
each of them, to be used by the agent if he is active. '

This example illustrates that generalized devices are too powerful. If one applies
to a multistage game the generalization of the autonomous device designed to
deal with arbitrary extensive games, one can get a set of equilibrium payoffs not
only larger than D, but larger than D. What is then the appropriate device for
general extensive games? This question is left for future research.

CORE, 34, Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium.

Manuscript received April, 1985; final revision received February, 1986.
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