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1. Introduction

The standard practice in economic applications of game theory is to assume
that observed behavior in the situation beiry modeled will correspond to one of
the Nash equilibria of the game. Yet Nash equilidrium supposes that all players
have correct and independent beliefs about the off-path play of their opponents,
and it is unclear why this should be the case. Several informal justifications have
been suggested, among them the idea that players learn their opponents’ strate-
gies from repeatedly playing the game. However, as we argued in Fudenberg
and Kreps (1994), general learning models need not lead to Nash equilibirum
in extensive-form games: Repeated observations may lead players to learn the
actions their opponents use along the equilibrium path of play, but players may
not receive enough observations of their opponents’ off-path play to justify the
assumption that players know their opponents’ strategies.

This paper investigates additional conditions under which learning does im-
ply Nash equilibirum in general extensive-form stage games. We consider models

in the general style of fictitious play: A small group of players interact repeatedly
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in a single noncooperative game, called the stage game. The players’ behavior
is asymptotically myopic; i.e., players maximize (asymptotically) their immediate
expected payoffs given their beliefs. Their beliefs are asymptotically empirical; i.e.,
if player 7 observes j acting in a particular situation a large number of times,
i ‘s prediction of j’s behavior is close to the empirical frequencies with which j

has acted in the past.

With these assumptions on beliefs and behavior, one can show that asymp-
totic steady states of the learning process must be Nash equilibria of the stage
game, if the stage game is a game in strategic form and players learn, after
each round of play, the strategy profile chosen by rivals (see Fudenberg and
Kreps, 1993). But when the stage game is a game in extensive form and players
observe only the actions taken by their rivals in the course of play, then any
self-confirming equilibrium’ is a candidate for an asymptotic steady state (see
Fudenberg and Kreps, 1994). There are two reasons the set of self-confirming
equilibria can contain non-Nash profiles. First, in a self-confirming equilibrium,
two players can entertain diverse beliefs about the actions of a third, if the third
moves at an information set that is off the path of play. Second, one player can
entertain beliefs leading to correlations in the conjectured play by two or more
rivals at information sets that are off the path of play. The learning models we
have studied do not preclude either of these phenomena, because players need
not learn about things they don’t observe, and they may not observe behavior
by their rivals at information sets that are off the path of the asymptotic steady

state of the process.

If players experiment with suboptimal strategies/actions, however, it is pos-
sible that they obtain enough information about off-path play that only Nash
equilibria are candidates for asymptotic steady states. In this paper, we build

1 Self-confirming equilibrium is used in this paper as short-hand for Fudenberg and Levine’s (1993a)
self-confirming equilibrium with unitary beliefs.



directly on the analysis and results of Fudenberg and Kreps (1994), to see what

it takes to obtain this type of result. Our analysis proceeds as follows.

We note first that, although Nash equilibrium supposes that players’ beliefs
are correct at every information set, observed play in a self-confirming equilib-
rium must be Nash if the beliefs meet the weaker requirement that each player’s
beliefs are correct at every information set that the player could cause to be
reached. Intuitively, the player’s optimal strategy depends only on his beliefs
about play that are “relevant” in this sense; the player’s optimal choice is not

affected by beliefs about information sets the player cannot cause to occur.

To ensure that players’ beliefs are correct at all of these relevant information
sets, we develop assumptions that imply three things: all relevant information
sets are reached infinitely often; beliefs at informations sets that are reached in-
finitely often converge to the empirical distribution of play at these information
sets; and play at these information sets resembles the “target strategy” the stabil-
ity of which we are testing. We formalize the latter two conditions by strength-
ening the asymptotic empiricism and asymptotic myopia conditions of our 1994
paper.

The condition that all relevant information sets are reached infinitely often
proves more complicated to develop. We suppose that relevant information sets
are reached because players experiment with suboptimal actions and /or strategies,
and we formulate lower bounds on the frequency of experimentation that make

it plausible that relevant information sets will be reached infinitely often.

Even if players do experiment “sufficiently frequently,” some relevant infor-
mation sets may not be reached infinitely often if, with high enough probability,
two or more players experiment at the same dates. This problem is avoided if the
players experiment at each date with probability bounded away from one, but
that assumption is unappealing. We therefore develop an alternative assumption

which serves the same purpose, based on the idea that players test the hypothe-
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sis that the strategies used by their opponents are uncorrelated with the player’s
own choices. These statistical tests have the additional virtue of making our

assumptions of asymptotic empiricism and asymptotic myopia more plausible.

Under these assumptions, we show that strategy profiles that are not Nash
equilibria are unstable and that, conversely, all Nash profiles are weakly stable.
Under somewhat weaker conditions on the players’ off-path behavior, we show
that outcomes (probability distributions over terminal nodes) are unstable if they
cannot be generated by some Nash equilibrium. This result addresses the case
where individual profiles fail to be stable only because the off-path play fails to
converge, even if on-path behavior does converge. However the value of this
result is questionable, as one of the assumptions required for it is highly suspect

if we don’t think off-path behavior is converging.

In Fudenberg and Kreps (1994), we argued that the Nash hypothesis of cor-
rect and independent beliefs at all information sets is unwarranted for off-path
information sets, at least in the context of a learning story of our type. The re-
sults given here do provide conditions under which non-Nash steady states are
impossible, but we believe that they should be viewed as primarily negative. The
story we tell to rationalize Nash equilibrium calls for too much experimentation
by the players and for behavior and beliefs rules that are too restrictive. If these
assumptions are needed to guarantee that only Nash equilibria can be asymptotic
steady states (begging the question of whether an asymptotic steady state will

emerge at all), then assuming Nash in applications is too much.

Of course, there are possible rationales for Nash equilibrium other than the
learning story considered here.? But on the basis of this analysis, our skepticism
about the Nash hypothesis, applied to extensive form games, has increased. Our

objective is to raise the reader’s skepticism to a similar level.

2 Examples include preplay communication and evolutionary processes such as the replicator
dynamics.



2. Preliminaries

2.1. The stage game

We take as given some [ -player extensive-form game, called the stage game.
We imagine that the same I players play this game repeatedly, at dates t =
1,2,3,....

The stage game is a finite I -player extensive-form game of perfect recall
The set V' is the set of nodes in the game tree, partially ordered by the precedence
relation <; Z C V is the subset of terminal nodes, and X =V \ Z is the set of
nodes where some player takes an action. The information sets A € H partition
X ; h(z) is the information set containing z; :(h) is the player who moves at
h; H' is the set of player :’s information sets; and the information sets of ’s
opponents are denoted by H~% = H \ H'. The feasible actions at h are denoted
A(h) and are labeled so that A(R)NA(R') =0 for h# h'; h(a) is the information
set at which « is an available action. The set of feasible actions for player :
is denoted A‘; the set of feasible actions for i’s opponents is written A~%.
Because the game has perfect recall and each action a € A? lies in a single A(h),
the precedence relation can be extended to H'UA'U Z; we write h < h',a < h,
and so on, for h,h' € H* and a € A’, for any player :. All of Nature’s moves (if
any) are placed at the start of the tree, so that each move by Nature corresponds
to an initial node of the tree. The set of initial nodes is denoted W , with ¢ the
objective initial probability distribution over W, which is known to all players.
Player i’s payoff if terminal node z is reached is u'(2); player i knows u®.
Our formal model is agnostic about whether players know the payoff functions

of their opponents.

A pure strategy for player i in the stage game, written s', is a map from H:
to A' satisfying s‘(k) € A(R); S° is the set of all pure strategies for ¢. A mixed
(behavior) strategy is a function =* that maps each h* € H* to an element of the

space A(A(h')) of probability distributions over A(h'); IT' denotes the space of

5)



player i’s behaviorally-mixed strategies. Pure and behaviorally-mixed strategy
profiles are denoted by s and 7, and are elements of S = []; St and IT =[], II*,
respectively. For pure and behaviorally-mixed strategy profiles for all players
except i, we use symbols s~ and 7, coming from the sets S~ = []; 5’
and I =]];,II’.

Each strategy profile m together with the initial probability distribution ¢
induces a probability distribution p(-|x) over the terminal nodes, which is com-
puted under the assumption that each player’s behavior is independent of the
behavior of others. This probability distribution is called the outcome induced by

7. In general, p will denote a probability distribution on Z, called an outcome.

Let Z(x) denote the support of p(-|r). Similarly, let X(x) be the set of all
non-terminal nodes that have positive probability under =, and let H(r) denote

the set of all information sets that « hits with positive probability.

2.2. Histories

Each play of the game at a given date results in a particular terminal node
z € Z being reached, so the history at the beginning of round ¢ of play is an
element (; = (z1,--,21-1). (For t =1, {; is used conventionally to denote the
initial [informationless] history.) We assume that all players observe the outcome
at the end of each round, so that all players know (; at the start of round ¢.
We use ¢ to denote an infinite history of play (z1,22,...), Z to denote the space
of all infinite histories (so that Z = (Z)*), and Z; to denote the space of all
histories up time ¢ (so that 2, = (Z)*").?

Throughout this paper, we implicitly assume that all players know the game
tree, the information sets, their own payoffs as a function of the terminal nodes,
and ¢. Each player assumes that his own behavior #* and the behaviors 7/

of each of his rivals are independent, so that if i plays according to 7' and is

3 In general, subscripts will denote time and superscripts will denote players. The exceptional
case of Z to the power ¢t — 1 is indicated by (Z)*~!.
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certain that rivals play according to 7~*, then the outcome of the game will be

the terminal node z with probability p(z|r).

We generally use «(-;(;) as a counting function for the number of times
the argument has “happened” up to time t, along history ¢;. That is, «(v;(;)
denotes the number of times node v € V was reached, «(k;(;) denotes the
number of times information set h € H was reached, and «(a;(;) denotes the

number of times action ¢ € A was taken.

2.3. Behavior rules

Player :’s behavior rule specifies the behavior strategy of : for each date
t and each history {;. We write #* for a behavior rule of i, with #4((;) the
behavior strategy for date ¢ in history (;. We write #i(¢;)(h) to refer to the
behavior rule at information set k € H*, although we also write #(¢y)(a) for the

probability with which i takes a at ¢, given history (;.

Behavior rules for each player, together with the probability distribution over
initial nodes for each stage, give a probability distribution for the evolution of
the entire system. We use P(-) to denote this probability distribution, where the

dependence on the players’ behavior rules is implicit.

2.4. Beliefs rules

The players in our model will base their actions to some extent on predictions
or assessments they make about the actions of their rivals. We model this with a
beliefs rule 4* for each player i, which gives for each date ¢ and partial history (,
a probability distribution v{({;) on the (behavioral) strategy profile of i ’s rivals.
That is, 7;({;) is a probability distribution on II~*. We interpret this as s
beliefs as to the profile his rivals are about to use. Note that 7~* € IT~* involves
independent play by i’s rivals, but 4:(¢;), being a mixture of 7, allows i to

have correlated conjectures about his rivals’ play.

For given t and (:, i’s immediate expected payoff if he plays strategy =*,
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relative to his beliefs, is

Wt sl = [ S u @t i),

—ten-* z€Z

2.5. Review from Fudenberg and Kreps (1994)

We conclude this section by reviewing the central definitions and results of
Fudenberg and Kreps (1994).

Forall ¢ € Z,let Hps(¢) be those information sets that are reached a strictly
positive fraction of the time along the history (, using a limit infimum test; i.e.,
h € Hpg(¢) if lim inf, e #(h; )/t > 0.

Definition. Player i’s belief rule 5t is asymptotically empirical if for every € >0,
every infinite history (, every information set h? € Hpg(() N H i for j+#1i,and every
a € A(RY),

s(a; G1)

Jim 5o ({~

In words, i’s beliefs as to what will happen at information set k7 must be
converging to a neighborhood of the empirical record of actions taken at previous

visits to k7 if ki has been visited a nonvanishing fraction of the time.

Definition. Fix player © and i’s beliefs rule 4. The behavior rule 7 fbr i is asymp-
totically myopic with calendar-time limitations on experimentation if there exist:
(1) a sequence strictly positive numbers {e;} with lim; .o €1 = 0, (2) a nondecreas-
ing sequence of nonnegative integers {nt = 1,2,...} with limyeo neft = 0; (3)
behavior rules # and % for i; and (4) for each t, (,, and h € H*, a number

&(¢o)(R) € [0,1], such that:

(@) Forall ¢, (¢, and h € H', #i(C)(h) = &(C)(R) x F{(C)(R) + (1 -
E(CHR) x FCH).



(b)Forall t, ¢;,and h € H', w'(#(C)), #(Ce))+er > maxycs: ui(s',5(C)) -

(c) If &(C)(h) < 1, then w(a';(s) < s for some o' € A(h), and #i((:)(R)
gives positive probability only to actions a € A(h) such that x(a; () <1y .

We call %' the nonexperimental portion of i’s behavior rule, with #* the ex-
perimental portion. The interpretation is that player : decides, information set
by information set, whether to experiment, with &:((;)(k) the probability that i
doesn’t experiment at ». Experiments are only permitted with actions that have
been taken infrequently relative to calendar time (part (c)), and the nonexperi-
mental portion of :’s strategy must be asymptotically myopically optimal, on an
ex ante basis (part (b)). *

In the following definitions the term model is used to mean a specification
of beliefs rules and behavior rules, one each for each player in the stage game.
Recall that P(-) denotes the probability distribution over Z induced by any fixed

model and the (fixed) initial distribution over initial nodes in the stage game.

Definitions.® (a) A strategy profile =, is unstable relative to a given class of models

if there exists € > 0 such that, for every model from this class,
P(||#:(¢e) — mi|| < € for all £) = 0.

(b) The outcome p, is unstable relative to a given class of models if there exists € > 0

such that, for every model from this class,

P(|lp(7:(¢e)) — p*||,< eforall t) =0.

* Part (b) of the definition prevents # from assigning a large probability to an “experimental”
action, but since % can be slightly (vanishingly) suboptimal, # can assign (vanishingly) small prob-
ability to suboptimal actions. Thus while deterministic experiments cannot be accomodated within

#* , “experiments taken at random” can be; cf. Fudenberg and Kreps (1994).

> Throughout, #:(C) is the profile of strategies employed by the players at date ¢ with history
¢t,and ||-|| denotes the sup norm in whatever (finite-dimensional Euclidean) space is appropriate.



(c) The profile =, is locally stable relative to a given class of models if for some model

out of this class,

P(tl_llgo 7rt(<t) = 'ﬂ'*) > 0.

Definition. The strategy profile =, is a self-confirming equilibrium ® if for each player
i there are beliefs ~. such that
(a) ni maximizes u*(w',~), and

(b) ~vi({x=i: wi(R7) = i(RF) for all j # i and bI € H(r,)}) = 1.

Proposition 2.1. For the class of models where beliefs rules are all asymptotically
empirical and behavior rules are all asymptotically myopic with calendar-time limitations
on experiments: (a) Strategy profiles that are not self-confirming equilibrium profiles are
unstable. (b) Moreover, outcomes that are not the outcomes arising from a self-confirming
equilibrium are unstable. (c) Every self-confirming equilibrium strategy profile is locally

stable.

3. Relevant information sets

A self-confirming equilibria is not Nash because of incorrect assessments
by some players about what happens off the path of play. But to know that
a self-confirming equilibrium strategy profile is a Nash equilibrium, we do not
need to assume that each player has correct assessments at every information set.
 Any given player can be wrong about what would happen at information sets
that cannot be reached unless others deviate. It is sufficient that assessments are

correct at information sets that are relevant in the following sense.

Definition. An information set h € H is relevant to player i at the profile =, if
he H(x',x[*) for some =* € IT*.

¢ In terms of the original definition in Fudenberg and Levine (1993a), this is a self-confirming
equilibrium with unitary beliefs.
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This definition is phrased “objectively”; it speaks about information sets that
are relevant to player : given a profile of behavior by : and his rivals. An
alternative, “subjective” definition would fix i’s beliefs at ' and ask which

information sets ¢ belicves might be reached, as he changes his own strategy.
For the set of information sets relevant to : at the profile «,, we write
A@r)= |J HE, .
mi €Il
We will also write Hi(r; ) for information sets relevant to i given a profile of
strategies for his rivals.

To illustrate this definition, fix a strategy profile =, . For each player :,
all the information sets that lie along the path of play are relevant to z; ie,
H(r,) C Hi(x,) for all i. If player 7 is never called upon to move at the
strategy profile «, (ie., if H* N H(x,) = ), then H(x,) = Hi(r.). If player i
does move along the path of play at =, , all information sets that he can cause
to happen (with positive probability) by deviating along the path are relevant,
as are information sets that he can cause to happen by a further deviation at an
information set he causes to happen by a deviation along the path of play, and

SO on.
Proposition 3.1. If a strategy profile =, and beliefs (%,...,v}) satisfy

(a) for each i, wi is a best response against the beliefs ~% ; ie., u*(ri,vi) =

maxgicgi u(s?, ) ; and

(b) for each player i,
yi({m™" ¢ w7 R) = a7 (R) forall h € Hi(x[)\ H'}) =1,

then =, is a Nash equilibrium.

In words, given a strategy profile and beliefs for each player that rationalize the

player’s part of the strategy profile, the profile is a Nash equilibrium if each
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player’s beliefs are correct at information sets that are relevant to the player.”
Compare with the definition of a self-confirming equilibrium, where beliefs are
necessarily correct only at information sets along the path of play.

The proof of Proposition 3.1 is a straightforward corollary to the following

lemma, which (in turn) is a matter of stringing definitions together.
Lemma 3.1. Fix ©~%, and let +* be any set of beliefs for player i such that
V({7 7Ry =aT (k) forall ke Hi(x ")\ H'}) = 1.
Then for all =, w(x*, 77%) = ui(n’,v").
The following is a useful “contrapositive” to Proposition 3.1.

Proposition 3.2. If a strategy profile =, is not a Nash equilibrium, there there exists

an € >0, aplayer i, and a strategy ' € II' such that for all beliefs ~* satisfying

v ({n* max |[wi(R)) — 7RI < €}) > 1€,
JFLMER ()

and for all ©* such that ||7* — x| <€,

WE L) > u(nt, ) + €

Proof. Although this is fairly standard (following Lemma 3.1), we provide some
of the details for completeness. Since , is not a Nash equilibrium, there exists

a player i and a strategy #° for player : such that

Wi, w0 > (g, ). 3.1)

7 For at least two reasons, this condition is sufficient but not necessary. First, for some payoff
functions, much less information may be required. For example, if «% is a strict best response to
i for each i, beliefs can be slightly incorrect everywhere and we have a Nash equilibrium profile.
Taking this to an exireme, if each player has a strictly dominant strategy, it doesn’t matter what each
believes. Second, even for general payoff functions, our definition of relevant information sets is too
inclusive. If player i doesn’t move along the path of =., then i’s beliefs are irrelevant. More
generally, if p(s*, 7, *)(z) is unaffected by s* for z that follow some h € H7, then i’s beliefs
about what happens at h are irrelevant.
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Suppose that the conclusion of the proposition is false. Then for every n we can

find some «} and v} such that

v({77' ¢ max W) —xi@B)| <1/n}) > (n—1)/n, (32
J#i,hI eHix Y

|| — 7i]| < 1/n, and yet
ui(mh,ve) + 1/n > u' (7, 75). (3.3)

(In this proof, subscripts n refer to a sequence and not to the usual index of
time.) Each II’ is a compact subset of a complete, separable metric space, so the
space of beliefs by player i (the space of probability measures on []; I J)isa
compact subset of a complete separable metric space under the topology of weak
convergence. We can therefore find beliefs 7% such that, along a subsequence,
~i converges to 7. in the weak topology. Of course, 7, converges to =% along
the sequence. Since u' is continuous in both its arguments (the second, in the

weak topology), passing to the limit along this subsequence in (3.3) yields
u'(mh, 7h) 2 uH(E, 7). (34)
And passing to the limit in (3.2) yields
vi({xT o wI(RT) = 7k (h) forall b € Hi(x[Y)}) = 1. (3.5)
But then by Lemma 3.1, an implication of (3.5) is that

wi(nl,7i) = wi(x}, 777) and Wi, 7)) = ' (7, 7 0).

Compare this with (3.1) and (3.4), and a contradiction is obtained. "

13



4. Beliefs and behavior at off-path information sets

In order to conclude that players learn enough about behavior at relevant
off-path information sets, we will make assumptions that ensure that all relevant
information sets are reached infinitely often. But this is insufficient to eliminate
non-Nash profiles, given our definitions of asymptotic empiricism and asymptotic
myopia. Neither of these conditions imposes restrictions on beliefs or behavior at
information sets reached a vanishing fraction of the time, even if the information
set is reached infinitely often. We therefore strengthen each.

Recall that Hp¢(() is the set of information sets reached a nonvanishing
fraction of the time along the history (. In a similar spirit, let H;.(¢) be the
collection of information sets reached infinitely often along (; ie.,

Hio(()={he H: tl_i_{go k(h;(t) = co}.

Definition. Player i’s belief rule 4° is strongly asymptotically empirical if for
every € > 0, every infinite history ¢, every information set hJ € Hio(() N H? for

< e}) =1 4.1

Definition. Fix player ¢ and i's beliefs rule 4*. The behavior rule #° for i is

j#1i,and every a € A(KY),

Jin sicco({=~ saa)

’Q(hj; Ce)

7rJ'(GL) _

asymptotically myopic with experience-time limitations on experimentation if
there exist: (1) a sequence strictly positive numbers {e;} with lim;_.c€e; =0, (2) a
nondecreasing sequence of nonnegative integers {ny;t =1,2,...} with limy_ e/t =
0; (3) behavior rules ¥* and #* for i;and (4) foreach t, (s, and h € HY, a number
&(¢:)(h) € [0,1], such that:

(@) Forall ¢, (;, and h € H*, 2i(C)(R) = &(C)(h) x #i(C)(R) + (1 —
&5(C)(R)) X 7 (Ce)(R) -

14



(b)

(©) If &(C)(R) < 1, then w(a';¢t) < Nuniey for some o € A(h), and
71(C4)(h) gives positive probability only to actions a € A(h) such that x(a; ;) <

Nk(hiCe) -

In words, strong asymptotic empiricism requires that players’ inferences converge
to the empirical distribution at all information sets reached infinitely often, and
asymptotic myopia with experience-time limitations requires that experimenta-
tion at any information set takes place a vanishing fraction of the time that the
information set is visited.

While these two strengthened assumptions are formally simple, it is less easy
to see how reasonable they are as behavioral assumptions, at least compared to
the weaker restrictions from Fudenberg and Kreps (1994).

Concerning strong asymptotic empiricism, note first that if player ¢ believes
his rivals are playing some (unknown to him) strategy profile 7!, he computes
posterior assessments concerning 7! after each round using Bayes’ rule, and
his prior on 7~ is sufficiently diffuse (nondoctrinaire), then his beliefs rule will
be strongly asymptotically empirical. A similar conclusion holds if : believes
that behavior by any rival at any information set h will settle down to repeated
play of some fixed probability distribution over A(h), when and if the number
of visits to h approaches infinity.

But as discussed in Fudenberg and Kreps (1994, Section 4), players may be
justifiably skeptical about the empirical record of behavior at information sets that
are visited with vanishing frequency, at least insofar as players are assumed to
be (only) asymptotically myopic: If j believes that there is vanishing probability
that h € H’ can be reached by any strategy she might attempt, then her actions at
k have vanishing impact on her expected payoffs, and thus her nonexperimental
play at k can be erratic without violating asymptotic myopia. Insofar as j’s

beliefs about the relevance of h correspond to increasingly infrequent visits to
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h ®, and insofar as i is aware of this, : may be reluctant to trust to empirical
evidence of how j acts there. Moreover, if experimentation is limited by calendar
time, then any actions can be accomodated as experiments at information sets
visited with (sufficiently rapidly) vanishing frequency.

Our point is simple: Asymptotic empiricism applied at any information set
requires the presumption that behavior there is asymptotically i.i.d. This is a
strong presumption for players to make about information sets visited a non-
vanishing fraction of time, but we find it even more heroic for information sets

visited infinitely often but a vanishing fraction of time.®

We also have a hard time justifying experience-time limitations on experi-
mentation. Because we have avoided anything like a precise value of information
story, a formal justification is infeasible. And informal justifications that we have
concocted are somewhat tortured and (we believe) not altogether convincing. In
fact, experience-time limitations on experimentation are necessary for some of
our results (showing that non-Nash strategy profiles are unstable) but not for
others (instability of non-Nash outcomes). We find it expositionally easiest to
discuss this assumption and the role it plays in our analysis after conducting that

analysis, so we defer further discussion until Section 8.

5. Reaching relevant information sets infinitely often

We now study assumptions on behavior that “nearly” imply that every in-

formation set relevant at =, is reached infinitely often with probability one, if

8 This is not a direct implication, of course.

? Note in this regard that the presumption is a degree more palatable in a setting with anony-
mous random matching within a large population that regenerates (through, say, a process of birth
and death). It is possible that participants in the large population act in a fashion that is correlated
with the calendar date, but we find it more plausible in such a setting that players would regard the
actions of their anonymous rivals as draws from an (asymptotically) i.i.d. distribution, which in turn
would justify strong asymptotic empiricism.
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nonexperimental behavior #;((;) remains within some small-enough neighbor-
hood of m, . These assumptions put lower bounds on the rate and/or number

of experiments that players undertake.

These assumptions can be developed in (at least) two different ways. One can
think in terms of experimentation information set by information set; i.e., players
experiment with actions at each of their information sets, without (explicitly)
considering how those actions string together into experiments with strategies.
Or one can think about experimentation at the strategic level: At date ¢, player
i chooses a strategy s' to play at that date (possibly according to some mixed
strategy distribution), so that if the player is going to experiment (play a distinctly
suboptimal pure strategy), the experiment is formed in terms of behavior at all

information sets in H*.

The two different approaches lead to the same basic conclusions, but they
require somewhat different notation and assumptions. It is expositionally the
most easy for us to fix on one approach, carry it through, and then return to the
second approach, rather than carry both forward at once. Accordingly, we will
work with experimentation information set by information set; in an appendix,

we discuss (without all the details) the other approach.
5.1. Minimal experimentation at a single information set

Definition. For a given player i and information set h € H*, the behavior rule #°
satisfies the minimal experience-time experimentation condition at h if there exists
a strictly positive constant 8 and a nondecreasing sequence of nonnegative integers {vy}

satisfying vy — oo and vi/k — O such that, for all t and (., if

#(a; Ct) < Viqhiayte) (5.1)

10 The meaning of “nearly” will become clear as we proceed.
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for at least one action a € A(h), then

2i¢{a € AR) & k(a5 ¢0) < vamancn}) = B- (5.2)

In words, there is a lower bound on the probability of taking those actions at A
that have been taken rarely relative to the number of opportunities to act at 4.

It should be clear that the requirements of this condition can be made con-
sistent with experience-time limitations on experimentation: As long as v < 7
(where v, comes from this definition and 7; from the asymptotic myopia con-
dition), players are permitted by the earlier definition to take the experiments

that are required here.

The force of this condition is most easily seen in the following result.

Proposition 5.1. Fix behavior rules for all the players. If #* satisfies the minimal

experience-time experimentation condition at h, then for every a € A(h),

P({¢ : tl_zzgo k(h; () = oo and t@:r)zo k(a; () < o0}) = 0.

As a rough paraphrase, if h is visited infinitely often, then every action available
at h must be taken infinitely often.

Proof. Fix h. For each (, let 4 be a random variable equal to 1 if, on the £ th
visit to h, an action a is taken for which (5.1) holds, and ¢; = 0 if some other
action is taken. (If h is not reached k times, ¢ = 0.) For each a € A(R), let
te(a) =1 if . =1 and the action taken at the kth visit to A is a. Note that at

tr(a) =1 for at most one a, for each k.

Suppose that for & and some specific a*,
P({¢ : lim w(h; () = co and tlir&n(a*;g’t) < oo}) > 0.
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Then we know that for sufficiently large K,
P({C : tliln k(h; () = oo and tlgl;lo k(a*; () < K}) > 0. (5.3)

But then, on the event defined in (5.3), when t becomes sufficiently large, (5.1)
holds for a*, and therefore on this event there is probability at least S that
¢ = 1 for all sufficiently large k. Thus on the event of positive probability
in (5.3), lim infr—co [ Efﬂ tj]/k > B almost surely. The intuition should now be
clear: Actions taken because (5.1) applies will be taken a nonvanishing frequency
of the time (almost surely). It cannot be, therefore, that each occurs no more than

a vanishing frequency of the time.

To formalize this intuition, let M be the number of actions in A(h). We

claim that
E

Y i < M +1). | (5.4)

j=l
This estimate will complete the proof, since by assumption, vx/k — 0, and hence
My +1)/k— 0.

To derive the estimate (5.4), write

k

k

Z L = ) Z tj(a).

=1 a€A(R) j-1
Fix any action a, and consider Zle tj(a). Let j' be the largest index from 1 to
k such that ¢j(a) = 1. (If ¢;(a) =0 for all j between 1 and %, there is noth-
ing to prove.) Then we know that Zfﬂ ti(a) = Ejlzl ¢j(a). But by the definition
of ¢, at the j'th visit to h, a had been taken no more than v;: times, thus

o
Ej.=1 tj(@) < vy +1. Since v; is nondecreasing, we have the desired estimate. =

This result indicates both the mathematical strength and the intuitive un-

palatability of mimimal experience-time experimentation. In order to ensure that
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every relevant information set is reached infinitely often, we must assume that
players experiment infinitely often with suboptimal actions. The assumption does
just that. But any assumption that implies a positive probability of an infinite
number of sub-optimal experiments will be inconsistent with optimal behavior
in the discounted multi-armed bandit problem, where (with a full-support prior)
the optimal solution involves a halt to experimentation in finite time with prob-
ability one, with positive probability of “locking on” to the objectively “wrong”
arm. Any assumption that causes relevant off-path information sets to be reached
infinitely often is qualitatively wrong as a description of optimal behavior for a

discounted-expected-utility maximizer in a bandit problem.

However, as the player’s discount factor increases towards one, the value
of information increases, so the player tends to take more experiments, and the
probability of locking onto the wrong arm goes to zero. Our assumptions in-
volving an infinite number of experiments can be viewed as an approximation to
optimal behavior in the bandit problem for discount factors close to one; a key
to evaluating whether conditions requiring infinite experimentation give unreal-
istic conclusions for expected-utility-maximizing players is the degree of player

impatience. ™

Moreover, optimal behavior for a player seeking to maximize time-average
expected payoffs, on the other hand, necessarily involves infinite experimenta-
tion with every arm, albeit at a vanishing rate (for subjectively suboptimal arms).
Indeed, any strategy (in a classic multi-armed bandit problem) that calls for infi-
nite experimentation with each arm but vanishingly frequent play of subjectively

suboptimal arms will, almost surely, maximize time-average expected payoffs.

A second intuitive flaw in the definition arises because the definition ensures

that every action at ~ will be taken infinitely often if & is reached infinitely often.

1 For a precise analysis of these matters in a context a bit different from the one here, see Fuden-
berg and Levine (1993b).
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Suppose that a player did wish to visit every relevant information set infinitely
often, in order to learn how his rivals act. In some cases, there might be several
actions that reach a rival’s information set and that have different immediate
expected costs. In such cases, it makes sense to suppose that the player would
choose to experiment with the cheapest action.

Accordingly, the minimal experience-time experimentation condition, as de-
fined, is too restrictive on reasaonble behavior. In order to keep the level of
technical difficulties manageable, we will live with this over-restrictiveness in
this paper; the definition will not be modified to accomodate this sort of consid-
eration. But we note in passing that this consideration can play an important role
when it comes to studying equilibrium refinements; it leads to refinements with
the flavor of Myerson’s (1978) properness criterion, because out-of-equilibrium

actions, which are experiments, tend to be taken as cheaply as possible.

5.2. The MME condition

The definition of minimal experience-time experimentation is made at a sin-
gle information set k. For a general extensive-form game, H' will consist of
more than a single information set, and so we must now ask, At which informa-
tion sets in H* should i be required to experiment? The simplest answer one
can imagine is to insist that the condition hold for all h € H*. However this is
a stronger assumption than is required for our results, and it is also unpalatable
intuitively.

Consider, for example, the game of complete and perfect information shown
in Figure 1. Imagine that along some history of play (, player 1 chooses 4; a
vanishing frequency of the time, and that player 2 begins with beliefs about the
actions of player 3 that lead to the ex ante assessment that 3 is at least as likely to
choose D; as A;. Then player 2, faced with a choice between A4, and D, (given
the opportunity to move) would see A, as representing a costly experiment,

but one that (potentially) could lead to valuable information. However for that
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information to be valuable, two things must happen. Player 2 must discover that
player 3 will choose A; with high probability, and player 1 must give player 2 the
opportunity to use that information by choosing A4,. If player 2 is sufficiently
patient, she might be willing to experiment with A,, in order to test the first
part of this two-part condition, but only as long as she has reason to believe
that the second part holds (which has nothing to do with her choice whether
to experiment). And if player 1 chooses A; a vanishing frequency of the time,
then player 2 will conclude that she will not get many opportunities to use the
information, which might cause her to abandon experimentation with A4,. Even
if she is very patient, as with a per-period disount factor close to one, she will not
see much future gain in getting the information if she believes it will be many

rounds before she gets the opportunity to use that information.

1 A, 2 Ay 3 Az
O - @ ~ @ = (5,5,5)
(4,4,4) (3,3,3) (0,0,0)

Fic. 1. A stage game.

N.B,, if player 2 believes that player 1 is unlikely to choose A;, she suffers
a very small ex ante loss from choosing A,. But we are not saying that player
2 necessarily will abandon experimentation at her information set (if player 1
chooses A; a vanishing fraction of the time), only that it is unreasonable to insist

that she continue to experiment.

Accordingly, we seek a condition that mandates a minimal level of experi-

mentation only at information sets that seem relevant to the player.

To make the formal definition, we consider player :’s decision tree, which

consists of H* U A*U Z , with precedence inherited from < in the usual fashion

22



(because of perfect recall). For any h € H' that is not an initial information
set in ¢’s decision tree, we write al(k) for h’s immediate predecessor in the
decision tree; i.e., a;,(h) =a' where o is the last action i takes prior to h that
is necessary if h is going to be reached. Also, we write @(h) for all information
sets k' € H' that precede h together with kb itself. To make the definition
notationally neat, if % is an initial information set for player i, we use the

convention n(a;, (R); () =t —1, even though, strictly speaking, there is no a;(h) .

Definition. The behavior rule #* of player i satisfies the modified minimum experience-
time experimentation condition (hereafter, the MME condition), if there exists a
strictly positive constant [, a nondecreasing sequence of nonnegative integers {vy}
satisfying vy — oo and v/k — 0, and a nonincreasing sequence of strictly positive

numbers {6i} satisfying & — 0, such that, forall ¢t and (¢, if

(a) h € H* satisfies k(h'; (,)/r(al(R); ¢e) > bnichyg, for all h' € &(h),

and

(b) k(a; (1) < Vigniaye,) for at least one action a € A(h),
then #;(C)({a € A(R) : &(6;¢0) < Vaqmarco}) = B-

In words, the requirement to try actions that have been taken rarely (relative to
the opportunities to do so) is limited to information sets k that, at the given
time and history, satisfy condition (a). If condition (a) fails, then experiments
are not required. The idea behind condition (a) is that : needn’t experiment
at information set » € H' if for some k' € &(h), the data suggest that there
is vanishingly small probability that :’s rivals will cause the transition from
a;(h’ ) to B'. In such a case, i is released from the need to experiment at h
(and moreover at k' and all its successors) because, presumably, there may be

(asymptotically) zero value in the information. 12

2 N.B., i is released from the requirement to experiment at A ; for situations as in Figure 1(a), he
may still choose to do so. Nothing we do here precludes him from making this choice.
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To see the impact of the MME condition vs. requiring minimal experience-
time experimentation at every information set, consider games of complete and
perfect information. It is relatively easy to prove that if each player’s behavior
rule satisfies the minimal experience-time experimentation condition at every in-
formation set, then in any game with complete and perfect information, every
information set will be reached infinitely often, with probability one. Thus if we
sharpen asymptotic myopia by requiring ex-post calculations of expected pay-
offs,® we can prove that In any game of complete and perfect information, if each
player’s behavior rule satisfies the minimal experience-time experimentation condition
at every information set, and if players use ex-post payoff calculations in the defini-
tion of asymptotic myopia, then any strategy profile that isn’t a subgame perfect Nash

equilibrium is unstable.

Compare this with MME and (in particular) with the game in Figure 1. Of
course, player 1 must experiment with A, infinitely often, even under MME.
If player 2 experiments with A, infinitely often (and if player 3 used ex post
evaluation), this would lead player 2 eventually to choose A, with frequency
approaching one, leading player 1 to choose A, with frequency approaching
one. (That is, A;, A, A; is the unique subgame perfect Nash equilibrium.) But
if player 1 believes that player 2 will choose D, with high probability, player 1
believes that D; is his short-run optimal choice. Thus (as long as nothing changes
player 1's mind about 2’s strategy) player 1 will choose A, a vanishing fraction
of the time. Under MME, this can lead player 2 to abandon experimentation with
A, . Thus under MME, the subgame-imperfect Nash equilibrium D, D,, A; will

be stable, even assuming the players use ex post evaluation.

This rationale for condition (a) suggests that the need to experiment should

be tested using i’s beliefs and not empirical frequencies. That is, given ¢'s

13 To be precise, require that #i(C¢) is no worse than e; -suboptimal in terms of i’s beliefs about
the actions of his rivals, computed for and conditional upon reaching each of i 's information sets,
where we restrict each player to full-support belief rules for every finite date ¢ and history ¢: .
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beliefs rule 4°, we can construct i ’s conditional assessment that a transition will
be made from a}(h') to A', and it seems more in the spirit of the assumption to
compare this transition probability with é..i @, - The two are not the same,
because even assuming strong asymptotic empiricism, the empirical frequency
of transitions from a} (k') to k' need not be the same asymptotically as the
probability that i assesses for this transition. This unhappy possibility can arise,
for example, owing to asymptotic independence: If the transition from a} (k') to
k' requires two other players j and j' to choose (say) ¢ and a’, it can be that
k(a; (t)/k(h(a); ;) = 1/2 and similarly for o', thus ¢ assesses probability 1/4 for
the joint action a,a’, yet a,a’ has never occurred. The reverse is possible as
well; 7 can asymptotically assess zero probability for this transition, even though
it has occurred a positive fraction of the times it could have occurred.

Despite the nonequivalence of the two definitions, we leave the definition
as is for now. In the next section, we will provide a means by which the two

become “equivalent,” at least within the context of the larger story we are telling.
5.3. The consequences of MME

Proposition 5.2. Fix behavior rules for all the players. Suppose that player i ’s behavior
rule #* satisfies the MME condition. Suppose as well that for some strategy profile .,
and some € > 0, if m,(a) > 0, then #,((s)(a) > € forall t and ( € A C Z. Then
almost surely on A, every information set that is ., -relevant for player i will be

reached infinitely often.

In order to prove this, and for purposes of later results, the following generaliza-

tion of Proposition 5.1 is useful.

Lemma 5.1. Fix behavior rules for all the players. If #* satisfies the MME condition,
then for every h € H' and for every a € A(h),
P{¢: tﬁ;go w(h; (;) = 00, liminf,_,__k(R'; Q)/n(a;(h'); ¢) >0
for all ' € &(h), and tlim k(a; () < oo}) = 0.
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The proof is sufficiently similar to the the proof of Proposition 5.1 that we leave

it to the reader.

Proof of Proposition 5.2. Fix player ¢ and :’s decision tree, For every terminal
node z € Z, let (hi(2),ai(2), hi(2),ai(2), ..., hi(2), ah,)(2)) be the sequence of
(consecutive) information sets of : and actions taken by : that precede z in ¢’s
decision tree. (Note that n(z) is a function of z, and n(z) = 0 if the path to =

avoids all of :’s information sets.)

Extend the concept of =, -relevance to outcomes, by calling = € Z relevant
if, when : takes a strategy that calls for a¥(z) at hi(z), for j =1,...,n(z) and
¢’s rivals play according to =, , then z is reached with positive probability. We
will show that every relevant z will be reached infinitely often (almost surely

on A), which suffices for the desired result.

If z is relevant, then (if :’s rivals use =, ), there is positive transition prob-
ability of moving (a) to kj(z), (b) from ai(z) to h},(z), for j =1,...,n(2) — 1
and (c) from aﬁl(z)(z) to z. Under the hypothesis of the lemma, on the event A
there is a strictly positive lower bound v on these different transition probabili-
ties that applies uniformly at all dates. (The value of v depends on the number
of actions that might be resolved from one information set of i to the next, and

the probability distribution on moves by nature.)

We show inductively that along the path leading to a relevant node z, every
one of :’s information sets is reached and every action there (and, in particular,
the action that is the next step to z) is taken infinitely often. Since there is a
uniform lower bound on the probability of the last step (from al,, to z), this
gives the result. Because a formal, detailed proof takes a great deal of space, we

only sketch the induction:

The probability of reaching hi(z) on any round is uniformly greater than -,
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so by the law of large numbers, the relative frequency that %i(z) is reached will
have limit infimum of v or more. Hence by Lemma 5.2, every action at h{(z) ,
and in particular ai(z), will be taken infinitely often. Each time ai(z) is taken,
there is probability at least y of reaching hi(z), hence by Lemma 5.2 hence ai(z)
will be taken infinitely often. If we assume inductively that Ai(z) is reached
infinitely often and that the limit infimum of each transition frequency is greater
than v in moving through the tree to h%(z), then Lemma 5.2 tells us that a’ (2)
is taken infinitely often. Each time ai(2) is taken there is probability at least v

of reaching ki, (z), which gives the induction step. -

5.4. Correlated experiments and the uniform nonexperimental condition

We aim to prove results of the following form: Given a non-Nash strategy
profile =« , there is an e > O such that for all models of beliefs and behavior in which
beliefs rules are strongly asymptotically empirical, and behavior rules are asymptotically

myopic with experience-time limitations on experiments and satisfy MME,
P(|7:((e) — 7] < € for all t) = 0.

The argument is meant to go as follows: Suppose that the probability of the set
is positive. (1) On this set of positive probability, all =, -relevant information sets
will be reached infinitely often, by virtue of Proposition 5.2. (2) The empirical
record of behavior there will be close to that prescribed by . (by the strong
law of large numbers and experience-time limitations on experimentation), and
thus (3) beliefs will be close to those prescribed by =, (by strong asymptotic
empiricism). (4) Invoke Proposition 3.2 and asymptotic myopia again to get a
contradiction.

This line of proof doesn’t quite work, because the first step in the chain of
assertions is false. Proposition 5.2 requires that #:((;) is “close” to =, ; it isn't

sufficient for 74((;) to be close to w,. Consequently, it is possible that each
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player’s behavior rule satisfies infinite strategic-experimentation or MME and
that #4((;) is always close to =, , yet there are =, -relevant information sets that

are not reached infinitely often. An example will illustrate the difficulty.

Example 5.1. Consider the game in Figure 2. (Only payoffs for players 1 and 2
are supplied.) It is not a Nash equilibrium for both players 1 and 2 to choose
Across and across, respectively, with probability one; whatever they believe about
the actions of player 3, one or the other would wish to deviate. However it is
easy to manufacture distinct beliefs for the two of them about player 3's strategy
that makes Across—across into a self-confirming equilibrium. Note that at any
strategy profile that involves Across-across, player 3’s information set is relevant
to both players 1 and 2. So suppose, in the spirit of an assumption that each
player must experiment with each of his pure strategies infinitely often, player 1
decides to try Down at dates ¢ = 1,10, 100,1000,.... Player 2, being symmetric
also decides to experiment with down at dates ¢ = 1,10, 100, 1000, ... . Then even
if the non-experimental portions of the behavior of players 1 and 2 are precisely

the target strategy (Across—across), we never reach player 3’s information set.

1 Across across
(@) - @ = (3,3, )

Down P down
2

'
4
e
7’

Y.- '
’.

@ ~—__across -t X
3_.-
\ 2 ] \\
(10,0, )

down o

X
y 1 \ (0,10, )

(10,0, )

Y
(4.4, )
(.10, )

Fic. 2. Example 5.1: Correlated experiments.

The problem indicated by this example is that if experiments are sufficiently
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positively correlated, they can act to frustrate one another. For an experiment
by a single player to work in the sense of causing a relevant information set to
occur (with positive probability), there should be positive probability (bounded
away from zero) that this experiment is the only experiment being taken.

This suggests a cheap fix for this final difficulty.

Definition. The behavior rule # is uniformly nonexperimental if, for some « >0,

() > a forall t and (.

There is probably no ambiguity as what this means, or why it is not very attractive
as a condition on behavior. It should also be fairly clear that if 7;((;) lies in a
sufficiently close neighborhood of some target strategy =, and if every player’s
behavior rule is uniformly nonexperimental, then we can employ Proposition 5.2

to get the desired result:

Proposition 5.3. For any non-Nash strategy profile «, , there exists € > 0 such that
P(||%¢(Ce) — mi]| < e forall t) =0,

for any model of behavior and beliefs where the beliefs are strongly asymptotically em-
pirical, and behavior is asymptotically myopic with maximal experience-time experimen-

tation, uniformly nonexperimental, and satisfies the MME condition.

We will not bother with the proof. In the next section, we will see how to
dispense with uniform nonexperimentation in a manner that brings a number of
other benefits; and then in Section 7 we will get a result in the general nature of
Proposition 5.3. The proof of this result (Proposition 7.1) will give enough details
that the steps of the proof should be clear.

6. Statistical tests

Our two fundamental behavioral assumptions, asymptotic empiricism and

asymptotic myopia, are most sensible if each player believes that his opponents’
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behavior converges to the repeated play of some fixed strategy profile. More
formally, each player should believe that his opponents’ play is asymptotically
exchangeable and independent (of the play of others).

In our formalism of asymptotic empiricism, we implicitly assume that play-
ers maintain this basic hypothesis regardless of the strength of evidence to the
contrary. It seems to us that players would not be so doctrinaire in their beliefs.
They might, at the outset, entertain as a working hypothesis that their rivals’
behavior is asymptotically exchangeable and independent, but this working hy-
pothesis, together with the strictures of asymptotic empiricism and asymptotic
myopia, would be discarded when and if there is sufficient evidence against it.

To model this possibility, we suppose that players run statistical tests of the
working hypothesis, rejecting the hypothesis given sufficient evidence against it.
We modify the definitions of stability (i.e., of unstable and weakly stable profiles),
to include as a condition of stability that observed play passes the players” tests of
exchangeability and independence. This allows us to use less restrictive versions
of asymptotic empiricism and asymptotic myopia, and to dispense with uniform

nonexperimentation.

6.1. Statistical test sequences

To this point, in any learning model player : has been fully described by
his beliefs rules 4* and behavior rule #*. To incorporate statistical tests into our
formulation, to the specification of player i we add a sequence {A;t=1,2,...}
where: (a) each Ai is a (; -measurable subset of Z, i.e.,, whether ( € Z is
or is not an element of A} is determined by the history up to time ¢ in (;
and (b) Ai C Ai_, for all ¢ > 1. The interpretation is that if ¢ € A}, then
along the history (, player : at date ¢ has not yet rejected the hypothesis of
asymptotically empirical and independent behavior by his rivals; if ¢ ¢ A, then
this hypothesis has been rejected by : at or before ¢. Rejection must be based

on the data available to 7, hence (a). And the basic model, once rejected, cannot
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be “unrejected,” hence (b).* We call a specification of A* = {A};t=1,2,...} a

statistical test sequence for <.

Definitions. (a) Player i’s belief rule ' is strongly asymptotically empirical
(relative to the statistical test sequence A') if for every ¢ > 0, every infinite
history ¢ such that ( € NS AL, every information set h? € Hio ()N H? for j#1,
and every a € A(hY),

< e}) =1

(b) Fix player i and i’s beliefs rule 5*. The behavior rule #* for i is asymptotically

; k(a; Ct)
@~ )

Jim it ({=~

myopic with experience-time limitations on experimentation (with respect to the
statistical test sequence A') if it satisfies the definition of asymptotic myopia with
experience-time limitations given previously, but with every appearance (in the definition)

of (; weakened to be, for (; € AL. "

(c) The behavior rule #* of player i satisfies MME (with respect to the statistical
test sequence A) if it satisfies the definition of MME given previously, but where the
defining conditions need hold only for (; € AL

Perhaps most significantly, the definitions of unstability and local stability

are changed:

Definitions. (a) The strategy profile =, is unstable for a given class of learning models

if there exists € > 0 such that, for all learning models from this class,

P(||%:(Ce) — mal| < e and ¢, € A} for all t and i) = 0.

™ The latter is for expositional simiplicity and can be modified.

> The condition {; € A} is a bit abusive of notation, but the meaning should be clear.
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(b) The outcome p, is unstable for a given class of learning models if there exists e > 0

such that, for all learning models from this class,

P(|lo(%:(Ce) — pall < e and (s € A} for all t and i) = 0.

(c) The strategy profile =, is locally stable for a given class of learning models if for

some learning model from the given class,

P( Jim %4(Co) =7y and ¢, € Aj for all t and i) > 0.

That is, if 7, is unstable, then for all learning models (in the specified class), at
some point either behavior diverges from =, or some player rejects the working
hypothesis, almost surely. For local stability, there must be positive probability
of (1) convergence to m, and (2) no rejection of the working hypothesis.
Adding statistical test sequences to the basic story according to the definitions

above has two obvious effects:

(1) Insofar as the conditions for asymptotic empiricism, asymptotic myopia, and
minimum experimentation are required only for histories that pass the statistical

tests imposed, those conditions become weaker and therefore more palatable.

(2) Conversely, the addition of statistical test sequences to the definition of unsta-
ble profiles and outcomes increases the set of histories where behavior is unstable,
giving a weaker definition. Hence the results that non-Nash profiles and/or out-

comes are unstable become weaker when statistical tests sequences are invoked.

In view of these two effects, we seek classes of statistical test sequences
that make our assumptions on behavior more palatable and remove the need
for unpalatable assumptions — e.g., the uniform nonexperimentation — while
at the same time not overly or implausibly restricting the set of stable pro-

files /outcomes.
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Note that the general formulation described above does not address how
players behave when and if some players’ statistical test fails. When a profile
is unstable, and its unstability depends on the failure of a statistical test, we do
not know that behavior cannot remain in some small neighborhood of the target
strategy. Rather, all we can conclude is that if behavior doesn’t eventually move
(a finite distance) away from the target, then one or more player’s observations
will look “odd” for a sequence generated by asymptotically exchangeable and
independent play.

6.2. Arc-frequency statistical test sequences

We now propose a particular type of statistical test sequence, based on a
fairly simple and direct test of asymptotic exchangeability and independence,
which helps give us the results we want.

To prepare for the definition, we invent more notation: For v € V\ W, let
zp(v) be the node (in X ) that immediately precedes v, and let a,(v) be the
action that leads from z,(v) to v. Also, let ¢,(v) be the player who moves at

node z,(v);ie., i, = i(h(z,(v))).

Definition. A statistical test sequence {Ai} for player i contains an arc-frequency
test if, for some sequence of nonnegative numbers {n,} with lim inf,n, > 0 and
some v* € (0,1),

(: € A} implies that for all v € V \ W such that i,(v) # 1,
HC{ e I 1 /(v;¢) = K(zp(®); () np e P (ap@D]}) 21 - ’{;1)

To make sense of this definition, consider the contrapositive of (6.1): If

'?i(Ct)({'”—i € I : k(v; (¢) < ’i(a’p(v); Ct)”ip(v)(ap(v))nn(xp(v);Cz)}) > '7'*

for some v € V with ¢,(v) # ¢, then the statistical test fails. (Since we assume

that the A are nested, the test fails at t' if this is true for any ¢ < t'.) In
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the test, the number of times the arc from z,(v) to v has been traversed is
compared with the number of times this transition should have been made, if
ip(v) takes action a,(v) with the probability ') (a,(v)), for each 7~*. Thinking
7. as being fairly small for small indices and approaching some value strictly
less than one as n — oo, the test fails only when this arc has been traversed
“too infrequently” if i’s rivals play 7! repeatedly (and independently) from
round to round. When ¢ assesses probability v* or more for the set of =~
that give too few traversals of any arc, then i ’s beliefs about =~* are too-highly
concentrated on values of =~* which, the data indicate, do not support the basic

hypothesis of exchangeable and independent play by :’s rivals.

Several remarks are in order:

(1) One might wonder why asymptotic empiricism doesn’t make this condition
moot: How could player :’s beliefs after many observations continue to assign
substantial probability to strategy profiles that give “too few” observations of cer-
tain arcs? The answer, and the reason this test is needed, is that asymptotic em-
piricism implicitly assumes asymptotic exchangeability and independence. The

test asks whether the data are consistent with this implicit maintained hypothesis.

(2) The test compares the actual number of times each noninitial node v was
reached with an estimate that is computed assuming that player i,(v) used the
same strategy in each previous period. But the hypothesis being tested is only
that players asymptotically converge to repeated play of some fixed strategy. In
this regard, note that it is acceptable for there to be some very large N such
that the “scaling” constant 7, =0 for n < N, and 75, < (n — N)/(2n), say, for
n > N, which leaves a lot of slack.

(3) In these test sequences, player : computes the probability he would assess
(under the maintained hypothesis) for the set of 7~ that (under this hypothesis)
look odd given the data. When this probability is sufficiently high, he rejects the
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maintained hypothesis. An alternative test would be to compute a single estimate
for the (approximate) number of times that each arc in the tree should have been
traversed. Specifically, player i could first compute, for a € 47, j#1,

r(a;4H(C) = / (@A)

II—:

and then reject the maintained hypothesis if, for any v such that i,(v) # 7,

’i(v; Ct) < K’(xp ('D)} Ct)r(a'p(v); '3’; (Ct))rl:c(x,(v);(j,)a

for an appropriate sequence {7,} with strictly positive limit infimum. Without
going into detail, we remark that such tests are asymptotically almost equivalent
to the sort of test we have posed, whenever i ’s beliefs rule is strongly asymtot-
ically empirical. This is so because the tests only “matter” as x(z,(v); () goes
to infinity, in which case strong asymptotic empiricism implies that 4i((;) at
h(z,(v)) will be nearly a point distribution. (To make this precise, one needs to
add uniformity in x(k;(;) to the convergence part of strong asymptotic empiri-
cism.)

To illustrate the impact of arc-frequency statistical test sequences, we con-
sider two examples. The first is Example 5.1. Recall that in this example, players
1 and 2 choose Across and across (respectively) with probability approaching
one, although each experiments infinitely often with Down/down. Because of
perfect correlation in the experiments, neither Across—-down or Down-across are
every observed. This history will certainly fail any arc-frequency statistical test
sequence applied by player 1: player 1 tests whether, in those (infinitely many)
instances where he chooses Down, is the asymptotic fraction of Down-across
anything like the frequency it “ought to be,” namely 1. Of course, it is not; we
could only pass an arc-frequency statistical test sequence for player 1 if, asymp-
totically, Down-across happens a strictly positive fraction of the time that Down

occurs. Thus we see a way in which arc-frequency statistical test sequences test
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for correlation in the play of the player running the test and the subsequent play

of his rival. 1

" For the second example, imagine player 3 who observes the behavior of
players 1 and 2 in an extensive-form game where 1 chooses between Left and
Right and 2 between left and right, simultaneously and independently. Suppose
that player 1 chooses Left half the time, and player 2 chooses left half the time.
Then in order to pass any arc-frequency statistical test sequence employed by
player 3, Left-left must occur a positive fraction of the time. And if the arc-
frequency statistical test that is employed has lim,7, =1, then Left-left must
occur precisely 1/4 of the time (in the limit), or the test will fail: If Left-left
occurs more than 1/4 of the time, the test will fail for some other of the three

possible combinations.

6.3. Arc-frequency tests and asymptotic myopia

The previous example indicates how arc-frequency statistical test sequences
make more palatable the assumption of strong asymptotic empiricism. The same
is true about asymptotic myopia, at least with reference to the “troublesome
example” of Fudenberg and Kreps (1994, Section 4). Recall that the problem there
arose because asymptotic independence led a player to believe that, if he chose
a given action, an information set down the tree would be reached with positive
probability. Knowledge of what would happen at that information set mattered
to his decision whether to take the action, which might lead him to experiment

with the action. But (along the particular sample path described in the example)

16 The emphasized subsequent will be explained below.

17 To prevent too-rapid rejection of the basic hypothesis when it is true, one doesn’t want
7n = 1, but rather 1, = 1 — 1/(o(n)) for some o(n) function. For example, the law of the it-
erated logarithm would suggest something like o(n) = O(n'2Inin(n)). Note that if we define
nn = max {0,1 — K/[n/?InIn(n)], then as K — oo there is vanishingly small probability of re-
jecting the hypothesis if it is true, while (for fixed K ) asymptotic independence is no longer an
asymptotically troublesome aspect of asymptotic empiricism.
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every time he tried this action, the information set in question was not reached.
Asymptotic myopia required him to experiment with this action less and less
frequently, even though (until the information set is reached) the value of the
information expected to be obtained remains sufficient (in a discounted present-
value-of-expected-payoffs criterion) to make this action optimal. Compare this
with precise value-of-information calculations in multi-armed bandit problems
with independent arms and nondoctrinaire priors, where the information value
of trying a particular arm falls to zero uniformly in the number of times that the
arm is pulled. That result fails to extend to this example because, although the
player keeps experimenting, the information that (by asymptotic independence) is
expected to be generated never is generated. If we were ensured that information
sets that ought to be reached with positive probability (given an experiment by
player :) are reached with a number of times that goes to infinity in the number
of times the information set “ought” to be reached, then this example would
be mooted. Since no such guarantee is possible, an alternative tack would be to
suppose that whenever the information set is not being reached infinitely often (so
that the value of information remains high), the limitations on experimentation
that come with asymptotic myopia are suspended.

It is this second, alternative tack that is engaged with an arc-frequency sta-
tistical test. If : believes (asymptotically, or even along some subsequence of
dates) that an information set can be reached if he tries to get there, and he does
try to get there, yet he is repeatedly frustrated in these attempts, then the test
will eventually fail, and the strictures of asymptotic myopia dissolve.

6.4. Noninvariance to extensive form and

Own-action-independence statistical test sequences

The power of arc-frequency statistical tests can depend on “strategically ir-
relevant” features in the extensive form of the game, such as the interchange of

simultaneously moves. We can see this in Example 5.1, for the history described
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in the example. As noted already, along this history player 1’s statistical test se-
quence will reject, as long as 1’s statistical test sequence contains an arc-frequency
test. But this is not true for player 2, even though the game depicted is symmetric
(in terms of the strategic form) in players 1 and 2. Player 1 is able to compute
the “conditional frequency” of down, conditional on he himself choosing Down,
since (in the game tree) 2’s choice follows his own. But, at least in terms of the
formal definition of an arc-frequency test, 2 does not compute the conditional

frequency of Down, conditional on down.

We believe it is possible to reformulate arc-frequency statistical tests in a
way that is appropriately invariant to the extensive form representation of the
game. But it is easier expositionally to complement arc-frequency statistical tests
as formulated with a different type of statistical test, again based on a given
extensive form of the game, which (together with arc-frequency statistical tests)

is adequate for our purposes. We will follow the path of expositional ease.

Definition. A statistical test sequence {Ai} for player i contains an own-action-
independence test if, for some sequence of nonnegative numbers {n,} with lim inf,n, >
0: For every t, ¢, € A implies that for all = and a such that h(z) € H* and

a € A(h),
n((m,a);(t)> k(z; Ct) M,
(@ G)  — rR(e); ) "

The idea is relatively straightforward. Suppose 7, =0 for, say, n < 100,000, and
nn = .5 thereafter. Then when and if node z has been visited 100,000 times (so
information set h(z) has been visited at least this many times), the ratio of the
number times a was taken at z to the number of times a was taken overall
should be at least one-half the ratio of the number of times z has been visited to
the number of times h(z) was visited. If the former ratio remains very much less
than the latter, then somehow :’s rivals’ actions preceding h(z) are correlated

with 7’s presumably independent choice of action at h(z).
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6.5. Other statistical test sequences

We will work hereafter with models of beliefs and behavior in which all the
players employ statistical test sequences that incorporate both arc-frequency and
own-action-independence tests. This, it turns out, is adequate to the results we are
aiming for. But we do not mean to imply that only arc-frequency /own-action-
independence statistical test sequences are sensible. Statistical test sequences
could be used which (also) test for cycles in the behavior of a single player, or
for a general lack of convergence in behavior. ¥ (For example, one tests for large
N whether behavior over the first N/2 periods is similar to behavior over the
rest of history.) Of course, as one adds more and more tests, one can feel better
and better about asymptotic empiricism and myopia. But equally of course, since
more tests makes failure easier, and since unstability of a profile or outcome is
triggered if ever a test is failed, this weakens any results about the unstability of

a given profile or outcome.

7. Stability and Nash equilibrium profiles

Proposition 7.1. If w, is not a Nash equilibrium profile, then =, is unstable for the
class of learning models in which: Beliefs rules are strongly asymptotically empirical;
behavior rules satisfy asymptotic myopia with experience-time limitations on experimen-
tation and MME; and each player employs a statistical test sequence which incorporates

both arc-frequency and own-action-independence tests.

Proof. Suppose that 7, is not a Nash equilibrium strategy profile. Let

e:min{e’, min {7r,.,(a)}}/2,

{a€Aim, (a)>0}

where ¢’ is the ¢ produced for =, according to Proposition 3.2. Let

A={( € Z:||#(() ~ 7| < e and (¢ € Al for all ¢t and i},

18 For different approaches to cyclic behavior, see Aoyagi (1992) and Sonsino (1994).
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and suppose that for some learning model from the class described, P(4) > 0.

Because all the behavior rules satisfy MME, there is zero probability for each

of the events described in the statement of Lemma 5.1. For all k and a € A(R),

r(a; ) _
i) > e} N A) =0,

by the strong law of large numbers and the experience-time experimentation

— 7y (a)

P({C : h;n k(h; (t) = o0, lim sup,

condition. There is, of course, probability one that every w € W is hit infinitely
often.

Let A° be the set A after discarding all these zero-probability events; i.e.,
A° is a set of positive measure on which every w € W is hit infinitely often,
players’ empirical frequencies of actions asymptotically are within ¢ of =, at
information sets visited infinitely often, players take every action infinitely often
at any information set h that is visited infinitely often and that has non-zero lim
infs for all the transitition probabilities needed to reach h, all the statistical tests

are passed, and #, is always within e of =, .

We claim that for every = € X thatis m, relevant to some player ¢ and for

every (€ A°: (@) = is reached infinitely often; and (b) if h(z) € H?, then

w(z; ) L w(h'; Ce)
P E S Rt P PO Ny

We prove this by induction on the length of the path leading to z . For all initial

lim inf; > 0 for all &' € &(h(z)).

nodes, the result is true by the construction of A°. So suppose the result is true
for all , -relevant nodes that are n steps or less from an initial node, and select
some T, -relevant node z that is n+ 1 steps from an initial node. This node
is relevant to some player, whom we denote by :. Until further notice, let z'
denote the immediate predecessor of z, and let a denote the action that leads

from z' to z.

Of course, z' is 7. -relevant to ¢ and is n steps from an initial node, so

we know that z' (and all of its predecessors) must have be reached infinitely
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often along each history ( € A°. Thus for each predecessor node of z which
belongs to an information set that doesn’t belong to i, ¢ ’s beliefs concerning the
actions taken at the corresponding information set must be converging to a point
mass at the empirical frequency of actions, which (for large enough t) must be
within e of =, at that information set. Fixing a history (, assume that T is
sufficiently large so that for all ¢ > T, 4i(¢) ascribes probability greater than
1 —~*/2 to strategies that are no more than ¢/4 from the empirical frequency
(at each of these information sets), and such that the empirical frequencies are no
more than 5¢/4 away from =, . Because ( passes all the statistical tests applied
by ¢, and in particular the arc-frequency tests, this implies that for large enough
t, the frequency of transitions along the path to z' that are not in ¢’s control
must be strictly positive and uniformly bounded away from zero. (The precise
frequency of these transitions is determined by the size of min,(a) and the lim

inf of the {n,} sequence in the arc-frequency portion of the statistical test.)

If h(z') € H™*, the argument just given shows that the frequency of tran-
sitions out of z' that are a must be a strictly positive fraction of all transitions

out of z’. Since ¢’ is visited infinitely often, so must be z.

If h(z') € H*, lim inf;oor(z'; )/ k(R(2"); () > 0 by the induction hypoth-
esis. Moreover, because h(z') is visited infinitely often and «(h';(;)/x(a(R’); (¢)
has strictly positive lim inf for all &' € @(h(z')), action a is necessarily taken
infinitely often by i. Because ( passes the own-action-independence statistical
tests, x((z',a); (¢)/k(a; {;) must have strictly positive lim inf, and thus «((z', a); (1)

must go to infinity. Of course, «((z',a);(;) is just s(z; ().

Thus we have shown (a) of the induction hypothésis. It remains to show
part (b). Accordingly, suppose that h(z) € H*. Let k' denote information set
belonging to player : that immediately precedes h(r) in ¢’s decision tree, let
=’ now denote the (unique) element of A’ that precedes z, and let o' be the

(unique) action that constitutes the first step from z' to z. (If h(z) is an initial
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information set for i, a small modification of the argument is needed.) Since all
the transitions from (z',a’) to z are controlled by players other than : and z

is 7* -relevant to i, the arc-frequency statistical tests ensure us that

n(z; Ct)
Gyt

(Recall that we have already proven that z, and thus each step along the way,

lim inf,_, o

is visited infinitely often.) By perfect recall, x(h; () < k(a'; ¢;), and thus

(e, a'); ¢ o e, a'); ¢
w(h; &) T wlaG)

By own-action independence,

R @) G) | i)
W@ ) T R(RG) Y

which has strictly positive lim inf by the induction hypothesis. Combining these

inequalities, we see that

wzit) Rl a)) | @) g
W@ diG)  RhiC) ARG

As for the second half of (b), we only need to worry about

Bim infy_, g0t 2t 5 0;

r(a’; )
for all other A" € @(h(z)), the induction hypothesis applies. And for this final

asymptotic inequality, write

MhiC) o R@iG) | m(@i6)  R(@a))
T R e R ) RO M= O

We know that each of the ratios on the right-hand side has strictly positive lim

inf, so their product does as well.

The rest is simple. For every ¢ € A°, every node z that is relevant to some

player is hit infinitely often. Hence beliefs at all those nodes, and hence at the
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information sets they contain, converge to the empirical frequencies, which must
be close enough to =, so that (at a sufficiently late date) some player is forced
by asymptotic myopia to choose a nonexperimental portion of his strategy that

is more than ¢ away from ., contradicting the definition of A°. "

Proposition 7.2. If w. is a Nash equilibrium profile, then =, is weakly stable for
the class of learning models in which: Beliefs rules are asymptotically empirical; behav-
ior rules satisfy asymptotic myopia with experience-time limits on experimentation and
MME; and each player employs a statistical test sequence that includes both arc-frequency

and own-action independence statistical tests.

As was the case with similar results in Fudenberg and Kreps (1993, 1994), the
construction is very artificial and not very informative. Hence we will be content
to sketch one way of showing this. Let I be the number of players and let M
be the maximal number of times any player can move during a single round of
the game. We construct strategies in which, at each date t¢, at most one player
will be experimenting: Player 1 will experiment at dates kI +1 (only), player 2
at dates kI +2, and so on. On dates when players do not experiment, they play
according to the given Nash equilibrium =, . On date kI+:, player : randomizes
independently at each information set whether to experiment there or not. With
probability (1/t)/M , i experiments at (any given) information set k, where an
experiment consists of trying each available action with equal probability. With
complementary probability, : plays =, at h.

Suppose players use the behavior rules just described. By a relatively straight-
forward application of the Borel-Cantelli lemma, we can show that every =, -
relevant information set will be reached infinitely often. By the strong law of
large ﬁumbers, empirical frequencies of play at every information set that is
reached infinitely often will converge to the prescriptions of =, . By a somewhat

more complex argument, we show that: For any node z belonging to player
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¢ that is =, relevant to i, (z;(:)/«(h(z);(;) is either identically zero or it has
strictly positive limit, and if the limit is strictly positive, then for every action
a € A(h), k((z,a);(t)/x(a; () has the same limit.

Suppose player i had beliefs that put probability one on rivals playing =" .
Then the behavior rule described above, put in the role of %', would satisfy
asymptotic myopia (since experiments, when they are taken, are taken with van-
ishingly small probability). The proof then proceeds as follows: Use each of the
a.s. limits described in the previous paragraph to find a set of positive probabil-
ity on which all the limits are achieved in uniform fashion. Use the estimates in
those uniform convergences to define strong asymptotic empiricism, asymptotic
myopia, and the own-action-independence statistical test so that, on this set of
positive probability, players are not required by MME to experiment more than
is prescribed by #*, nor abandon the belief that their rivals are surely playing
7;%, nor reject on the basis of own-action-independence. In this regard, note
that non-relevant information sets are never reached, so MME can be specified
so that no experiments at these information sets are ever required. In similar
fashion, the triggers of the arc-frequency statistical tests can be specified so that
the tests are passed.” On the set where any of the uniform limits fails to hold,
redefine beliefs and behavior in any fashion consistent with the requirements of
the proposition. Since there is positive probability that no resetting is necessary,
there is no change in the probability of and probabilities within the set where be-
havior (and beliefs) are unchanged, which gives the result, because the behaviors

described satisfy #* — 7.
8. Stability and Nash equilibrium outcomes

In this section, we discuss the following result:

% We put arc-frequency statistical tests last because they cannot be conducted until beliefs are
specified.

44



Proposition 8.1. If p. is not a Nash equilibrium outcome, then p, is unstable for the
class of learning models in which: Beliefs rules are strongly asymptotically empirical;
behavior rules satisfy asymptotic myopia with calendar-time limitations on experimenta-
tion and MME; and each player employs a statistical test sequence which incorporates

both arc-frequency and own-action-independence tests.

Comparing with Proposition 7.1, the difference is that experimentation at any
information set is limited by calendar time instead of experience time at that
information set. This means that behavior at infrequently-reached information
sets can be capricious, a point to which we return after giving the proof of the
proposition.

To prove this proposition, we begin with some notation and two lemmas.

For any outcome p,, let H(p,) denote information sets that are reached
with positive probability under p.. For h € H(p.) and a € A(h), let m.(a) =
px(Z(a))/p«(Z(h)). Thatis, =, is a partial strategy profile defined (only) for in-
formation sets h € H(p.).

Lemma 8.1. Fix any outcome p, that corresponds to some strategy profile for the stage

game, and let =, be the partial strategy profile defined from p, as above. Then:
(a) p(m) = p« if and only if m(a)=m.(a) for all a € A(H(ps));

(b) for every € > O, there is a 6 > 0 such that if ||x(h) — m.(R)|| < & for every
h € H(p.), then ||p(r) — puf < €; and

(c) for every sufficiently small € > 0, there isa & > 0 such that if |n(a) — wu(a)| 2> &
for any a € A(H(p.)), then ||p(m) — pul| = €.

This lemma essentially involves careful bookeeping, and the details are omitted.

Lemma 8.2. If p. is not a Nash equilibrium outcome, then for some €' > 0: For every

strategy profile m. such that ||p(w.) — p.|| < € and for all beliefs {v'} such that
Fi({rT ||m(h) — me(B)|| < € for all h € H™ that are w, — relevant to i}) > 1— €,
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there is some player © such that

min_ {[lp(F, 775 = pul = wi(F, 7))+ € > max ui(sh, 7)) >
pagpes si€Si

Proof. Suppose that p, is a profile for which no such ¢ exists. Then for each n
we can find a strategy profile =, , a beliefs profile -, , a second strategy profile
#n , and, for each i, a partial strategy profile 7 i(;), such that for all i:

1

lp(ma) = pull < ~, (8.1a)

. 1 ~

Y ({77 ||w(h) — wa(R)| < -~ for all h € H™* that are
.. n—1

7, — relevant to ¢}) > — (8.1d),

T | L
u'(Tp,¥n) + — 2 max u'(s’,7y,), and (8.1¢)

n EHH

i m—ige 1

”p(ﬂ’ru Ty (Z)) - p*” < ; (81d)

Looking along a subsequence if necessary, we can assume that lim, 7, exists —
write , for this limit — and for each 7 lim, v} exists — write 4} for this limit.

Then continuity of the p(-) function and (8.1a) imply that

P(7s) = pa. (8.2a).

The set of = -relevant information sets is lower-semi-continuous in 7, so passing

to the limit in (8.1b) tells us that
vi({x~" : w(h) = w.(R) for all k € H~* that are , -relevant to ¢} =1.  (8.2b).

Inequality (8.1d) ensures us that lim #(k) = 7i(k) for all information sets h € H*
that are along the path of play according to the outcome p,, and since the ex

ante expected utility of a player is determined entirely by his actions along the

46



path of play and the actions of others at the information sets that are relevant to
him, this together with (8.1c) and (8.2b) imply that

ui(nl,7y") = max wi(s’, my”).
31651

Thus 7, is a Nash equilibrium and (hence) p, is a Nash equilibrium profile. =

Proof of Proposition 8.1. Suppose that p. is not a Nash equilibrium outcome.
We may assume that p, is the outcome corresponding to some strategy profile
7, ; otherwise mingey ||p(r) — p«]] > 0, and we can take e to be half of this
minimum. Let € be the corresponding value produced in Lemma 8.2. Choose

6 and e sufficiently small so that:
(@) e< €/2;

(b) per Lemma 8.1(b), if ||7(h) — 7 (h)|| < & for every h € H(p.), then |p(r) —
p«ll < €/2; and

(c) per Lemma 8.1(c), if ||p(r) — p«]| < €, then |7(a) — 7.(a)] < §/2 for every
a e A(ﬁ(p*)).

Suppose by way of contradiction that for some learning model satisfying the

various conditions,
P(|| p(7:((e)) — px|| < € and ¢; € Al for all ¢ and 7) > 0.

Let A be this set of positive measure. We know from (c) that |#:(¢:)(a) — m«(a)| <
6/2 for all ¢ € A. A straightforward induction argument will show that, almost
surely on A, every information set in H(p,) will be hit a nonvanishing fraction
of the time and (thus), with calendar-time limitations on experimentation, the
empirical frequencies of actions taken at information sets h € H(p,) will have

limits sup and inf within §/2 of =, . Let A° be the subset of A of histories where
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h € H(p.) are hit infinitely often and the limits sup and inf of actions taken at
those information sets are within §/2 of =, , intersected with the complement
of the event described in the display of Lemma 5.1. Then the probability of A°
equals the probability of 4.

Fix any ¢ € A°. Looking along a subsequence if necessary, x(a;(:)/k(h; ()
converges to some limit n¢(a), for each h and a € A(h). Note well that = is
defined history by history, so for information sets & ¢ Hio.(¢), this limit is the
ratio of two finite numbers. We claim that for every z that is m -relevant to
some player i, (a) = is reached infinitely often; and (b) if h(z) € H', then along

the subsequence,

A@56) 0 and Tim infooe —8 S 0 for all B € S(h(x)).

w(h(z); C2) r(a(h'); G)

lim inf; .o

The same proof by induction that worked in the proof of Proposition 7.1 is en-
listed here. The key is that asymptotic empiricism tells us that for any node
z that is reached infinitely often, all players’ beliefs on H(z) must converge
along the subsequence to point masses at m¢ . Bearing this in mind, and bear-
ing in mind that the statistical tests are defined pathwise, the previous proof is
repeated, with =, replaced by =¢.

Thus for every ¢ € A°, every node z that is =¢ relevant to some player
is hit infinitely often. Players’ beliefs at all those nodes, and thus at the infor-
mation sets they contain, converge to the empirical frequencies, which along the
subsequence converge to w¢. At information sets h € H(p.), these empirical fre-
quencies must be converging to something within 6/2 of ., thus w¢ is within
§/2 of =, along the path of p,. Apply Lemma 8.2 to conclude that, at some date
along the subsequence, some player must choose the nonexperimental portion of
his strategy so that whatever the others pick, the resulting outcome is more than

¢ > ¢ away from p,, and we have the desired contradiction. .
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The method of proof of this proposition indicates why the result is some-
what questionable. For off-path information sets that are reached infinitely often,
we cannot be sure that empirical frequencies of actions are converging to any
particular limit, because calendar-time limitations on experimentation can allow
capricious behavior at information sets that are visited a vanishing fraction of
the time. Nonetheless along some subsequence of dates, some limits of empirical
frequencies must be achieved at all information sets. For information sets that are
reached infinitely often, our players (who are strongly asymptotically empirical)
believe at those dates that these empirical frequencies are what their rivals are go-
ing to play. The statistical tests are formulated so that (asymptotically, along this
subsequence of dates) all the information sets (and even nodes) relevant at the
subsequence limit will be reached infinitely often, which is technically adequate

for disqualifying non-Nash outcomes.

However everything depends on strong asymptotic empiricism, because this
ensures that the beliefs of all players converge to a degenerate distribution at
the current empirical frequencies at all information sets visited infinitely often.
Under assumptions on behavior that don’t guarantee convergence of behavior
at off-path information sets that are visited infinitely often but with vanishing
frequency, it seems somewhat silly to assume that beliefs about behavior there
will converge to empirical frequencies. Unless we (and, more to the point, the
players involved) have reason to believe that behavior at those information sets is
converging, there is little reason to think that their beliefs will converge together

with anything in particular.

9. Concluding remark

We have two reasons for regarding our results with skepticism. First, the list
of assumptions we must make on behavior and beliefs is long and, to our mind,

fairly unpalatable. Second, even with these assumptions, the time required for
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beliefs to become approximately correct at all relevant information sets may be

too long to be of practical interest. %

This is not to say that players cannot “learn” by some other means what
they can expect at off-path or rarely encountered information sets. Perhaps on-
path, frequently encountered situations provide useful data for inferring what
will happen at off-path situations, if the players can make such cross-situation
inferences. But a story of this sort is well beyond the models and analysis of this
paper. If one trusts to the sort of argument given here in favor of Nash equilib-
rium (as a refinement of self-confirming equilibrium), the length of time it would

take to learn what happens off the path gives further reasons for skepticism.
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Appendix. Experiments taken at the level of strategies

In the MME condition, we think of experiments being taken by players in-
formation set by information set. This is quite compatible with our formulation

of strategies in the behavior form, and makes for relatively easy exposition.

A different approach to the subject is possible, where we think of experi-
ments being chosen at the level of strategies. While this formulation complicates
somewhat the exposition and analysis (for reasons we will explain), it does have
intuitive appeal, in that we can explicitly consider how players string together
their experiments at (their own) successive information sets. We do not wish to
go through all the details of this alternative approach or to give proofs, but we

will sketch out here the various steps that facilitate it.

A.1l. Private state variables

The expositional complication arises immediately. In order to facilitate ap-
propriate statistical tests, we go back to the first details of the formulation of the
model and imagine that each player bases his beliefs and behavior at date ¢ on
a “private state variable” ¢;. That is, both 4} and #; takes an argument ¢&i.
We insist that each player know at date t at least the history of past outcomes,
so the (abusing notation) (; € ¢; for each ¢. But we allow players to carry more
information with them from day to day, and to use that information in formulat-
ing their actions and beliefs and (what becomes important) in conducting their

statistical tests.
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To have a concrete example to think of, imagine that player i determines at
the start of each round of play what pure strategy st he will use that day. This
pure strategy may be determined by mixing — i.e., #;(¢;) need not be the deter-
ministic choice of si — but in this case we imagine that ¢ does his mixing at the
outset, with si the result. Then we can think of & = (21, 22, - -, Ze—1, sisisil)
(Cey s, si,...,si_,); ie, i Temembers past outcomes and the pure strategies he

meant to employ at each date.

Stll in terms of formulation, let ¢ denote a typical infinite (private) history
for player i, which contains (. Let =% denote the space of all ¢ . We write
£ =(&,...,¢1) for an array of private histories, and we say that ¢ is consistent if
all information in & that is common to information in ¢’ (such as the outcome in
each period) is consistent with the information in ¢ . Then = C [[;=* denotes
the set of consistent private history vectors. We also use ¢; to denote an array
of partial private histories — i.e., & = (€L,...,&)) —and =, denotes the set of

consistent partial private history arrays.

Since (; € & for each i and t, only cosmetic changes are needed for the
formulations of strong asymptotic empiricism and asymptotic myopia (of either
variety). The definitions of unstability and weak stability are also changed only
cosmetically, where we work with a probability measure P defined on =, which
is assumed to have the appropriate marginals on Z (onto which £ € = can be

projected) for the given behavior rules.

In this richer setting, it is relatively easy to see that none of our earlier results
are changed. It didn’t matter that players have access to private information, since
(under the terms of stability) they asymptotically ignore any such information in

formulating their behavior.

Having made the assertion in the preceding paragraph, a caveat is in order.
We do not preclude the possibility that two players 7 and j share private infor-

mation that & does not have. This permits : and j to act in correlated fashion,
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relative to what k observes. Under appropriate conditions, we might in con-
sequence find that play converges to a correlated equilibrium of the underlying
game. But insofar as behavior is asymptotically stationary (independent of any
extraneous information), all our results apply. That is, our results remain valid
— roughly, if there is convergence to an asymptotically stationary state, that state
must be a confirmed expectations/Nash equilibrium (depending on the level of
experimentation, etc.) — but because it is more plausible that players will corre-
late using partially private information, it is less likely that the antecedent clause

— there is convergence ... — will pertain.

A.2. The infinite strategic-experimentation condition

Fix player i and node z € X such that h(z) € H'. Define S'(z) to be the
set of all pure strategies for player : such that if : plays any s* € S*(z), then :
does not preclude hitting = .*

Definition. The behavior rule #* satisfies the infinite strategic-experimentation
condition if for every £ € = and z such that h(z) ¢ H*,

o0

> " AHENS (2)) = oo, (4.1)

n=1
where £ is the date t, player i subhistory of ¢ and #i(£1)(S*(z)) is the probability
that the behaviorally mixed strategy #i(¢}) selects some pure strategy from S(z).?

The formal relevance of this definition is established by the following propo-

sition.

Proposition A.1. Fix a strategy profile =, and a player :. Suppose that i ’s behavior

rule satisfies the infinite strategic-experimentation condition and, for some A € =, there

2 In other words, for every z’ < z such that h(z') € H' , s*(h(z’)) prescribes the unique action
that leads from z’ towards z, for s* € Si(z).

2 Let B(z) be the set of actions that lead to the node z, and let Bi(z) = B(z) N A*. Then
#ENS @) = [, epie, FiED@).
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exists € > 0 such that for all ¢ € = and forall j#1, ﬁ{({f)(a) > € forall a € A
such that wi(a) > 0. Then every information set h that is relevant to i at . will be

hit infinitely often, almost surely on ='.

This proposition is a quick corollary to the following generalization of the Borel-

Cantelli Lemma.

Lemma A.1. For any probability space (12, F,P), sequence of increasing sub- o -fields
{F:}, and sequence of events {A:}, with A, € Fy for each t,

{w . w € Ay for infinitely many t} = {w : ZP(At.,1|Ft) = oo.}
t=1

The equality between the sets in the lemma is, of course, up to a P-null set. This

lemma is easily proved using martingale theory; see, e.g., Durrett (1991, p-208).
Several comments about the definition and result are in order:

(1) It may be helpful to describe two different ways that condition (A.1) might be
satisfied. 2 First, suppose that for some sequence of nonnegative numbers {6}
such that Y 7o 6; =co and limy_. é; =0, we have #3(£8)(S¥(z)) > 6; uniformly
in z. That is, player i experiments with different strategies at random, at rates
which vanish as calendar time passes, but sufficiently slowly so that enough ex-
periments are taken. We will refer to this way of satisfying (A.1) slowly-vanishing
random experimentation. Note that slowly-vanishing random experimentation will
pose no problems for asymptotic myopia regardless of limitations put on experi-
ments, because as long as the bounds on the probability of experimentation go to
zero faster than the sequence {e;} used for asymptotic myopia, slowly-vanishing
random experimentation can be accomodated within the “nonexperimental” por-

tion of the player’s behavior rule.

2 These are each special cases. Condition (A.1) is a good deal more general than either.
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A second way (A.1) is satisfied is if players experiment consciously with non-
vanishing probability, but at a frequency whose proportion falls to zero. Specif-
ically, we might have, for each z, an infinite sequence of dates t,(z),%,(z),...
and a B > 0 such that #} (£ )(S*(z)) > B for all k¥ and k/tx(z) — 0. We call
this way of satisfying (A.1) specific-date experimentation. Note that the condition
k/ty(z) — 0 is imposed to make this compatible with calendar-time limitations

on experiments, but there may remain problems for experience-time limitations.

(2) As the proof of Proposition A.1 makes clear, (A.1) ensures that (under appro-
priate conditions on the behavior of :’s rivals) that every node = that is relevant
to : will be reached infinitely often. Our aim is to ensure (only) that every
relevant information set is reached infinitely often, and thus requiring (A.1) for
every node z is stronger than necessary. Moreover, examples show that requir-
ing (A.1) for every z may be unreasonably restrictive; see our earlier discussion
(on pp.21ff) concerning different experiments that lead to the same information

set.

(3) Bearing in mind point (2) immediately above — the objective of reaching
every relevant node infinitely often may be more than we want — if we pursue
that objective, then the lemma implies that (A.1) is necessary: For a given node
z, = will not be reached infinitely often (almost surely), no matter what :’s

rivals do, unless :’s behavior rule satisfies (A.1) for z.

(4) A strength of the MME condition is that players are not required to experiment
at information sets that are seemingly irrelevant; cf. the discussion surrounding
Figure 1 (page 23). Something roughly similar goes on here, although it is far from
transparent: Condition (A.1) gives player : credit for the intention to experiment
atinformation set h at date ¢ (even randomly), even if % is not reached. Thus (to
give a very concrete example) if Player 1 chooses A; at date ¢ with probability

1/t, and Player 2 chooses A, at date ¢ with probability 1/¢, then Player 2 will
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have fulfilled her obligations under (A.1) and yet will actually choose A, only
finitely often, almost surely.

(5) As with MME or any lower bound on information-set-based experimentation
that implies infinite experimentation almost surely, the definition asks for more
experimentation than would be optimal for rational (discounted payoff) play

against a multi-armed bandit.

A.3. Statistical tests and results

From Proposition A.1 to the sorts of results we pursue is straightforward if
behavior meets the extra condition of Proposition A.1; roughly, that behavior is
uniformly nonexperimental. Having shifted from MME to strategic experimen-
tation has not changed our lack of enthusiasm for the uniform nonexperimenta-
tion condition, nor does it moot the problems raised by the example in Figure
2. Thus to get satisfactory results with minimum strategic experimentation, we
must again enlist statistical test sequences.

This is where the extra baggage of personal histories becomes useful. Previ-
ously we suggested as an example that each player remember the pure strategy
he would have employed at each date; now we insist that each player include
this in his personal history, together with the history of outcomes. This allows the
formulation of a simple statistical test sequence that is adequate in this setting:
We begin with notation. For each z € X, let w(z) denote the initial node that
precedes z, let B(z) be the set of actions that leads to z, and let &S (z); &)
denote the number of times along the personal history ¢; that ¢ chose (a priori)
a strategy s' € S*(z). At date t, for each information set z € X such that
h(z) ¢ H, and for each strategy profile =~* for ¢’s rivals, we imagine that ¢
computes the number of times that = “should have” been reached if his rivals
play according to 7~* in ii.d. fashion:

pia, e =pwi) x [ 7TH@) x &H(SH@)éD.

aEB(I)NA—*
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Then the test is: For some nondecreasing sequence {7} with limit infinity and

for some ~, >0,
G¢A i AETT R E) < i g for some 2} > 9"

In words (and a bit roughly), if 7 is attaching significant probability to =~* such
that, for some z, the number of visits to z significantly less than what can be
expected, than ¢ rejects. Note that what can be expected here is very weak; all that
we insist upon is that we expect a number of visits which goes to infinity in the
“expectation” given by x*. That is, in the spirit of our earlier statistical tests we

might think to insist that 7 ~ k. But in fact, even 7z = Inlnlnk will do.

The point of this test should be clear. If ¢ believes (asymptotically) that node
z is relevant, and if he satisfies the infinite strategic-experimentation condition,
then p! must go to infinity, and z must be visited infinitely often. Using the sort
of induction argument employed in the proofs of Propositions 7.1 and 8.1, we
find that every relevant node will be reached infinitely often, and thus non-Nash

profiles/outcomes are unstable.
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