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Econometrica, Vol. 52, No. 4 (July, 1984) 

RATIONALIZABLE STRATEGIC BEHAVIOR AND THE 
PROBLEM OF PERFECTION 

BY DAVID G. PEARCE' 

This paper explores the fundamental problem of what can be inferred about the 
outcome of a noncooperative game, from the rationality of the players and from the 
information they possess. The answer is summarized in a solution concept called ratio- 
nalizability. Strategy profiles that are rationalizable are not always Nash equilibria; 
conversely, the information in an extensive form game often allows certain "unreasonable" 
Nash equilibria to be excluded from the set of rationalizable profiles. A stronger form of 
rationalizability is appropriate if players are known to be not merely "rational" but also 
"cautious." 

1. INTRODUCTION 

"WHAT CONSTITUTES RATIONAL BEHAVIOR in a noncooperative strategic situa- 
tion?" This paper explores the issue in the context of a wide class of finite 
noncooperative games in extensive form. The traditional answer relies heavily 
upon the idea of Nash equilibrium (Nash [17]). The position developed here, 
however, is that as a criterion for judging a profile of strategies to be "reason- 
able" choices for players in a game, the Nash equilibrium property is neither 
necessary nor sufficient. Some Nash equilibria are intuitively unreasonable, and 
not all reasonable strategy profiles are Nash equilibria. 

The fact that a Nash equilibrium can be intuitively unattractive is well-known: 
the equilibrium may be "imperfect." Introduced into the literature by Selten [20], 
the idea of imperfect equilibria has prompted game theorists to search for a 
narrower definition of equilibrium. While this research, some of which will be 
discussed here, has been extremely instructive, it remains inconclusive. Theorists 
often agree about what should happen in particular games, but to capture this 
intuition in a general solution concept has proved to be very difficult. If this 
paper is successful it should make some progress in that direction. 

The other side of the coin has received less scrutiny. Can all non-Nash profiles 
really be excluded on logical grounds? I believe not. The standard justifications 
for considering only Nash profiles are circular in nature, or make gratuitous 
assumptions about players' decision criteria or beliefs. The following discussion 
of these points is extremely brief, due to space constraints; more detailed 
arguments may be found in Pearce [18]. 

I am concerned here with situations in which players are unable to communi- 

1 I am very grateful to Bob Anderson and Hugo Sonnenschein for their invaluable assistance. Not 
everyone who commented on this work can be mentioned here, but I would particularly like to thank 
Mark Bagnoli, Doug Bernheim, Bentley MacLeod, John C. Harsanyi, Vijay Krishna, Roger Myerson, 
Robert Wilson, and the anonymous referees for their helpful suggestions. Finally, I wish to 
acknowledge a major intellectual debt that I owe my colleague, Dilip Abreu. Our countless 
discussions on game theory have played a central role in shaping my ideas about strategic behavior. 
Of course, only I can be held responsible for the statements made herein. 
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cate with one another before or during the game. The most sweeping (and, 
perhaps, historically the most frequently invoked) case for Nash equilibrium 
theory in such circumstances asserts that a player's strategy must be a best 
response to those selected by other players, because he can deduce what those 
strategies are. Player i can figure out j's strategic choice by merely imagining 
himself in j's position. But this takes for granted that there is a unique rational 
choice forj to make; this uniqueness is not derived from fundamental rationality 
postulates, but is simply assumed. Furthermore, any argument suggesting that 
player rationality, combined with the structural characteristics of a game, inevita- 
bly renders all but one outcome "impossible," leads to conclusions that contra- 
dict widely accepted notions of "perfection" (Pearce [19]). Once one admits the 
possibility that a player may have several strategies that he could reasonably use, 
expectations may be mismatched. Player i's strategy will then be a best response 
to his (possibly incorrect) conjecture about others' strategies, not the actual 
strategies employed. 

A less ambitious defense of Nash equilibrium is that although equilibrium 
might not be attained in a one-shot game, players will eventually arrive at some 
Nash profile if the game is repeated indefinitely. Among the many objections to 
this claim, the most conclusive is that there may well be supergame equilibria 
involving phenomena (implicit collusion, maintenance of reputation, and so on) 
that are incompatible with single-period maximizing behavior. It is misleading, 
then, to study a repeated game by investigating the Nash equilibria of the 
one-shot game. But a more persuasive story can be told in which different 
players are involved at each iteration of the game. Each player is concerned only 
with one-period payoffs, but can look to the history of play for guidance 
regarding the likely choices of his opponents. While one cannot prove that each 
generation of players will follow a pattern set by previous participants, such an 
outcome seems quite plausible. But we are interested in analyzing many situa- 
tions for which no precedents exist (such as nuclear wars between superpowers) 
or in which continual changes in relevant variables (technological breakthroughs, 
new legislation, and so on) preclude prediction based on tradition. It then 
becomes crucial to understand precisely what are the implications of players' 
information and rationality. 

Most of this paper is devoted to the development and evaluation of a solution 
concept called "rationalizability."2 It is offered as an answer to my opening 
question: "What constitutes rational behavior in a noncooperative strategic 
situation?" No attempt is made to single out a unique strategy profile for each 
game; instead, a profile is rationalizable if each player has selected any strategy 

2Rationalizability in normal form games was developed independently by Doug Bernheim [2]. The 
expression "ex ante equilibrium" which I used in earlier work [18] has been adandoned here in favor 
of Bernheim's descriptive term "rationalizability," in order to unify the terminology in the literature. 
Our papers are complementary in many respects, his analyzing more general games in normal form 
and comparing Nash equilibrium to rationalizability, and mine spending more time than his on the 
extensive form and problems of perfection. 
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that is "reasonable" in a sense to be made precise. A single player might have 
many such strategies. 

While allowing for more flexibility than the Nash solution concept permits, 
one wishes to eliminate the problem of imperfection. This is complicated by the 
fact that there are actually two types of behavior that have been labelled 
"imperfect" in the literature. The first involves "implausible behavior at un- 
reached information sets" and arises only in games having some sequential 
nature. The second is intimately related to the first, but can occur even in 
perfectly simultaneous games. It concerns the taking of risks that seem "likely" to 
be costly, when there are no offsetting advantages for a player to consider. The 
first type of imperfection can be ruled out on the basis of rather innocuous 
rationality postulates. Elimination of the second type, however, requires an 
additional assumption, amounting to the assertion that players will exercise 
prudence when it is costless to do so. Accordingly, I define two solution 
concepts. The first, rationalizability, relies upon little more than logical deduc- 
tion, and ignores the second type of imperfect behavior. A narrower solution 
concept, which I call cautious rationalizability, makes the additional assumption 
needed to eliminate imperfections of the second type. 

For expositional purposes the early sections of the paper deal only with normal 
form representations of games. Because I believe that the additional structure 
provided by the extensive form is often important in determining how players 
will act, I interpret a normal form game as a convenient representation of a 
perfectly simultaneous game, in which no one can observe any move of any other 
player before moving himself. Such games can be analyzed without the encum- 
brance of the extensive form structure. The analysis of Sections 2 and 3 should 
be understood as an investigation of a special class of extensive form games. 
Indeed, the general solution concepts ultimately proposed in Sections 4 and 5 
reduce to those of Sections 2 and 3 for nonstochastic games in which everyone 
moves simultaneously. Many of the central themes of the paper come across 
more clearly in these special games. 

2. RATIONALIZABILITY IN NORMAL FORM GAMES 

The purpose of this section is to develop a solution concept for finite normal 
form games, based on three assumptions: 

ASSUMPTION (Al): When a player lacks an objective probability distribution 
over another player's choice of strategy, he forms a subjective prior that does not 
contradict any of the information at his disposal. 

ASSUMPTION (A2): Each player maximizes his expected utility relative to his 
subjective priors regarding the strategic choices of others. 

ASSUMPTION (A3): The structure of the game (including all participants' 
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strategies and payoffs, and the fact that each player satisfies Assumptions (A1) 
and (A2)) is common knowledge (see Aumann [1]). Roughly speaking, some 
information 0 is common knowledge if for any players i, j,... , k, the statement 
"i knows thatj knows that ... that k knows 9" is true. 

An N-person noncooperative normal form game 

G = (S, ..., SN; Ul... UN) 

is completely characterized by the finite nonempty sets Si of pure strategies, and 
real-valued utility functions Ui having domain IINjIjS'. The set M' of mixed 
strategies for player i is a simplex in Euclidean space; Ui is extended to frlr =Mr 
by an expected utility calculation. Let M = (M, ... ., MN). 

A strategy a G M' is strongly dominated if 3y G M' such that V(m', ... ., mN) 

i N lMr, 

> u ml . ,_ mi- 1, n i N) 

A strategy b G M' is a best response for i to a profile (ml, ... , mN) if Vd G Ml, 

U 1m,. i- 1 b i+ l N) 

U'( Ui, . . . , m i AM d, mi+l m 

If b G B' c M' and instead the above weak inequality holds for every d G Bi, 

then b is a best response in B' to (ml, . .. , mN). Throughout the paper A denotes 
the convex hull of a set A. If A c M', a conjecture over A can be regarded (for 
the purposes of expected utility calculations) as an element of A (see Lemma 1 
and Lemma 2 of Appendix A). 

I now define functions R' which, when applied to the vector M of mixed 
strategy sets, yield the sets of "rationalizable" strategies for each player. Immedi- 
ately following this definition is a discussion of its motivation. 

DEFINITION 1: For arbitrary sets H' c M', i = 1, . . . , N, let H'(O) = H', and 
for each i define H'(t) inductively for t = 1,2, . . . by H'(t) = {a G H'(t - 1): 
37y I1N ,Hr(t -1) such that a is a best response in H'(t - 1) to y}. 

Define 

00 

R'(H l HN ) n= flH'(t). 
t= 1 

Thus the operation R' is an iterative procedure; at each stage, a strategy is 
retained only if it is a best response to some conjecture over strategies (for other 
players) that have not been removed at an earlier stage. By Assumptions (Al) 
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and (A2) each player chooses a best response to some strategy (/B1,... ., AN) 

rE fl= iMr; in the notation of Definition 1, i's strategic choice lies in MI(l). 
Since this is an implication of Assumptions (Al) and (A2), which by (A3) are 
common knowledge, each player knows this information, and restricts his conjec- 
ture to elements of JIN l1Mr(l). Thus a best response of any playerj to his 
conjecture, is an element of M'(2). Again this is common knowledge, and t-fold 
iteration of this argument, for any t, establishes that strategic choices lie within 
the sets M l(t), . . . , M"N(t). This being true for all t, players restrict themselves to 
the sets R l(M), . . ., RN(M). 

Can we exclude any other strategies on the basis of Assumptions (Al), (A2), 
and (A3)? Proposition 1 below makes it evident that the vector (R l(M), . . .. 
RN(M)) has the best response property: 

DEFINITION 2: For sets A c M' i1, .. ., N, (A .... ,A N) has the best 
response property if Vi, a E A implies 3y E-= r =Ar such that a is a best 
response to y. 

This means that if player i chooses a, he can "justify" his choice by explaining 
that a is a best response to some (-y' ..., yN) E IIN 1Rr(M). Moreover, i's 
guess about what any other playerj is doing is also reasonable, in the sense that 
yi can be expressed as a convex combination of strategies in Ri(M), which are 
themselves best responses to conjectures that ] might make about other players' 
strategies. The latter conjectures are in turn "justified" by the existence of further 
strategy profiles in JINIZ R r(M), and so on. Thus, for any strategy a e R'(M), 
there is an infinite succession of conjectures, each of them consistent with 
Assumptions (Al), (A2), and (A3), "rationalizing" the choice of a. This motivates 
the formal definition of the solution concept. 

DEFINITION 3: Given a finite game G = (S l, ... , SN; U, ..., UN) with the 
vector M of associated mixed strategy sets, the set of rationalizable strategies for 
player i is R'(M). A profile (a', . . ., a N) is rationalizable if a' c R'(M) Vi. 

In order to state the main results of this section, an additional definition is 
necessary. 

DEFINITION 4: A c M' has the pure strategy property if a C A implies that 
every pure strategy given positive weight by a is also in A. 

PROPOSITION 1: If H' C M' and H' is closed, nonempty, and satisfies the pure 
strategy property, i = , ... , N, then (a) H'(t) is closed, nonempty, and satisfies the 
pure strategy property Vi, and t = 1, 2, . .. ; (b) for some integer k, H'(t) = H'(k) 
for all t > k, i = 1, . . ., N. 

PROOF: Proposition 1 is a special case of Proposition 4, proved in Section 4. It 
is clear from (b) that (R '(M), . . . , R N(M)) has the best response property. 
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COROLLARY: For each player i, the set of rationalizable strategies R'(M) is 
nonempty, and in fact contains at least one pure strategy. 

PROOF: Set (H', ... , HN) = (Ml, . .. , MN) in Proposition 1. 

The need for players to randomize in many Nash equilibria has long been 
considered somewhat puzzling (see, for example, the discussion in Luce and 
Raiffa [14, pp. 74-76]. The incentive for randomization seems to be the need to 
"evade" one's opponents. But in the present context, opponents are not always 
able to figure out a player's strategic choice; such a player can hide without 
randomizing, camouflaged by the uncertainty of the other players. 

The following definition and proposition provide an illuminating characteriza- 
tion of the rationalizable sets, without recourse to any iterative procedure. 

DEFINITION 5: For each i, define 

E' = {x G M': 3X%, ... , XN with the best response property, 

and x G xi) X 

PROPOSITION 2: E'= R'(M) Vi. 

PROOF: Since (R l(M), ... , RN (M)) satisfies the best response property, 
R'(M) Ci E' Vi, by definition. To establish the converse, note first that 
(E,... , EN) has the best response property. a G E' implies X1,... ,XN 
such that a G X' and a is a best response to some y G jir= I Xr. But y G fl r= IE 
since Xr C Er Vr. Thus E l, . .. , EN have the best response property, which 
implies E' C M'(1) Vi (see Definition 1). An inductive argument completes the 
proof: assume that for some t, E' C MI(t) Vi. Then a G E' implies a is a best 
response to some y G HirN Mr(t), and hence a G M'(t + 1). Thus for all t and i, 
E' C M'(t), therefore E' C R'(M) Vi. 

COROLLARY: If (n, ... n N) is a Nash equilibrium, (n1, . .. , n N) is rationaliz- 
able. 

PROOF: ({n'}, .. . {nN}) has the best response property, so n' G E' 
- R'(M) Vi. 

Since a Nash equilibrium always exists for finite games (Nash [17]), this 
furnishes an alternative proof that the rationalizable sets are nonempty. 

Bernheim's definition of a rationalizable strategy makes explicit use of "belief 
systems." Apart from the fact that his definition applies to a more general class 
of strategy spaces, it is equivalent to Definitions 3 and 5 above; this is the 
content of his Proposition 3.2 (Bernheim [2]). 
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In 2-person games, a strategy is strongly dominated if and only if there is no 
conjecture to which the strategy is a best response (see Appendix B, Lemma 3). 
Hence for 2-person games, rationalizable strategies are those remaining after the 
iterative deletion of strongly dominated strategies.3 This does not hold for N > 3, 
where the rationalizable sets may be strictly smaller than (but always contained 
in) those resulting from the iterative removal of dominated strategies; an example 
of this strict containment is given by Pearce [18, p. 17]. Proofs of the equivalence 
of the two procedures for N = 2 could easily be extended to arbitrary N if a 
player's opponents could coordinate their randomized strategic actions. 

The matrix game G, below provides a simple example in which non-Nash 
profiles are rationalizable. The reader can easily verify that (a,; f3I) is a Nash 
equilibrium that Pareto dominates all other Nash equilibria of GI. Some game 
theorists, then, would single out (a,; f,3) as the solution of GI. Opposition is 
bound to come from others who would insist that in the face of l's indifference 
between a, and a2 (regardless of 2's strategic choice), 2 should consider it equally 
likely (according to the principle of insufficient reason) that a, and a2 will be 
played. 2 would then choose I2, which is not his strategy in the Pareto dominant 
equilibrium. In a case such as this where two attractive rules of thumb conflict 
with one another, should we be astonished if 1 decides to play a1, for example, 
while 2 plays /82? The profile is clearly rationalizable (as is every profile in G,), 
but not a Nash equilibrium. 

The principal drawback of rationalizability is clear: it typically does not allow 
a specific prediction to be made about strategic choice. (For example, in the 
game "matching pennies," all strategies are rationalizable.) But this indetermi- 
nacy is an accurate reflection of the difficult situation faced by players in a 
game. The rules of a game and its numerical data are seldom sufficient for 
logical deduction alone to single out a unique choice of strategy for each player. 
To do so one requires either richer information (such as institutional detail or 
perhaps historical precedent for a certain type of behavior) or bolder assump- 
tions about how players choose strategies. Putting further restrictions on strategic 
choice is a complex and treacherous task. But one's intuition frequently points to 
patterns of behavior that cannot be isolated on the grounds of consistency alone. 
Formalizing this intuition in specific solution concepts would seem to be a matter 
of high priority; I interpret papers such as Harsanyi [11] to be in this spirit. 

2 
/ 2 

al (0,5) (-1,3) 

12 (0,0) (-1,3) 

3Such procedures have long been a part of the game-theoretic literature; see for example Gale [8], 
Farquharson [61, and Luce and Raiffa [14], as well as the more recent work by Moulin [151. 
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3. CAUTIOUS RATIONALIZABILITY IN THE NORMAL FORM 

The notion of an imperfect equilibrium was originally conceived (see Selten 
[20]), and is still most commonly perceived, as a problem arising because of 
"implausible behavior at unreached information sets." This is obviously applica- 
ble only to extensive form games, which are treated in later sections. But a 
related phenomenon appears in normal form games, and has received some 
attention. In particular the paper by Myerson [16] on perfect and proper 
equilibria concerns exactly this issue. 

Myerson's opening example is perhaps the simplest illustration of the problem 
at hand. G2 has two Nash equilibria. In the first, 1 and 2 select the pure strategies 
a, and .8 respectively. In the second, they choose a2 and 82 respectively. The 
latter equilibrium is, as Myerson indicates, counterintuitive: "it would be unrea- 
sonable to predict (a2, 12) as the outcome of the game. If player 1 thought that 
there was any chance of player 2 using /3I, then 1 would certainly prefer a," 
(Myerson [16, page 74]). It is clear that 1 is taking an unnecessary risk by 
choosing a2. He has nothing to gain by doing so, and possibly something to lose. 
The same applies to player 2, who would be foolish to choose 82. 

Explanations of why a certain equilibrium is to be considered "imperfect" 
usually involve stories about players making mistakes with small positive proba- 
bilities. This is a departure from tradition in the theory of games, and one senses 
a certain reluctance in Selten's remarks: "There cannot be any mistakes if the 
players are absolutely rational. Nevertheless, a satisfactory interpretation of 
equilibrium points in extensive games seems to require that the possibility of 
mistakes is not completely excluded. This can be achieved by a point of view 
which looks at complete rationality as a limiting case of incomplete rationality" 
(Selten [21, Section 7]). The same reasoning is employed in normal form games, 
and Myerson concludes his commentary on the game G2 by saying that 
" . . . there is always a small chance that any strategy might be chosen, if only by 
mistake. So in our example, a, and .8 must always get at least an infinitesimal 
probability weight, which will eliminate (a2, 12) from the class of perfect (and 
proper) equilibria" (Myerson [16, p. 74]). 

In my opinion the "slight mistakes" story does not do justice to our intuition 
about how players make their decisions. In game G2, if 1 prefers a , to a2, it is not 
because he believes that 2 might "make a mistake" and play fl. On the contrary, 
AI would be an eminently reasonable choice for 2 (regardless of l's choice). l's 
reluctance to choose a2 reflects l's belief that 2 is likely to choose .B deliberately, 
not as a result of incomplete rationality. Similarly, 2 is likely to use f,3 because he 
expects that 1 will probably select a1; no errors enter the picture. I will argue that 

a1 (1,1) (0,0) 
1 G2 

a2 (0 ,0) (0,0) 
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there is no need to base an analysis of imperfect behavior on incomplete 
rationality; an alternative is available which conforms more closely to intuition. 
First, an extremely brief sketch of the solution concepts proposed by Selten and 
Myerson is given. This is not meant to be a substitute for reading the original 
definitions. 

In a game G = (S, .. ., sN; Ul,..., UN), a totally mixed strategy for player 
i is a mixed strategy giving positive weight to each pure strategy in Si. For any 
small positive number E, an e-equilibrium of G is a profile of totally mixed 
strategies (t', . . . , tN) such that for each i, player i gives weight greater than e to 
a given element s of Si only if s is a best response to (t', . . . , tN). If 
(z, . .. , zN) is the limit of e-equilibria as E-*O, (zI, . .. , ZN) iS said to be a 
perfect equilibrium of G. (Each component of (t, . . . , tN) is an element of 
Euclidean space; convergence is with respect to the usual Euclidean metric.) This 
is Myerson's formulation (Myerson [16]) of what is often called "trembling hand 
perfect equilibrium," originally defined by Selten [21] on the extensive form. 

Roughly speaking, an e-proper equilibrium is a "combination of totally mixed 
strategies in which every player is giving his better responses much more 
probability weight than his worse responses (by a factor 1/e), whether or not 
those 'better' responses are 'best' . . . . We now define a proper equilibrium to be 
any limit of E-proper equilibria" (Myerson [16, p. 78]). 

Requiring, as proper equilibrium does, that when contemplating an opponent's 
"trembles," a player should give much higher weight to relatively innocuous 
mistakes than to those which would cause the opponent serious damage, suggests 
that one is interested in "sensible trembles." In other words, the idea behind 
proper equilibrium seems to be that a player should be open-minded about 
various reasonable alternative strategies his opponents might use; the random 
component attributed to an opponent's action must not be arbitrary. While it is 
important to insist that doubts entertained by a player regarding his opponents' 
strategies should be concentrated upon reasonable possibilities, proper equilib- 
rium attempts to enforce this without reference to any theory specifying what 
possibilities are realistic. This explains the failure of proper equilibrium to rule 
out unreasonable choices in many games. One well-known example is presented 
later in this section. 

I believe that the analysis of Section 2 provides the kind of theory that is 
required to determine what "reasonable doubts" players can rationally entertain 
regarding the choices of their opponents. For each game, rationalizability dis- 
tinguishes those strategies that players could employ without violating the impli- 
cations of the common knowledge they possess, from those that are patently 
unreasonable. If the condition that players do not take unnecessary risks is to be 
imposed by requiring that their conjectures give positive weight to all "likely" 
alternatives, those strategies that are not rationalizable should still be given zero 
weight. This constraint can be imposed by modifying the iterative procedure of 
the previous section, using the idea of a "cautious response." 

DEFINITION 6: Let A' c M' and Xi c Mi, j = 1, . . ., N. A strategy c C A' is 
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a cautious response in A' to (X, ... ., XN) if 3(y ...... E GfN xr such that 
(i) y gives positive weight to each pure strategy in Xk, Vk; (ii) c is a best 
response in A' to (71, . . ., N). 

DEFINITION 7: Given the sets R l(M), ... , R N(M) of rationalizable strategies, 
for each i let 

C'(1) = {G E R'(M): a is a cautious response in R'(M) 

to (R l(M), . . ., RN(M))}. 

For t > 1, define C'(t) recursively for each i by 

C (t) = {G E R'(C(t - 1)): a is a cautious response in R'(C(t - 1)) 

to (R I(C(t -1))5 . .., R N(C(t -1)))}, 

where C(t - 1) = (C(t - 1), . . ., CN(t -1)), and the functions R' are those of 
Definition 1, Section 2. For each i, 

00 

Qi nCi(t) 
t= 1 

is the set of cautiously rationalizable strategies for player i. A profile (al, 
... , a is cautiously rationalizable if a E Q' Vi. At each "round," strategies 

that are not best responses are eliminated first, and then those that are not 
cautious responses are removed. 

PROPOSITION 3: For some integer k, 

C'(t) = C'(k) Vt > k, Vi. 

Moreover, the set Q' of cautiously rationalizable strategies is nonempty, closed, 
and satisfies the pure strategy property Vi. 

The proof of Proposition 3 is omitted, since it is similar to those of Proposi- 
tions 1 and 4. Lemma 4 of Appendix B relates the operation C to weak 
dominance. 

The solution concept performs as desired on Myerson's example G2, and the 
reader can easily verify that cautious rationalizability is equally appropriate when 
applied to another example (not given here) constructed in Myerson [16], for 
which proper equilibrium also does well. But consider G3, the normal form of a 
well-known extensive form game (to be called F2) that is discussed in the next 
section. Notice that (a,, f82) iS one of the Nash equilibrium profiles of this game; 
in fact, one can show (ax1, f82) is both a trembling hand perfect, and a proper 
equilibrium. Why would 2 ever select /82? /82 is preferable to .8 only if 1 gives 
considerable weight to a3. But 2 knows that a3 is strongly dominated for 1 by a I, 
and will never be played. Thus, there is no risk to playing 8,, and a superior 
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2 2 
P1 I 2 P 2 

a, (1,1) (1,1) a1 (10,10) (10,0) 

1 a2 (2,-1) (-10,-2) G3 a2 (10,10) (0,0) 

a3 (0,-2) (0,-1) 

return for playing P, rather than f82 if a2 is played. If 2 were a "cautious" player, 
it would be ridiculous for him to play f82; knowing this, 1 plays a2. In the 
notation developed above, C '(I) contains all strategies giving zero weight to a33, 
while C2(1) = { PI }. Then R 1(C(1)) = {f2}, and R 2(C(1)) = { PI }. No further 
reduction can take place; the unique cautiously rationalizable profile coincides 
with the only reasonable Nash equilibrium of G3, namely (a2; P31) 

On the other hand, cautious rationalizability was formulated with games such 
as G4 in mind, where it singles out P, for 2, but respects l's legitimate indiffer- 
ence between al and a2 (given that 2's rationality is common knowledge, 1 knows 
that f2 will not be played). 

Bernheim's "perfect rationalizability" [2] is the natural extension of the "trem- 
bling hand" idea from Nash equilibrium to rationalizability. It is not equivalent 
to cautious rationalizability, which is motivated quite differently. In G3, for 
example, f82 is perfectly, but not cautiously, rationalizable. Conversely, in G4, a2 
is cautiously, but not perfectly, rationalizable. 

4. RATIONALIZABILITY IN THE EXTENSIVE FORM 

This section generalizes the analysis of Section 2 to games having some 
sequential nature. In this context it is possible to study the best-known type of 
imperfect behavior, namely unreasonable behavior at unreached information 
sets. The problem is attacked using the idea of consistent conjectures, without the 
additional assumptions needed to ensure cautious behavior. Those assumptions 
are invoked in Section 5, because what I have called imperfections of the second 
type may still arise in the extensive form. 

A complete formal description of an extensive form game would be too 
lengthy to be appropriate here. Some knowledge of extensive form games and 
their normal forms is taken for granted, but a number of initial definitions are 
unavoidable. The reader who requires precise definitions of the terms used here 
should consult Selten [21]. 

I restrict myself to finite N-person extensive form games of perfect recall 
(Kuhn [13]). At the beginning of the game F, "nature" makes a (possibly 
degenerate) random move.4 IA' denotes the jth information set of the ith player, 

4Harsanyi [10] has shown that games having various sorts of incomplete information, such as 
incomplete knowledge of others' utility functions, can be handled by an ingenious use of the random 
move at the beginning of the game. Hence the solution concept defined here encompasses such 
situations. 
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and SV the set of choices at IF. Forj # k, IF is apredecessor of Iik if there exist a 
terminal node y and a node x in I, such that the path from x to y goes through 
iik; Ijik is a successor of I'M. A pure strategy f for player i is a function associating 
with each information set IN of i one of the choices in SY; denote this choice by 

f(i, j). 

DEFINITION 8: If f and g are pure strategies for i, g is an U-replacement for f if 
for all 1 :=] j such that jIl is not a successor to I'Y, g(i, 1) = f(i, 1). 

This says that f and g agree everywhere except on IY and its successors. 
With each profile of pure strategies is associated a utility for each player; the 

domain of the utility functions U' is extended to fl= 1Mr by an expected utility 
calculation, where Mr is the mixed strategy simplex of player r. Consider a 
particular information set IF' and a profile m = (m 1, .. . mN ) of (mixed) strate- 
gies. If for each terminal node y reached with positive probability when m is 
played, and each x E I U, x does not lie on the path from the origin toy, then IN 
is not reached by m. If the condition is violated, I is reached by m. 

Consider the game I1 having perfect information (all information sets are 
singletons) and no randomness. (When representing games where the random 
move is restricted to one choice, I simply omit the random player's information 
set.) Although the outcome yielding (0, 0) is absurd, it is among the Nash 
equilibrium outcomes of F1. If 1 specifies the choice a1 (with probability 1) and 2 
chooses ,B2, neither has an incentive to deviate. But everyone must agree that if 1 
were to play a2 2 would, upon being reached, respond by playing /B1. Knowing 
this, 1 should play a2. The imperfect behavior arises because in the dubious 
equilibrium, 2's information set is not reached with positive probability. Conse- 
quently 2 can specify any choice with impunity. 

Subgame perfect equilibrium (Selten [20, 21]) deals nicely with examples of this 
variety. A Nash equilibrium is subgame perfect if the strategies it induces on any 
proper subgame of F (see Selten [21]) constitute a Nash equilibrium of that 
subgame. In F1, 2's choice of /B2 is not Nash on the subgame starting at 2's 
information set. 

Unfortunately there are often too few proper subgames to allow subgame 
perfection to enforce intuitively reasonable behavior in a game. This prompted 
Selten [21] to introduce a further notion, perfect equilibrium, or trembling hand 

(0, 0) 

I~~~ 

1'1 
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perfect equilibrium. The set of perfect equilibria is a subset of the set of subgame 
perfect equilibria. As was noted in Section 3, the indiscriminate nature of the 
"trembles" allowed causes problems for the perfect equilibrium concept. The 
attempt by Myerson [16] to correct this by limiting the class of admissible 
trembles was only partially successful; proper equilibrium remains too deeply 
rooted in the stochastic "small mistakes" framework to escape all the difficulties 
created by that approach. A major alternative has been suggested by Kreps and 
Wilson [12]. Their solution concept, sequential equilibrium, is based upon an 
examination of rational beliefs rather than the possibilities for error. 

While all of the solution concepts mentioned above have features that are 
extremely attractive, examples abound in which none of the equilibrium notions 
is satisfactory (one well-known example is presented later in this section). 
Equally important is the fact that they all admit Nash profiles only; this paper 
attempts to escape that restriction. Let us try to apply the idea of consistent 
conjectures to examples such as P1. 

The possibility of collapsing series of choices into timeless contingent strategies 
must not obscure the fact that the phenomenon being modelled is some sequen- 
tial game, in which conjectures may be contradicted in the course of play. In F1, 
it is ludicrous to maintain that if 2 is called upon to move, having been reached, 
he might choose f2, thinking that a1 was played by 1. By the time he must 
commit himself to a course of action, 2 knows that it is a fact that 1 played a2. 

The observation that a conjecture must not be maintained in the face of evidence 
that refutes it is a central element of the sequential equilibrium concept; it is 
combined here with a further principle and the iterative techniques of previous 
sections to construct a new solution concept for extensive form games. 

Since a player's beliefs about others' strategies may be refuted as a play of the 
game progresses, he might need to formulate new conjectures as the old ones are 
disproven. Consequently I associate a conjecture' 

C = (Cy(l), ... , cu(N)) 

with each information set IF in P; cy"(k) represents what an "agent"j for player i 
believes, once IF is reached, about what player k's mixed strategy is. A conjec- 
ture c Y(k) over a set A k c Mk can be regarded as an element of Ak (see 
Appendix A). 

I have noted that an agent ij, upon being reached, should not entertain a 
conjecture that does not reach IF. A further restriction, not invoked in other 
solution concepts, is appropriate: if the information set can be reached without 
violating the rationality of any player, then the agent's conjecture must not 
attribute an irrational strategy to any player. In other words, he should seek a 
reasonable explanation for what he has observed. This principle is applied within 
an iterative procedure similar to that of Section 2, suitably elaborated to exploit 
the additional information in the extensive form. 

For later reference, the iterative procedure is defined for sets H 1, . . ., HN 
satisfying certain properties; our immediate interest is in the technique applied to 
M-=(M 1, . ,MN). 
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DEFINITION 9: Let H = (H ,..., HN) where Vi H' is closed, nonempty, and 
has the pure strategy property. Define H'(0) = H', i = 1, .. ., N. For any t > 1, 
define the sets H (t), . . ., HN(t) recursively as follows. For each pure strategy 
/, E H'(t - 1), let J'(/, SH, t) contain all those j such that I/' can be reached 
by some profile of the form (mI, . . , mi- , /,m''i+l, mN), where mr' 
Hr(t- 1), r = 1, .. ., N. (The eventual interpretation will be that at stage t of 
the logical deduction process, i knows that if he plays /, no information set IP' 
will be reached unless j E J (/, H, t).) A strategy a E H(t - 1) giving positive 
weight to pure strategies ax, . .. a. is an element of Hi(t) if there exist 
conjectures cJ7, z = 1, ..., h, such that for all z, and allj E J'(a, H,t): 

(i) czj (i) = z; 
(ii) CzJ(l)=cf(), i; 
(iii) for r,s E Ji(oa, H,t), if Iir is a predecessor of IiS and cjr reaches Ii, then 

is ir. 

(iv) czj reaches IJ; 
(v) czJ E IIN Hr(t - 1); and 
(vi) az is a best response to czJ among all ij-replacements for az in H'(t - 1). 
For each i, define 

00 

R'(H) = ( Hi(t). 
t=1 

DEFINITION 10: R'(M) is the set of rationalizable strategies for player i, where 
M = (M , ..., MN) is the vector of mixed strategy sets. 

The iterative procedure is interpreted as follows. At each stage, additional 
restrictions are placed on conjectures and actions only at information sets that 
can be reached by profiles of strategies not previously eliminated. In a particular 
play of the game, player i uses some pure strategy az which is a realization of the 
mixed strategy a. Condition (i) says that i's "conjecture" about his own strategy 
is correct. The next requirement stipulates that conjectures about others' strate- 
gies do not depend upon which of the a, . . ., ah player i ends up using. 
According to (iii), a conjecture should not be discarded unless it is contradicted 
(by arrival at an information set unreachable by the conjecture in question). 
Condition (iv) ensures that a conjecture at Ii' explains how that information set 
could have been reached. The principle that the explanation should be "rea- 
sonable" is embodied in (v), which restricts conjectures to strategies that have not 
been eliminated at a previous stage. Finally, the strategy chosen by i should at all 
times be an optimal response to the conjectures he holds. The most convenient 
way to express this condition is to consider j-replacements for ao; these represent 
the options still open to i at I'J. Among these, ao must constitute an optimal 
contingent plan, given that beliefs about others' mixed strategies are described 
by cz' 

1042 
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PROPOSITION 4: Under the assumptions of Definition 9, for all i and t, Hi(t) is 
nonempty, closed, and has the pure strategy property. Furthermore 3k such that Vi, 
H'(t) = H'(k), Vt > k. 

PROOF: The sets H'(t), i = 1, . . . , N, inherit the pure strategy property, 
nonemptiness, and closedness from the original sets H'. This is easy to see in the 
case of the pure strategy property, because if the pure strategies of which a mixed 
strategy a is comprised can collectively satisfy (i) to (vi), each of the pure 
strategies satisfies the conditions individually. To show nonemptiness, assume 
H1(t - 1), . . . , HN(t - 1) are nonempty and closed, and choose any conjecture 
c = (c(1), . .. , c(N)) such that c(r) E Hr(t - 1) gives positive weight to every 
pure strategy in Hr(t - 1). Since U' is continuous and H'(t - 1) is nonempty 
and compact, there exists an a that is a best response in H'(t - 1) to 3. a may be 
chosen to be a pure strategy, because H1(t - 1) has the pure strategy property. 
For every j J1(a, H, t), define 

c= (C(1), . . , C(i - 1),a,c(i + 1), .. ., c(N)). 

a and c1 satisfy (i) to (vi). (i) holds by definition. (ii) is trivially satisfied because 
there is only one pure strategy involved. (iii) is equally clear since c is not a 
function of j as defined. In all components except i, c1 gives positive weight to all 
pure strategies not eliminated in previous rounds; hence c1 reaches Ii for all 

E JT(a, H, t), and (iv) is satisfied. (v) holds by the definition of 3. Since a is a 
best response to c1 in H1(t - 1), a is certainly a best response to cp in the set of 
all q-replacements for a in H'(t - 1); therefore a E H'(t). To establish that 
Hi(t) is closed, consider a sequence,81, 82 .2.. in H'(t) converging to a strategy 
,8. H'(t - 1) is closed by hypothesis, so , E H'(t - 1). For some integer V, it 
must be the case that for all W > V, Pw gives positive weight to (at least) all the 
pure strategies given positive weight by P3. But there exists a set of conjectures c,'i 
(where z indexes the pure strategies comprising liv) such that 8v and the cZ' 
satisfy (i) to (vi). Then /8 and the cz' (omitting any conjecture corresponding to 
pure strategies not given positive weight by /8) satisfy (i) to (vi). Thus /B E H'(t), 
and the set is closed. 

H'(t + 1) can differ from H'(t) only if for some j, Hi(t) # HJ(t - 1). But 
since Hi(t) and Hi(t - 1) both satisfy the pure strategy property, their convex 
hulls differ only if some pure strategy in Hi(t - 1) is absent from H'(t). Thus, 
the iterative procedure "stops" in k steps for some finite k, because pure 
strategies are in finite supply. 

COROLLARY: The rationalizable sets R '(M), . . . , R N(M) are nonempty, closed, 
and satisfy the pure strategy property. Thus a rationalizable profile of pure strategies 
always exists. 

PROOF: Set H' = M' V i in Proposition 10. 
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< 1 (0,~~~(0-2) 

"2 

/a2 1 9 ~~~~~(-10,-2) 

a1 

To get some feeling for how this solution concept operates, consider two 
examples, starting with the familiar P1. In that game, 1 is unable to eliminate any 
strategy in the first round. Since strategies of 1 that reach 2's information set 
must give positive weight to a2, 2 must remove all strategies that are not best 
responses to some such strategy. This eliminates all strategies of 2 except,f3, so in 
the next round, 1 retains the only strategy that is a best response to ,B1, name- 
ly a2. 

A more challenging test for the theory is an example that Kreps and Wilson 
[12] attribute to E. Kohlberg. (The example is robust: small perturbations in the 
payoffs will not alter any of the statements made below.) In the game F2, player 
2 has only one information set, which is indicated in the game tree by enclosing 
the two nodes in that information set by an oblong figure. Notice that a I strongly 
dominates a3; the latter will never be played with positive probability by a 
rational player. If reached, 2 should conclude that a2 was played and respond 
optimally by playing,f1. Knowing that this would be 2's response, 1 should play 
a2. Despite this simple argument, another Nash equilibrium (which can actually 
be shown to be a trembling hand perfect, proper, and sequential equilibrium) has 
1 playing a1 with certainty and 2 playing /2. This is not rationalizable. In the first 
"round," all strategies giving a3 positive weight are removed. In the second 
round, since these strategies are absent from M 1(I), 2 eliminates every strategy 
except f,3, because elements of M1(l) reaching 2's information set are those 
giving some positive weight to a2. In the third round, 1 has a unique best 
response a2 to the single element fl, in M2(2). The only rationalizable profile of 
P2 is what Kreps and Wilson agree is the only reasonable profile. Their general 
remarks on what beliefs should be admissible are interesting: 

"Some sequential equilibria are supported by beliefs that the analyst can reject because 
they are supported by beliefs that are implausible. We will not propose any formal criteria 
for 'plausible beliefs' here. In certain cases, such as Myerson's concept of properness, some 
formalization is possible. In other cases, it is not clear that any formal criteria can be 
devised-it may be that arguments must be tailored to the particular game" (Kreps and 
Wilson [12, p. 885]). 
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Rationalizability formalizes the notion that beliefs may be implausible at an 
information set because (i) the set could not have been reached had those beliefs 
been true, or (ii) they are inconsistent with the results of logical deductions based 
on what players know about one another and the rules of the game. If rational- 
izability fails to narrow down the possible outcomes significantly in a given 
game, one might then consider applying criteria of a more ad hoc description, 
and perhaps make predictions on a game-by-game basis as Kreps and Wilson 
suggest. 

5. CAUTIOUS RATIONALIZABILITY IN THE EXTENSIVE FORM 

It is straightforward to verify that in a perfectly simultaneous nonstochastic 
game, the rationalizable sets conform to the normal form definition given in 
Section 2, applied to the normal form of the game in question. But in such 
games, rationalizable behavior is not always "cautious": the solution concept 
does not prevent imperfection of the second type. A simple demonstration that 
this applies equally to the extensive form is given by F3, whose normal form is 
G2, Myerson's example. If both players make prudent choices, (a,; f,B) will 
result. But (a2; 82) is also rationalizable. Such behavior can be avoided by the 
same technique as that employed in Section 3. A natural generalization of the 
normal form analysis is accomplished here as briefly as possible. 

DEFINITION 11: Given the sets R '(M), . .. , R N(M) of (extensive form) 
rationalizable strategies, for each i define 

C1(1) = {oa E R'(M): a is a cautious response in R1(M) 

to (R 1(M), ... , RN(M))}. 

For t > 1, define C'(t) recursively for each i by 

C'(t) = {a E R'(C(t - 1)): a is a cautious response in R'(C(t - 1)) 

to (R l(C(t -1)), ... ., RN(C(t -1)))), 

al~~~~ (1 , 1 ) 
2 'I- 1 _ 1 f-tn n~~(, 0 
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where C(t - 1)= (C(t - 1), . . ., CN(t - 1)), and the functions R' are those of 
Definition 10, Section 2. For each i, 

00 

Q'n= fC'(t) 
t=1 

is the set of cautiously rationalizable strategies for player i. A profile (a 1, 

... ,a N) is cautiously rationalizable if a' E Q' Vi. 

At each "round," strategies that are not best responses are discarded first, and 
then those that are not cautious responses are removed. 

PROPOSITION 5: For some integer k, 

C'(t)= C'(k) Vt>k, Vi. 

Moreover, the set Q' of cautiously rationalizable strategies is nonempty, closed, and 
satisfies the pure strategy property V i. 

The proof is a straightforward extension of the proof of Proposition 4, and is 
omitted. 

The solution concept has the attractive feature that in the play of a game, no 
one's conjectures are ever contradicted. Since each person's conjecture gives 
positive weight to every cautiously rationalizable strategy of every other player, 
nothing that is believed by any player to have zero probability ever occurs, so 
long as others choose cautiously. 

It might appear at first glance that in a game such as J4 in which 1 should be 
indifferent between a1 and a2 (according to subgame perfection or backward 
induction), cautious rationalizability forces 1 to choose a,, by eliminating a2 in 
the first round, before 2 has been removed. In fact this does not happen. Recall 
that before the cautious response criterion comes into play, the rationalizable sets 
are calculated. For 2, this eliminates all strategies except /,8; in "cautious 
response" to this, 1 plays either a, or a2. 

(5, 5) 
a, 

1 n 
~~~~~~~~(,5) 
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6. CONCLUSION 

In response to the opening question: "What constitutes rational behavior in a 
noncooperative strategic situation?" an extremely conservative theory of strategic 
behavior, rationalizability, has been developed. Without attempting to predict 
behavior uniquely in all games, the solution concept rules out strategic choices on 
the basis of rather fundamental principles such as maximization of expected 
utility, and the common knowledge assumption. Rationalizability is well suited to 
dealing with implausible behavior at "unreached" information sets, but an 
additional assumption that players are in some sense cautious is needed to deal 
with a second kind of imperfection. Incorporation of this assumption results in a 
more restrictive solution concept, cautious rationalizability. 

In conclusion, I wish to emphasize two points. First, as a necessary condition 
for a strategy profile to be reconcilable with the rationality of the players, the 
appropriate criterion is rationalizability rather than Nash equilibrium. Secondly, 
when one analyzes an economic or abstract game, every attempt should be made 
to exploit the informational structure of the extensive form, whether the objective 
is to make a specific prediction, or simply to place bounds upon what outcomes 
could possibly arise. 

Princeton University 

Manuscript received June, 1982; final revision received June, 1983. 

APPENDIX A 

A conjecture over a set A in Euclidean space is a probability measure y defined on the Borel sets 
of A. A trivial corollary of Lemma 1 below is that the mean of A with respect to ,t lies in A, the 
convex hull of A. Lemma 2 states that the expected utility associated with the conjecture ,t can be 
calculated using the mixed strategy y = fA XM (dx). 

LEMMA 1: Suppose that A is a convex subset of Euclidean space, and pt(A) = 1. 

y-f< xM(dx) E A. 

PROOF: If /t is a point mass, the result is immediate. If not, find a minimal affine subspace S such 
that p.(A n s) = 1. Without loss of generality assume 0 E S. If y E S\A, 3p E S, p s- 0 such that 
sup p * (A n S) < p y. The setS = {x E S: p. x = sup p (A n S)} has lower dimension than S, 
and hence M(A n s') < 1. Thus fASUP P (A n S)M (dx) > JAP xpt (dx). 

Now 

sup p (A n s) = f (sup p (A n S)) (dx) 

>JP xM (dx) 

=P .fA x(dx) 

= p y, a contradiction. 
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LEMMA 2: Let M be the mixed strategy simplex associated with the pure strategy set S= 
{ a. aj,} and let U: M R. Lety-fMxpu(dx), where I(M)= 1. Then 

fm 
w w 

xiUos u(dx) = i, y U(axi). 

PROOF: 

xi U(a1) )i (dx) = f 1 xi U(ai)pt (dx) 

w 

= U(aj)f xi t(dx) 

w 

= E y1U(a). 

APPENDIX B 

This appendix presents two lemmas relating the properties "best response" and "cautious re- 
sponse," to strong and weak dominance, respectively. Related results have been established in the 
literature5 (see, for example, Ferguson [7, Theorem 1, p. 86]) but the proofs are included here for 
completeness. Dilip Abreu suggested the arguments used below. Note that the results are not 
restricted to zero-sum games, but cannot be generalized to N-person games, where the propositions 
are false. However if one permits opponents to correlate their random strategies, the proofs are easily 
extended to the N-person case. 

LEMMA 3: Let G-(S 1, S2; U1, U2) be a finite noncooperative game, with associated mixed strategy 
sets M 1 and M2. a* E M 1 is strongly dominated if and only if Om E M 2 such that a is a best response to 
m. 

PROOF: If some /B E M' strongly dominates a, then Vy E M2, U'(/, _y) > U'(a, y), so a is never 
a best response. To establish the converse, suppose a is not a best response to any element of M 2. 
Then there exists a function b: M2 - M I with U'(b(m), m) > U '(a, m) Vm. Consider the zero-sum 
game G=(S 1, S2; U1, U2) where U'(x, y) = U'(x, y)- U'(a, y) and U2(x, y) =-U'(x, y). Let 
(x*, y*) be a Nash equilibrium of G. For any m E M2, 

UI(x*, m) > UI(x*, y*) 

* UI(b(y*), y*) 

> UI(a,y*) 

=0. 

But 

Ul(x*,m) > 0 

Vm= UI(x*, m) > U'(a, m) Vm 

a is strongly dominated by x*. Q.E.D. 

5After the page proofs of this paper were prepared, I learned from Eric van Damme that Lemmas 
3 and 4 are extremely closely related to Lemma 3.2.1 and Theorem 3.2.2 in van Damme [4] and to 
much earlier work of Gale and Sherman [9]. 
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Because the derivation of cautiously rationalizable strategies involves alternation of the operations 
R and C (see Section 3), this criterion differs from "iterative weak dominance" techniques, as G4 of 
Section 3 illustrates. Lemma 4 shows, however, that there is a close connection between "caution" 
and weak dominance. 

LEMMA 4: Let G = (S 1, S2; U1, U2) be a finite noncooperative game, with associated mixed strateg 
sets M 1 and M2. a e M 1 is weakly dominated if and only if a is not a cautious response to (M 1, M). 

PROOF: Suppose that a is weakly dominated by some y E M1. Then for any x E M2 giving 
strictly positive weight to every pure strategy in M2, U'(a, x) < U1(y, x), so by definition a is not a 
cautious response to (M l, M2). 

To establish the converse, suppose that a is not a cautious response. Define 

A = { a' E M 1 : U l(a, x) = U'(a, x) Vx E M2}. 

Let k be the number of pure strategies in M2, and T be the open interval (0, 1/k). Define 

G = { x e M2: xi > C, i = 1, . . . , k)} 

B,= {/ EM': U'(f8, x) > U'(a, x) Vx E 8}, 

W, ={/E M': U'(/, x) > U '(a, x) Vx e }. 

a is not a cautious response to (Ml, M2), so for each cE T, a is not a best response to any x E S 
and a repetition of the argument of Lemma 3 (regarding 8f as the opponent's strategy space) 
establishes that B, is nonempty. Since W, is closed and nonempty, for each e E T we can choose 
/3, E M 1 that is a best response in W, to (1/k, . . ., 1/k) E 8. Notice that /3, yields 1 strictly higher 
utility against (1 /k, . . .1, /k) than a, since B C5 W, Choose a sequence of Ei's in T converging to 0, 
such that { f,8, converges; let ,B* be the limit of the sequence { ,4. We will show that /B* weakly 
dominates a. 

Continuity of U1 guarantees that /B* is at least as good for l as a against all x E M2. It remains 
only to show that ,/* E A. If 3a' E A with a' = ,B*, then for all sufficiently small y /34 gives positive 
weight to every pure strategy given positive weight by a'. Then A > 0 can be chosen sufficiently small 
so that all components of 

= (,8B -AXa') 

are nonnegative. For any x E 

ul ( A,,x) 
- U'(,,, x) AAU'(t,8,x) - U'(a, x) > 0 

because / E W . Moreover the inequality is strict when x = (1/k, . l/k). Thus / is in W4 and 
yields 1 higher utility than /, against (1/k, . . ., l/k), a contradiction. Q.E.D. 
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