
Rational Learning Leads to Nash Equilibrium
Author(s): Ehud Kalai and Ehud Lehrer
Source: Econometrica, Vol. 61, No. 5 (Sep., 1993), pp. 1019-1045
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/2951492
Accessed: 09/12/2010 03:10

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=econosoc.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=econosoc
http://www.jstor.org/stable/2951492?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=econosoc
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RATIONAL LEARNING LEADS TO NASH EQUILIBRIUM 

BY EHUD KALAI AND EHUD LEHRER1 

Each of n players, in an infinitely repeated game, starts with subjective beliefs about 
his opponents' strategies. If the individual beliefs are compatible with the true strategies 
chosen, then Bayesian updating will lead in the long run to accurate prediction of the 
future play of the game. It follows that individual players, who know their own payoff 
matrices and choose strategies to maximize their expected utility, must eventually play 
according to a Nash equilibrium of the repeated game. An immediate corollary is that, 
when playing a Harsanyi-Nash equilibrium of a repeated game of incomplete information 
about opponents' payoff matrices, players will eventually play a Nash equilibrium of the 
real game, as if they had complete information. 

KEYWORDS: Repeated games, Nash equilibrium, rational learning, Bayesian learning, 
subjective equilibrium. 

1. INTRODUCTION 

THE CONCEPT OF NASH (1950) EQUILIBRIUM has become central in game theory, 
economics, and other social sciences. Yet the process by which the players learn 
to play it, if they do, is not fully understood. This is not surprising for games 
played only once where players have no observations to guide them and learning 
theories are restricted to model thought processes. However, in repeated 
interaction, where the players do have enough time to observe the behavior of 
their opponents, one can hope to obtain a statistical learning theory that leads 
to Nash equilibrium. 

While some experimental work (see, for example, Smith (1990), McCabe et al. 
(1991), Linhart et al. (1989), Roth et al. (1991), and Prasnikar and Roth (1992)) 
supports the supposition that agents in repeated games do learn to play Nash 
equilibrium, no satisfactory theoretical explanation for this phenomenon exists. 
This is in spite of continuously growing game theoretic literature on repeated 
games with or without complete information (see Aumann (1981), and Mertens 
(1987), for surveys that are already outdated; see the forthcoming book by 
Mertens et al. (1990), for state-of-the-art knowledge on repeated games with 
and without complete information), and the interest in the topic of learning 
in economics (e.g., Blume et al. (1982), Jordan (1985), Easley and Kiefer 
(1988), Bray and Kreps (1987), McLennan (1987), Grandmont and Laroque 
(1990), Woodford (1990), and references therein). 

1The authors wish to thank Robert Aumann, Larry Blume, David Easley, Itzhak Gilboa, Sergiu 
Hart, Martin Hellwig, James Jordan, Dov Monderer, Dov Samet, Sylvain Sorin, Vernon Smith, 
Robert Wilson, and anonymous referees for helpful discussions and suggestions. This research was 
partly supported by Grants Nos. SES-9011790 and SES-9022305 from the National Science Founda- 
tion, Economics, and by the Department of Economics and the C. V. Starr Center for Applied 
Economics of New York University. 
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The construction of processes that converge to Nash equilibrium is not a new 
topic to game theorists. Robinson (1951), Miyasawa (1961), and Shapley (1964) 
studied convergence properties of fictitious play. More recently, however, 
Fudenberg and Kreps (1988) recognized that such mechanisms can be used 
as a basis to model learning by players with bounded rationality, and a 
large literature on the subject has developed. A sample of such papers 
includes: Selten (1988), Crawford (1989), Canning (1992), Jordan (1991, 1992), 
Brock et al. (1988), Milgrom and Roberts (1991), Stanford (1991), and 
Fudenberg and Levine (1993a). 

Most of this literature, however, builds on assumptions not applicable to our 
subject of repeated play among a small number of subjectively rational agents. 
The dynamic models studied in this literature are often ones of fictitious play or 
of random matching in a large population, and the behavior of the players is 
often modeled to be "myopic" or "bounded" in other ways. For our players, 
this implies shortcomings of the following types. 

1. In trying to predict future opponents' behavior, a boundedly rational player 
ignores the fact that his opponents are also engaged in a dynamic learning 
process. 

2. A myopic player would not perform a costly experiment no matter how 
high the resulting expected future payoffs are. 

3. A myopic player ignores strategic considerations regarding the future. For 
example, even if he believes his opponent in a repeated prisoners' dilemma 
game is playing a trigger strategy (see Example 2.1), his consideration of 
immediate payoff may lead him to a choice of a long run inferior action. 

In order to overcome these types of flaws, we take a traditional decision 
theoretic approach to the problem. We assume that the players are engaged in a 
standard perfect-monitoring infinitely repeated game with discounting. Thus, 
each one possesses a fixed matrix which specifies his payoff for every action 
combination taken by the group of players. In every period every player chooses 
his individual action, and the vector of chosen actions, through the individual 
payoff matrices, determines the period payoffs for all the players. Perfect 
monitoring means that before making the choice of a period's action, the player 
is informed of all the previous actions taken. Each player possesses a discount 
factor that he uses in evaluating future payoffs. His goal is to maximize the 
present value of his total expected payoff. 

The players are assumed to be subjectively rational in the following sense. 
Each one starts with subjective beliefs about the individual strategies used by 
each of his opponents. He then uses these beliefs to compute his own optimal 
strategy. The strategies used for play, and for describing beliefs about an 
opponent's play, are behavior ones. Thus, they allow randomization in the 
choices of periods' actions (Section 3.4 elaborates on this topic and Kuhn's 
theorem, i.e., the fact that a probability distribution over many strategies can be 
replaced by a single behavior one). It is important to note that, unlike the 
stronger notion of rationalizable strategies (see Bernheim (1986) and Pearce 
(1984)), the knowledge assumptions implicit in the definition of a subjectively 
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rational strategy are weak. In order to choose one, a player must only know his 
own payoff matrix and discount parameter, but need not have any information 
about opponents' payoff matrices, nor assume anything about their rationality. 

The main message of the paper is the following. If the players start with a 
vector of subjectively rational strategies, and if their individual subjective beliefs 
regarding opponents' strategies are "compatible with the truly chosen 
strategies," then they must converge in finite time to play according to an 
E-Nash equilibrium of the repeated game, for arbitrarily small E. Moreover, 
their Bayes-updated posterior subjective beliefs regarding future play of the 
game will become accurate with time. In other words, they will learn to predict 
the future play of the game and to play E-Nash equilibrium for arbitrarily small 
E. Some features and assumptions of the model should be emphasized. 

1. The players' objective is to maximize, relative to their individual subjective 
beliefs, their long term expected discounted payoff. Learning is not a goal in 
itself here but is, rather, a consequence of overall individual payoff maximiza- 
tion plans. Learning is acquired as the real game progresses. In this sense it may 
be thought of as learning by playing, paralleling the economic literature on 
"learning by doing" (see Arrow (1962)). 

2. Learning takes place through Bayesian updating of the individual prior 
beliefs. This follows the traditional approach of games of incomplete or imper- 
fect information, e.g., Kuhn (1953), Harsanyi (1967), and Aumann and Maschler 
(1967). However, since the use of Bayesian updating is a consequence of 
expected utility maximization, assumption 2 is already a consequence of as- 
sumption 1. 

3. We depart from the standard assumptions of game theory by not requiring 
that the players have full knowledge of each others' strategies, nor do they have 
commonly known prior distributions on the unknown parameters of the game. 
(We do not prohibit such assumptions but they are not necessary in our model.) 
Rather, we replace these assumptions by a weaker one of compatibility of 
beliefs with the truth. This assumption requires that players' subjective beliefs 
do not assign zero probability to events that can occur in the play of the game. 
In mathematical language, this means that on future play paths, the probability 
distribution induced by the chosen strategies must be absolutely continuous with 
respect to the probability distributions induced by the private beliefs of the 
players, i.e., any positive probability set of paths must be assigned some positive 
probability by each player. As an example, one may think of a situation where 
the beliefs about an opponent's strategy assign a small positive probability to the 
strategy actually chosen. In this case, we say that the beliefs contain a grain of 
truth, and compatibility of the beliefs with the truth is assured. Further discus- 
sion of these assumptions and their necessity will follow in subsequent sections. 

An important corollary to the main result of this paper deals with Harsanyi- 
Nash equilibria of an n-person infinitely repeated game under discounting with 
n-sided incomplete information about opponents' payoff matrices. Assuming 
that the number of possible payoff matrices is finite or countable, the grain of 
truth condition stated above is satisfied. It follows that at such an equilibrium 
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the players will eventually play according to an E-Nash equilibrium of the 
infinitely repeated realized game (the one with complete information) as if the 
uncertainties were not present. This corollary and its relation to Jordan's (1991) 
results will be discussed later in this paper. 

As mentioned earlier, myopic theories of simultaneous learning involve fun- 
damental difficulties due to the fact that what is being learned keeps changing. 
If players assume that their opponents' actions are fixed, yet the opponents, too, 
learn and change their own actions as a result of what they learn, inconsisten- 
cies are likely to occur. Indeed, as is shown, for example, by Kirman (1983) and 
by Nyarko (1991), learning may never converge or, worse yet, it may converge to 
false beliefs. Dynamic approaches, like the one taken in this paper, have the 
potential to overcome this difficulty. They attempt to learn the strategies (or, 
more precisely, the reaction rules that guide the opponents), of the infinitely 
repeated game. These strategies, which do not change, already contain the fixed 
learning rules. 

Also, existing results of game theory suggest learning to play Nash equilib- 
rium in a repeated game should be easier than in a one shot game. Considering 
the extreme case with completely patient players, i.e., discount factor equals 
one, the folk theorem tells us that all feasible individually rational payoffs are 
Nash payoffs. This suggests that many, yet certainly not all, play paths are Nash 
paths. Thus, our result regarding convergence to Nash paths seems to be more 
meaningful for moderate or low discount parameters. 

A second difficulty, associated with learning models, concerns experimenta- 
tion. In order to avoid getting stuck at suboptimal solutions, a well designed 
process should occasionally try randomly generated experimentation. For exam- 
ple, the randomly generated mutants in the evolutionary models play such a 
role. However, as can be seen in Fudenberg and Kreps (1988), in a rational 
choice model the optimal determination of when and how to experiment is 
difficult. The subjectively rational approach suggested here overcomes this 
difficulty: every action in the current model, including experimentation, is 
evaluated according to its long run contribution to expected utility. And maxi- 
mization, relative to posterior probability distribution regarding opponents' 
strategies, yields well defined criterion for determining choices. Thus, a player, 
with a given discount parameter, will experiment when he assesses that the 
information gained will contribute positively to the present value of his expected 
payoff. Given the strategic nature of the interaction in our model, for some 
subjective beliefs regarding opponents' strategies, a player may find it in his 
interest to choose randomly when and how to experiment. While, in general, 
optimal experimentation computed against subjective beliefs does not lead to an 
individually optimal solution (see the multi-arm bandit example in the last 
section), it does so in the current paper due to the special assumptions of 
perfect monitoring and knowledge of own payoff matrices. 

In addition to perfect monitoring, knowledge of own payoff matrices, and 
compatibility of beliefs with the truth, our model contains several additional 
restrictive assumptions. Independence of strategies is imposed in two places. 
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First, it is implicitly assumed that players' actual strategies are chosen indepen- 
dently. In other words, players' choices cannot depend on random events 
(unless they are completely private) since such dependencies may lead to 
correlated strategies, which are assumed away in the model. But this assumption 
of independence is also imposed on the subjective beliefs of the players. In his 
beliefs regarding opponents' strategies, a player assumes that the opponents 
choose their strategies independently of each other. 

Also, the assumption that players maximize their expected payoffs is quite 
strong for infinitely repeated games. While this assumption is common in game 
theory and economics, the solution of such a maximization problem, in infinitely 
repeated games, may be very demanding. 

Our preliminary studies regarding the relaxation of the various assumptions 
above, with the exception of truth-compatible beliefs, indicate that bounded 
learning will lead the players to correlated equilibrium (see Kalai and Lehrer 
(1992)) rather than Nash equilibrium. The need and possibilities of relaxing the 
truth compatibility assumption are discussed in several of the next sections. 

Our proof of the convergence to playing an E-Nash equilibrium is divided into 
three steps. The first establishes a general self-correcting property of Bayesian 
updating. This is a modified version of the seminal Blackwell and Dubins' (1962) 
result about merging of opinions. We give an independent easy proof of their 
result and an alternative characterization of their notion of merging. 

When applied to our model, the self-correcting property shows that the 
probability distributions describing the players' beliefs about the future play of 
the game must converge to the true distribution. In other words, the beliefs and 
the real play become realization equivalent. At such time all learning possibili- 
ties have been exhausted. Remaining disagreement of the beliefs and the truth 
may only exist off the play path, and therefore will never be observed. We refer 
to such a situation of no further learning as subjective equilibrium. The notion 
of such an equilibrium and the fact that it may yield play different from Nash 
equilibrium were observed earlier in models of dynamic optimization, e.g., the 
multi-arm bandit literature (see, for example, Rothchild (1974)), and in a 
repeated game set-up by Fudenberg and Kreps (1988). Also, in a different 
learning model developed independently of ours, Fudenberg and Levine (1993b) 
developed and studied a closely related notion called self-confirming equilib- 
rium. We refer the reader to Battigalli et al. (1992) for a survey of the history of 
this concept. 

The last step of the proof shows that in our model, the behavior induced by a 
subjective equilibrium, and even its perturbed versions, approximates the behav- 
ior of an E-Nash equilibrium. Since this last step has independent interest of its 
own, and since proving it involves long computations not related to learning, we 
leave it to a companion paper (see Kalai and Lehrer (1993a)). 

Section 2 of this paper contains examples and additional elaborations on the 
approach taken and the assumptions made. The reader can skip it and move 
directly to Sections 3 and 4 which contain the formal presentation of the model 
and of the main results. Section 5 is devoted to the self-correcting property of 
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false priors by means of Bayesian updating. Section 6 contains applications to 
repeated games with incomplete information and the relation to Jordan's (1991) 
results. Finally, in Section 7, we give further elaborations on some of the 
assumptions and possible extensions. 

2. EXAMPLES AND ELABORATION 

In the two person games that follow, we will sometimes refer to player 1, PI, 
as he, and to player 2, Pll, as she. 

Example 2.1: Infinitely Repeated Prisoners' Dilemma Games 

As usual for these games, we will denote the possible actions for each of the 
two players in each stage of the game by A-to describe aggressive behavior, 
and by C-to describe cooperative behavior. The following matrix represents 
the stage payoffs to PI as a function of pairs of action choices: 

PII 

A C 

PI A|ja 
C d b 

As usual, we assume that a > b > c > d. PI uses a discount parameter A1 
(0 < A1 < 1) to evaluate infinite streams of payoffs. We use the convention that 
A1 close to 0 describes an impatient (myopic) player. Pll has a similar payoff 
matrix and discount parameter but not necessarily with the same numerical 
values as the ones of PI. We assume here, as we do throughout this paper, that 
each player knows his own parameters, and that the game is played with perfect 
monitoring. That is, prior to making the choice in every stage, a player is 
informed of all the choices made by both players in all previous stages. 

Departing from the traditional game theoretic approach, we do not explicitly 
model a player's knowledge about the parameters (payoff matrices, discount 
parameters, etc.) of his opponent. Instead, a player starts with prior subjective 
beliefs, described by a probability distribution, over the strategies his opponent 
will use. We assume that a player uses any specific knowledge he has about his 
opponent in creating these beliefs. 

To illustrate such beliefs we consider a countable set of (pure) strategies gt 
for t = 0, 1,2,..., oc, defined as follows. g., is the well-known (grim) trigger 
strategy. This strategy prescribes cooperation initially and after fully cooperative 
histories, but "triggers" to the aggressive action after every history that contains 
any aggression by either of the two players. For t < o?, gt coincides with g,. at 
all histories shorter than t but prescribes the aggressive action A after all 
histories of length t or more. In other words, if not triggered earlier, gt will 
prescribe unprovoked aggression starting from time t on. With this convention, 
go is the constant aggressive strategy. 
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Suppose PI believes that Pll is likely to cooperate by playing her grim trigger 
strategy; but he also believes there are positive probabilities that she will stop 
cooperating earlier for other reasons. More precisely, he will assign her strate- 
gies go, gl,..., go probabilities p = (.6o, P1,... , f3O) that sum to 1 and with each 
f3 > 0. Depending on his own parameters he chooses a best response strategy of 
the form gT for some T1 = 0, 1,... or mo. Pll holds similar beliefs, represented 
by a vector a, about PI's strategy, and chooses a strategy gT2 as her best 
response. Now the game will really be played according to the two strategies 

(gTl' gT2). 

It is easy to see that the beliefs are compatible with the chosen strategies. All 
positive probability events in the game, e.g., cooperation up to time t < 
min(T1,T2), aggression in all times exceeding the min(T1,T2), are assigned 
positive probability by the original beliefs of both players. Thus, the results 
described earlier must hold. 

Indeed, learning to predict the future play must occur. If, for instance, 
T1 < T2, then from time T1 + 1 on, Pll Bayesian updated beliefs regarding PI's 
choice will assign probability 1 to his choice of gTl and she will predict correctly 
the future noncooperative play. PI, on the other hand, will never fully know her 
strategy since he would only know that T2 > T1. But he will still be able to infer 
the forthcoming noncooperative play. This should clarify the point that players 
do not learn the strategy of their opponent off the play path; they only learn to 
predict actual future play against the strategy they themselves use. Also notice 
that accuracy of the above predictions did not rely on T1 and T2 being optimal 
choices. It only relied on correct updating of the truth-compatible subjective 
beliefs. 

A second point to emphasize is that players' beliefs will not necessarily 
coincide with the truth after a finite time; beliefs may only converge to the truth 
as time goes by without ever coinciding with it. Suppose, for example, that 

T, = T2 = oo. Now the only resulting play path is the totally cooperative one. 
After playing it for t periods, PI, for example, will infer that she did not choose 
gO, g1, . . ., gt and his Bayesian updated belief will assign probabilities 
(t + 1, . . . t 1)/,+lr to her remaining strategies: (gt+ 1, . . ., go). Since PI > 0, 
after sufficiently long time, his posterior probability I3/Et+1,Pr will be arbitrar- 
ily close to one and he will be almost certain that she chose T2 = ?? 

The second main result, regarding convergence to Nash equilibrium play, is 
also easily seen in this example. The only two play paths that can survive after a 
long play are those generated by Nash equilibrium (and hence also by ?-Nash 
equilibrium). The totally aggressive path results from Nash equilibria regardless 
of the parameters of the game. But if the discount parameters are "generous," 
then the totally cooperative play path can also be obtained at a Nash equilib- 
rium. Notice, however, that the overall play of these subjectively rational players 
can be of a type not generated by any Nash equilibrium, or even ?-Nash 
equilibrium for small 8. For example, the path that is fully cooperative up to 
time 3 and not cooperative afterwards cannot be the outcome of any Nash, or 
small E-Nash, equilibrium. But such a path will be generated by the players if 
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their subjective individual beliefs assign high probability to the opponent not 
cooperating at time 4. Nevertheless, as follows from our second main result, 
from a certain time on these players will follow an E-Nash equilibrium path. 
Thus, if the true parameters of the game allow only the totally aggressive Nash 
equilibrium (and hence the only path compatible with arbitrarily small E-Nash 
equilibrium is the totally aggressive one), then at least one of the Ti's must be 
finite, and eventually constant mutual aggression must emerge. If, on the other 
hand, the game's parameters permit trigger strategies as a Nash equilibrium, 
then it is also possible that both Ti's are infinite and the play path follows 
cooperation throughout. 

It is easy to observe in this example that players who hold optimistic prior 
probabilities (high a. and I3O) will follow a cooperative path while pessimistic 
players must eventually follow a noncooperative path. Thus, in the case of 
multiple equilibria, initial prior beliefs determine the final choice. 

Example 2.2: Absolute Continuity and Grain of Truth Assumptions 

In Example 2.1, each player's private beliefs assigned a strictly positive 
probability to the strategy actually chosen by the opponent. This condition, that 
beliefs regarding opponent's strategies contain a grain of truth, is stronger than 
needed. 

Suppose, for instance, that in Example 2.1, Pll's beliefs, given by the vector 
a = (ao, a1,.. ., a.), had sufficiently low values of all at's with t < oo to allow the 
trigger strategy g. as her best response. Then the well-known tit-for-tat (tft) 
strategy (where she starts by cooperation and then proceeds to mimic her 
opponent's last move) can also be chosen as a best response. If she actually 
chooses tft as her strategy, then PI's beliefs about her strategy do not contain a 
grain of truth, given that his beliefs assign probability zero to nontrigger 
strategies. Yet his beliefs regarding future play paths will contain a grain of 
truth. Consider the play paths zo, z1,..., z. with zt describing the path in 
which both players cooperate up to time t, he cooperates and she aggresses at 
time t, and both aggress from time t + 1. If PI's beliefs about PII's strategy are 
described by the vector ,3 as in Example 2.1, and in response he chooses g. for 
himself, then his induced beliefs on the future play paths are given by a 
distribution /11 which assigns probability Bt to each of the paths zt. Given both 
of their choices, the true distribution on future play paths, ,L, will assign 
probability one to the path z.,. We now can write /11 = EjL + (1 - E),I for some 
probability distribution i and with 8 = f3 > 0. When this is the case, i.e., when 
the belief distribution on future play paths assigns positive weight to the true 
distribution, we say that the beliefs on play paths contain a grain of truth. This 
last condition, which is weaker than the belief on strategies containing a grain of 
truth, is also sufficient for our main result. 

The sufficient condition we end up using is weaker yet. We require that each 
player's belief distribution on play paths, ,2i, not rule out positive probability 
events according to the real probability distribution, I,. That is, there should be 
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no event in the play of the infinite game which can occur, i.e., has a IL positive 
probability, yet be ruled out by the beliefs of an individual player, i.e., has a zero 
probability according to /2I. In mathematical language, we require that ,u be 
absolutely continuous with respect to each /2I (A <<?/1). 

To understand the difference between the grain of truth conditions and 
absolute continuity it is useful to consider behavior and mixed strategies, i.e., 
ones that allow for randomization in the choice of actions and strategies (the 
next section contains a more detailed discussion of Kuhn's theorem and these 
notions). Suppose PI's beliefs about Pll's strategy are as in Example 2.1 with 
Pt = (1/3)t?1 for t < o and f0 = 1/2. Suppose that his choice in response to 
these beliefs is to play g.. His induced beliefs on the future play paths, ,L1, 
assign probability (1/3)t+ 1 to each of the paths zt with t < 00 and 1/2 to z0,. If, 
unlike his beliefs, she chooses to randomize over the choices of gt with 
probabilities (1/2)t+1 (zero probability on g,), then the real distribution on 
future play paths, At, assigns probability (l/2)t+l to each of the paths zt and 
zero to z.. It is easy to check that /11 cannot be written as E?t + (1 - E) with a 
positive E for any probability distribution ,u. Thus, even his beliefs about play 
paths do not contain a grain of truth. Yet the absolute continuity condition 
holds. Every event in the play of the game that has A-positive probability, i.e., 
contains some paths zt with finite t, is assigned a positive probability by the 
belief distribution /11. Thus, the results of this paper regarding learning and 
convergence to Nash equilibrium must hold. 

In the above example, however, if PI assigned probability one to her playing 
g., yet she randomized on gt with probability (1/2)t+1 and probability zero on 
g.,, then the absolute continuity condition would fail. And, indeed, learning and 
convergence to Nash equilibrium would fail, too. 

Example 2.3: On the Limitation of the Absolute Continuity Assumption 

Consider a repeated game with PI having to choose between l and r in every 
stage. Suppose Pl1 believes that PI flips a coin to choose l with probability 1/2 
and r with probability 1/2 after every history. This means that Pl1 believes that 
future plays of PI are independent of his past actions and learning from the past 
is hopeless. Even if PI played the constant strategy L, always playing 1, Pl1 will 
not learn it since, given her initial beliefs, she will always dismiss long chains of 
l's as random outcomes. Notice that this is a situation where the absolute 
continuity assumption is violated. The event "l will be played forever" has 
probability one but is assigned probability zero in the beliefs of Pll. 

The discussion above shows that, without the absolute continuity assumption, 
or other assumptions that connect the future to the past, learning in general 
cannot take place. We know, however, that weaker assumptions suffice for 
approximate learning and for convergence of measures in a weak sense. As- 
sume, for example, that player one plays a constant behavior strategy by which 
he randomizes with probability A on l and (1 - A) on r after every history of the 
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game. Pll knows that this is the type of strategy PI uses but does not know the 
value of A. She assumes that PI chose A according to a uniform distribution on 
the interval [0, 1]. Now, Pll's beliefs do not satisfy the absolute continuity 
assumption, which can be seen by considering the event that the long run 
average of l's is A (it has probability one but is assigned probability zero by the 
diffused beliefs of Pll). However, after long enough play Pll will be able to 
approximate the true A and have a fairly accurate prediction of PI's near future 
play. Section 7 contains discussion on weak learning and the possibility of 
weakening the absolute continuity assumption. 

Example 2.4: Learning and Teaching 

While this paper presents a theory of learning, it does not put the players in a 
passive state of learning. The following example shows that optimizers, who 
believe their opponents are open to learning, may find it in their own interest to 
act as teachers. 

We consider a two person infinite symmetric version of a "chicken game" 
described as follows. Simultaneously, at the beginning and with perfect monitor- 
ing after every history, each player chooses to "yield" (Y) or "insist" (I). 
However, once a player yields (chooses Y) he has to continue yielding forever. 
The stage game payoffs are the following: 

PII 
y I 

PIY FYT7Y]2 P I 
|2,1 

| -1 -1| 

Infinite payoff streams are evaluated with discounting. We denote the individual 
pure strategies of this game by so, sl,..., s. with s, indicating the one that 
prescribes the initial yielding at time t. 

Notice that this game differs from the prisoners' dilemma example in some 
important ways. First, the stage game has no dominant strategies and it contains 
two symmetric pure strategy equilibria. Also, the repeated game contains exactly 
two pure strategy Nash equilibria, the one where he yields immediately and she 
insists forever (so, s.) and the symmetrically reversed one (s., so). (In addition, 
subgames following mutual simultaneous yield actions contain the mutual yield 
forever equilibrium of these subgames.) While technically this game is not an 
infinitely repeated one, due to the absorbing nature of the action Y, the results 
of this paper still hold and offer interesting insights. 

We assume as in the prisoners' dilemma example that PI's beliefs, about Pll's 
strategy, are given by a vector ,3 = ( .1'... ,f3j and, also, that Pll's beliefs 
about PI are given by a similar vector, a. Putting himself partially in her shoes, 
PI may think that she is equally likely to wait any number of the first n periods 
before yielding, to see if he would yield first; or that she may insist forever with 
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probability E because, unlike him, she assigns a very large loss to ever yielding. 
Such thinking will lead him to a prior beliefs vector of the type /3 = ((1 - 
8)/n, . . . , (1 - 8)/n, 0, O, . . ., 8). If the future is important enough to PI, his best 
response to /3 would be to wait n periods in case she yields first, but if she does 
not, then yield himself at time n + 1. Interpreted according to the thought 
process that led him to the choice of vector 3, he reasons that as long as she is 
willing to find out about him, he will try to convince her by his actions that he is 
indeed tough. 

If both players adopt such reasoning, a pair of strategies (sT1, sT2) will be 
chosen. In cases of the type T1 = 0 and T2> 0, there was no attempt to teach on 
the part of PI and the resulting play is as in some Nash equilibrium of the 
infinite game. But in cases of the form 0 < T' < T2, PI failed in his attempt to 
teach her. The resulting play paths, with real initial fighting segments and 
continuing with his yielding, could not be justified by any Nash equilibrium or 
E-Nash equilibrium with small 8. Similarly, when T7 > T2> 0, we obtain a 
non-Nash equilibrium path with him winning. In any of the cases, however, as 
the main results of this paper state, both players will learn to predict the future 
play and end up playing a Nash equilibrium in sufficiently late subgames. 

3. THE MODEL AND ASSUMPTIONS 

3.1. The Repeated Game 

A group of n players are about to play an infinitely repeated game. The stage 
game is described by the following components. 

1. n finite sets 1V V2' . .., XYn of actions with X =nx 1.i denoting the set of 
action combinations. 

2. n payoff functions ui: X R. 
We let H, denote the set of histories of length t, t = 0, 1, 2,... (i.e., Ht = Xtg 

with X0 being a singleton consisting of the null history). Denote by H = U tHt 
the set of all (finite) histories. A (behavior) strategy of player i is a function fi: 
H -(> A(0) with A(Xi) denoting the set of probability distributions on Xi. Thus, 
a strategy specifies how a player randomizes over his choices of actions after 
every history. 

We assume that each player knows his own payoff function and that the game 
is played with perfect monitoring, i.e., the players are fully informed about all 
realized past action combinations at each stage. 

3.2. Infinite Play Paths 

Let f = (fl, . . . , fn) be a vector of behavior strategies. At the first stage player 
i plays fi(h0), where ho stands for the null history. Notice that fM(h0) is a 
probability distribution over his set of actions. Denote by zJ(=zR(fd)), the 
realization of fi(h0) and by z1 the realized action combination, i.e., z1 = 

(z1,..., zn). Player i is paid x' = ui(z1) and receives the datum z1 (he is 
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informed of the realized action combination). At the second stage player i 
randomizes over his actions according to fi(zl). Denote by z7 and by z2 the 
realized action of player i at the second stage and the realized action combina- 
tion, respectively. The payoff of player i is x = u (z2) and he is informed of z2. 
The game proceeds in this fashion infinitely many times. The infinite vector 
(z1, z2, . . . ) of action combinations is the realized play path. 

The procedure described above defines a probability distribution, EAf, induced 
by the strategy vector f, on the set of infinite play paths. First (with some abuse 
of notation), Iuf is defined inductively for finite histories h E H. Itf of the empty 
history is 1 and tf (ha) = ,Lf(h) xifi(h)(ai). In other words, the probability of 
the history h followed by an action vector a being played is the probability of h 
times the product of the ai's being selected by the individual fi(h)'s. 

In the set of infinite play paths, LX, the event history h being played is 
described by the cylinder set C(h), consisting of all paths with initial segment h. 
Thus f induces a probability 1.tf(C(h)) (the probability of the history h) to all 
such cylinder sets. Following the standard construction of probability theory, we 
let $t denote the a-algebra generated by the cylinder sets of the histories of 
length t, and Y, the a-algebra used for 2X0, is the smallest one containing all 
t's. The probability distribution ,1tf, defined on (XX, F), is the unique 

extension of Itf from the t's to . 

3.3. The Payoffs 

Let Ai, 0 < Ai < 1, be the discount factor of player i. Recall that xt denotes 
player i's payoff at stage t. If the strategy vector f is played, then the payoff of 
player i in the repeated game is defined by 

Ui(f) = (1 -Ai) Ef (xt+ )At, 
t=O 

where Ef denotes the expected value calculated with respect to the probability 
measure, ILf, induced by f = (f1,., fn). 

Notice that Ui(f) can be written also as (1 - Ai)f[Ex 'At] dAf. 

3.4. Behavior and Beliefs 

In order to play the infinite game, each player i chooses a behavior strategy 
fi. In addition, player i has a joint strategy fi = (f f2, ... , fni) describing his 
beliefs about the strategies adopted by his opponents. Thus, f, denotes the 
behavior strategy that player i thinks player j will follow. We will assume 
throughout this paper that players know their own choice of stiategies, i.e., 
fii =f. 

As usual, we say that a strategy of player i, fi, is a best response to 
f-i = (fl,*.* , fi- 1, fi 1 ... , fn) if U(if f, fi) < 0 for all strategies fi 
of player i. We say that fi is an e-best response (E > 0) if the same inequality 
holds with E replacing 0. 
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Suppose that f and g are two vectors of individual behavior strategies in the 
repeated game, with lIf and Ag denoting the distributions over infinite play 
paths induced by f and g, respectively. The measure Alf is said to be absolutely 
continuous with respect to (w.r.t.) jlg (denoted by t<< ? g) if every event 
having a positive measure according to Af also has a positive measure according 
to btg. Formally, Alf(A) > 0 implies jutg(A) > 0 for every measurable set A c$. 
If ?f < lg we also say that f is absolutely continuous w.r.t. g. 

It is important to expand on the assumption that the beliefs player i holds 
regarding player j's strategy are described by a single behavior strategy fj. This 
represents no serious restriction because the well-known Kuhn's (1953) theorem 
(see also Selten (1975)) assures us that if player i's beliefs were given by a 
probability distribution over behavior strategies of player j, then these beliefs 
could be replaced by an equivalent single behavior strategy. Since beliefs are a 
central topic of this paper, and since Kuhn's equivalent behavior strategies use 
in their construction Bayesian updating, another central topic to this paper, we 
briefly review this construction. 

Suppose player i believes that player j will play the behavior strategy f, r 
with probability Ar, r = 1, . . ., 1. A Kuhn's equivalent behavior strategy fji will 
choose the action a after the history h with probability 

fj1(h)(a) =Y (Arlh)fi r(h)(a) 

with ArIh being the posterior probability Of fj r having been chosen given the 
observed history h, i.e., 

ArIh = Aryfj, r(h)/EAw7fw(h)h 
w 

where qf (h) denotes the probability of h being reached when all players other 
than j tAke the actions leading to h with probability one, and player j mixes 
according to fj r. (In the case that 7rf, (h) = 0 for w = 1, . . ., 1, fji(h) can be 
chosen arbitrarily.) 

Kuhn's equivalence is strong. Playing against the strategies (f; r)r with the 
probabilities (Ar)r and playing against an equivalently constructed behavior 
strategy fj generate identical probability distributions on the future play paths 
of the game (and hence also all positive probability subgames). We refer the 
reader to Aumann (1964) for the infinite version of Kuhn's theorem. 

It is important to emphasize here an assumed restriction on the nature of the 
beliefs. Player i believes that different opponents, say, j and k, are described by 
individual strategies f1i and fk. In evaluating the probabilities of potential 
histories, he uses the product of the probabilities induced by such strategies. In 
other words, he believes that players j and k choose their actions indepen- 
dently. This rules out important cases where player i believes that j and k's 
strategy choices are correlated-for example, they both depend on the same 
random event whose outcome he himself does not know (e.g., they both went to 
school A or both went to school B and their strategies depend on the school 
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they went to). Our results regarding future play prediction can be extended to 
these cases, but convergence to E-Nash equilibrium may fail. 

4. STATEMENT OF THE MAIN RESULTS 

Recall that by a path we mean an infinite sequence of action combinations, 
i.e., an element of .X. For any path z and time t E NJ we denote by z(t) the 
t-prefix of z (the element in Ht consisting of the first t action combinations of 
z). 

DEFINITION 1: Let E > 0 and let A and /, be two probability measures defined 
on the same space. We say that ,u is E-close to ,i if there is a measurable set Q 
satisfying: 

(i) ,t(Q) and ,i(Q) are greater than 1 - E; and 
(ii) for every measurable set A c Q 

(1 -c)11(A) < I(A) < (1 +c)/2(A). 

Notice that this notion of c-closeness is strong. Unlike closeness measures that 
depend on differences (e.g., I .t(A) - 11(A)I < 8, where ,u(A) can equal 2,.(A) 
without violating the closeness requirement for small probability A), our defini- 
tion requires that any two events in Q can only differ by a small percentage. It 
also implies closeness of conditional probabilities. If A, B c Q then ,I being 
E-close to /, in the above sense implies that 

,u(A IB)(1 -)7(1 + 8) < ,u(A IB) < ,u(A IB)(1 + 8)7(1 - ). 

Thus, in the sequel where ,u represents true probabilities of events in the game 
and /i represents beliefs of a player, being 8-close would mean that not only 
does the player assess the future correctly, he even assesses developments 
following small probability histories correctly, provided that he considers paths 
in the large set Q. This is important since it implies no cumulative buildup of an 
error in his assessment of the future no matter how far. 

Being close in our sense, on a large set Q, and being close in the sense of 
differences, as mentioned above but without a restriction to a large set Q, turn 
out, however, to be asymptotically equivalent notions, as we discuss in Section 5. 

Let f and g be two joint strategies. 

DEFINITION 2: Let 8 > 0. We say that f plays 8-like g if Itf is 8-close to ,ug. 

DEFINITION 3: Let f be a strategy, t e- N and h E Ht. The induced strategy fh 

is defined by 

fh(h') = f (hh') for any h' E Hr, 
where hh' is the concatenation of h with h', i.e., the history of length t + r 
whose first t elements coincide with h followed by the r elements of h'. If 
f = (fl, ... , fn) is a joint strategy, fh denotes the joint strategy consisting of all 
the induced individual strategies. 
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The following theorem states that if the vector of strategies actually chosen is 
absolutely continuous w.r.t. the beliefs of a player, then the player will learn to 
accurately predict the future play of the game. 

THEOREM 1: Let f and fi be two n-vectors of strategies, representing the ones 
actually chosen and the beliefs of player i, respectively. Assume that f is absolutely 
continuous w.r.t. fi. Then for every E > 0 and for almost every play path z 
(according to the measure induced by f ) there is a time T (= T(z, 8)) such that 
for all t > T, fz(t) plays 8-like fz(t). 

In other words, after the history z(t), the real probability distribution over 
the future play of the game is 8-close to what player i believes the distribution 
is. It implies that the real probability of any future history cannot differ from the 
beliefs of player i by more than 8. But, as discussed earlier, it is substantially 
stronger. It implies closeness of probabilities for small events and for condi- 
tional probabilities. 

Notice that, in Theorem 1, other than absolute continuity, no assumptions 
were made on f and f i. Thus, it is applicable to any strategies of interest and 
not just to those maximizing expected utility. For instance, if a player were 
following a minmax strategy and still conducting a Bayesian update, he would 
also learn to predict the future play. The theorem essentially states that 
Bayesian updating by itself will lead to a correct prediction of the important 
parts (those that determine the actual play) of other players' strategies. It does 
not state that a player would learn to predict other players' future randomiza- 
tion in response to actions that will not be taken. 

Theorem 1, by itself, has immediate implications for theories dealing with 
payoff maximizing players. Suppose, as Theorem 1 implies, that fz(t) plays 8-like 
fz(t) for all i = 1, . . ., n. Furthermore, assume that fi is a best response to fl. 
Then, after sufficiently long time: (i) each player maximizes his payoff against 
his subjective beliefs and, moreover, (ii) these beliefs are almost (up to 8) 

realization equivalent to the real strategies played. Thus, each player is maxi- 
mizing relative to (possibly false) subjective beliefs which will never be contra- 
dicted by the play of the game (even statistically). The following solution 
concept captures these two elements. 

DEFINITION 4: An n-vector of strategies, g, is a subjective 8-equilibrium if 
there is a matrix of strategies (gJ)1 <i < n with g,1 = gi such that 

(i) gi is a best response to gL1, i = 1, . . ., n; and 
(ii) g plays 8-like g1, i = 1, .. ., n. 

COROLLARY 1: Let f and f 1, f 2,. . ., f nbe vectors of strategies representing the 
actual choice and the beliefs of the players. Suppose that for every player i: 

(i) fi is a best response to f L i; and 
(ii) f is absolutely continuous w.r.t. fi. 

Then for every E > 0 and for almost every (w.r.t. ,Lf ) path z there is a time T 



1034 E. KALAI AND E. LEHRER 

(= T(z, E)) such that for all t > T fz(t) with fzl(t),.. , fZ(t) is a subjective E-equi- 
librium. 

PROOF: The corollary follows immediately from Theorem 1 when we recog- 
nize that maximizing expected discounted utility implies maximizing expected 
utility after every positive probability history relative to the posterior distribu- 
tion induced by the history. 

Notice that if g is a subjective O-equilibrium (or just subjective equilibrium), 
then ,ug, the distribution induced by g, is identical to yg'. Thus, g and g1 are 
realization equivalent. Despite the equivalence, a subjective O-equilibrium does 
not necessarily induce the same behavior as a Nash equilibrium (the one person 
multi-arm bandit game is a well-known example). 

However, under the assumptions of knowing own payoff matrices and perfect 
monitoring, or "observed-deviators" in the language of Fudenberg and Levine 
(1993b), it is easy to see that identical behavior is induced (see also Battigalli 
et al. (1992), for earlier versions of this observation). Clearly, every Nash 
equilibrium, being a subjective equilibrium, induces a subjective equilibrium 
behavior. Conversely, starting with a subjective equilibrium, one can modify the 
strategies used as follows. After histories that are in the support of all players' 
strategies leave the actions of all players unchanged. In subgames that follow a 
one person deviation from his support, have all the players switch their actions 
to the ones attributed to them by the beliefs of the deviator. In subgames that 
follow a multiperson deviation assign the players any actions. It is easy to 
observe that this modification yields a Nash equilibrium which is realization 
equivalent to the original subjective equilibrium. 

When perturbations are introduced to the accuracy of the beliefs in a 
subjective E-equilibrium and to the accuracy of optimization in an E-Nash 
equilibrium, the discrepancy between the two concepts is greater and the 
equivalence of behavior sketched above fails for obvious reasons (see Kalai and 
Lehrer (1993a) for discussion and elaborations). Yet, for the family of games 
studied here, the two notions induce asymptotically identical behavior. 

PROPOSITION 1: For every E > 0 there is r7 > 0 such that if g is a subjective 
ij-equilibrium then there exists f such that 

(i) g plays c-like f, and 
(ii) f is an c-Nash equilibrium. 

Theorem 1 will be proven in the next section. We refer the reader to Kalai 
and Lehrer (1993a) for the proof of Proposition 1 and for a general discussion 
on subjective equilibrium. Together, however, Corollary 1 and Proposition 1 
imply our main result. 

THEOREM 2: Let f and f ', f 2,.. ., f n be strategy vectors representing respec- 
tively the one actually played and the beliefs of the players. Suppose that for every 
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player i: 
(i) fi is a best response to f i i; and 

(ii) f is absolutely continuous with respect to fi. 
Then for every E > 0 and for almost all (with respect to p4f ) play paths z there is a 
time T = T(z, c) such that for every t > T there exists an c-equilibrium f of the 
repeated game satisfying fZ(t) plays E-like f. 

In other words, given any E > 0, with probability one there will be some time 
T after which the players will play c-like an E-Nash equilibrium. This means 
that if utility maximizing players start with individual subjective beliefs, with 
respect to which the true strategies are absolutely continuous, then in the long 
run, their behavior must be essentially the same as a behavior described by an 
c-Nash equilibrium. In the last section of the paper, we show that by using a 
weaker version of closeness of behavior one can replace the c-Nash equilibrium 
in Theorem 2 by the usual Nash equilibrium. 

5. BAYESIAN LEARNING 

Our main result, Theorem 2, combines two issues: (i) Bayesian updating and 
(ii) payoff maximization. In this section, we concentrate on the first one and 
prove Theorem 1. In fact, the treatment of Bayesian updating, given here, is 
applicable to issues that lie beyond the scope of this paper. The reader is 
referred to Kalai and Lehrer (1990a, b and 1993b) and Monderer and Samet 
(1990). 

Suppose that (Q, F) is a measure space interpreted as the set of states of the 
world. Let {9Dt}t be an increasing sequence of finite or countable partitions of (2 
(i.e., ?t ?1 refines qt). Ot is interpreted as the information available at time t. 
In other words, at time t the agent is informed of the part Pt(o) E qt that 
contains the prevailing state wtE E 2. 

We assume that the o-field F is the smallest one that contains all the 
elements of all the 1jt's. 

The agent's initial belief about the distribution of states of nature is denoted 
by ,i (a o-additive measure defined on (12, F)). However, the real distribution 
is given by a measure ,ut. Our task in this section is to show that the subjective 
probability (the belief) converges to the real one as information increases. 

Denote the field generated by 9n by ,K. The next theorem is a restatement 
of Theorem 1 but in the language of partitions. It is essentially equivalent to the 
Blackwell and Dubins (1962) theorem discussed later. 

THEOREM 3: Let p. << ?p7. With ,u-probability 1, for every c > 0 there is a 
random time r(c) such that for all r > r(E), I.Q IPPr(()) is c-close to Aib IPr(w)). 

PROOF: Theorem 3 is a consequence of Proposition 2 and Lemma 1 (see also 
Monderer and Samet (1990)), which follow. 
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PROPOSITION 2: Suppose that , << , (i.e., ,(A) > 0 implies ,1(A) > 0 for 
every A E Y). With ,A-probability 1 for every 8 > 0 there is a random variable 
t(E) such that for every s > t > t(s): 

(1) 1 ( < ( 1+8. 

PROOF: Since , <<?fi, by the Radon-Nikodym theorem, there is an SFmea- 
surable function 4 satisfying 

(2) f dii= A(A) forevery A E F. 

By Levy's theorem (see Shiryayev (1984)), EJO I 52F) - E( I F) = 0 ,u almost 
surely (and therefore, ,u-a.s.). However, for ,i almost all w 

(3) EO(4 I 5t )(w) = (1/Pi(Pt(wo)))f +b d/i = A(Pt(wo) )/f(Pt(wo)). 

Moreover, by (2), p > 0 ,Ut-a.s. Thus, the right side of (3) tends ,u-a.s. to a 
positive number. In other words, there is a t(?) such that for ,u-a.e. w the 
following holds: 

(4) 1 - s e) p() < 1 + 8 for all s > t > t(?) 

The middle term of (4) is equal to the middle one in (1). Since (1) holds for 
every 8 > 0 with ,t-probability 1, the proposition follows. Q.E.D. 

LEMMA 1: Let {Wt} be an increasing sequence of events satisfying ,tt(W) T 1. For 
every 8 > 0 there is a random time t(8) such that any random t > t(E) satisfies 

4; 4WjPt(w)))> 1 -8} = 1. 

PROOF: J(Wy) -t ,1. Thus, 1uXCt) t X?, where Ct =Q \ Wt. 
Suppose, to the contrary, that the lemma does not hold. Then there is a 

,u-positive set A and 8 > 0 such that for all w EA, u(Wt(I Pt(w)) < 1 -8 for 
infinitely many t's. 

Fix s E NJ and define 

Br = {w EA;r = min{tlt >s and A(WtIPt(w)) < 1-8). 

Observe that {Br} are pairwise disjoint and, moreover, {U E- BPrGo,)}r are also 
pairwise disjoint. By the definition, A = U r > sBr, 

Since Cs D Ct when t > s, for all tO EA, It(CsIPPt()) > E for infinitely many t. 
Thus, (Cs I U {E BPt(()) >8. Therefore, u(Cs) > 8A( Ut> U XBPt(G))> 
8AWU t > B) = El-(A). 

Hence, the sequence {,tt(Cs)} is bounded away from zero, which is a contradic- 
tion. This concludes the proof of the lemma. Q.E.D. 
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In order to apply the lemma set 

Wt = ; I E( I -s- ) ( )IE(o I t )(Z)- 1 | < e for Vs > t. 

An immediate corollary is a version of the main result of Blackwell and 
Dubins (1962). 

COROLLARY 2 (see Blackwell and Dubins (1962)): For ,u-a.e. w there is time 
t=t(E) such,thatforA e= Yand s > t Il(A IP()s(w)8 - -(AIPs())I <E. 

The converse statement, that the Blackwell-Dubins' result implies Theorem 3, 
is also true but not obvious. One can actually show that the topology generated 
by our notion of closeness is equivalent to the one generated by Blackwell and 
Dubins. That is a sequence of measures us -, in one sense if and only if it 
does so in the other. That our topology is stronger is immediate. However, since 
the notion used by Blackwell and Dubins applies to all events, not just in large 
set Q, it turns out to be as strong. See Kalai and Lehrer (1993b) for details. 

Example: One biased coin with parameter pi is selected with probability 
ai > 0 from a countable set of such coins. The chosen coin is tossed infinitely 
many times. An agent believes that the coin pi is drawn with probability f3i. 
Define f2 to be the set of infinite sequences of 0's and l's generated by the 
tosses of the coin. The probability measure on 12, induced by {aJ}, say ,/, is 
absolutely continuous with respect to the one induced by {f38}, say ,t, if pi > 0 
for all i. Theorem 3 states that, after sufficiently long time, the posterior 
probability of A will be arbitrarily close to the posterior one of ,u. 

REMARK: For general probability measures, we say that ,i contains a "grain 
of truth" of ,A, if ,i = A,u + (1 - A),u for some probability measure ,ii and A > 0. 
It is equivalent to requiring that the Radon-Nikodym derivative, 4 = dt/di, is 
bounded. 

Notice that in the previous example vi contains a grain of truth if and only if 
aC/f3i are uniformly bounded. 

6. REPEATED GAMES WITH INCOMPLETE INFORMATION AND 
JORDAN'S RESULTS 

In this paper uncertainties regarding other players are captured by the 
individual beliefs a player holds about others' strategies. This is unlike tradi- 
tional game theory where uncertainties are expressed by a commonly known 
prior distribution over the unknown parameters of the game (payoffs, discount 
parameters, feasible actions, etc.) with a commonly known signaling mechanism 
that gives different players different additional information. We proceed to 
show by example how the traditional approach can be viewed as a special case 
of the current paper. In particular, the equilibria of a large class of repeated 
games with incomplete information will satisfy the assumptions of our main 
theorems, and the conclusions will yield interesting new insight. 
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Consider two players about to play an infinitely repeated game of the type 
described earlier, but with a randomly generated fixed size pair of payoff 
matrices (Ai, Bj)(i,j) EIXJ We assume that both I and J are finite or countable, 
and that the selection of the pair (i, j) will be done according to a commonly 
known prior probability distribution v on I x J. After the selection, PI will be 
told the realized value i and Pll will be told the realized value j. 

In order to play the game, PI chooses a vector (f)i el with each fi being the 
infinite game strategy that he would follow if he is told that his realized payoff 
matrix is Ai. Pll chooses a similar vector of strategies (gj)j c j. A pair of such 
vectors is a Harsanyi-Nash equilibrium if each f1 is a best response (in long 
term discounted utility) against the strategies (gj)j =i when mixed according to 
the conditional distribution on J given the realized value i, r(j I i), and with the 
symmetric property holding for each gj (see also Hart (1985)). 

To relate such an equilibrium to the current paper, assume that the random 
drawing of the payoff matrices has been performed and that i and j were 
selected. Thus, the real play of the game will follow the pair of strategies 
(fi, g1). Given his information, PI believes that P1l will play (gj)j j with 
probabilities rT(j I i) and being at a Nash equilibrium his fi is actually a best 
response to this belief. Moreover, given the finiteness of J, PI's belief contains a 
grain of truth (i.e., assigns positive probability to gj). Similarly, Pll's choice of gi 
is a best response to the distribution m(i I]) on (fi)ie, and it also contains a 
grain of truth. 

In the set-up above, let fi and g1 be the strategies realized and let g and f 
be the induced beliefs over opponent's strategies, e.g., g is the behavior strategy 
obtained by mixing the vector (gj)jE1 j with probabilities -(j i). 

The analogies of Theorem 1, Proposition 1 and Theorem 2, when applied to 
the Harsanyi-Nash equilibrium, follow as immediate corollaries. 

THEOREM 1.1: For every ? > 0 and almost every play path z (relative to the 
distribution induced by fi, gJ) there is a time T such that for all t > T (fl, gj)Z(t) 

plays E-like (fi, k)z(t). 

In other words, at such a Harsanyi-Nash equilibrium the players eventually 
predict the future play of the game accurately even if they do not necessarily 
learn the payoff matrices of their opponents. 

THEOREM 2.1: For every E > 0 and almost every play path z we can find a time 
T such that for all t > T there is an E-Nash equilibrium of the realized repeated 
game (A-, B1), (f, g), with (f1, gJ)z() plays c-like (f, g). 

So even if the players do not learn the identity of the payoff matrices actually 
played, they eventually play almost as E-Nash players who do know the identity 
of the payoff matrices. 
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Theorem 2.1 is related to an earlier result of Jordan (1991). His players faced 
the same uncertainty about opponents' payoff matrices. His prior distribution 
about such matrices, however, was more general since he did not restrict himself 
to a discrete set of possible matrices. On the other hand, his players played 
myopically. In each period they played a Harsanyi-Nash equilibrium, updated 
on all the information obtained earlier, as if each current period were the last 
one. He then studied the limit beliefs about opponents' next period actions as 
the number of periods became large. His main result was that all cluster points 
of the expectation sequence are Nash equilibria of the underlying realized stage 
game. 

Our model can be made nearly myopic by letting the discount parameter 
approach zero. In general, when one totally discounts the future, Nash equilib- 
ria of the repeated game consist of repeated plays of Nash equilibria of the 
stage game. Thus, as a limit case when we let the discounted parameters 
approach zero, our result regarding convergence to Nash equilibria of the 
repeated game confirms Jordan's result of convergence to Nash equilibria of the 
stage game. (Of course, if the stage game had a multiplicity of equilibria, then 
one could see oscillation among them.) Notice, though, that Jordan obtains 
convergence of the beliefs to Nash equilibrium, while we obtain convergence of 
the beliefs and the actual play to E-Nash equilibrium. 

When considering generalizations of Theorems 1.1 and 2.1 above to the 
n-player case with n > 2 we observe the following. Theorem 1.1 generalizes. 
Theorem 2.1 does not unless we impose an additional independence assumption 
on the prior distribution over payoff matrices. The condition needed is that the 
prior distribution, 7r(i1, i2,.. -, in), over payoff matrices should be independent 
over opponents for every realization of every player i1. For example, for player 
1, r(i2, ... ., inIi1) should be independent over i2 through in. 

The need for the above independence condition arises in the application of 
Proposition 1. As assumed in the definition of a subjective E-equilibrium, each 
player assigns independent beliefs to the strategies of his opponents. However, 
if the prior distribution vr did not satisfy the independence condition, one would 
not be able to replace the mixed combination of opponent's strategies by an 
equivalent product of behavior strategies, so the proposition would not hold. 
Indeed, convergence to 8-Nash equilibrium will fail. 

In order to correct for such dependencies, we would have to generalize the 
concept of subjective E-equilibrium to allow for correlated beliefs. This will yield 
a concept closer to the notion, of self-confirming equilibrium developed by 
Fudenberg and Kreps (1988) and Fudenberg and Levine (1993b). The new 
concept will have to be defined for infinite games and will have to include a 
suitable notion of perturbation. The convergence of Theorem 2.1 to 8-Nash 
equilibrium is then likely to be replaced by convergence to a correlated 
8-equilibrium. 

7. REMARKS 

This section includes some additional remarks about assumptions of the 
model, the scope of the results, and possible extensions. 
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7.1. An Alternative Notion of Closeness 

As discussed in this paper, the notions of one measure being close to another 
and of one strategy vector playing like another are strong. They guarantee that 
if f plays E-like g, then with probability 1 - E, f and g will assign close 
probabilities to future events and will continue to do so regardless of how long 
the game has been played. The result about learning to play E-like E-Nash gives 
a strong notion of proximity to the c-Nash for the rest of the infinite game. We 
do not know, at this time, if the same theorem can be proven with only one c, 
i.e., learning to play c-like a full Nash equilibrium. However, with a less 
demanding notion of being close, the players will learn to play a full, rather than 
c, Nash equilibrium. 

For an c > 0 and a positive integer l we say that ,u is (c, 1)-close to ,u if for 
every history h of length I or less I/A(h) - ,(h)l < c. Similarly, f plays (c, I)-like 
g if the induced measure Itf is (c, l)-close to A,g. Thus, playing (c, l)-like means 
playing c the same up to a horizon of l periods. It was shown in Kalai and 
Lehrer (1993a) that for a given c and 1, if g is a subjective n7-equilibrium, with 
sufficiently small 71, then it must play (c, l)-like some Nash (rather than c-Nash) 
equilibrium of the repeated game. So, taking this less ambitious notion of 
approximating behavior, we can obtain c-closeness in finite time to a full Nash 
equilibrium. Therefore, Theorem 2 can be restated as follows. 

THEOREM 2*: Let f and f 1, f 2,.. ., f nbe strategy vectors representing the one 
actually played and the beliefs of the players. Suppose that for every player i: 

(i) fi is best response to f f i; and 
(ii) f is absolutely continuous w.r.t. fi. 

Then for every c > 0 and a positive integer I there is a time T = T(z, c, 1) such that 
for every t > T there is a Nash equilibrium f of the repeated game satisfying f 
plays (c, l)-like f. 

The obvious identical modification can be applied to Theorem 2.1 as well. 

7.2. Dispersed Beliefs and Weak Learning 

Example 2.3 suggests that if the belief assigns a positive probability to any 
"neighborhood" of the real strategy, then a "weak" learning may take place. 
The following example shows that this is not an easy task, and that careful 
studies of the topologies and notions of learning involved have to be conducted. 

The notion of "neighborhood" called for by Example 2.3 is the following. We 
say that a behavior strategy f' is in the c-neighborhood of another behavior 
strategy f if the probabilities they assign to any action after every history are 
close to each other up to an E. In the following example we show a case where 
every neighborhood around the strategy denoted below by c. is given positive 
probability and nevertheless no learning (even in a weak sense) takes place. 
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As before, PI has two actions: 1 and r. Let cn be the stationary strategy that 
plays with probability 1 - l/n the action 1 and with probability l/n the action 
r, n = 1,2, ... , oo. Let dn be the strategy which plays n times 1 and r thereafter. 
Pll believes that cn is played with probability an > 0 (Ean < 1) and dn with f3n, 
while in fact PI plays constantly 1, i.e., c., which is assigned zero probability by 
Pll. It is clear then that Pll ascribes positive probability to any neighborhood 
around c.. One might expect that c 's with large n will be assigned growing 
probabilities in the course of the infinite game. But we will show that whether or 
not this occurs depends on the sequences {an} and {f3n}. If the sequence {an} 
tends to zero much faster than {f3n} even "weak" learning fails. 

After observing t times 1, the posterior probability of cm being played is 
am(1 - 1/m)t/(At + Bt) where At = Em= am(l - 1/rm)t and Bt = 2m>t/3m. For 
sufficiently large t, At can be bounded from above as follows: 

[t1/2] 00 

At =E am(l - 1m)t + E am(l - 1m)t. 
m=l [t1/2] + 

The first term, 

[t1/2] 

E aYm(i - /m)t < (1-l/[t 1/21) 
t 

m=1 

(1 

-l/[tl/2])1/2t1/2 
- (t 1/2)/2 

The last inequality is obtained by the fact that (1 - 1/[tl/2])tl/2 e-1 for large 
t's. The second term, 

00 00 

E am(l - 1/m) t< E Cam. 
[t1/2] + 1 [tl/2]+ 1 

If am = a2-m and a < 1, then 
00 

E am < 2-[t1/2] < 2-(t 12)/2 

[t1/2]+ 1 

so that At < 2 * 2-(t 1/2)/2. Suppose now that f3m = a/M2, where the constant a 
is chosen in such a way that Em(am + p3m) = 1 (a < 1). In this case, Bt behaves 
asymptotically like a/t. Thus, At/Bt approaches zero as t goes to infinity. We 
conclude that the probability assigned to the event that a Cn is played ap- 
proaches zero as more observations of 1 arrive. Thus, the future event which 
consists of the infinite run of l's is given smaller and smaller probability as time 
goes by. Since the strategy played by PI gives this infinite run of l's probability 
1, we do not have here learning in the sense discussed above. Pll does not learn 
the future behavior of PI. 

In this example, however, the updated belief assigns probability converging to 
1 to the event that the next outcome will be 1. Thus, Pll learns to predict near 
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future behavior of PI. In other words, Pll learns in a weak sense the strategy of 
PI. 

By defining the f,3's a bit differently, we can construct an example in which 
every once in a while Pll will expect the next outcome to be r with probability 
close to 1/2, while the outcome will be always 1. On an infinite set of integers, 

A A 

say, M, we set Orm = Ek=mf3k, while if m ? M we define Pm = /3m Thus, if M is 
very sparse, the series P3m converges and, moreover, P3m/Ek=m + 3k tends to 1 
as m -* oo if attention is restricted to m E M. Now we define ak = a2` and 
3 = a,3m. Once again, a is chosen in a way that E(acm + 3m') = 1. The calcula- 
tion of At in this case is the same as the calculation above. Defining B = 

Em >t,6' one gets As/B <A,/Bt. Therefore, as the game evolves the set of 
strategies {c,j is getting diminishing weight. After a long time, when Bt is very 
close to one and when t = m for some m e M, out of the probability Bt 
(assigned to all d's) I3m is given to dmi which plays r at the (m + 1)th stage. But 
f3' /B' is close to 1/2. We conclude that after m observations of 1, the 
prediction of Pll regarding the immediate play of PI is approximately 1/2 on 1 
and 1/2 on r, while in fact PI plays 1 with probability 1. It means that Pll does 
not learn, even in the weak sense, the behavior of PI. In other words, Bayesian 
updating will not lead to accurate prediction even of events that take place in 
the near future. 

7.3. The Necessity of Knowing Your Own Preferences 

The assumption that each player knows his own preferences is crucial. For 
example, Blume and Easley (1992) show a repeated game with incomplete 
information where the players never converge to play an equilibrium of the 
complete information game. Thus, their results contradict Theorem 2.1. The 
difference lies in the fact that, in their example, players do not know their own 
payoff matrix. 

More familiar, perhaps, are results regarding the multi-arm bandit problem 
(see, for example, Rothschild (1974)) where an optimal Bayesian learning 
strategy does not lead to an optimal strategy of the full information case. Since 
we can view the multi-arm bandit problem as a special case of the one person 
version of Corollary 1, optimal play corresponds to a Nash equilibrium. The 
discrepancy between the optimal Bayesian play and the optimal full information 
play contradicts the conclusion of Theorem 2.1, which states that the player 
should eventually behave E-optimally as if the uncertainty were not present. The 
cause for this discrepancy lies in our assumption that the players know their 
own payoff matrix. In the multi-arm bandit problem this assumption requires 
that the player know the payoffs associated with the different actions, which is 
not true for that model. 

The contrast with the multi-arm bandit problem illustrates an important 
point. The uncertainty in our model is regarding strategies of the opponent. 
Unlike nature's uncertainties, opponents' actions will continue to be observed 
as long as the game lasts, and thus, perfect learning of them will take place. 



RATIONAL LEARNING 1043 

7.4. The Need for Perfect Monitoring 

Consider again the multi-arm bandit problem, but now view it as a two person 
game with the original player being player I and nature being player II. We let 
Pll have a flat utility function, and his action set consists of choosing one of a 
few possible payoff distributions for each one of PI's activities. We assume that 
Pll made his choices randomly at the beginning according to some fixed 
probability distribution rT, and then kept the same realized choices throughout 
the infinite game. We also assume that PI knows that Pll followed the strategy 
described above but PI is not told the realized payoff choices. 

It is easy to see that now we have modeled the multi-arm bandit problem as a 
two person infinite game. However, this game has imperfect monitoring. Nash 
equilibria with Pll playing a strategy of the type discussed above exist, and they 
require that PI plays optimally against the realized choices of Pll. Again, 
examples of optimal long term strategy in the multi-arm bandit problem violate 
the conclusion of our Theorem 2.1, but under this formulation, the discrepancy 
is explained by the failure of the perfect monitoring condition. 

7.5. Extensions 

Stochastic Games: The results of this paper should extend to the more 
general model of stochastic games (see Shapley (1953)) under the informational 
assumptions that each player knows his own payoff matrices as well as the 
transition probabilities and the state realizations of the stochastic game. To 
what extent our results generalize when the realized states are not told to the 
players seems to be an interesting problem. 

General Continuous Payoff Functions: Since the proof of Proposition 1 (in 
Kalai and Lehrer (1993a)) relies only on the continuity of Ui, the proof of 
Theorem 1 applies also to repeated games with general payoff functions that are 
continuous with respect to the product topology: for example, when the dis- 
count factor changes with time. 
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