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1. INTRODUCTION

This paper identifies evolutionarily stable outcomes of communication
games. We discuss simple Sender—Receiver games in which one player
has private information and another player takes a payoff-relevant action.
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The central issue of this paper is whether messages take on commonly
understood meanings that permit the informed player to communicate
effectively when it is in her interest to do so. Our motivation for using
the evolutionary approach is that it enables us to identify situations in
which talk can be used to eliminate inefficient outcomes without assuming
that words have conventional meanings. We show that evolutionary pres-
sures may force populations to interpret messages in systematic ways.

Our method of describing evolutionarily stable outcomes in communica-
tion games follows an earlier paper by two of us (Kim and Sobel, 1992),
which characterizes the set of outcomes that satisfy a static evolutionary
stability notion in two-player, normal-form games that have been aug-
mented by one round of simultaneous communication. The general mes-
sage of this work is that when preplay communication is possible, evolu-
tionary pressures destabilize inefficient outcomes. The strongest existence
and efficiency results come in games with common interests (that is, whare
the underlying game has a unique Pareto efficient point). Otherwise the
existence of stable outcomes is in doubt. The topic has attracted the
attention of several others. To date we are aware of work by Bhaskar
(1992), Fudenberg and Maskin (1991), Matsui (1991), and Wirneryd (1991)
that all arrive at roughly the same conclusions using roughly the same
approach. These models provide some justification for the claim that
communication leads to efficiency. On the other hand, when players have
complete information about the game and the game has a unique efficient
payoff, there is always an efficient Nash equilibrium; communication is
not necessary to avoid inefficiency. Talking does serve the role of commu-
nicating strategic intent and destabilizing bad equilibria; however, players
could have coordinated on efficient equilibria without talking, and once
efficiency is attained there is no further need to talk prior to play. Here
talk actually enlarges the set of possible outcomes because we assurne
that players have different information. Canning (1992), Noldeke and Sam-
uelson (1992).' and Wiirneryd (1993) have already made contributions to
this literature. Our paper uses a different solution concept and obtains
more general results. We discuss some of the related literature in detail
in the final section of this paper.

Section 2 describes our basic model. Section 3 presents two important
preliminary results. Under our maintained assumption that the set of
messages is large, the first result demonstrates that every stable set must
contain a strategy that does not use some messages. The second result
demonstrates that stable sets must also contain strategies that do not

' The published version of this paper (Noldeke and Samuelson, 1993) does not contain
the dynamic analysis of cheap-talk games which appeared in the working paper that vre
reference,
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punish the use of unused messages. Taken together, these results identify
how a set of strategies may become vulnerable to invasion. First, the
population drifts to a state where some words are unused. Second, punish-
ments (in the form of lower payoffs) that could be associated with using
these messages disappear. Third, the informed players exploit the unused
messages to move the population to a desirable outcome. Section 4 shows
how the third step works in common-interest games. We show that out-
comes which satisfy our stability condition must exist and be efficient.
This result is the standard one for the literature. Section 5 relaxes the
common-interest assumption. It discusses games in which there is an
equilibrium where the informed player receives her highest feasible payoff.
We show that if there is a small cost associated with using each message,
and these costs differ from message to message, then the outcome pre-
ferred by the informed player is stable. We give an example to show that
it need not be the only stable outcome. In Section 6 we compare our
solution to cheap-talk refinements. We give a simple condition under
which any outcome that fails the refinements introduced by Farrell (1993),
Matthews et al. (1991), and Rabin (1990) cannot be evolutionarily stable.
These results suggest that existence of stable outcomes is unlikely. In
Section 7 we discuss limiting outcomes of games in which a stable set
of strategies need not exist. We give conditions that rule out the no-
communication outcome in a general set of games with partial common
interest.

There has been an explosion of papers recently that use evolutionary
arguments to rule out inefficient outcomes in games. We discuss the papers
most similar to our work and related modeling issues in Section 8.

2. THE Basic FRAMEWORK

We confine our analysis to simple signaling games. The Sender has
private information; the Receiver must take an action that is relevant to
both players’ payoffs. In this class of games, the ability to communicate
influences the set of possible outcomes. Allowing the Sender to say some-
thing about her private information gives the Receiver a chance to condi-
tion his action on a (possibly noisy) signal of the state of the world.
Without this signaling, the Receiver would be unable to take a state-
contingent action.

Assume that prior to the game nature selects the Sender’s type t from
a finite set T according to a distribution =7 (-);> that the Sender’s set of

’ We could equivalently assume that there is a different group of players representing
each type of Sender and that 7(z) is the proportion of type ¢ Senders in the population.
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pure strategies consists of rules that assign to each 7 a message m, which
is a member of a finite set M; that the Receiver’s set of pure strategies
consists of rules that assign to each m an element « of a finite set A; and
that the players have utility functions «,(t, m, a) for i = 1 (for the Sender)
and / = 2 (for the Receiver). We further restrict the way in which signals
enter payoff functions. We assume that u,(t, m, a) = v,(t, a) does not
depend on /m and that « (1, m, a) = v\(¢, a) — ¢ ,(m), where ¢,(*) represents
the cost of signaling. We either assume that signaling is costless, ¢,(1) =
0, or that costs are nominal in the sense that ¢,(-) is small relative to other
payoffs. We introduce our notion of games with nominal signaling costs
in conjunction with a genericity assumption on payoffs.

We say that a cheap-talk game has generic payoffs if v(t, a) =
v,(t, a') implies that ¢ = «' and the Receiver has a unique best response
to any strategy sent with probability one by a nonempty subset of Sender
types; that is, for each nonempty 7' C T, arg max,c, 2,ey’ U, a)mw(?) is
a single action. We say that a cheap-talk game has nominal signaling costs
if it has generic payoffs and the costs of messages can be ordered

0=clm) <cimy)<,...,<cm)<,....<c(m)<§,

where 3 = min {lv\(¢, ¢) — v, (t, a')}/2: t € T, a # a'}. The genericity
assumption guarantees that 8 > 0. Assuming that all of the messages cost
less than the smallest difference in payoffs in the basic game is in Keeping
with the idea that talk is cheap. Canning (1992) uses a related assumption
in his work.

A mixed strategy is a pair o = (o, o,), where o(m, ) is the probability
that a Sender of type ¢ sends the message s, and o»(a, m) is the probability
that the Receiver takes the action « in response to the message m. A
strategy o gives rise to a payoff U(o) = (Ua), Us(o)), where Ulo) =
2 et memaca Wilt, m, a)a(m, axla, myw(t) fori = 1and 2. o is a Nash
equilibrium if the strategies respond optimally to one another:

if o/(m, t) > 0, then m solves max,, ¢y catt)(t, m', @)a(a, m’) (1)
and
if oy(a, m) > 0, then a solves max, ¢, Z,crtx(t, m, a'Yo(m, Dw(t). (2)

We assume throughout that there are enough elements in M to enable
the informed player to use an unsent message to avoid a bad outcome.
We assume that

#M) > H#AD+#(D] 4 #(T), 3)
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where #(X) is the cardinality of the set X. We will show in Section 3 that
if condition (3) holds, then any stable set must contain a strategy that
does not use at least #(T) messages. The interesting applications of cheap-
talk models involve large message spaces; assuming (3) does not rule out
anything of importance.

As in Kim and Sobel (1992), we use as our basic stability concept
Swinkels’s (1992a) equilibrium evolutionarily stable (EES) sets. An EES
set is a nonempty, closed set of Nash equilibria that is stable against a
certain class of invasions. The allowable invasions must not only be opti-
mal responses to the population strategy, but also to the population strat-
egy that results after the entry of a small group of invaders. This definition
differs from the standard definition of ESS (Maynard Smith, 1982, or
Maynard Smith and Price, 1973) because it directly applies to asymmetric
games, because it looks for stable sets rather than stable strategies, and
because it places restrictions on the set of possible entrants. Swinkels
(1992a,b) shows that every EES set contains a proper equilibrium and
satisfies the never-a-weak-best-response property of Kohlberg and Mer-
tens (1986). Some modification of ESS is needed to avoid the trivial nonex-
istence problems it has in games with unreached information sets and
redundant strategies. Other ideas have been presented by Fudenberg and
Maskin (1990, 1991), Gilboa and Matsui (1991), Hofbauer and Sigmund
(1988), Selten (1983), and Thomas (i985a,b). The crucial modeling deci-
sions are whether or not the stability condition should be set valued, and
whether or not there should be some restrictions on the kind of strategies
that might enter the population. We choose a set-valued solution concept
because it enables the population strategies to drift off the equilibrium
path and thereby makes it more difficult for a population to remain at an
inefficient outcome when a Pareto-dominating equilibrium exists. Effi-
ciency results for single-valued solution concepts hold only under much
stronger assumptions than ours (see Wirneryd, 1993). We choose to re-
strict entry because adding a dominated strategy to a game could otherwise
change the set of predictions. Section 8 contains a more detailed discussion
of alternative modeling approaches.

We state Swinkels’s definition for a general two-player game with strat-
egy set S = 8§, x 8, and payoff functions « = («,, «,), which we represent
by (S, u). Let N(§, u} be the set of Nash equilibria of (S, 1); let A(S;) be
the set of mixed strategies of player i; let C(s) be the carrier of s (the set
of pure strategies given positive probability by s); and let BR,(-) be the
best response correspondence of player i for i = 1 and 2. For o =
(o), 05) € A(S)) x A(S,), we set BR(o) = (BR,(0,),BRA(a))).

DEFINITION. A set ® C A(S;) x A(S,) is equilibrium evolutionarily
stable (EES) if it is minimal with respect to the conditions,
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There exists ¢’ € (0, 1) such that for all ¢ € (0, ¢’) and for all 0 € O,
if Clc) CT BR((1 — &) + go’), then (1 — g)o + go' € O, (4)

O is closed and nonempty. (5)
O C NS, u). (6)

Conditions (5) and (6) in the definition are familiar. They require that
@ be a closed set of Nash equilibria. Condition (4) is novel. It is the
invasion condition. It states that if o is in the stable set, and o' responds
optimally to the perturbed environment, then the population average strat-
egy following the invasion is also in the stable set. The definition permits
individuals in the population to play mixed strategies. Unlike other varia-
tions on the static ESS concept adapted to asymmetric games, a mixed
strategy, taken as a singleton, may be an EES set. All of the EES sets
that we describe in this paper include a pure-strategy equilibrium.

The important difference between the ESS and EES conditions is that
admissible invasions in the EES framework are calculated to respond
optimally to the population mixture that they induce rather than being
simply random events. Even though EES is substantially weaker than
ESS, there is no guarantee that EES sets exist. To obtain a general exis-
tence result, condition (6) must be abandoned. We do that in Section 7.

3. PRELIMINARY RESULTS

In this section we present some preliminary lemmas that indicate the
power of evolutionary stability concepts in communication games.

First we show that any EES set must contain a strategy that does not
use some messages.

LeMMa 1. Any EES set in a cheap-talk game contains a strategy in
which the Sender assigns probability zero to at least #(T) messages.

Proof. Let o € ©. Denote the messages m,, m,, ..., m, and call
message m; redundant if either o,(m;, ) = 0 for all ¢, or if there exists
J < isuch that

{t: oy(m;, t) > 0} = {t: oy(m;, 1) > 0} (7)
and

{a: oya, m) > 0} = {a: oyla, m;) > O}, (8)

In words, (7) and (8) state that there are a pair of messages that induce
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precisely the same set of responses that are sent with positive probability
by precisely the same set of types. Call the pair of messages m; and m;
equivalent if (7) and (8) hold.

By assumption (3) on the cardinality of M, it follows that there are at
least #(T) redundant messages. It suffices to show that there is ¢’ € @
such that oj(m, t) = 0 for all r and for all redundant messages. We can
do this by having the Sender remove all weight from any redundant mes-
sage and instead use a message equivalent to it.

Let £(m;) denote the equivalence class containing the message m, ; £(m,)
is the set of all messages m; for which (7) and (8) hold. Let I(m) be
the minimum index message in the class. Let o3(1) = o,(-) and let
om', 1) = 0if m' # Iim'), and oj(m’, 1) = 2, cpomn@:10m, 1) otherwise.
Since o(+) was an optimal response to as(+), any type ¢ for which o,(m,
t) > 0 is indifferent between all messages in E(m); hence o(-) is a best
response to o3(-) = o,(-). Since for all m € E(m’), the same pure strategies
are in the support of o5(-, m), and each action in the support of o, (-, m)
is an optimal response to aj(m, -), o5(*) is a best response to o (). There-
fore o’ is a Nash equilibrium and C(¢') C BR(o). The lemma now follows
from Proposition 1 of Kim and Sobel (1992), which shows that if ® is an
EES set for (S, u), o € ®, ¢’ € N(S, u), and C(o') C BR(o), then ¢’ €
0.

It is clear that without enough messages, it will not be possible to
apply evolutionary arguments to reach efficiency. Earlier evolutionary
approaches to communication in games have needed to confront the issue.
One approach, taken by Canning (1992) and Noldeke and Samuelson
(1992), is to restrict attention to a finite population in which each individual
plays a pure strategy and to assume that the message space is large relative
to the population size and the number of types of Sender. Under these
assumptions every equilibrium must have unused messages. We have
demonstrated the existence of unused messages from an assumption about
the size of the language without explicitly ruling out randomization.

LEMMA 2. Let ® be an EES set in a cheap-talk game with costless
signaling. Let o € © and let m € M be used with probability zero. For
any m' # m, the strategy o' defined by (') = o(), o3(-, m) =
o5+, m) whenever m # m, and o3(a, m) = a(a, m') is an element of ©.

Lemma 2 is the drift lemma. It states that if there is a message that is
not used by some strategy in a stable set, then the response to that message
can drift freely to any other response that supports the equilibrium. It
follows from the definition of EES sets.

Lemma 2 deserves careful consideration. If the general population re-
pels invaders who attempt to use a new message, then evolutionary pres-
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sures need not lead to efficiency. Our solution concept allows the popula-
tion to drift off the equilibrium path; invaders who differ from the general
population only in the way that they respond to unused messages can
enter and ultimately change the strategy used by other members of the
population. We implicitly assume that the population will spend enough
time at any equilibrium contained in a candidate stable set that a viable
invasion, if it exists, will be able to take hold. Hence while a stable
outcome may be an appropriate long-run prediction, for certain initial
conditions it may take a very long time to arrive at a stable set.

If ® is an EES set for a game with costless signaling, then it follows
from Lemmas 1 and 2 that there exists an element of @ in which there
are unused messages that an invading strategy can use without lowering
its payoffs. We use this property several times to demonstrate the effi-
ciency of EES sets. When signaling costs are nominal, Lemma 2 need
not be true (if ¢,(m) < ¢,(m"), then ¢’ is not an equilibrium strategy since
all types will strictly prefer the cheaper message).

Since both Lemma 1 and Lemma 2 describe conditions that EES sets
necessarily satisfy, the Lemmas continue to be true for evolutionary equi-
librium concepts that require stability against a larger class of invasions
(for example, evolutionarily stable strategies or the ES sets described in
Section 8).

4. CoMMON-INTEREST GAMES

In this section we study games in which the players have similar prefer-
ences in the underlying game. We say that a game has common interests
if the set of feasible expected payoffs has a unique Pareto-efficient peint.
That is, there exists a feasible payoff pair «* = (u*, /%) such that for any
strategy o, either U(o) = o* or Uo) < uffori = 1 and 2.

These games have received attention in other studies of communicaion
(Blume and Sobel, 1991; Canning, 1992; Kim and Sobel, 1992; Matsui,
1991; Noldeke and Samuelson, 1992; Rabin, 1990; and Wirneryd, 1993).}
Common-interest games are a natural place to look for effective communi-
cation. In this class of games players should coordinate on an efficient
equilibrium.

This section contains two basic results: Proposition 1 states that any
stable payoff of a common-interest game with costless signaling must be
efficient. Proposition 2 states that there exists an EES set for common-

} Canning (1992), Noéldeke and Samuelson (1992), and Wirneryd (1993) limit attenticn to
a subset of common-interest games, while Blume and Sobel’s {1991) definition is slightly
more general than the one we use in this paper.
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A B C

ty 2,3 0,0 2,2

ta 0,0 2,3 2,2
FIGURE |

interest games with costless signaling. We also include an example that
demonstrates the importance of our common-interest assumption for prov-
ing existence. We conclude the section with the observation that our
results do not change when messages have nominal costs.

PROPOSITION 1. Let G be a costless signaling game of common inter-
est. If © is an EES set of G, then for all 0 € O, U(g) = u*.

The proof of Proposition 1 has three steps. The first step, which we
proved in Lemma 1, shows that there is always an element of an EES set
that contains unused messages. The second step, which follows from
repeated applications of Lemma 2, shows that if there exists an element
of an EES set that contains an unused message, then there is also an
element of the set that does not punish the use of the unsent message, in
the sense that a type could send it without lowering its payoff. The third
step demonstrates that a strategy which uses the unsent messages to
coordinate on the efficient outcome can invade the population. We provide
the details in the Appendix.

Proposition 2 proves that EES sets exist in common-interest games.
We omit the proof since Kim and Sobel (1992) use the same argument to
establish existence of EES sets in complete-information common-interest
games.

ProPOSITION 2.  If G is a costless signaling game of common interest,
then © = {o: U(g) = u*}is an EES set of G.

The intuition for Proposition 2 is that, by the common-interests assump-
tion, any strategy profile that responds optimally to a strategy in ® must
also be an element of @. Hence O is an EES set.

Our definition of common interests requires that if one player obtains
its highest payoff, then so must the other. We need this assumption in
the existence theorem. Consider Example 1 in Fig. 1. In all of our examples
the entry in row i and column j indicates the payoffs to the Sender of type
i and to the Receiver if j is the Receiver’s action; all types of the Sender
are equally likely. In this game the Sender and the Receiver do not have
common interests by our definition because the Sender is indifferent be-
tween the separating and the pooling equilibrium. No EES set exists for
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the example. To see this assume, in order to obtain a contradiction, that
there exists an EES set. We can show that the set must contain the
equilibrium in which the Sender always sends m,, and the Receiver re-
sponds to /1, with a mixture of A and C, to m, with B, and to m; with C.
The equilibrium in which type ¢, Sender signals m,, type ¢, Sender signals
m-, and the Receiver responds to m,; with A, to m, with B, and to s, with
C can now enter the population. When it does, the population’s response
to m, is not optimal. Hence the population strategy is not an equilibrium,
so we did not start with an EES set.

Talk may be cheap but it is rarely literally free. We close this section
by observing that even if there is a small cost associated with messages,
the basic results of this section continue to hold. Canning (1992) presents
versions of Propositions 3 and 4 below in a dynamic model.

Variations of Propositions 1 and 2 also apply to games with nominal
signaling costs. Proposition 3 is the analog to Proposition 1. We omit the
proof, which differs slightly from the proof of Proposition 1 because
Lemma 2 does not extend to games with nominal signaling costs. We
must guarantee that an equilibrium in which the Sender always obtains
her most preferred action can enter the population. If a Sender type uses
a message that fails to induce her utility maximizing action with probab:lity
greater than one-half, then there exists a message that is not used and is
such that she is indifferent between her equilibrium message and the new
message even when nominal signaling costs are taken into account. This
construction is possible because the new message can induce the Sender’s
favorite action with a high enough probability to compensate for the added
signaling charge. Consider a message m that induces the Receiver to take
the utility maximizing action with probability greater than one-half for a
nonempty set of Sender types. There can only be one action, call it a,
induced with probability greater than one-half by the message m. By the
common-interest assumption, « will be a best response if only the Sender
types for which a is the utility maximizing action use m. Hence, at any
equilibrium in which the Sender is not obtaining her maximum utility (less
signaling costs), an invading strategy in which each type of Sender uses
a message from the equilibrium if it induces her favorite action with
probability greater than one-half and a previously unused message other-
wise, and in which the Receiver responds optimally to the Sender’s invad-
ing strategy, can enter the population.

PROPOSITION 3. Let G be a common-interest cheap-talk game with
nominal signaling costs. If @ is an EES set of G, then for all o € 0,
ot, m) = 0 fori > #(T), Uo) = uf — 8, and U,(a) = 1},

Proposition 3 modifies the efficiency result of Proposition 1. It asserts
that only the cheapest messages will be used; this is true because otherwise
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an invading strategy using a cheaper message could enter. Proposition 1
places no restriction on the number of messages used in an element of an
EES set. On the other hand, Proposition 3 does not guarantee that the
Sender uses messages efficiently: It is possible that she uses the cheapest
message to convey rare information and uses more expensive messages
with higher probability. The Sender does not obtain her maximum payoff
«f because she must pay the nominal cost of signaling.

Proposition 2 also has a counterpart with nominal signaling costs. To
state the proposition we need another definition. Given any strategy profile
o, denote by #(o) the cardinality of the set of actions induced with positive
probability under o. That is, #(o) is the cardinality of {a € A: 2,
oa, mya,(m, Hm(t) > 0 for some t € T}.

ProrosITION 4.  If G is a common-interest cheap-talk game with nomi-
nal signaling costs, then every equilibrium o in which U(o) = uf and in
which the Sender uses only the cheapest #(o) messages is an element of
an EES set of G.

The proposition asserts that any equilibrium which is efficient from the
standpoint of the Receiver and does not needlessly use costly messages
(in the sense that the Sender uses only one message per distinct action
induced in equilibrium) is an element of an EES set. In common-interest
games it is natural to expect that the equilibria which the Receiver prefers
are fully separating so that #(o) = #(7). Our statement of the proposition
includes degenerate cases in which a completely informed Receiver has
the same optimal response to two different types of Sender, so that fully
separating equilibria do not exist. In contrast to Proposition 2, which
asserts that the set of all strategies giving rise to the efficient equilibrium
are elements of a single EES set, there are many different EES sets when
signaling costs are nominal. These sets differ depending on which type
uses which message. All that we can assert is that the Sender will use
only the cheapest messages. In each element of an EES set the Sender
has a unique optimal response. Since messages are costly and only the
cheapest messages are used, each type strictly prefers her equilibrium
message to any unused message. Each of the EES sets described in Propo-
sition 4 contains all of the equilibria that support a given separating
outcome.

5. CHOOSING THE SENDER’S FAVORITE EQUILIBRIUM
In many models of communication there is a presumption that if only

one player is able to speak, then that player will be able to select its
favorite outcome. Most of the solutions defined for this class of games
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A B C

t 1,3 0,0 2,2

ts 0,0 1,3 2,2
FIGURE 2

give the Sender the ability to pick her favorite equilibrium under certain
conditions (for example, Matthews et al., 1991; Myerson, 1989; Rabin,
1990; and Zapater, 1991). Since only the Sender can speak in our model,
we investigate the sense in which only her favorite outcomes are evolution-
arily stable. First we need to understand what it means to be the Sender’s
favorite outcome. Since the type of the Sender determines her preferences,
there may be conflicts of interest between the different types. We will
only consider cases in which the interests of the Sender are completely
clear. We say that a cheap-talk game has a favorite equilibrium for the
Sender if there exists a Nash equilibrium of the costless signaling version
of the game in which each type of Sender receives her highest payoff.
When costs are nominal, Sender types will disagree about who uses the
cheapest messages.

We begin our discussion with a negative result. Consider the example
in Fig. 2. In this game there is a pooling equilibrium and a separating
equilibrium. The Sender types would both prefer to pool, but the Receiver
would prefer the Sender to use different messages for different types.
When all signaling is free, there does not exist an EES set. To see that
the pooling equilibrium outcome is not stable, first note that any EES set
that contains the pooling outcome contains a strategy in which the Re-
ceiver is indifferent between actions A and C given one message, and
indifferent between actions B and C given another message. Hence the
separating equilibrium (with the type #, Sender using the first message
and the type t, Sender using the second message) can invade. On the
other hand, the pooling strategy can invade a population that is playing
the separating equilibrium by using a different message provided that the
invader does not get punished by the original population for doing so. It
can be checked that any EES set containing the separating equilibrium
will contain a strategy that does not punish invaders.*

The example suggests that there is a severe problem in establishing the

4 Blume (1992) applies his concept of perturbed message persistence to the game in Fig.
2. His discussion parallels ours. Both the separating and the pooling cutcomes are perturbed
message persistent. However, under an effective language requirement, which plays the
role of our assumption of nominal signaling costs, only the pooling outcome survives
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existence of EES sets in games without common interests. The problem
is not as bad as it seems, however. The strategy that invades the pooling
equilibrium requires that the population mix its messages in a precise
way. This type of mixture is possible because all messages cost the same
amount (they are all free). Consider the effect of adding a cost of signaling
that is independent of type and action, but varies from message to message.
The modification guarantees that the pooling outcome is an element of an
EES set. Furthermore, in the EES set all Senders in the population choose
to use only the cheapest messages. The next result shows that this is a
general property.

PROPOSITION 5. Let G be a cheap-talk game with nominal signaling
costs. If the Sender has a favorite equilibrium in G, then there exists an
EES set in which the Sender obtains her highest pavoff (less signaling
costs) for each element in the set.

Proof. Since the game has generic payoffs, any equilibrium in which
the Sender obtains her highest payoff is a pure-strategy equilibrium along
the equilibrium path. The Receiver cannot randomize on the equilibrium
path and give the Sender her highest payoff because v(r, a) # v,(1. a')
whenever a # a'. Given that the Receiver is playing pure strategies, no
type of Sender will be indifferent between two messages. Let o be an
equilibrium that gives rise to the Sender’s favorite payoff in which
the Sender uses only the cheapest messages with positive probability
(ory(m;, 1) = O for all ¢ implies that, for all j > i, o/(m;. 1) = 0 for all 1).
Let O be the set of equilibria that give rise to the same outcome (elements
in O differ only in the way that they respond to unused messages). © is
an EES set because, by construction, o is the unique best response to
any strategy for the Receiver in 0.

While Proposition S asserts that the Sender’s favorite outcome is part
of a stable set, it does not guarantee that it is the only stable outcome. The
next example demonstrates that such an efficiency result is not available.

In Example 3 there is a partially separating equilibrium in which actions
A and B are taken. The Sender prefers to pool, but the partially separating
equilibrium is an element of an EES set. Consider the set ©® = {0 € N
am, t) = oms, ;) = om,, ;) = 1, o(-) = 0, otherwise}. We claim
that @ is an EES set. We will sketch an argument that demonstrates that
no strategy can invade ©. First, observe that if o} is an optimal response
to any o, such that ¢ = (o, 0,) € O, then o{, t;) = 1. Type t, can get
a payoft of four (less signaling costs) if he uses m,. Plainly ¢, would never
use m,, which would lead to a negative payoff when signaling costs are
taken into account. Moreover, the Receiver’s response to any of the other
messages must support the equilibrium. It is straightforward to check that
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A B C
ty 4,10 0,0 104
ts 1,0 48 114
i3 0,0 4,2 10,4
FIGURE 3

any response to m; for i > 2 that would leave t; indifferent between m,
and m; would cause ¢, to strictly prefer m; to m, and destroy the equilibrium.
It follows that for any potential invading strategy, only types ¢, and #, can
use messages m; for i > 2. Consequently, if ¢’ can invade @, then o,/(C,
m;) = 0foralli> 2. That s, since r; never sends a new message, invaders
that use the pooling action in response to a new message cannot enter.
It follows that ® satisfies condition (4) in the definition of EES. Hence
the nonpooling equilibrium outcome is evolutionarily stable in the game
of Fig. 3.

The outcome that the Sender dislikes can be stable in the example
because it is possible to support the outcome with strategies that always
impose a cost on an invasion that uses strategy C.

As a referee has pointed out to us, restricting entry to strategies that
respond optimally to the postentry environment plays an essential role in
guaranteeing that the semipooling equilibrium is an element of an EES
set in the example. It is this restriction that prevents the drift of the
population to strategies outside an equilibrium component. If entry were
unlimited, then strategies could drift arbitrarily at unreached information
sets; the drift would destabilize the semipooling equilibrium in the exam-
ple. This type of drift is permitted in the dynamic model of Noldeke and
Samuelson (1992) and in the ES sets of Thomas (1985a,b).

It is possible to show that if there are only two Sender types, three
actions for the Receiver, and the Sender has a favorite equilibrium, then
the Sender must obtain her highest payoff in any EES set. This result
corresponds to a finding in Noldeke and Samuelson (1992). The result
appears to be quite special in our model, as it does not hold when the
Sender has more than two types or when the Receiver has more than
three actions.

6. RELATIONSHIP TO REFINEMENTS

Several authors have presented equilibrium refinements in attempts to
rule out implausible outcomes in costless signaling games. In this section
we make a partial comparison between their results and ours.
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We present a result based on the lemmas in Section 2, This result allows
us to show when an equilibrium that fails the refinements of Farrell (1993),
Matthews et al. (1991), and Rabin (1990) also fails to be an element of an
EES set.

For 1 € T, let w(z) be a collection of reference payoffs. Call a nonempty
subset J of T a self-signaling family relative to w if there exists a partition
of Jinto sets J;, i = 1, ..., jand actions af such that

af solves max,c, zrej vyt a)ym(t) fori=1,...j,

vi(t, @) > max {w(t),v,(t, @)} fort e Jyand i # [, and
n(t, a) <w() foralliif¢t & J.

Call J a self-signaling set if j = 1. Informally, a subset J is self signaling
if there is an optimal response to the statement ‘‘my type is in J;* that
precisely those types in J; prefer relative to reference payoffs. Farrell
(1993) and Matthews et al. (1991) derive the reference payoffs from the
equilibrium that they are testing for viability. Farrell calls an equilibrium
neologism proof if there is no self-signaling set relative to the Sender’s
equilibrium payoffs.

Matthews er al. (1991) present two variations on Farrell's ideas, which
they call announcement-proof and strongly announcement-proof equilib-
ria. Their ideas differ from Farrell’s in three ways. First, they do not
assume that the deviating Sender types (the set J) can convince the Re-
ceiver to take any optimal response to J. If there exist multiple optimal
responses, then they apply the most stringent credibility conditions: types
in J expect their least-preferred response while types outside of J expect
their most-preferred response to a neologism. Second, many new mes-
sages can be sent at the same time. That is, the self-signaling family
contains more than one member. Third (for announcement-proof equilib-
ria), an additional credibility condition is imposed to guarantee that if
there are multiple statements that might be believed, their interpretation
creates no conflicts in the sense that no matter what the Receiver believes,
it is in the interest of the putative deviators to leave the equilibrium. See
Matthews et al. (1991, p. 261) for a detailed discussion of this condition.
Matthews er al. (1991) permit randomization in their announcements. We
choose to limit attention to pure strategies for clarity. We believe that
our results extend to their more general setting.

We will use the next proposition to compare these solution concepts
to equilibrium evolutionary stability.

PROPOSITION 6.  Let  be a pure-strategy Nash equilibrium of a cheap-
talk game with costless signaling and generic payoffs. If J = Ui_, J; is
a self-signaling family relative to U,(o) and all types in J; send the same
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message under o (if t and t' € J;, then o((m, t) = o,(m, t')), then o is
not an element of an EES set.

We present a proof of Proposition 6 in the Appendix. Assume that o
satisfies the conditions of the proposition and is an element of an EES
set. Lemmas 1 and 2 imply that there exists another element of the EES
set containing ¢ in which there exists an unused message m; for cach
element of the self-signaling family, and that Sender types in J, are indiffer-
ent between using their equilibrium message and m;. It follows that a
strategy in which Sender types in J; send a common message and in which
the Receiver responds optimally to this message can enter the population.
When there are nominal signaling costs it may not be possible to simultane-
ously compensate several types of the Sender with the amount needed to
leave them indifferent between their original strategy and sending the
unused message. Hence our proof of Proposition 6 does not hold for these
games.

Proposition 6 gives a condition under which an equilibrium that fails to
be neologism proof or (strongly) announcement proof must also fail to be
evolutionarily stable. Evolutionary pressures disrupt an equilibrium that
fails a refinement provided that the types pooling together to make a
credible statement forbidden by the refinement pool together in the equilib-
rium. Of course, this condition is satisfied automatically if the candidate
equilibrium is pooling. If the members of an element of the self-signaling
family use different messages in the candidate equilibrium, then an out-
come that is not neologism proof or (strongly) announcement proof may
be an element of an EES set. One can see this by examining the game in
Fig. 3 of Section 5. The semipooling equilibrium in that game is an element
of an EES set even when messages are costless. However, relative to
that equilibrium the set of all types is self-signaling; hence the equilibrium
fails to be neologism proof and announcement proof. The reason for the
difference is that in order for evolutionary forces to destabilize an outcome
it must be profitable for deviants to use a previously unused message
without being punished. Since the preinvasion population must respond
to the new message with an action that supports the equilibrium it may
not be possible to find an alternative message that the types of a self-
signaling set are all willing to use when they are not using the same
message.

We noted three differences between announcement-proof and neolo-
gism-proof equilibria. None of these differences plays an important role
in our arguments. In particular the additional credibility restriction is not
needed in order to apply evolutionary arguments to destabilize an cut-
come. Noldeke and Samuelson (1992) make a related observation in their
discussion of forward induction and evolutionary stability.
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Proposition 6 gives only a sufficient condition for instability. We can
show that if there are only two types of Sender, then any equilibrium that
fails to be neologism proof, announcement proof, or a credible message
equilibrium (Rabin, 1990) cannot be an element of an EES set.’

This section presents two ways in which refinements may differ from
evolutionary arguments. First, the existence of a self-signaling family
necessarily destabilizes an outcome only if types pooling in the invasion
were pooled before the invasion. The reason for the differences is that
according to the refinements, players immediately interpret a new message
(that is, a message used with probability zero in the putative equilibrium)
according to its focal meaning. If a refinement permits a deviation from
an equilibrium, then the Receiver always selects an optimal response to
the information contained in a message sent by deviating Sender types,
even when this response is very different from the action that supported
the putative equilibrium. Hence one tests the credibility of a deviation by
comparing payoffs in the putative equilibrium to payoffs when an unused
message is interpreted according to its focal meaning. To move away from
an outcome in our framework the response to a new message must first
drift away from the population’s preinvasion action. Entry of a new strat-
egy occurs only if it is in the short-term best interest of an invader to
enter. Unless we make an assumption on the population strategies prior
to the invasion, there is no guarantee that it will be in the short-term
interest of all Sender types in an element of a self-signaling family to send
a common message and thereby allow evolutionary pressures to establish
the meaning of this message.

The second difference is that many of the nonevolutionary ideas
(Matthews et al., 1991; Rabin, 1990; and Zapater, 1991) require that
there be only one possible way to interpret a message. Again we can
trace the difference to the unsophisticated behavior that is implicit in
the evolutionary solution concept. An invasion takes hold slowly,
myopically, and without introspection. When a new strategy designed
as in Proposition 6 enters the population, it is able to grow. As it
grows, an unambiguous interpretation of the previously unused messages
develops without reference to other interpretations that may have been
possible. Players who had more ability to reason about the game could
easily fail to respond correctly to messages that had several conceivable
credible meanings. The approach of Matthews, et al. (1991), Rabin
(1990), and Zapater (1991) could be appropriate in dynamic settings
with thoughtful agents.

¥ Noéldeke and Samueison (1992) show that for games with two types and three actions,
limiting outcomes of their evolutionary dynamic must be announcement proof whenever
announcement-proof equilibria exist.
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7. PARTIAL COMMON INTEREST

The results of the previous sections strongly suggest that nonexistence
of EES sets is widespread in games with communication. In this section
we discuss a weaker stability notion and identify a class of games in which
partial communication necessarily occurs.

Our approach is simply to eliminate condition (6) in the definition of
EES.

DEFINITION. A set ® C A(S)) X A(S,) is entry resistant (ER) if it is
minimal with respect to (4) and (5).

It is clear from the definition that any EES set is an ER set. Two other
things should be noted about the definition. First, ER sets may contain
nonequilibrium strategies (indeed, they may contain only nonequilibrium
strategies). Second, a basic question is whether there exist explicit dynam-
ics that have ER sets as their limit points. We do not have a definite
answer to that question as we provide no dynamics in this paper.

ER sets are closely related to the cyclically stable sets proposed by
Gilboa and Matsui (1991) and Matsui (1992).% One can establish the exis-
tence of ER sets for all games using a Zorn’s Lemma argument. (Gilboa and
Matsui, 1991, and Matsui, 1992, give details of closely related arguments.”)

Our purpose for introducing ER sets is to provide conditions under
which evolutionary pressures guarantee that some communication takes
place even though an EES set may not exist. Proposition 7, which we
state below, provides conditions under which no pooling equilibrium (an
equilibrium that gives rise to the same outcome as a completely uninforma-
tive equilibrium p = (p,. p-) in which p,(m, ¢) does not depend on ¢) can
be an element of an ER set. At the end of the section we discuss and
provide conditions which guarantee that an arbitrary equilibrium strategy
belongs to no ER set. This result allows us to conclude that in common-
interest games the efficient equilibrium is the only equilibrium that is an
element of an ER set.

In order to state our result, we must identify games in which the Sender
has a compelling interest to share some, but not necessarily all, of her
private information with the Receiver. For any nonempty subset of types
L we write BR,(L) = {arg max 2., 2,c; U,(t, @)u(tala): « and yu are
probability distributions supported on A and L, respectively} and BR-(L;

® The game that Matsui (1992, p. 358) uses to distinguish the definition of cyclically stable
sets given in Gilboa and Matsui (1991) from that of Matsui (1992) also demonstrates that an
ER set need not be cyclically stable in the sense of Gilboa and Matsui. We could not prove
that ER sets were identical with Matsui’s (1992) cyclically stable sets.

7 Kalai and Samet (1984) employ a similar argument to establish existence of persistent
retracts.
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m) = {arg max 2,c, 2, U2(f, a)m(Hala): « is a probability distribution
supported on A}; BR,(L) contains ail mixed strategies that an optimizing
Receiver would consider assuming that the Sender’s type is an element
of L, while BR,(L; 7) requires the Receiver to derive the relative probabili-
ties of the types in L from the prior 7. Also let v,(¢; L) = min {v\{t, a;):
a; € BR,(L)} denote the lowest payoff that the type ¢ Sender would obtain
if the Receiver believed that her type was in L, and let v, (1) denote the
maximum payoff that a type ¢ Sender can obtain in a (completely) pooling
equilibrium. For generic payoffs there will be only one pooling equilibrium
payoft.

DEeFINITION. A cheap-talk game has partial common interests if there
exists a partition J = {J;},i = 1, ..., J, of T such that

vt J) > max {v (¢, @) a, € BRy(J))} forallt, € J;andi =1, (9)

for all ¢, € J, there exists ¢, € BR,(J;; 7)
such that v(¢;, ;) > v (1,), (10)

and

if KN J,# ¢ for at least two [, then for each ¢« € BR,(K)
there exist i and 7, € K N J, such that v,(z;: J,) > v,(1;, a). (11)

The definition is meant to capture the intuition that both players gain
when types in sets J; reveal (at least) that information. Condition (9) is a
strong assumption guaranteeing that types in J; prefer to identify them-
selves as members of J, rather than as members of any other element of
the partition. This condition alone implies the existence of an equilibrium
in which the Sender communicates partial information. Condition (10)
states that each type would prefer to identify herself as a member of the
partition that contains it rather than be pooled. Conditions (9) and (10)
guarantee that J is a self-signaling family of sets relative to any pooling
equilibrium payoff.

Condition (11) requires that when members of different elements of the
partition pool, at least one type loses relative to the least it could obtain
when identified as a member of the set it belongs to. We use condition
(11) to show that once the population arrives at a strategy that reveals
the partition J, it will never drift to a less informative strategy profile.
Condition (11) follows from (9) whenever A = U/{_| BR,(J)).

ProposiTION 7. If G is a costless signaling game with partial common
interests, then no pooling equilibrium is an element of an ER set.

If one accepts the interpretation that an evolutionary process cannot
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return infinitely often to strategies that are not in any ER set, then Proposi-
tion 7 states that evolutionary pressures prevent agents in games with
partial common interests from babbling uninformatively. The result does
not require that an EES set exist (although it implies that the pooling
equilibrium cannot be an element of an EES set).?

The Appendix contains a proof of Proposition 7. The basic idea of the
argument is that, under our assumptions, the population can drift from a
pooling equilibrium p to a strategy in which types separate according to
the partition J, but once types have separated, they cannot drift back
together.

We will describe the logic of the argument in a bit more detail. Let R(o)
be the smallest closed set containing o that satisfies (4). R(g) is the set
of strategies that are reachable from o via repeated invasions.

Now let J be the partition that appears in the definition of partial common
interests. Define the set of separating strategies relative to J, ®, as the
set of strategies o = (o, 05) such that

ifa(m,t;)>0fort,€J;, thenom,t) =0 forall: & J, (12)
and

if >, a(m, Hm(t) > 0, then ox(a, m) >0 only if a € BRy(J)). (13)

1EJ;

Condition (12) states that types in different subsets of the partition use
different messages. It places norestrictions on how types that are members
of the same J; signal: They may or may not all use the same message. It
follows from (12) that the messages sent with positive probability by o,
can be partitioned into sets of messages sent by types in J; for each /.
Condition (13) states that the Receiver’s response to any message sent
by types in J; is an optimal response to some conjecture (possiby not the
correct one) supported on the types in J;. The semipooling equilibrium
outcome in which the Sender tells the Receiver which element of the
partition contains ¢ and the Receiver responds optimally is an element of
&, but ® typically contains other, nonequilibrium, strategies.

Once a strategy drifts into @ it can never leave, and a pooling equilibrium
strategy p must drift into ® in the sense that R(p) N ® # ¢. The first
claim follows from (11); if types in an element of the partition separate,
then no strategy that pools them again can enter. The second claim follows

8 It is possible to prove that the pooling equilibrium is not a member of an EES set if
only (9) and (11) in the definition of partial common interests hold.
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from (9) and (10). These observations provide the intuition for our result.
A pooling outcome cannot be an element of an ER set because that set
must reach the separating set, but once it does, it will never leave it.

The proposition does not assert that if the population begins at the
pooling strategy it must inevitably drift to the separating set ®. There
may exist other ER sets that intersect R(p). It only demonstrates that
evolutionary pressures will not allow the population to return to the pool-
ing outcome infinitely often.

In our definition of partial common interests, the pooling outcome plays
a distinguished role. 1t is natural to ask whether we can use our arguments
to show that an arbitrary equilibrium belongs to no ER set. The answer
is yes, provided that we modify (10) and add another condition. Specifi-
cally, let ¢ = (o, o,) be an arbitrary equilibrium strategy. If there exists
a partition J = {J.},i = 1,...,/, of T such that (9), (11),

for all ¢, € J; there exists ¢, € BR,(J;, m) such that v(¢;, a,)
> E Z vt, a)osla, mao,(m, 1) (14)

meEM aEA
and
for each i, there exists an m such that J, C {t: o)(m, 1) > 0}, (19)

then o cannot be an element of any ER set. The same general argument
that establishes Proposition 7 yields this result. Condition (i4) plainly
replaces (10); it states that all types of Sender prefer to be identified as
members of the appropriate J, rather than obtain the payoff from o. Condi-
tion (15) holds automatically for the pooling outcome. The assumption
guarantees that the partially pooling equilibrium relative to the partition
J can invade the population strategy o.

As an application, assume that the game has common interests and let
J be the finest partition of T (each element of J contains a distinct element
of T). Condition (14) holds for any inefficient equilibrium by the assump-
tion of common interests; condition (15) holds automatically. Hence a
result analogous to Proposition 1 holds for ER sets: In common-interest
games with costless signaling if an equilibrium is an element of an ER
set, then the equilibrium is efficient. A similar result holds for games with
nominal signaling costs.

8. RELATED WORK

In this paper we have discussed the impact that the possibility of innova-
tion or invasion has on the strategies played in communication games.
Our basic qualitative result is that these invasions tend to destabilize
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A B C D
t 2,6 0,0 1,4 -10,1
t2 0,0 2,6 1,4 -10,1
FIGURE 4

inefficient outcomes. Specifically, if the interests of the players coincide,
then stable outcomes must be efficient. If the interests of the players agree
to a lesser extent, partial communication must occur. In this section
we present a detailed discussion of related literature, both to justify our
approach and to put it and our results in perspective.

There have been a large number of ideas developed in order to describe
what strategic behavior would persist in an environment subject to evolu-
tionary pressures. The lack of consensus regarding what is the correct
solution to evolutionary games suggests to us that there is no single correct
solution; different methods will be useful in different contexts. In this
section we discuss several possible alternative approaches. We are reas-
sured that, to the extent that we have investigated them, other proposed
solutions to evolutionary games provide results that are broadly similar
to ours.

There are static variations of evolutionary stability that are not set
valued. Wirneryd (1993) shows that every neutral ESS® in a cheap-talk
game must be efficient in a game in which both players receive a positive
payoffif the Receiver correctly guesses the Sender’s type, and they receive
zero otherwise. These pure-coordination games are games of common
interest, so Wirneryd’s results are consistent with the results in Secrion
4, Wirneryd's propositions do not extend to the broader class of common-
interest games that we study. His solution concept does not permit strate-
gies to drift freely off the equilibrium path; hence an inefficient outcome
may be stable if there were an action that led to especially low payoffs
(for example, less than the pooling equilibrium payoffs) for all types. For
example, in the game depicted in Fig. 4, the strategy in which all Senders
use the first message with probability one and Receivers respond to that
message with action C, and respond with action D otherwise, is a neutral
ESS. Selten’s (1983) notion of limit ESS adds trembles to the game so
that there are no unreached information sets. It appears that limit ESS’s
must exist and be efficient for the games Wirneryd studies, but not for

% To be a neutral ESS a strategy o must have the property that no invading strategy can
do strictly better than it when matched with a population that contains a small fraction of
individuals playing the invading strategy (and the rest playing o).
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general common-interest games for the same reason that Wirneryd's re-
sults do not extend to such games.

There are also set-valued ideas that, like Swinkels’s notion, attempt to
describe limiting outcomes in population games subject to evolutionary
forces. The notion of an evolutionarily stable (ES) set due to Thomas
(1985a,b) weakens the entry condition in the definition of an EES set:
Any strategy o’ that does better than the population strategy in a perturbed
environment can enter; the entrant need not be an optimal response to
the perturbed environment as in (4). For this reason, any ES set must
contain an EES set. The arguments that we use to establish our destabiliza-
tion results (Propositions 1, 3, and 6) also apply to ES sets. Existence
results corresponding to Propositions 2, 4, and 5 would also hold for ES
sets. Hence for cheap-talk games with common interests, ES sets exist
and all elements of ES sets must be efficient (net of signaling costs). We
choose to work with EES sets because ES sets are sensitive to the inclusion
of dominated strategies. For example, in the game depicted in Fig. 5, the
separating outcome is an element of an EES set. It fails to be an ES set
because a strategy in which Senders use an unsent message and the Re-
ceiver responds to the invasion with the dominated action C can invade
a population of Senders that separate.

Gilboa and Matsui's (1991) notion of cyclically stable sets (and the
variants studied in Matsui (1991, 1992)) appear to be quite similar to our
ER sets. The set of efficient outcomes in common-interest games must
be a cyclically stable set. An efficiency result corresponding to Proposition
1 also appears to hold, at least for the coordination games studied by
Wirneryd.

Although our approach is not explicitly dynamic, there is a connection
between local stability of an outcome under the replicator dynamic (or
closely related processes) and outcomes that satisfy static stability condi-
tions. In particular, Cressman (1990) shows that in symmetric games
Thomas’'s ES sets are necessarily locally stable for pure-strategy dynamics.
The outcomes identified as evolutionarily stable in this paper, and only those
outcomes, are locally stable with respect to the replicator dynamic. '

" In complementary work, Swinkels (1993) demonstrates that sets which are locally asymp-
totically stable relative to selection dynamics must contain a hyperstable (Kohlberg and
Mertens, 1986) subset.
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Canning (1992) and Noldeke and Samuelson (1992) present adaptive
dynamic models of games with communication. These papers prove that
the only limiting outcomes are efficient in a subset of common-interest
games with cheap talk.!" (Canning assumes that the Sender and the Re-
ceiver have the same preferences over actions. Noldeke and Samuelson
study the same set of coordination games that Wirneryd analyzed.) The
dynamics of these models allow the same kind of drift that occurs in EES
sets.

The static evolutionary solution concept of Thomas (1985a,b) and the
dynamics of Noldeke and Samuelson (1992) permit actions at unreached
information sets to drift out of the equilibrium component. As we noted
in connection with our discussion of the game in Fig. 3, because EES
limits invasions to strategies that respond optimally to the postentry envi-
ronment, the population can only drift to strategies that support an equilib-
rium component. The distinction plays no role in common-interest garnes:
The limited drift that we permit is sufficient to destabilize inefficient equi-
libria, while the efficient outcome is immune from all invasions. Whether
or not the evolutionary process imposes discipline on actions taken at
unreached information sets is ultimately a question about the underlving
dynamics. We believe that our entry condition might arise in a dynamic
model if entrants cannot change their strategy immediately following an
invasion (but the existing population can).

Noldeke and Samuelson also analyze Sender—Receiver games with two
types of Sender and three actions for the Receiver. Their results for these
games are consistent with the findings that we report in Section 5. In
particular they show that the limiting outcome must be the Sender’s favor-
ite (when one exists).!2

The clear advantage of the approach of Canning (1992) and Noldeke
and Samuelson (1992} is that it is explicitly dynamic. Therefore their
results can be directly traced to behavioral assumptions on individual
agents. These dynamic stories suggest realistic circumstances under which
you must get cooperative outcomes in common-interest games. On the
other hand, the approach necessarily leads to ergodic distributions so, at
least at the level the models are currently applied, they allow no role
for history in determining outcomes. These papers use much stronger

! Canning also shows that without mistakes his dynamic need not rule out inefficient
outcomes as limit points even in pure coordination games.

I Noldeke and Samuelson’s result comes in the context of costless signaling games . in
which our Example 2 illustrates that EES sets do not exist. We believe the difference arises
because they assume that players do not change actions that respond optimally to their
conjectures (even if alternative best responses exist). Therefore, players cannot drift from
a pooling outcome to a payoff-equivalent equilibrium in which different types of Sender use
different messages.
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assumptions about the game than we do. Further work will determine
whether our results continue to hold in a fully dynamic setting.

APPENDIX

Proof of proposition 1. Suppose that there exists o € 0O such that
U(o) # u*. By Lemma 1 and repeated applications of Lemma 2 we can
assume without loss of generality that there are distinct messages m(r)
for t € T such that

aom(),t’y =0 foralltrandt’' €T (A1)

and

S ouyt, m(n), @yosla, m(t)) = X, D wyt, m, o (m, Hola, m). (A2)

a€EA aEA meEM

In words, (A1) and (A2) state that message m(r) is not used in o, but the
Sender of type t would not lose by sending m(s). Define the strategy o*
so that the Sender of type ¢ uses message m(¢) with probability one, the
Receiver responds optimally to messages m(¢) for t € T, and the Receiver
responds as o, did to other messages. Since each Sender type uses a
different message and the Receiver responds optimally to these messages,
the Receiver must obtain his highest feasible payoff under o*; that is,
UL(o*) = u}. Since the set of feasible payofts of common-interest games
has a unique Pareto-efficient point, it must be that o * is a Nash equilibrium
and U (o*) = u*. Further, o* is an optimal response to the population
strategy o, so it satisfies the invasion condition. It follows that for some
e > 0,

o =0 + (I — g)Jo €06, (A3)

It is straightforward to check that if U(g) # u*, then U(c") # u*. Hence
o' cannot be a Nash equilibrium (at least one type of Sender ¢ would do
better by using the message m(r) with probability one), which contradicts
(A3) and completes the proof of the Proposition.

Proof of proposition 6. Assume, in order to obtain a contradiction,
that there exists an EES set @ that contains . Let 72; denote a message
used by the types of J; (o,(m;, 1) = 1 forallr € J;). By Lemmas [ and 2
we can assume, without loss of generality, that there exists a message
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m/ such that o(m/, 1) = 0 for all t € T and a5(a, m]) = o,(a, m,) for all
a. Consider the strategy o' = (o1, o}), where, letting ¢*denote the Receiv-

er’s optimal response to J; as in the definition of self signaling,

om,n fort&J

oim, 1) =<1 fort€J;andm = m|
0 forr € J,and m # m]
and
oy(a,m) form#m; foralli
oi(m, 1) = {
af form = m]

Since o is an optimal response to both o, and o3, it is an optimal response
to all mixtures. Since o3 I1s an optimal response to o, it is an optimal
response to eo| + (I — &), for some ¢ > 0 provided that payoffs are
generic. It follows that so’ + (1 — g)o € O for ¢ sufficiently small.
However, since it is in the interest of all types in J; to use m; instead of
m;, e’ + (1 — g)o fails to be a Nash equilibrium when ¢ > 0. This
observation contradicts the definition of EES sets and completes the proof.

Proof of proposition 7. For any strategy profile o, R{(¢) is the smallest
closed set containing o that satisfies (4). Since the intersection of any two
sets that satisfy (4) is either empty or satisfies (4) and is closed, R(:) is
defined for all strategies. We claim that

if there exists an ER set ® such that o € O, then R(g) = ©. (A4)
In order to prove (A4) note that ® must contain R{o) because O satisfies

{4), and by minimality the sets must be equal.

Next we show
if p is a pooling equilibrium, then R(p) N & # ¢ (AS)
and

if o € &, then R(g) C . (A6)
Condition (AS) states that the set of strategies reachable via invasions

from a pooling equilibrium must intersect the separating set ®. To prove
(A5), first observe that by the arguments of Lemmas | and 2 we may



EVOLUTIONARY STABILITY IN GAMES OF COMMUNICATION 573

assume without loss of generality that there are j unused messages (one
for each member of the partition J), and the Receiver responds to these
messages as he responds to messages on the equilibrium path. By the
definition of partial common interest, we know that there exists a partially
pooling equilibrium outcome relative to the partition J. Let o’ be an
equilibrium that supports the partially pooling outcome in which the
Sender only signals with the unused messages of p and the Receiver
responds to unsent signals with the pooling action of p,. It follows from
(4) and the definition of R(p) that there exists ¢’ > 0 such that for all £ €
(0, '), (1 — €)p + e’ € R(p). In fact, since ¢’ can enter when the
population strategy is of the form (1 — g)p + ec’ for any £ € (0, 1), it
follows that o’ € R(p).

Condition (A6) states that once the population enters the separating set
it cannot drift out of it. To establish (A6), let ¢ € ®, and suppose that
there exists o’ that satisfies (4). We must show that ¢’ € ®. First we will
show that types in different elements of the partition use different messages
under o;. By (9) it follows that if ¢, € J;, then o(m, t;) = 0 whenever
o(m, ) > 0fort & J,, soif members of different elements of the partition
choose the same message under o, then it must be a message that is not
sent under . Let m be such that o(m, ¢t) = 0 for all  and assume, in
order to reach a contradiction, that K N J, # ¢ for at least two /, where
K = {t: oy(m, 1) > 0}. 1t follows from (4) that o5(-, m) must put positive
weight only on strategies in BR,(K). Therefore, from (11) and the definition
of @, at least one type in K would do better following o than playing
according to o. This contradicts (4), so it must be that types in different
elements of the partition use different messages under ¢|. In order for
o, to satisfy (4), it must respond optimally to o following all messages
that o, uses with positive probability, and it must respond optimally to
o following all messages used with positive probability only by . There-
fore (13) must hold and so o' € ®.

We now prove the proposition. In order to obtain a contradiction,
assume that there exists an ER set © such that p € 0. From (A4) it follows
that R(p) = ©. Therefore, there exists o € R(p) N & by (AS). It follows
from (A4) that

R(o) = © (A7)
and from (A6) that
R(o)Cd. (AB)

(A7) and (A8) are not consistent since p € © but p & .
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