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ON THE UNIFORM CONSISTENCY OF BAYES ESTIMATES 
FOR MULTINOMIAL PROBABILITIES 

BY P. DIACONIS1 AND D. FREEDMAN2 

Harvard University and University of California 
A k-sided die is thrown n times, to estimate the probabilities 01, ,ok 

of landing on the various sides. The MLE of 0 is the vector of empirical 
proportions p = (Pi, . . ., Pk). Consider a set of Bayesians that put uni- 
formly positive prior mass on all reasonable subsets of the parameter space. 
Their posterior distributions will be uniformly concentrated near p. Sharp 
bounds are given, using entropy. These bounds apply to all sample se- 
quences: There are no exceptional null sets. 

1. Introduction. This paper is about the consistency of Bayes estimates. 
The usual statement is that for almost all sample sequences, as the sample size 
goes to oc the posterior distribution piles up near the true value of the 
parameter. The objective is to reformulate this as a finite-sample result, 
without exceptional null sets or "true values" of parameters. 

We begin with coin tossing, and develop an explicit inequality which shows 
that the posterior must concentrate near the observed fraction of heads. The 
inequality replaces the asymptotics and eliminates the null set; observed 
fraction stands in for the true parameter. 

To be a little more specific, suppose there are j heads in n tosses of a coin. 
Consider the posterior odds ratio for a parameter interval of fixed length 
centered at j/n. The posterior odds are bounded below by abn, where a > 0 
and b > 1 are computable constants. So the odds go to Xo at an exponential 
rate. 

If the prior assigns measure 0 to an interval, so will the posterior. Even if 
the prior assigns small positive mass to the interval, it may take a long time 
for the data to swamp the prior. The inequality must therefore take into 
account the degree to which the prior covers the parameter space. 

The notion of "4-positivity" is introduced, to measure coverage; 0 is a 
positive function on (0, 1). A prior p, is said to be +-positive if ,u assigns mass 
+(h) or more to every closed interval of length h in [0, 1]. For example, if 
+(h) = O.lh, then ,u is +-positive if and only if ,u is bounded below by 
0.1 x Lebesgue measure, setwise. Priors with densities which have zeros-like 
betas-can be handled using more complicated 4's; so can singular priors. 

The inequality on the posterior odds ratio holds uniformly in +-positive 
priors p., and uniformly in the fraction j/n of heads. Take any parameter 
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interval [ j/n - h, j/n + h ]: The posterior odds ratio for the inside versus the 
outside is bounded below by 

(1.1) q,(h)e2nh. 

Here q+(h) > 0 is computed from 4 and does not otherwise depend on the 
prior. In effect, this is a weak law for the posterior, with an exponential error 
bound. Uniformity in the prior is relevant to arguments about intersubjective 
agreement; see Diaconis and Freedman (1986). 

The rest of this paper is organized as follows: Section 2 gives a careful 
statement of the result for coin tossing; Section 3 has proofs. The extension to 
the multinomial is in Section 4, and the last section discusses the idea of 
0-positivity. For more detailed arguments, see Diaconis and Freedman (1988). 

History. In effect, we will estimate the posterior using the method of 
Laplace (1774); he showed that the posterior piles up near the MLE, but only 
for the uniform prior. (An easy modern proof uses Chebyshev's inequality, but 
that was not available to Laplace.) Some modern references on the consistency 
of Bayes estimates include Le Cam (1953), Le Cam and Schwartz (1960), 
Schwartz (1965), Freedman (1963) and Diaconis and Freedman (1986). 
Edwards, Lindman and Savage (1963) must be cited too; their idea was that 
the data eventually swamp a nondogmatic prior-the principle of stable 
estimation (pages 201-208). 

If there is a smooth prior density with no zeros, better results are available. 
If j/n is bounded away from 0 or 1, the posterior is asymptotically normal; 
this result is often called the Bernstein-von Mises theorem-although Laplace 
got there first; references include Johnson (1967, 1970), Walker (1969), Ghosh, 
Sinha and Joshi (1982) and Le Cam (1986), Sections 12.3, 12.4 and 17.7. If 
j/n is close to 0 or 1, the posterior is asymptotically gamma. With some effort, 
the asymptotics can be converted to uniform estimates and stitched together. 
Under additional assumptions, higher order correction terms can be calculated 
as in deBruijn (1981). 

2. The theorem for coin tossing. Let 4 be a positive function on (0,1). 
A prior probability ,u on [0, 1] is "+-positive" if p[p, p + h] 2 +(h) for all p 
and h with 0 ? p < p + h < 1. For discussion and examples, see Section 5. 

Let H be the relative entropy function: 

(2.1) H(p, 6) = -p log O - (1 - p)log(1 - 0). 

Here p = j/n is the relative frequency of heads, and 6 is the parameter-the 
probability of heads. (The prior is a distribution over 0.) As is well known, 
(2.2) H(p, ) is strictly convex, with a strict minimum at p. 

For 0 < h < ,et 

(2.3) g(h) = inf{H(p, 0) - H(p, p): 10 - pl 2 h} . 
P,0 

As will be seen, g is convex, strictly increasing, and g(h) > 2h2. 



CONSISTENCY OF BAYES ESTIMATES 1319 

To state the main result, suppose a coin is tossed n times, and p = j/n is 
the fraction of heads. Let 0 < h < 2. Let R(n, p, h) be the posterior odds ratio 
for the inside of the parameter interval [p - h, p + h I versus the outside, with 
respect to a 4-positive prior: The outside of the parameter interval is nonempty, 
because h < 2. Let 0 < e < 1. There is a qi(h, ?) > 0, which depends on 4, h 
and E but not on n or p, such that the following inequality holds. 

(2.4) THEOREM. R(n, p, h) 2 4(h, E)en(l-E)g(h) for 0 < h < 1 

The first factor on the right does not depend on the data. It depends on the 
prior only through 4; it depends on h and E. The second factor depends on h 
and E too; but it depends on the data only through the sample size n. In 
particular, p is not involved on the right. The bound grows exponentially 
fast as n - oo. As it turns out, ip(h, E) is the minimal prior mass in an 
interval of length about Eh2; more rigorously, ifr(h, E) = 0(h*), where h* - 
min{teg(h), h}. 

The unattainable ideal version of the theorem has q1(h, E) replaced by +(h), 
and E = 0 in the exponent. On the log scale, these blemishes vanish, as the 
corollary shows. 

(2.5) COROLLARY. liminfn - ooinfp, ,(1/n)log R(n, p, h) ? g(h). 

In (2.5), the prior ,u is restricted to be 4-positive; 0 < h < 4; and g(h) is 
best possible. 

As will be seen, g(h) > 2h2; so, for suitable qf(h) > 0 depending only on 4, 

(2.6) COROLLARY. R(n, p, h) > qi(h)e2nh2 for all n, all p E [0, 1], all h E 
(0, 4) and all 4-positive priors ,uA. 

To derive (2.6), take E =h = g(h) - 2h2 in (2.4). 

3. Proofs for the coin. Fix 0 < h < 1. Recall g(h) from (2.3). Confirm 
that 

g(h) = min{H(p, p + h) - H(p, p): 0 < p < 1 - h} 
p 

= min{H(p,p - h) - H(p,p): h <p < 1) > 0. 
p 

Indeed, p - H(p, p + h) - H(p, p) is continuous on (0, 1 - h); positive by 
(2.2); tends to log 1/(1 - h) > 0 as p - 0+; tends to oo as p - (1 - h)-. And 
H(1 -p,1- 0) =H(p,0). 

Fairly sharp bounds on g(h) are given in (3.5) and (3.6), but the proof of the 
main theorem only needs positivity. 
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PROOF OF THEOREM (2.4). The posterior odds ratio is 

f e-nH(p, ),u (d0) 
R(n, p, h) [p-h,p+h] 

f e-nH(p O)p ( d ) 
[O p-h )u(p+h, 11 

By (2.2), the denominator is at most e-n[H(P,P?h)]. By (2.3), H(p, p ? h) ? 
H(p, p) + g(h). An upper bound on the denominator is therefore 
e- n[H(p, p) +g(h)] 

To complete the proof of Theorem (2.4), the numerator will be bounded 
from below by e-n[H(p,p)+Eg(h)] q(h, E). In outline we choose a small, positive 
h* and take the integral in the numerator over the subinterval [p, p + h*]; for 
0 in this subinterval, by continuity, H(p, 0) is about H(p, p). 

To make this rigorous, let 0 < h < 1. Without real loss, suppose 0 < P ? 2. 

Clearly, 
a p i-p 

(3.2) 0H(p0) - 1-0 

If p < 0 < p + h, the first term on the right in (3.2) is between -1 and 0. The 
second term is between 0 and (1 - p)/(1 - p - h). The last expression in- 
creases with p to a maximum of 2/(2 - h) < 2, because h < 1. Thus, 

(3.3) -H(p,0) < 2, provided p < 0 <p + h, 0 ?p < 0 < h < 

Fix 8 > 0. Let h* be the smaller of h and 18g(h). Let fi(h, 8) = O(h*), a 
positive lower bound on the prior ,u-mass in (p, p + h*). By (3.3), p < 0 < p + 
h* entails H(p, 0) < H(p, p) + Eg(h). Since h* < h, the numerator is bounded 
by 

f e-nH(p,u)i(dO) ? e n[H(P,P)+Eg(h)]4[p, p + h*] 
[p, p +h*] 

> e n[H(P,P)+Eg(h)]q,(h ) 

PROOF OF COROLLARY (2.5). The inequality is immediate from (2.4). To see 
that g(h) is best possible, fix h. For now, fix j and n too. Abbreviate p = j/n. 
We must bound R(n, p, h) from above. As (2.2) shows, the numerator is 
bounded above by e-nH(P,P). The denominator is bounded below by the inte- 
gral over [p + h, p + h + 6]. For 0 in that interval, H(p, 0) is at most H(p + 
h + 8), by (2.2). So the denominator is at least 

pk(p + h,p + h + 6) * en[H(p,p+h+a)] 

If p + h + 8 < 1, then 

1 RH h 
-log R(n, p, h) ' ?-} + H(p, p + h + 5) -H( p, p). 
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To complete the argument, let n -) oo; let p = j/n tend to a point where 
H(p, p + h) - H(p, p) takes its minimum value g(h); and let 8 -- 0. o 

The function g(h). We now look more closely at the function g(h). Let 
h E (0, 2), so h < 1 - h. ForO ? p < 1 - h, let 

D+h(p) = H(p, p + h) - H(p, p). 

For h < p < 1, let 

D_h(p) = H(p, p - h) - H(p, p). 

These are the "entropy differentials." Clearly, D -h(P) = D +h(1 - p). 

(3.4) PROPOSITION. The function p -+ D+h(p) is strictly convex; the func- 
tion h -- D+h(p) - 2h2 is strictly increasing and positive. 

PROOF. For the first claim, x xlog[x/(x + 8)] is strictly convex, pro- 
vided x > 0 and x + 8 > 0; take 8 = +h and x = p or 1 - p. For the second 
claim, 

d h 
-D hp)- 4h ?!:0 dh+h(P) (p + h)(1 -p - h) 

because x(l - x) <? . ol 

REMARK. The convexity of the entropy differential can be used instead of 
(3.2) to make H(p, 0) = H(p, p) for p < 0 < p + h* in the numerator of the 
odds ratio; this alternative proof of (2.4) was suggested by associate editor. 

(3.5) COROLLARY. g(h) - 2h2 is positive and increasing. 

(3.6) PROPOSITION. Let 0 < h < h < 2. Then g(h) < 2COh2, where CO = 
-[log(1 - 4h2 )]/4h 2 

PROOF. Clearly, g(h) < D+h('), so 2g(h) < -log(1 - 4h2). But u 
- [log(1 - u )]/u is strictly increasing. E1 

For example, take ho = 1. Then 2h2 < g(h) < 2.05h2 for 0 < h < jO. As 
the referee observes, D+h(p) > 2h2 is a special case of the inequality between 
the Kullback-Leibler number and variation distance: 

fIf-ggl <2 flog-. 

4. The theorem for the multinomial. Let Sk be the simplex of all 
k-vectors 0 with nonnegative coordinates Oi adding to 1. Consider a die with k 
sides, labeled 1, ... , k. In n tosses, the relative frequencies with which these 
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sides land form a vector p = (P1,... , Pk) in Sk. 

For 0 < h < l/k, Let Nk(h, p) be the polyhedral neighbor- 
(4.1) hood of p consisting of the 0 E Sk with IOi -pi < h for 

all i. 

Plainly, Nk(h, p) is the sphere around p of radius h-in the sup norm. 
Usually, this "sphere" is a cube. 

To state the main result of this section, let 4 be a positive function on (0, 1). 
Suppose a k-sided die is tossed n times. Let p be the vector of empirical 
frequencies. Let 0 < h < l/k. Let R(n, p, h) be the posterior odds ratio for 
the inside of Nk(h, p) versus the outside, with respect to a +-positive prior: 
The outside is nonempty, because h < l/k. Let E > 0. Recall g from (2.3). 
There is a q(h, E) > 0, which depends on 4, h and E but not on n or p, such 
that the following inequality holds: 

(4.2) THEOREM. R(n, p, h) 2 qi(h, )en(l1-)g(h) for 0 < h < 1k. 

(4.3) COROLLARY. lim infn - infp,,_ (1/n)log R(n, p, h) 2 g(h). 

In (4.2) and (4.3) the prior ,u is restricted to be 4-positve, 0 < h < -k and 
g(h) is best possible. 

Informally, a prior A on the simplex Sk is "()-positive" if d(Skh) ? +(h), 
where Skh C Sk has the same shape and orientation as Sk, but each edge of 
Skh is h times the corresponding edge of Sk (in length). More formally, let 1 
be an integer between 1 and k. 

(4.4) DEFINITION. Let Tk(l) be the (k - 1)-dimensional simplex in R k 
whose k extreme points {eJ: j = 1,..., k) are as follows, with et being the i th 
coordinate of the vector eJ: 

if j = 1, then eJ = O for all i, 

if j #1, then e/ = -1, eJ = +1 and ei = O for i oj,1. 

Plainly, if x E Tk(l) then E 1xi = 0; furthermore, -1 < xl < 0; and 0 < 
xi < 1 for i * 1. For p E Sk and 0 < h < 1/k let 

(4.5) Tk(p, h, I) = p + hTk(l) = {p + hx: x E Tk(l)}. 

To illustrate, let h = 1: If p = (1, 0, 0,... , 0) and 1 = 1, then Tk(p, h, 1) = Sk; 
likewise if p = (0, 1, 0, .. ., 0) and I = 2, etc. With this notation, A is "4)-posi- 
tive" if liTk(p, h, 1)1 > +(h) whenever Tk(p, h, 1) C Sk. The definition does 
not really depend on 1. Indeed, let Cl be the class of sets Tk(p, h, 1) which are 
wholly included in Sk, as p ranges over Sk: Then C1 = C2 = * = Ck. 

Let Hk(p, 0) be the relative entropy: 
k 

(4.6) Hk(p, 0) = - E Pilog6i 
i=l 
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This can be defined everywhere by the convention 0 x oX = 0, but the limit of 
Hk(p, 6) is not well defined if, e.g., Pi and 61 both tend to 0. 

As the next result shows, the minimum entropy differentials do not depend 
on the dimension k; this reduces the general case to the case k = 2. 

(4.7) PROPOSITION. 

inf [Hk(p,0) -Hk(p, p)] =g(h). 
PeSk, 06ENk(h,p) 

PROOF. Suppose k > 3. Since the entropy function (4.6) is convex in 6 with 
its minimum at p, the infimum outside the convex polyhedron Nk(h, p) is 
attained on the boundary. Consider the intersection of the boundary with 

F ={0: 0 E Sk and ok =Pk + h}. 

Assume for the sake of argument that this face is nonempty, so Pk + h < 1. 
Consider 

(4.8) inf Hk(p, 0) -Hk(p, P). 

Now 

k 

H(p, 0) = - EPi 10Ogi 

= (1 -Pk)Hk-1(J,3) Pk lg(Pk + h) - (1 -pk)log(1 -Pk -h), 
where A =pi/(l - P) andOi o=il(' - ok) for i- 1,...,k - 1. So ,0 e 
Sk - 1 Now (1 - Pk)Hkl- 1(3, 0) is minimized in 6 at 6 = p, and the value of the 
minimum is 

k-1 k-1 
- Pi log(P/ 1 Pk) =i- E Plog Pi + (1 pk)log(1 -Pk) 
i-l1 i=l 

As is easily verified, the location of the proposed minimum for Hk(p, * ) is on 
the boundary of Nk(h, p). 

The infimum in (4.8) is seen to be 

-Pk log(Pk + h) - (1 -Pk)log(1 - Pk - h) + Pk log Pk 

+ (1 -Pk)lg(l- Pk) = D+h(Pk), 

whose minimum value is g(h). This completes the proof of (4.7). o 

PROOF OF THEOREM (4.2) AND COROLLARY (4.3). Suppose by renumbering 
that Pi < ... < Pk. Let 1 = k. Recall the simplex Tk(p, h, 1) from (4.5). This 
simplex is wholly in the interior of Sk, because Pk 2 l/k > h. It has k 



1324 P. DIACONIS AND D. FREEDMAN 

extreme points: 

Pi P2 P3 ... Pk-1 Pk 

P1 + h P2 P3 Pk-1 Pk - h 
Pi P2 + h p3 Pk-1 Pk - h 

Pi P2 P3 Pk-l+h Pkh 

And each extreme point is in Sk. The rest of the argument is as for the coin. 
E 

5. Some facts about +-positivity. This section has some remarks and 
examples on the idea of 4-positivity for the binomial case. Recall that 4 is a 
positive function on (0, 1); and the prior ,u is +-positive iff it assigns mass +(h) 
or more to every closed interval of length h in [0, 1]. 

(5.1) REMARK. Fix a > 0. If +(h) > ah for all h, and ,u is +-positive, then 
,u is bounded setwise below by a times Lebesgue measure. 

It is natural to conjecture that a +-positive class of measures is bounded 
below (setwise) by a positive measure, but that turns out to be wrong; 
4-positivity is a more general idea. 

(5.2) EXAMPLE. There is a 0-positve class of probability measures M = {() 
on [0, 1] such that if a is a measure and a < ,u setwise for all ,u E M, then 
a = 0. 

CONSTRUCTION. The class M will be countable. Let A be Lebesgue measure 
on [0, 1]. Let An assign mass 1/(n + 1) to each of 0/n, 1/n, 2/n,,... , n/n. 
Let 

n+l 1 
n +n+ -'n = 2An + 2A 

Let Q = (r} be the rationals in [0, 1], and I the irrationals. If a < A n, then 
a{r} < 1/(n + 2) and a(I) < 1/(n + 2), so in the end a{r) = 0, a(Q) = 0, and 
a(I) = 0. 

We claim that {(Aj is o-positive, with +(h) = h2/4. To verify this, consider 
the interval [x,x + h]. Suppose (a - 1)/n < x < a/n and b/n < x + h < 
(b + 1)/n. Clearly, (b - a)/n 2 h - 2/n; so b - a 2 nh - 2. So there are at 
least b - a + 1 rationals of order n in [x, x + hi, and 

nh - 1 
An[x, X+ h] >n1 
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Now 

nh - 1 
n [X x + h] >2 + 2 

1 1 
> -h - 

2 n + 2 

1 4 
> ? h if n+2? - 

1 
> -W 
-4 

If n + 2 < 4/h, a lower bound on AnIx, x + h] is still 'h2, from the A-term 
only. In fact, +(h) is of order h2, as one sees by taking n of order l/h. O 

(5.3) REMARK. There is a connection with monotone rearrangements 
[Hardy, Littlewood and Polya (1934)]. Let 0 be convex, with derivative f, and 
4)(1) = 1. So f is monotone nondecreasing, and its integral is 1. All rearrange- 
ments of f are +-positive. Some rearrangements have bigger (and nonconvex) 
n's; for such a 4, all rearrangements of its density will no longer be +-positive. 
If +(h) = ah2, the rearrangements can be bounded below only by a trivial 
measure. 

(5.4) REMARK. Let M be a +-positive class. Then the closed convex hull of 
M is 0-positve too. (The space of probabilities on [0, 1] is endowed with the 
weak-star topology, which is compact and metrizable.) 

If M consists of one prior, or finitely many priors, then there is a 4 such 
that M is +-positive; the next result is a small generalization. 

(5.5) REMARK. Let M be a closed, convex class of probabilities on [0, 1]. 
Suppose that each element of M assigns positive mass to every open interval. 
Then there is a (A such that M is +-positive. 

PROOF. Fix h with 0 < h < 1. Let 0 < x < 1 - h. Let the continuous 
function fX on [0, 1] vanish to the left of x and to the right of x + h; let 
fx = 1 at x + 'h; complete fX by linear interpolation. Now 4u( fx) is a continu- 
ous positive function of , E M and x; so it has a positive minimum: +(h) can 
be defined as this minimum, over , and x. o 

Let M. be the class of +-positive ,u. When is M. nonempty? When is 4 the 
exact inf, that is, b(h)=inf(,u[x,x+h]: A cM,, and 0?x<x+h< 11? 
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What are the extreme points of M,? At this point, we only have some scattered 
remarks as partial answers. 

(5.6) EXAMPLE. Let +(h) = h/10, for 0 < h < 1. One compact convex class 
M of +-positive ,u is the set of ,u of the form 

0.1*Lebesgue + 0.9*v, 
where v is any probability. The extreme points have v = Ax. This class is 
maximal, by a standard extension argument off intervals. There seem to be 
two other compact convex 4-positve classes M, which are minimal: take v = 50 
or 51. To get intermediate classes, mix over any compact set of Ax's containing 
x = 0 or 1. 

(5.7) EXAMPLE. Let +(h) = h/2 for h < 2 and +(h) = 2h for 2 < h < 1. 

The extreme points of the class of 4-positive ,u seem to be as follows: 

ALebesgue + 26a with 1 < a < 2 

1Lesbesgue + 2{3a8a + density 3 on (+ + a, 1)) for a < 1 f 

(5.8) REMARK. Let M = {,u} be 4-positive. Then 0(1/n) < 1/n, otherwise 
A has mass greater than 1. Likewise, if 4 is the exact inf of M, then 
+(h) 2 n0(h/n). 

On the other hand, as the next example shows, 4 can decrease arbitrarily 
rapidly near 0. 

(5.9) EXAMPLE. an = 2no(1/2n) can decrease arbitrarily rapidly. 

CONSTRUCTION.. Let a 1 < 1/2, and a n + 1 < a n. Let A n have density equal 
to an on [0, 1/2n] and equal to bn on (1/2n, 1]. So bn can be computed from 
an, and bn > 1. Let M = {1Un}. We claim that M is +-positive for suitable 4); 
and if 4 is the exact inf, 4)(1/2n) = an/2n. Indeed, if m < n, then 

/.Lm[0 1/2n] = am/2n. 
On the other hand, if m > n, 

AM [0, 1/2n ] > an/2n. 
Indeed, 

.m[0 1/2 ] > bm(1/2n - 1/2m) > bm/2n+1 > 1/2n+1 > an/2n. ? 

Acknowledgments. We thank the referee, the Associate Editor and the 
former Editor (Bill van Zwet) for close readings and very helpful technical 
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