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We develop and test a theory of human behavior in 3 x 3 symmetric games. The
theory hypothesizes a family of five boundedly rational archetypes distinguished by
their model of other players and their ability to identify optimal choices given
their priors. We designed and conducted an experiment to detect these archetypes
as well as a rational expectations type and to estimate parameters which define
these types. The experimental evidence rejects the rational expectations type but
confirms the boundedly rational theory. We consider this a stepping stone toward
a descriptive and prescriptive theory of games. Journal of Economic Literature
Classification Numbers: B41, Cl4, C51, C72, C90. © 1995 Academic Press. Inc.

1. INTRODUCTION

It has been known for some time that game theory is a poor predictor
of human behavior in experimental settings.! A major step toward a de-
scriptive theory was made by McKelvey and Palfrey (1992) who added a
specific error component to the pure theory and conducted maximum
likelihood estimation of the error parameters. Their model posits two

* Partial funding of this research was provided by Grants SRG-233 and SRG-427 from
the University of Texas Research Institute and by Grant SBR-9308914 from the National
Science Foundation. We thank Xiaohua Lu for research assistance and Ray Battalio, John
van Huyck, Tom Palfrey, Reinhard Selten, the participants of the 1993 Workshop on Experi-
mental Game Theory at Stony Brook, and the participants of the 1994 Conference on
Learning Equilibrium Behavior at Texas A&M University for encouragement. We are also
grateful for comments from anonymous referees. Of course, any remaining errors are our
responsibility.

! For example, see Camerer and Weigelt (1988), Ochs and Roth (1989}, Cooper et al.
(1990), Brandts and Holt (1992), and Van Huyck et al. (1990, 1991, 1992).
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types of players: altruists and Bayesian rational players. Nagel (1993)
proposed and presented evidence for a hierarchical model of bounded
rationality. In Stahl and Wilson (1994), we presented a model with several
boundedly rational types (based on Nagel’s model) and some supporting
experimental evidence.? The theory we present here is considerably
evolved, the experimental design is improved, and the statistical testing
is more extensive. Qur current multi-modal theory includes a hierarchical
conception of bounded rationality that is captured in a parsimonious
econometric specification, and it also allows for players with fully rational
expectations. Moreover, we test the out-of-sample predictability of our
model.

A crucial concept in the theories of rational choice under uncertainty
(Savage, 1954; and Anscombe and Aumann, 1963) is the decision-maker’s
subjective probability assessment of the possible events not under his
direct control. These probability assessments come from models of these
events. For instance, in the case of a die, it is customary to assume a
1/6-th chance of any face, implicitly invoking the standard model of a
throw of a fair die.

To extend this theory to multi-decision-maker problems (i.e., games),
we need “‘only’’ specify for each player his model of the other players.
However, this is a difficult task, especially when we insist that all players
are perfectly rational, have identical models of other players, and that
these models are observationally equivalent to the true model (whatever
that may be). Our task poses an infinitely regressive self-referential prob-
lem: a model of a rational player must include a model of rational players
which must include a model of . . . . Mathematically, we seek a fixed point
in some *‘model space.”’? Binmore (1987) shows that this self-referential
problem is unsolvable within the class of models that could be represented
as universal Turing machines. For those readers who do not have faith
that human beings possess powers beyond any universal Turing machine,
we offer an alternative theory. Our approach builds on Binmore’s sugges-
tion that players might truncate an internal simulation of the self-referential
problem, and it also grows out of Stahl’s (1993) hierarchical model of
intelligence.

Decision theory provides us with our starting point. Players need to (1)

2 In a recent paper, El-Gamal and Grether (1993) test a multi-modal theory for a single
decision-maker task and identify distinct types of behavior. Holt (1993) finds evidence for
different types of learning behavior in experimental data on coordination games.

3 Viewing each player’s subjective belief about how the other players will behave as
shorthand for such a model, we can interpret Nash equilibrium as a solution (at least for
the class of finite games with a unique Nash equilibrium). On the other hand, when there
are multiple Nash equilibria, the ‘*“model”’ is incompletely specified and the probiem remains
unsolved.
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form priors about the behavior of other players and (2) choose best re-
sponses given these priors. Using this framework, there are two basic
ways players can differ: (1) in their prior (or their model of other players),*
and (2) their abilities to identify best responses.

The ability to identify best responses can be represented by a standard
discrete choice model, in which the payoff from each strategy is computed
with some error. Assuming an appropriate error distribution, one obtains
a logit probability function for the choices conditional on the prior. The
precision parameter of the error identifies one member of the family of
probabilistic choice functions. One archetype would be a player with
zero precision, in which case the probabilistic choice function would be
uniform; we call these level-0 types.

The prior of a player entails the player’s model of other players. If a
player believes that all other players are level-0 types, then his prior will
be uniform; we call such players level-I types. If a player believes that
all other players are level-0 and level-1 types, then his prior will be a
convex combination of the uniform distribution and an average level-1
logit choice function; we call such players level-2 types.

We could continue this hierarchy of types indefinitely; however, we
recognize that the benefits of higher levels of this hierarchy can decrease
substantially. For example, if half of the population is level-2 or below,
then the choice of the next level of the hierarchy will rarely differ from
the level-2 choice. Further, if higher levels incur higher maintenance costs,
then evolution can be consistent with most of the population consisting
of fairly low-level types (Stahi, 1993). Given these reasons and the fact
that higher levels are unlikely to be identifiable in 3 X 3 games, we truncate
the hierarchy at level-2.

For the purposes of hypothesis testing of alternative theories, it is
necessary to construct an encompassing econometric model. In particu-
lar, we want to allow for the behavior suggested by game theory,
namely, Nash equilibrium behavior. Considering only games with a
unique symmetric Nash equilibrium and interpreting it as a belief (i.e.,
prior) about other players, a naive Nash-type player would have the
Nash equilibrium as his prior and compute a best response (possibly
with error).

Given that some players may understand the Nash equilibrium concept
while others may not, it is reasonable to propose a type that believes
some of the players are naive Nash types while others are level-0, level-1,
and level-2 types. We call these types worldly.

* That individuals may differ in their priors is also a major point of Roth and Malouf
(1979).
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An unboundedly rational player (the subject of traditional game theory)
when facing a population of these boundedly rational types would have
a prior that is equal to the expected choice probabilities of these types
plus the anticipated choice probabilities of other unboundedly rational
players. Call such players rational expectations (RE) types.

In Section 2 we develop the formal theory of the boundedly rational
types complete with parameter specifications. Each type is identified by
a parameter triplet such that, given any symmetric game, the model gener-
ates the predicted probability distribution of choices. We also develop
the formalities of the RE types conditional on the population distribution
of the three-parameter family of boundedly rational types and RE types.
A well-specified econometric model is a rare opportunity for experimental
game theory.*

Since we want to estimate these parameters from experimental data,
the experimental design entails a variety of symmetric games. We want
to focus on the initial choices of our players rather than on ‘‘learned”
behavior because these initial responses are more difficult to predict,
exhibit more diversity, are crucial to whatever learning follows, and can
be potentially revealing about the ‘‘model of the world™’ that players bring
to a new strategic setting.® Hence, the design has each player playing each
game exactly once with no feedback between games. More experimental
details are given in Section 3.

Our experimental data, presented in Section 4, allows us to estimate
the parameters of the boundedly rational types and RE types and to test
for their presence in the population. Section 5 presents the statistical
analysis. The analysis suggests that RE types are not present in our sample,
but confirms the theory for the boundedly rational types. We also compute
semi-parametric Bayesian posteriors for the type of each participant and
find that most posteriors put 90% or more probability on one type, sug-
gesting that the participants’ behavior arises from one ‘‘model of other
players” for all the games.

In Section 6 we present the results of several robustness exercises based
on estimating our model on a subset of the games and predicting the
behavior on the remaining games. Both the behavioral predictions and
the posterior type identifications are remarkably robust. Section 7 dis-
cusses our findings.

5 Notable exceptions are McKelvey and Palfrey (1992), El-Gamal and Palfrey (1995), and
El-Gamal ez al. (1993, 1994).

¢ Learning and Jong-run behavior is certainly very important, but so is the initial behavior,
and there has been relatively little attention devoted to it. After all, game theory makes
predictions about one-shot games, and the *‘experience’” of the players is held to be irrel-
evant.
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2. DEVELOPMENT OF THE FORMAL THEORY

2.1. The Three-Parameter Family of Boundedly Rational Types

Consider a symmetric two-player game with three strategies. Let j €
{1, 2, 3} denote a strategy, and let U, denote the 3 X 3 matrix of expected
utility payoffs to a row player for game i € { 1, 2, ..., 12}; Uy, is the
payoff to a row player in game i when that player chooses strategy j and
the column player chooses strategy &.

Let p € A = {x € R3(Z, x; = 1}. Then, for game i, U;p; is the 3 x 1
vector of expected utility payoffs and U, p, is the expected payoff of
strategy j facing a population whose distribution across strategies is p; in
game |i.

For notational convenience, let P, denote the uniform distribution over
{1, 2, 3}. We then let b(P,) denote the best response to the uniform
distribution and b¥(P,) = b[b(P,)] denote the best response to the best
response to the uniform distribution. Also, let pNE € A denote the Nash
equilibrium (NE) strategy vector for game i.

Define
exp(uU;Py)
A, =fg————— 4 1 - NE, {
q;(i, &) szk exp(aU Py (1 - ¢e)p} (1)
and
Yilw, €) = Uygiu, ). 2)

Equation (1) specifies a two-parameter family of priors. If £ = 0, then
we have the Nash prior. If ¢ = 1 and u = 0, then we have the level-1
(i.e., uniform) prior. If ¢ = 1 and u > 0, then we have the level-2 prior
(an imprecise best response to P;). Note that for the level-2 prior, we
could also have a term for the level-0 types, but we have found that we
cannot empirically identify that parameter because a convex combination
of the uniform distribution and a level-1 distribution is essentially the
same as a level-1 distribution with a lower precision. Equation (2) gives
the expected payoff, y;(u, €), to strategy j in game i conditional on the
3 X 1 vector of priors q;(u, £).

Next we model a player’s ability to choose an optimal strategy given
his prior by supposing y;;is computed with error. Let n;denote the additive
computation error for game i and strategy j. A player chooses the strategy
corresponding to the largest component of the 3 x 1 vector y; + ;.
For tractibility, we assume each 7; is an independent and identically
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distributed Weibull noise. Hence, the choice probabilities have a condi-
tional logit form (McFadden, 1974),

explyy;(u, &)]
«eXplyyulu, &)} ’

Py, e) =5 3)

where the parameter vy is the precision of the player’s expected utility
calculation. Equation (3) specifies a three-parameter family of probabilistic
choice functions.

If we had data on a large number of games, then we could estimate (y,
w, €) for each participant and then observe how the estimates are distrib-
uted in the participant population. However, our data on 12 games are
hardly adequate for this purpose. Data contain only so much information,
and it would be naive to think that point estimates of 48 X 3 = 144
parameters are conveying reliable detailed information about the distri-
bution.

An alternative approach would be to estimate a non-parametric popula-
tion distribution over (y, u, &) space, using a grid with A divisions per
dimension. However, since 4* parameters must be estimated, this ap-
proach is impractical for any reasonable 4. On the other hand, we can
use our theory to specify a non-uniform grid with a practical number of
regions, hence a practical number of parameters.

We divide the (y, u, &) space into five regions corresponding to the
archetypes of our theory as follows:

(0) If y = 0, then we have a level-0 type—uniform play.

()Ify>0,u=0,and e = 1, then we have a level-1 type—a (perhaps
imprecise) best response to the uniform distribution.

2)Ify>0,u>0,and ¢ = 1, then we have a level-2 type—a (perhaps
imprecise) best response to a (perhaps imprecise) best response to the
uniform distribution.

(3) If y > 0 and £ = 0, then we have a naive Nash-type-—a (perhaps
imprecise) best response to the Nash equilibrium prior.

(4)If y > 0.1 and ¢ € (0, 1), then we have a *‘worldly”’ player who
chooses a best response (perhaps imprecisely) to a prior based on a belief
that some players are level-0, level-1, and naive Nash types.

Based on the payoff matrices in our experiment, a value of v less than
0.1 yields level-1 choice probabilities that are not significantly different
from the uniform distribution. Therefore, for identification purposes we
require y = 0.1 for all types except level-0, and u = 0.1 for level-2 types.
Similar identification considerations lead to the conditions that £ € (0.1,
0.9) for the worldly type.
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Note that the fifth region covers most of the interior of (y, u, &) space.
Since the model forces all behavior into the three parameter family of
probabilistic choice functions defined by Eq. (3), it will not be surprising
to find some of the data falling in this region. Our label of “‘worldly”’ for
this region suggests an interpretation of the underlying behavior; namely,
worldly types understand the Nash equilibrium concept but (quite cor-
rectly) do not believe everyone else does; instead, this type believes
the non-Nash players are level-0 and level-1 types (the proportion being
captured by w = 0). A less flattering interpretation is as a ‘‘residual”
category that captures behavior other than level-0, level-1, level-2, and
naive Nash. We will address this issue of interpretation again in Sections
5.3,5.4,and 7.

Corresponding to these archetypes, let (y,, u,, g) denote the parameters
for a level-{ type (I = 1, 2, 3, 4), where [ = 3 denotes the naive Nash type
and ! = 4 denotes the worldly type. Note that for level-1, we restrict
u; = 0and g, = 1, so only v, is to be estimated. For level-2, we restrict
g, = 1, so y, and u, are to be estimated. For level-3, we restrict ¢ = 0,
so only v; is relevant and to be estimated. For level-4, all three parameters
are to be estimated. Thus, in all there are seven parameters to be estimated
for the boundedly rational types.

2.2. The Rational Expectations Type

Let «; denote the propomon of the population that is level-l (! = 0, 1,
2, 3, 4), where oy = 0 and E, o &, = 1. For notational convenience, we
will let [ = 5 denote the RE typeand as = 1 — 27,0 a; denote the proportion
of the population consisting of RE types.

Let p}; denote the probability that an RE type chooses strategy j in
game i. Then, the prior of an RE type is

4
a(p") = apPy + 121 Py, 1y, €) + aspl. ()

The expected payoff is
yi(p") = U;qi(p"). (5)

Assuming independent and identically distributed Weibull computa-
tional errors, the probability that an RE type chooses strategy j in game
iis

explys yi(p"]
ZeexplysyulpN’

pilys) = 6)
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where vy; is the precision of the RE type’s expected utility calculation.
Equation (6), for j € {1, 2, 3}, implicitly defines a fixed point, which we
denote by R(ys).

The fixed play of the boundedly rational types can be factored out of
expected payoffs, leaving a reduced game among the RE types. R; is
a logistic (or quantal-response) equilibrium of that reduced game (see
McKelvey and Palfrey, 1994). Note that as the precision y; — =, R,
approaches a perfect Nash equilibrium of the reduced game. Conversely,
as ys— 0, R; approaches the uniform distribution. In order to statistically
identify RE-type behavior from random level-0 type behavior, we initially
require ys = 0.1.

The task of solving for R; is non-trivial. Gradient-based algorithms were
unsuccessful. Instead we took the Newton—Raphson rootfinder approach
which utilized the matrix of partial derivatives of the right-hand side of
Eq. (6). With an initial guess equal to the value of the right-hand side of
Eq. (6) with p” = pNE, we obtained rapid convergence (often after only
one iteration). While we cannot be sure that these reduced games have
unique symmetric logistic equilibria for all possible parameter values, for
parameter values near the maximum likelihood estimates the reduced
games all have unique strictly dominant strategies.

2.3. Integrating the Types into a Multimodal Model

Let s(h, i) € {1, 2, 3} denote the strategy chosen by participant 4 in
game i, and let s* = {s(h, i), i = 1, ..., 12} denote the joint choices of
participant h. Assuming that a participant’s type is fixed for all games,
the probability of participant #’s joint choices conditional on being level-/
type is given by

Py, &) = HPis(h,i)(Yh Bis &), fori=1,2,3,4,
and v

Pi(ys) = [T Rign,n¥s)-

The actual population of players can consist of all six types. We let 8
denote the complete vector of «, v, i, and £ parameters for all types.
Then, the ex ante likelihood of participant &’s joint choices is given by

4
L(s"|B) = Py + I_Zl Py, py, €) + asPi(ys), ®)
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with 2,5=0 a; = 1, and hence the log-likelihood of the observed sample is
given by

$= ; log[L(s"| )] 9

3. THE ExXPERIMENTAL DESIGN

We designed an experiment to identify the parameters of the economet-
ric specification, to control for idiosyncratic aspects of any one game,
and to address the question of whether a player behaves as one type over
a wide class of games. While it might be possible to select one game that
could potentially identify the hypothesized types, the complexity of that
game may inhibit the common knowledge understanding we want to
induce. Instead, we selected a number of symmetric 3 X 3 games
because they are relatively simple to understand and yet rich enough
to permit identification from the observed behavior over all the games.”
In addition, having data on a number of games allows us to investigate
the predictive ability of our model by estimating the model on a subset
of games and using these estimates to predict the behavior for the
other games.

Twelve symmetric 3 X 3 games were selected with a variety of character-
istics: three were strict dominance solvable [1, 5, 12], two were weak
dominance solvable [3, 9], and three had unique mixed-strategy NE [4,
7, 111, while the remaining nine had unique pure-strategy symmetric NE.
In four games [2, 6, 8, 10], the unique pure-strategy symmetric NE, b(P,),
and b*(P,) are distinct. The payoff matrices for the row player are pre-
sented in Table I; the transposes of these matrices give the payoffs for
the column player.

A participant played each game exactly once and chose a single pure
strategy for each game (always as a row player). Then each participant’s
choices were matched with every other participant. Each participant was
essentially ‘‘playing against the field,” i.e., against the empirical distribu-
tion of choices made by all other participants.® For each game, partici-

" The inability of many experimental designs to discriminate between alternative behaviors
because of ‘‘flat likelihood’’ functions has been widely observed, e.g. Holt (1993). EI-Gamal
and Palfrey (1995) suggest a Bayesian design procedure, but the dimensionality of our
model renders their method intractable. However, we employed the spirit of their criteria
in our heuristic selection process.

$ While pure theory would hold that playing against a single opponent randomly selected
from the population is equivalent to playing against the field, we felt that the latter protocol
would reinforce the inappropriateness of asymmetric equilibria. Friedman (1993) finds very
little difference between the two protocols in learning-by-doing experiments; if anything the
limiting behavior is slightly more Nash-like when playing against the field.
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TABLE 1

GAMEs USeED IN EXPERIMENT

Game “T” “M" “B" Game “T"  “M? “B"
_7 40 _1 21 17 10

T 25 30 100 T 30 100 50

1 M 40 45 65 7 M 4 0 9%
B 31 0 40 B 50 75 29

S0 12 6 12012

T 715 4 45 T 0 60 50

2 M 70 15 100 8 M 100 20 50
B 70 60 0 B 50 40 52

5 16 27 26 _1 21

T 75 0 4 T 40 100 65

3 M 80 35 45 9 M 33 25 65
B 100 35 41 B 80 0 65

26 15 7 S8 3 6

T 30 50 100 T 45 50 21

4 M 40 45 10 10 M 4 0 40
B 35 60 0 B 40 100 0

A4 3 3 A3 402

T 10 100 40 T 30 100 22

5 M 0 70 50 1 M 35 0 45
B 20 50 60 B 51 50 20

A1 200 17 26 3 19

T 25 30 100 T 40 15 70

6 M 60 31 5 12 M 2 8 0
B 9 30 0 B 30 100 55

pants’ ‘‘token earnings’’ were computed, and this number gave the per-
centage chance of winning $2.00 for that game. A random number
uniformly distributed on [00.0, 99.9] was generated by the throw of 3
color-coded 10-sided die. The player won $2.00 if and only if the his/her
token earnings exceeded the random number. Actual payments were
made immediately following the session. This method of computing
token earnings and random money winnings was explained fully to all
participants. The instructions (see the Appendix) were similar to Cooper
et al. (1990). Actual monetary winnings ranged from $4.00 to $18.00,
with an average of $11.63, and the whole experimental session took
about 75 min.

The experiment was conducted in three sessions over a two-week pe-
riod. The participants were fourth and fifth year undergraduate accounting
and finance majors at the University of Texas. The first session had 14
participants, the second session had 22 participants, and the third session
had 12 participants.
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Following a training period (see the Appendix), each participant was
given a 10 minute screening test (which everyone passed), designed to
eliminate potential participants who did not understand the basics of the
games and to instill common knowledge among all participants that every-
one did understand these basics.

Each participant was given 36 min to complete their choices for the 12
games. Actual time used ranged from 15 to 36 min. Participants who
finished early were required to sit quietly not doing anything until in-
structed to do so at the end of the 36 min.

We considered an alternative sequential protocol which would have
allotted 3 min. for each game. Both protocols have advantages and disad-
vantages. Since some games are more difficult than others (e.g., games
with no pure-strategy NE versus games that are strict-dominance solv-
able), our protocol allows participants to allot their time accordingly,
while the alternative setup would induce more noise in the choices due
to arbitrary time constraints. Also, some participants’ thought processes
may evolve during the experiment due to the variety of games in the
experiment and the different experiences of thinking about these games.
(Recall that they receive no feedback about other participants’ choices,
so we are describing a purely internal mental process.) Our setup will
allow such participants to reconsider choices, thereby increasing the
likelihood that their choices result from a single ‘‘model of the world,”
in contrast to the alternative setup. One disadvantage of our setup is
that we will not have a truly ‘‘one-shot’” environment, so the partici-
pants’ choices should be interpreted as conditional on being presented
with all 12 games. On the other hand, in the alternative setup, the
choices should be interpreted as conditional on the past sequence of
games, so no two choices would have identical conditioning events.
We believe the net advantages of our setup exceed those of the
alternative.

4. THE EXPERIMENTAL DATA

The aggregate choice data are given in Table I; the total number of
participants making a particular choice are the underlined numbers above
the respective payoff matrix. The disaggregate data are presented in Table
11, which is sorted by our posterior identification of the participants’ type
(discussed in Section 5.3). The ID numbers were arbitrarily assigned by
session, with the first, second, and third sessions having ID numbers 1-14,
15-36, and 37-48 respectively. The choices by game are given along with
the actual token earnings. The average token earnings were 46.32 (s.d. =
2.35). In addition, Table Il also gives the number of deviations from
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TABLE 1I

AcTtuaL DATA SORTED BY POSTERIOR TYPE

Token DEV DEV DEV DEV

9 10 11 12 Earn

b2 RE DM

bl

NE

1 23 4567 8

Part

Level-0

10

4
8
4
3
6
3
6

MTMTBBM T TTBM 4163
TMBTTTM B TMDB B 4345
MTTTMMB T BMMT 47.00

MTTMBMT B MTT B 4512

20

21

10

11

24
27
29
35

37

MMBMTTT M TTB T 47.37

MTTMMMT B

10

BTTM 4400

MMBTBBM T TTBM 440

11

BMTTTTT M TTTT 435 7

40

Level-1

12
11
12
12
11
12
i1
10

8
8
9
9
6
g
7
5
9
7

TMBTTTT M TTT B 4.2
MMBTTTT M TBT B 4738
TMBTTTT M TBT B 4590
TMBTTTT M TBT B 4.9
MTBTTMT M TBT B 4653
TMBTTTT M TBT B 4%
TMBTTMB M TTT B 4508

4 MTBTTMT M TTB B 4708

4
22
23
25
26
28
31

11
11

TBTTMTT M TBT B 493
MMBTTTT M TTT B 4761

36
47
Level-2

12

4

BMB T 4614

MBMMBBZB T
Level-3 (Naive Nash Types)

48

2
2
0
2
2
2
0
0
0

Py
:

MTBMBMT B TTBT 4719

MTB

4
5
6
8
32
39
42
12
16

46

MBMT B TTBT 4719

12
10

MTMMBMB B BTB T 4846

MTBMBMB B TTBT 4672

MTRB

MBMT B TTB T 4719

MTBTBMM B TTMT 4661

MTMMBMM B BTB T 4685

12
11
11

MTMTBMM B BTB T 4777

MTMTBMB B BTB T 49.27

MTMTBMT B BTB T 4965

10

0

‘““ideal’’ archetypal behavior: specifically, from naive Nash behavior,
b(P,), and b*(P,). In addition, we also give the number of dominated

strategies chosen. The “‘DEV RE" column will be explained in Section

5.3.

Note that 16 participants had 2 or fewer deviations from NE behavior,



230 STAHL AND WILSON

TABLE II—Continued

Token DEV DEV DEV DEV
Pat 1 2 3 4 5 6 7 8 9 101112 Earn NE bl b2 RE DM

Level-4 (Worldly Types)

t MTMTBMTBTTIB B 4749 2 8 8 7 0
2 MTBTBBMBIBTMBB 4623 3 9 7 8 0
3 MTBTHBBDBBDBTUBB 4787 3 9 6 8 0
7 MTMMTMBBBTBT 4746 1 11 5 8 0
9 MTMMBBMBDBTA BT 4598 1 12 4 7 0
0w MBBBBTMTBTDB T 488 4 10 $ 7 0
u MTMTBBMBTTUBB 461 3 9 7 8 0
3 MBMBBBMTBTMT 4564 3 12 4 7 0
5 MBMTBBTTBTBT 4787 3 10 3 5 0
7 MBBBBBMBIBTUBT 469 3 11 5 8 0
8 MTBTBBTIBTTB BT 4717 3 8 7 7 0
¥ MTBTBBMTBTBT 403 3 10 5 7 0
3¢ MTMMBMBBTTAB BB 423 2 10 6 9 0
3 MTMMBBMTBTTT 4525 2 11 4 6 0
38 MTBBBBBBBTUBIB 4718 3 10 6 g 0
41 MTBBBBMTTTMHB 438 5 9 8§ 10 0
4 MMBBBMMTIBTUBT 4596 3 10 6 7 0
4 MTBMTBTBTTBT 4516 4 8 7 g 0
¢ MTMBBBMTBTUEBT 431 2 12 4 7T 0
N: MTMABMABBTAT 0 9 4 4
b: TMBTTTTMTIBTB 9 0 12 5
2 MBMMBBBTBMBT 4 12 0 7
RE: MMMTBTTMBIBTT 4 5 7 0
pM: B T M M M

and 6 participants had 2 or fewer deviations from precise level-1 behavior,’
while only one participant had 2 or fewer deviations from precise level-2
behavior. Thus, superficially the data appear to exhibit distinct patterns
of behavior.

Directly below the individual choices, we give the choices of the ideal
archetypes: naive Nash behavior, b(P;), b*(P,), and the dominated strate-
gies (DM). In the NE row, an entry of **A’’ denotes that all three strategies
are in the support of the NE. The “‘RE’’ row will be explained in Section

% Since b(Py) coincides with the row with a payoff of 100 in all 12 games, an alternative
interpretation of the underlying behavior is ‘‘maximax.’’ In Stahl and Wilson (1994), the
experimental design included several games in which level-1 and maximax behavior differed,
and we found that a significant portion of participants exhibited distinctly level-1 behavior.
This suggests that it is unlikely that all players we label as level-1 in the present data are
instead maximax players.
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5.3. The bottom, right-hand portion of Table II illustrates the relationship
between the ideal archetypal behaviors on these 12 games. In 9 out of 12
games the Nash equilibrium choice is different from b(P,), and in 4 out
of 12 games it is different from b*(P;). In all 12 games b(P,) differs from
bX(P,).

While 6 out of 48 participants (12.5%) chose at least one strictly
dominated strategy, only 7 choices were strictly dominated strategies
in the three games [1, 5, 12] with strictly dominated strategies; thus,
7/(3 x 48) = 4.86% of the choices in these games were strictly dominated.
Seven participants chose at least one strictly or weakly dominated strat-
egy, bringing the total of dominated choices to 13 in the five relevant
games [1, 3, 5,9, 12]; thus, 13/(5 X 48) = 5.42% of the choices in these
games were dominated.

Participants did not solve games by iterative elimination of strictly
dominated pure strategies. In games 1, 5, and 12, this procedure leads to
a unique choice (M, T, and T respectively), but 7, 17, and 22 participants
(respectively) did not choose the iteratively undominated strategy.

Similarly, participants did not solve games by iterative elimination of
weakly dominated strategies. In addition to the above games, games 3
and 9 possess a unique ‘‘iteratively admissible’’ strategy (M and B respec-
tively); however, 32 and 27 participants (respectively) failed to choose
the iteratively admissible strategy.

This is conclusive evidence that while most participants avoided strate-
gies dominated with respect to all three strategies, their model of other
players did not incorporate this behavior.

In the nine games with a unique pure-strategy symmetric NE, 42.8%
of the responses differed from the unique NE. In two of the games with
a unique mixed-strategy NE (4 and 7), the empirical distribution differs
from the NE distribution at the 5% significance level. In game 11, the
empirical distribution is insignificantly different from the mixed NE at the
5, 10, and 15% levels.

S. STATISTICAL ANALYSIS

The model represented by Eqgs. (8), (9) constitutes a finite mixture
model. Log-likelihood functions were maximized using the simplex
method of Nelder and Mead (1965), using a variety of starting values to
increase our confidence that a global maximum was achieved. The simplex
method requires only function evaluations. Although it is not very efficient
in terms of the number of function evaluations required, the method is
easier to implement than other algorithms sometimes used with mixture
models such as the EM-algorithm.

Nonparametric confidence intervals for parameter estimates were esti-
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mated using the bootstrap percentile method described by Efron (1982,
Chap. 10). While it is possible to obtain conventional standard error esti-
mates by evaluating the information matrix derived from the log-likelihood
in Egs. (8), (9), interpretation of t-ratios obtained from these estimates is
problematic due to the proximity of the parameter estimates to parameter-
space boundaries and the non-normality of the underlying distributions
(as evidenced by our bootstrap results). The bootstrap procedure is partic-
ularly advantageous in our setting because it allows us to estimate the
posterior probabilities that each player is of a particular type using a semi-
parametric Bayesian procedure as discussed below.

The bootstrap method is based on the notion of replicating error pro-
cesses by resampling estimated residuals. Since our model is a mixture
of discrete choice models, residual terms are not explicitly estimated, and
so the simulation step requires some modification. We first maximize the
log-likelihood, Eq. (9), using the actual dataset to obtain a vector of
parameter estimates 3. Then, to generate pseudo-data s, for each player,
a uniform [0, 1] pseudo-random deviate is generated via the multiplicative
congruential method and compared to the estimates &,, [ =0, ..., 5, to
determine player type. Next, uniform [0, 1] pseudo-random deviates are
generated to determine a choice by the player on each of the 12 games
in the experiment, using the estimated parameter values and Egs. (3) and
(6). For example, for a level-0 player a uniform [0, 1] pseudo-random
deviate v is generated: if v < 0.3 then the choice for this particular game
is recorded as 1; if 0.3 < v < 0.6 then the choice for this particular game
is recorded as 2; and if 0.6 << v =< 1 then the choice is recorded as 3. For
other player types, the process is similar, except that the intervals are
determined by computing the discrete probability functions using the origi-
nal parameter estimates in 3.

Once a 48 X 12 matrix of pseudo-choices s, has been simulated, the
model is reestimated using these pseudo-data to obtain a bootstrap esti-
mate 3*. Then the process is repeated a large number of times to produce
M estimates, {8*(m)}*_,. The bootstrap estimates 3* approximate the
sampling distribution of the original estimator, 8. Let 8;and 3(m) denote
the jth elements of B8 and 8*(im), respectively. Nonparametric confidence
intervals for Bj are obtained by sorting {Bj*(m)},ﬁ,ﬁ, by algebraic value and
then deleting the appropriate number of values from each end of the sorted
array. If 95% confidence intervals are desired, then 0.025 X M values
would be deleted from each end of the sorted array; the new endpoints
give the confidence interval. In the results reported below, we choose
M = 1000 to ensure adequate coverage.

The bootstrap estimates 8* are also used to compute standard error
estimates which are reported below. The bootstrap standard error esti-
mates for Bj are obtained by computing the sample standard deviation of
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{EI}“(m)}x=1 . As noted earlier, the interpretation of standard errors is prob-
lematic due to the non-normality of the underlying distributions.

5.1. Estimation of the Mixture Model with RE Types

We maximized the log-likelihood function in Eq. (9) for the entire sample
of 48 participants, yielding a maximized value of —442.390. We found
&; = 0.03, a bootstrapped confidence interval for a that included zero, and
%5 = 0.1, which is the minimum value initially imposed as an identification
restriction. We first address the question of whether a5 is significantly
different from zero, and secondly whether our identification restriction
was adequate.

We reestimated the model while restricting as = 0, which yielded a log-
likelihood of —442.727. The corresponding likelihood-ratio statistic,
%2 = ~2Lreqriced — Firee) = 0.674, would have a p-value of 0.714 if ¥* had
the usual chi-square distribution with 2 degrees of freedom. Unfortunately,
however, the likelihood-ratio statistic has unknown distribution under the
null hypothesis since the null value of «; is on the boundary of the parame-
ter space (see Everitt and Hand, 1981, and Titterington et al., 1985, for
discussions of this problem in the context of finite mixture models). Con-
ventional Wald and Lagrange multiplier tests are also invalid at the edge
of the parameter space.

To circumvent this problem, we used the bootstrap procedure to approx-
imate the sampling distribution of the likelihood-ratio statistic. The choice
data were simulated as outlined above for the bootstrap procedure (except
Bresiriciea Was used to simulate the pseudo-data since the null hypothesis
is a; = 0). Both the restricted and unrestricted models were estimated on
these pseudo-data yielding log-likelihood values £X i ..q and £g.. , respec-
tively. These values were then used to compute a bootstrap estimate of
the likelihood-ratio statistic: X3 = —2(LXricied — Litee). The entire process
was repeated 1000 times to produce bootstrap estimates {x%(m)}1%% . Since
these values approximate the sampling distribution of the original likeli-
hood-ratio statistic, it is straightforward to determine the significance of
the original likelihood-ratio statistic by first sorting the values
{x3(m)}1%% and then determining the percentile of the original statistic.
The value 0.674 has a p-value of 0.165, clearly indicating that we cannot
reject the hypothesis that there are no RE types in the sample population. '°

% Qur bootstrap procedure to test as = 0 is methodologically identical to the Monte Carlo
approach employed by Aitken er al. (1981), who in effect used only 19 bootstrap replications.
Hall (1986) provides theoretical results which show that using a small number of replications
in the bootstrap may increase the probability of type-II errors. Several authors have suggested
using at least 100 replications for testing null hypotheses regarding parameter values and
as many as 1000 replications for constructing confidence intervals. Note that merely examin-
ing the confidence interval ignores the variation in the other parameters; thus, the boot-
strapped likelihood-ratio statistic provides a more powerful test.
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TABLE HI

PARAMETER ESTIMATES FOR UNIMODAL MODELS

Level-1 Level-2 Level-3 Level-4 Level-5

u — 0.045 — 0.040 —
¢ — — — 0.603 —
g 0.034 0.107 0.082 0.141 0.064

C —605.29 —558.79 —576.10 —544.27 -556.32

We also examined the choice probabilities, R;, and the payoff matrices
for the reduced game between RE types, evaluated at the maximum likeli-
hood estimates. The former are quite diffuse despite the fact that every
reduced game had a strictly dominant strategy. Since it would be more
reasonable for RE types to be more precise about recognizing dominant
strategies, we suspect that our restriction that ¥ = (.1 was not an adequate
identification restriction.

To investigate this issue further, we computed a goodness-of-fit statistic,
A= 2,2 (RyB) — Py Py, to compare these choice probabilities with
the uniform distribution. We found that A = 3.4, which with 2 degrees of
freedom is insignificant. In other words, with a sample of 12 observations,
it would not be possible to identify a participant as an RE type or a level-0
type at any acceptable degree of confidence. When we restricted y; to be
large enough for identification at the 5% level (=0.175), the maximum
likelihood estimate of a5 was driven down to 0.005. It is also noteworthy
that the only boundedly rational type for which &; changed was the level-0
type. Thus, it appears that our original identification restriction was inade-
quate and allowed one or two level-0 types to appear to be very error-
prone RE types.!

Since (i) our bootstrapped test did not reject the null hypothesis of
as = 0, and (ii) &s = 0 when we restricted s to be sufficient for identifica-
tion, we conclude that there are no RE types in our sample. However,
since our experimental design focused exclusively on initial choices by
“‘inexperienced’’ participants, we obviously cannot rule out the possibility
that RE behavior might be learned with experience.

As a benchmark for later comparisons, we also estimated five unimodal
models with only one type of player: level-lfor/ =1, ..., 5. The maximum
likelihood point estimates and the log-likelihoods are reported in Table
III. Note that all the unimodal precision estimates (i.e., ¥,) are small,

I See also footnote 17. This goodness-of-fit criteria turns out to be equivalent to the
requirement that the Neymann—Pearson decision rule for the 95% confidence level have a
95% probability of being decisive.
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TABLE IV

PARAMETER ESTIMATES AND CONFIDENCE INTERVALS FOR MIXTURE MODEL
wiTHOUT RE TYPES

Estimate Std. Dev. 95 percent conf. int.

n 0.2177 0.0425 0.1621 0.3055
p2 0.4611 0.0616 0.2014 0.8567

[0.2360 0.8567)
2 3.0785 0.5743 1.9029 4.9672

[2.5631 5.0000]
3 4.9933 0.9357 1.9964 5.0000
ba 0.0624 0.0063 0.0527 0.0774
€ 0.4411 0.0773 0.2083 0.5882
v 0.3326 0.0549 0.2433 0.4591
a0 0.1749 0.0587 0.0675 0.3047
o 0.2072 0.0575 0.1041 0.3208
az 0.0207 0.0202 0.0000 0.0625
a3 0.1666 0.0602 0.0600 0.2957
oy 0.4306 0.0782 0.2810 0.5723
c -442.727

making the predicted unimodal choice probabilities not much different
from random noise. As a comparison, the level-0 model yields a log-
likelihood of —632.801, while the log-likelihood for the mixture model
without the RE types estimated below is —442.727. The likelihood ratio
statistics comparing the unimodal models to the mixture model have chi-
square p-values less than 107#, indicating that the mixture model is vastly
superior.?

5.2. Estimation of the Mixture Model without RE Types

Having concluded that there are no RE types in our sample, we exclude
the RE type from the subsequent statistical analysis by restricting a5 =
0.3 Estimation of the model without the RE types using the entire sample
of 48 participants yielded the results shown in Table IV. To test whether

12 As noted above, the likelihood ratio statistics do not have the familiar chi-square distribu-
tion; however, our experience with bootstrapping likelihood-ratio statistics suggests that
these would have p-values far below the values required to reject the underlying null
hypotheses.

13 Alternatively, we could allow as to vary; however, given that no RE types exist, this
would result in inefficient estimates for the remaining parameters.
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analyses of the entire sample are valid, or if separate analyses by session
should be conducted, we estimated the model for each session sample.
The sum of the three log-likelihoods was —428.824, compared to —442.727
for the aggregated model. Since the aggregate model involves 22 restric-
tions relative to the case where parameters are allowed to vary across
sessions, the likelihood-ratio statistic is distributed chi-square with 22
degrees of freedom. The computed value of 27.806 has a p-value of 0.182,
and so we fail to reject the restrictions implied by the aggregate model.'*
Henceforth, we focus on analyses of the entire sample.

Note from Table IV that the bootstrapped 95% confidence intervals of
the mixture parameters, «,, a,, ay, and a4, are strictly positive; only the
confidence interval for «, includes zero. This suggests that each type,
except possibly the level-2 type, is present in the population. On the other
hand, with &, = 0.0207, in each pseudo-data set of 48 participants there
is a 37% chance that no level-2 types are present, in which case the
estimate &F is very likely to be zero. Hence, it is not surprising that the
bootstrapped confidence interval has 0 as the lower bound.

Restricting «; = 0 and reestimating the model yields a log-likelihood of
~446.582, and hence a likelihood-ratio statistic of 7.711. Unfortunately,
the likelihood-ratio statistic again has unknown distribution since the null
hypothesis is at the boundary of the parameter space. Thus, we employ
the bootstrap methodology described above. The value 7.711 turns out
to be significant at the .012 confidence level. Thus, we reject the null
hypothesis a, = 0 and conclude that level-2 type players are present in
the data. Moreover, Bayesian posterior procedure described below in
Section 5.3 identifies Participant 48 as a level-2 type, and referring to
Table 11, we see that this participant’s choices are exactly b*(P,); hence
we feel confident that there was at least one level-2 type in the sample
population.

In bootstrapping the confidence intervals shown in Table IV, we found
that 354 of the 1000 bootstrap replications produced bootstrap estimates
& = 0. In such cases, the bootstrap estimates (i¥, ¥¥) are spurious; they
can drift to arbitary values during the optimization process because the
likelihood function is obviously insensitive to these parameters when
&¥ = 0. In order to eliminate this additional source of noise reflected in
the confidence intervals for 4, and ¥, shown in Table IV, we used the
646 bootstrap estimates {iF(m), ¥¥(m)|aF(m) > 0, m = 1, ..., 1000} to
compute conditional 95% confidence intervals, shown in brackets in
Table IV.

" The same exercise for the full model with RE types yields the same conclusion. Since
we are not at the boundary of the parameter space under the null in this test, the likelihood-
ratio statistic has the usual chi-square distribution.
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The upper bound of exactly 5.0 on the confidence intervals for vy, and
v, might look suspicious to the reader. Indeed, this reflects the upper bound
we imposed in order to guarantee speedy convergence. The probabilistic
choice functions for the types have the property that as the precision
(y)) becomes large, one strategy in each game is chosen with probability
indistinguishably different from one. By continuity, as v, increases, the
probabilistic choice function becomes insensitive to y,. Consequently, the
bootstrapped distribution of precision parameters can have a large upper
tail, but almost all of these are behaviorally equivalent. Through experi-
mentation, we found that increasing the upper bound from 5 to 10 left the
maximized log-likelihood value and all other parameter estimates un-
changed to 4 significant digits; therefore, we settled on an upper bound
of 5 for each v,, I = 1, ..., 4. On the other hand, there would be no
statistically significant difference in our results if we were to have imposed
an upper bound of 3, so values of y, > 3 should be considered statistically
and behaviorally equivalent, and the reader should not be distracted by
large upper confidence bounds for the v,.

The lower confidence bounds for the y,, I = 1, ..., 4, however, are
vitally important for identification purposes as pointed out in Section 2.
These all exceed the required minimum of 0.1. Conditioning on & > 0
increases the lower bound on the confidence interval for y, from 1.9029
to 2.5631. The predicted probabilistic choice functions for each type are
quite different from the uniform distribution and from each other, indicat-
ing successful identification.

While we have ruled out the presence of RE types in Section 5.1, we
have yet to address the question of whether some subset of types could
be deleted without a significant deterioration of the likelihood function.
Since there are five archetypes, there are 30 distinct hypotheses, each
involving some combination of the o,, / = 0, ..., 4, being restricted to
zero."” For these hypotheses, we computed the likelihood-ratio statistic
using the actual data. As noted earlier, the null hypothesis «, = 0 produced
a likelihood ratio statistic of 7.711. The bootstrap procedure employed
above indicated that this value is significant at .012; if the statistic were
assumed to be chi-square with 3 degrees of freedom, the corresponding
p-value would be 0.053, suggesting that the actual distribution of the
likelihood-ratio statistic has a thinner upper tail than the chi-square distri-
bution. Among the remaining 29 hypotheses to be tested, the next-highest
chi-square p-value was less than 1073, and so we infer that the remaining
null hypotheses would also be rejected by our bootstrap procedure.

¥ Five hypotheses result when either one or four of the a, are restricted to zero; ten
hypotheses result when either two or three of the «; are restricted to zero. The hypothesis
that all archetypes are absent is not pertinent since level-0 is the minimal null hypothesis.
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5.3. Computation of Posteriors

Bayes’ theorem can be used to derive the posterior probability that any
participant k is level-l ({ = 0, 1, 2, 3, 4), which we denote as af. For
notational convenience, let s = {s", h = 1, ..., 48}, the vector of all
observations, let L(s|B3) denote the likelihood of the observed data s
conditional on the model parameters 8, and let f(8) denote the joint density
of 8. Then al = L(player 4 is level-l|s), and, by Bayes’ theorem,

L(player h is level-l and )

h
« L(s)

(10)

Conditional probabilities can always be integrated to yield unconditional
probabilities, and hence

L= [ Ls|prfp) db. an
Recall that L(s"|8) denotes the joint probability of observations corre-

sponding to player 4. Then L(s|8) = I, L(s*|8), and
Li(player k is level-l and s}|8] = o, P} H L(s/|B) )

= CY:PhL(SIB)/L(Shm)
and so
o PIL(s|B)

of = [ [ Tomaicy B9 (13)

The bootstrap procedure used to construct confidence intervals provides
an approximation to the sampling distribution of 8 which is used to perform
the integration in (11) and (13). The integral in (11) is approximated by
first computing L(s|3*(m)) for each bootstrap replicationm =1, ..., M
and computing the mean M~' 2 _, L(s|3*(m)). The integral in (13) is
computed similarly, using the value for L(s) obtained from (11).! Conse-
quently, the computation of the a} amounts to a semi-parametric Bayesian
procedure; the procedure is semi-parametric since the functional form of
f(B) is not specified. The procedure is more general than a fully parametric
procedure that would require specification of f(3).

16 Note that s is the actual experimental data and not the pseudo data.
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The computed posterior probabilities ) are presented in Table V. It
is remarkable that 38 of the 48 participants have a 90% or better probability
of being one type. Of these, 6 are level-0, 9 are level-1, 1 is level-2, 5 are
naive Nash, and 17 are worldly types. This finding suggests that indeed
the population of human players is not homogeneous in their thought
processes, but rather is composed of distinct types of strategic thinking.

Further, for 44 of the 48 participants, the likelihood ratio of the most
likely type to the next most likely type exceeds 2.4. Of these, 8 are level-0,
9 are level-1, 1 is level-2, 7 are naive Nash, and 19 are worldly. This
finding suggests that most of the participants can be characterized as
employing one type of thought process (or model of other players) for all
12 games (see also Section 6). Of the remaining four participants, three
are roughly equally likely to be naive Nash or worldly types, and the
remaining one (Participant 36) is most likely a level-1 type but with lower
precision.

The 29 participants identified above as level-3 or level-4 appear to be
cognizant of the Nash equilibrium concept, but the remaining 19 (40%)
do not. Also recall that 42.8% of the responses on games with pure-
strategy NE were non-NE. It is noteworthy that &,, the worldly type’s
estimate of non-Nash behavior, was 0.44. Of course, this similarity may
be a mere coincidence. Moreover, only about 15% of the population were
naive Nash types, which is much lower than &,.

Table 11 displays the actual choice data sorted by posterior type. The
next to last row, labeled ‘‘RE,’’ gives the best response to the aggregate
mixture model predictions [see Eq. (14) below], which is what a single,
perfectly precise RE-type player would choose against this population.
The last column shows the number of deviations from this ‘‘RE-dominant™’
strategy for each participant. The first group of eight participants in Table
II are the level-0 types. Evidently, these participants’ choices are not
explained by any of the archetypal behaviors.!” The next group of 10
are the level-1 types (including Participant 36); these exhibit the fewest
deviations from b(P;). Next, the singleton group of level-2 types is dis-
played; note that Participant 48’s behavior is exactly fit by the level-2
type. The next group of 10 consists of the seven participants definitely
identified as naive Nash (level-3) types plus three more (the last three)
who were identified as either naive Nash or worldly types. Notably, the
choices involve very few deviations from NE responses. The last group
of 19 participants are the worldly (level-4) types.

' From the analysis of the model with RE types (with ys = 0.1), only Participant 29 had
a posterior af > 0.5. However, we can see from Table 1] that his actual behavior involves
six deviations from the RE-dominant strategy. Indeed, it is clearly evident from Table II
that none of the participants’ behavior is best fit by the rational expectations hypothesis.
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TABLE V

PoSTERIOR ESTIMATES OF PLAYERS™ TYPES

h al a? ol ol alt
1 0.033 0.025 0.0 0.0 0.942
2 0.003 0.0 0.0 0.0 0.997
3 0.003 0.0 0.0 0.0 0.997
4 0.0 0.0 0.0 0.941 0.059
3 0.0 0.0 0.0 0.941 0.059
6 0.0 0.0 0.0 0.708 0.292
7 0.030 0.0 0.0 0.0 0.970
8 0.0 0.0 0.0 0.945 0.055
9 0.001 0.0 0.0 0.027 0.972
10 0.006 0.0 0.0 0.0 0.994
11 0.030 0.0 0.0 0.0 0.970
12 0.0 0.0 0.0 0.578 0.422
13 0.008 0.0 0.0 0.0 0.992
14 0.0 1.0 0.0 0.0 0.0
15 0.001 0.0 0.0 0.0 0.999
16 0.0 0.0 0.0 0.561 0.439
17 0.002 0.0 0.0 0.0 0.998
18 0.002 0.0 0.0 0.083 0.915
19 0.0 0.0 0.0 0.0 1.0
20 0.970 0.0 0.0 0.0 0.030
21 0.709 0.290 0.0 0.0 0.001
22 0.0 1.0 0.0 0.0 0.0
23 0.0 1.0 0.0 0.0 0.0
24 0.990 0.0 0.0 0.0 0.010
25 0.0 1.0 0.0 0.0 0.0
26 0.0 1.0 0.0 0.0 0.0
27 0.999 0.0 0.0 0.0 0.001
28 0.0 1.0 0.0 0.0 0.0
29 0.802 0.039 0.0 0.0 0.159
30 0.067 0.0 0.0 0.0 0.933
31 0.002 0.998 0.0 0.0 0.0
32 0.0 0.0 0.0 0.941 0.059
33 0.002 0.0 0.0 0.0 0.998
34 0.025 0.959 0.0 0.0 0.016
35 1.0 0.0 0.0 0.0 0.0
36 0.348 0.652 0.0 0.0 0.0
37 0.993 0.0 0.0 0.0 0.007
38 0.008 0.0 0.0 0.0 0.992
39 0.0 0.0 0.0 0.968 0.032
40 0.985 0.015 0.0 0.0 0.0
41 0.206 0.0 0.0 0.0 0.794
42 0.0 0.0 0.0 0.722 0.278
43 0.007 0.0 0.0 0.0 0.993
44 0.144 0.0 0.0 0.0 0.856
45 0.001 0.0 0.0 0.0 0.999
46 0.0 0.0 0.0 0.543 0.457
47 0.0 1.0 0.0 0.0 0.0

48 00 0.0 0.981 00 0.019
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TABLE VI

ACTUAL AND PREDICTED PROBABILITIES

1 2 3 1 2 3
(a) Actual Choice Frequencies: (b) Mixture Model Predictions:
0.146 0.833 0.021 0.186 0.756 0.059
0.625 0.250 0.125 0.513 0.280 0.208
0.104 0.333 0.563 0.061 0.409 0.530
0.542 0.313 0.146 0.556 0.254 0.190
0.292 0.063 0.646 0.224 0.097 0.679
0.229 0.417 0.354 0.268 0.433 0.298
0.438 0.354 0.208 0.445 0.251 0.304
0.250 0.250 0.500 0.259 0.312 0.429
0.342 0.021 0.438 0.361 0.120 0.519
0.813 0.063 0.125 0.503 0.218 0.280
0.271 0.083 0.646 0.416 0.189 0.395
0.542 0.063 0.396 0.633 0.059 0.308

5.4. Goodness of Fit

The estimated 3 can be used to predict the aggregate choices n;, for
game i and strategy j. Let m; denote the predicted probability of choice
J in game i by a randomly selected participant. Then

NS

Ty = &IP,j('f’la lll’él)’ (14)

{

It

0

and the predicted aggregate choices are Nm;, where N is the number of
participants. Table VI shows the actual distribution of choices, n/48, and
the predicted distribution 7 for the mixture model. A casual perusal of
Table VI for the mixture model reveals a surprisingly good fit except for
possibly games 10 and 11. We emphasize that our estimation procedure
optimized for the best fit of the individual choice data (a 48 X 12 matrix)
and consequently did not optimize for the best fit of the aggregate choice
data (a 12 X 3 matrix).
The statistic

)\E}:Z(_u__q_ (15)
i J
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measures goodness-of-fit and is distributed chi-square with 24 degrees of
freedom (the number of strategies minus one times the number of games).
For the entire sample of 48 participants and 12 games, A = 57.57 which
is significant at the 0.01% level. However, for the 10 games excluding
games 10 and 11, A = 26.09 which, with 20 degrees of freedom, is not
significant at any commonly accepted level. Therefore, we feel that the
estimated model does a good job of fitting the aggregate distribution of
choices.

It is interesting to ask how the other types (the estimated types of the
mixture model as well as the estimated unimodal types) do at predicting
the aggregate choices of all 48 participants. The next best fit is achieved
by the unimodal level-4 model (given in Table III), and A = 100.8 which
has a p-value of 2 X 107!, Thus, while the predicted aggregate choices
differ from the actual aggregate data, our model does much better than
the alternatives.

We also computed the predicted distribution # for each type subgroup
of Table II. All distributions are distinct from one another, confirming
that our identification restrictions were adequate.

Since we have grouped participants by type in Table I1 it is also interest-
ing to ask how the estimated choice probabilities by type fit the aggregate
behavior of the associated group of participants. Equation (15), with N
adjusted appropriately, can be used to gauge the goodness-of-fit for each
type subgroup. For the 8 participants identified above as level-0 types, =
is uniform and N = 8, so Eq. (15) yields A = 31.50, which is not significant
at any commonly accepted level. Similarly, for the 10 participants identi-
fied as level-1 types, A = 23.824; and for the 7 participants identified as
naive Nash types, A = 24.81, neither of which is significant at any com-
monly accepted level. Further, adding the three participants who are either
naive Nash or worldly to the naive Nash group, we still cannot reject the
hypothesis that the group’s choices were generated by the naive Nash
model. Thus, the observed choices of the players are consistent with their
identified type.

The aggregate choices of the 19 participants identified as worldly types,
however, are significantly different from the model predictions (A = 72.64).
The greatest discrepancies appear in games 6, 9, 10, and 11; however,
eliminating these games, there is still a statistically significant difference.
Also, adding the three participants who are either naive Nash or worldly
to the worldly group does not significantly improve the fit.

We can also ask how well the estimated model fits the 48 X 12 matrix
of disaggregated data. There are 3'> = 531441 possible behavioral patterns,
of which we observe only 44; two patterns are observed 3 times each.
The probability of each of the 3'2 patterns predicted by the model is given
by Eq. (8) evaluated at the maximum likelihood parameter estimates 8.



PLAYERS’ MODELS OF OTHER PLAYERS 243

TABLE VII

EXPECTED PAYOFFS AGAINST MODEL BY TYPE

Game Level-0 Level-1 Level-2 Level-3 Level-4 BR AVG S.D.

1 28.8 38.1 45.2 45.2 45.1 45.2 413 6.1
2 57.5 60.5 52.7 59.0 57.3 60.9 580 2.7
3 37.9 42.2 43.0 42.6 426 430 419 1.8
4 39.6 48.3 35.6 39.6 424 484 423 4.7
5 43.3 41.1 50.1 50.1 493  50.1 473 37
6 44.3 47.5 38.5 44.7 426 495 45 3.5
7 49.6 53.0 49.9 49.6 49.8 53.7 509 1.7
8 47.2 52.8 40.2 47.7 456  53.6 478 45
9 57.1 60.2 62.6 57.1 62.2 626 60.3 24
10 37.7 414 31.8 39.4 373 394 378 3.0
11 37.0 39.9 38.6 37.0 379 401 384 1.2
12 36.1 41.8 47.8 47.8 47.1 47.8 4.7 44

AVG 43.0 47.2 44.7 46.6 46.6  49.5 46.3
S.D. 83 7.5 8.2 6.5 7.0 7.0 6.8

Call this L,, and let n, equal the number of times the kth pattern is
observed, k = 1, ..., 32, Then the goodness-of-fit statistic given in Eq.
(15) adapted to this test becomes A = X, (n}/48L,) — 48 = 530157, which
is distributed chi-square with 3'Z degrees of freedom and has a p-value of
0.894. Thus, we cannot reject the hypothesis that the actual disaggregated
data were generated by the model.

5.5. Comparative Performance of Types

Using 7 computed in Eq. (14), the expected payoff to strategy j in game
i is given by §, = X, U, . Hence, using Eq. (3), the expected payoff
to a level-/ type in game i is

€= Z Py, €09 (16)
j

We can also calculate the expected payoff of the best response (BR) to
the estimated model. Table VII presents this 12 X 6 matrix of expected
payoffs, as well as the column and row averages and standard deviations.
Casual observation reveals very little difference between the columns,
except perhaps for the level-0 column. The chi-square contingency statistic
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¥ (6%, — €.)Y6%.1~ x*(60d.f.), (17)
[

where €,. = 2, %,;, may be used to test the hypothesis that the six columns
are identical. The computed value of the statistic is 21.324 which has a
p-value of 1 — 107%; thus, we cannot reject the null hypothesis that all
levels perform equally well over these 12 games against the predicted
population. Further, the only pairwise payoff differences that are signifi-
cant at the 109 level for a one-tailed ¢-test are level-0 versus level-1 and
level-0 versus BR.

Harrison (1989) argued that a “*flat’” payoff structure, such as revealed
by Table VII, indicates that the experimental participants might not have
had sufficient incentives for high-level processing and problem solving,
and hence any less-than-fully-rational observed behavior may be an arti-
fact of insufficient incentives. However, we should also examine the incen-
tives in each game. The payoff difference between the best and the next-
best response to a pure strategy averaged over all pure strategies was
23.56 (or $0.47) per game, and the payoff difference between the best and
the worst response to a pure strategy averaged 45.67 (or $0.91) per game.
Of course, for diffuse priors these differences will diminish. For instance,
the average payoff difference between the best and the next-best response
to the uniform distribution was 11.12 (or $0.22) per game, and the average
payoff difference between the best and the worst response to the uniform
distribution was 20.45 (or $0.41) per game. We believe these differences
are sufficient to invoke substantial effort. Further, it is implausible that
any participant would have been able to infer the flat ex post payoff
structure, since they received no feedback about anyone else’s choices
until after the experiment was completed; and if they did induce the
payoff structure, then everyone should have adopted the easiest behavior
(level-0), contrary to our findings (see also Merlo and Schotter, 1992).

Rather, the flat ex post payoff structure suggests that ‘‘evolutionary’’
forces may not be strong enough to drive out any of the types over a
relatively short horizon. Even an “‘invading” perfectly precise RE type,
who chooses the best-response on each game, while obviously doing better
than all the boundedly rational types, does only slightly better relative to
the statistical variation across games and other types.

6. RoOBUSTNESS TESTS

How well will our estimated model predict out-of-sample? One way to
address this important question is to reestimate the model on a subset of
games, use these estimates to predict the behavior on the other games,
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and measure the stability of the parameter estimates, the goodness-of-fit,
and the robustness of the posterior «’s. The selection of an estimation
subset (I) and a test subset (II) involves a number of tradeoffs. If the size
of subset I is too small, then the decreased efficiency of the parameter
estimates will obviously produce poorer test results. Further, if the compo-
sition of subsets I and II are very different (e.g., if subset I contains all
of the dominance solvable games but none of the games with mixed-
strategy NE), then the types might not be well-identified on subset I so
it would be difficult to interpret the test results.

We decided that subset I should contain nine games to ensure reasonably
efficient parameter estimates. Selecting the first (or last) three games for
subset II was ruled out because there may be temporal effects that would
confound the intended test. Instead, we selected games 4, 8, and 12,
as an arbitrary but satisfactory temporal sampling. Further, this subset
includes a variety of characteristics: game 4 has a strictly mixed-strategy
NE, game 8 has a unique pure-strategy NE which is distinct from b(P;)
and b*(P,), and game 12 is dominance solvable.

We first estimated the model without RE types on subset I. We then
evaluated the log-likelihood of subset I data using the parameter estimates
shown in Table IV obtained with the full data set. Since the model has
11 parameters, the resulting likelihood-ratio statistic of 11.554 is distrib-
uted chi-square with 11 degrees of freedom, and hence has a p-value of
0.398. Thus we cannot reject the null hypothesis of no difference between
the two sets of parameter estimates. We then estimated the parameters
of the mixture model without RE types on subset 1l and compared the
resulting log-likelihood value with that obtained by evaluating the log-
likelihood of subset II data using the parameter estimates obtained from
subset I. The resulting likelihood-ratio statistic of 8.690 again has the chi-
square distribution with 11 degrees of freedom, and thus has a p-value of
0.650. Therefore, we conclude that the parameter estimates for the mixture
model are quite robust to the selection of games.

In order to test how well the parameter estimates from subset I predict
the choices observed in subset 11, we computed the aggregated expected
choice frequencies (#) for the subset II games for all 48 participants [Eq.
(14)] using the parameter estimates of subset I. We then computed a
goodness-of-fit statistic Al using Eq. (15); since there are 3 games in subset
I1, the goodness-of-fit statistic has 6 degrees of freedom. For the entire
sample of 48 participants for subset II, \! = 7.969, which is not significant
at any commonly accepted level; hence, we conclude that the parameter
estimates from subset I are able to predict the choices observed in
subset II.

Next, we examined whether the data for the three games in subset II
provide evidence which might reject the hypothesis that participants’ types
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are the same across subsets I and I1. Given the parameter estimates for
subset I, we can compute the posterior Bayesian estimates of the type of
each participant (a/!) as in Section 5.3. Let k" = argmax{af'}; i.c., k"
gives participant #’s most likely type based on the subset I data.

Now consider the following exercise. We compute the estimated choice
probabilities for the subset 1l games, P(¥,, &, &), for each type | = 1,
..., 4, based on the subset I parameter estimates. Then we give these
‘“‘type descriptions’’ to a neutral referee along with the subset II data and
ask her whether participant & is type k.. The first thing she would do is
compute the likelihood of participant A’s three choices conditional on
being each type, P}, (s%), using the type descriptions and Eq. (7). Without
further information, she would use a uniform prior and compute a posterior
probability &' = Pl (sh)/Z, Pi(sh). If she is conservative, she might
use 5% as the minimum for rejecting the null hypothesis; if more liberal,
she would use a higher critical value, thereby rejecting in more cases.

To give our test some power, we choose 15% as our critical value and
define the *‘15%-support set’’ T for each participant h as the set of types
for which the corresponding & = 0.15; i.e., T/ = {la/® = 0.15, ] =
0, ..., 4}. In other words, we do not reject the hypothesis that participant
h behaves as one type on both subsets of games if k"' € Th!'. Applying
this test, we fail to reject for 35 participants; that is, over 72% of the
participants appear to behave as one type.’®

Note that our results do not mean that the other 13 participants actually
switch between behavioral types. Eleven of these involve the worldly
type (level-4), which we have already pointed out may mask several yet-
to-be-identified types, in which case our mis-specification may manifest
itself as apparent type switching. Another explanation for three of the
participants involves dominated strategies. Choosing a dominated strategy
in some game resulted in the participant (in all but one case) being identified
as alevel-O type in Table V. However, with only five games with dominated
strategies and only one or two instances of a dominated strategy being
chosen (for a given participant) there is a good chance that both subsets
I and II do not contain the choice of a dominated strategy, in which case
the participant will be identified as a level-0 type in one subset but not in
the other.

7. CONCLUSIONS

We have put forth a theory of boundedly rational strategic thinking in
which human players are distinguished by their model of other players
and their ability to identify optimal choices given their priors, yielding a

8 We can increase the power of this test by asking whether participant / is type / for
each type with a}’ = 0.25. Doing so would yield only one additional rejection.
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three-parameter family of probabilistic choice functions. Within this family
we specified five archetypes. We designed and conducted an experiment
to detect these archetypes and to estimate the parameters which define
these archetypes, as well as a rational expectations type. The experimental
evidence rejects the rational expectations hypothesis, but confirms the
boundedly rational theory: i.e., based on statistical analysis of the experi-
mental data, we conclude that the boundedly rational archetypes were
definitely present in the population, but that no rational expectations
types were present. Further, from posterior calculations, we were able
to identify most participants’ behavior across all 12 games as being obser-
vationally equivalent to one specific type. These results withstood a num-
ber of robustness tests based on subsets of games.

While our model appears to be the best currently available for describing
the experimental data and predicting, we do not believe it is the final
answer. The fact that the aggregate choices of the so-called worldly group
were not well fit by the model predictions leads us to believe that the
parameter estimates for this archetype mask considerable diversity in the
population. Further research should look for additional archetypes that
may be pooled in the worldly group of the current theory. However, we
do know that the rational expectations type is not likely to be found. We
also tested for (but did not formally report) the presence of a ‘‘perfect
foresight’” type,”” and soundly rejected that hypothesis.

Our theory and empirical findings may serve as a complementary theory
of initial conditions for dynamic learning theories.?® Further research
should investigate how players’ models are updated after being given
aggregate information about recent population choices.

APPENDIX

PARTICIPANT INSTRUCTIONS

You are about to participate in an experiment about interdependent decision making. If
you follow these instructions carefully and make good decisions you might earn a consider-
able amount of money which will be paid to you in cash at the end of the session.

The experiment will be conducted in two stages. In Stage I you and all other participants
in this room will each make twelve decisions, and based on your combined choices, you
will earn tokens. In Stage I, you will have the opportunity to receive dollars based on the

¥ A player has perfect foresight if his prior is equal to the actual frequency distribution
of the other players in his experimental session (or in all three sessions). He then chooses
a (perhaps imprecise) best response to this prior.

® For example, see Van Huyck et al. (1991, 1992), Crawford (1991, 1993}, Boylan and
El-Gamal (1993), and Roth and Erev (1993).
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tokens you earned in Stage 1. We describe Stage 11 first so you will understand how the
tokens you earn affect the number of dollars you might win.

Description of Stage i1

At the end of Stage I you will have earned between 0 and 100 tokens for each of twelve
decisions. Each decision will be treated separately. The number of dollars you receive in
Stage 11 will depend partly on the number of tokens you earned in Stage 1 and partly on
chance.

Specifically, we have three ten-sided dice: one biue, one red, and one white. The blue
die counts tens, the red die counts ones, and the white die counts tenths. For example, 5
blue, 7 red, and 3 white generate the number 57.3. The possible numbers are 00.0 to 99.9
in increments of 0.1. {Pause for demonstration.] During Stage 1l you will put the dice into
a tumbler, shake and dump them into a cardboard tray, and record the number. If the
number of tokens you earned for the first decision is GREATER THAN the dice-generated
number, then you WIN $2.00. If the number of tokens you earned for the first decision is
LESS THAN OR EQUAL TO the dice-generated number, you LLOSE and get $0. You will
repeat this throwing of dice until you have generated twelve numbers in all-—one for each
decision made in Stage 1.

For example, if you earn 80 tokens for your seventh decision, and the seventh dice-
generated number was 47, then you would win $2.00 for that decision. If you earn 35 tokens
for your ninth decision, and the ninth dice-generated number was 66, then you would get
$0 for that decision.

Observe that the number of tokens you earn in Stage I translates into the chance of
winning $2.00 in Stage II for each decision. Thus, the more tokens you earn, the greater
will be your chance of winning the $2.00 prizes.

Description of Stage 1

During Stage I you and all other participants in this room will make twelve decisions.
The tokens that you earn will depend on your choice and the choices of all other participants
in this room.

Each decision that you face will be described by a Decision Table consisting of nine
numbers arranged in three rows and three columns. Here is an example:

Rl M “B”

T 30 20 70

40 80 0

B 60 100 50

The labels for the rows and columns will always be the same as in this example, but the
numbers may differ from this example (but they will be the same for all participants). To
indicate your decision, you will circle T, M, or B on the left-hand side of the Decision Table;
one and only one choice is permitted. Depending on your choice and the choices of all the
other participants, you will earn tokens as follows.

Let (ny, ny, rg) denote the numbers of other participants in this session who chose T,
M, and B respectively for this Decision Table. If you happen to choose T, then using the
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T-row of the above Decision Table, you will score 30 points for each the ny players, 20
points for the ny players, and 70 points for each of the ng players. Your token earnings for
this Decision Table will be your average point score: (30n + 20ny + 70ng)/(ny + ny +
l‘lB).

Similarly, if you had chosen M, then using the M-row your token earnings would have
been (40np + 80ny + Onp)/(nt + ny + ng); and if you had chosen B, your token earnings
would have been (60ny + 100ny + SOng)/(ny + ny + ng).

We will now work through a numerical example of how your token earnings will be
affected by your choices and the choices of all other participants. Consider the above
Decision Table.

We will write down three columns of numbers with headings *“T"", **M"’ and *‘B”’ (see
below). Next we write underneath the headings the numbers of other participants in this
session who chose T, M, and B respectively for this Decision Table.

For example, suppose there were 50 other participants and 30 chose T, 10 chose M, and
10 chose B; i.e., (ny, ny, ng) = (30, 10, 10). Then write down *‘30, 10, 10"’ underneath the
headings. [These round numbers make the arithmetic of our example easy, but for the real
experiment we will use the actual choices of the participants in this room.]

Now suppose you chose T; then write down the T-row of the Decision Table underneath.
Multiply each column, add the results, and divide by the total number of other participants
(30 + 10 + 10) = 50:

uTn SM “B*

Total of Others’ Choices: 30 10 10 (50)
Your Choice: T _30 20 70
900 + 200 + 700 = 1800; 1800/50 = 36 .

This means you would receive 36 tokens, giving you a 36% chance of winning $2.00 in
Stage II.

Practice Exercise 1. Consider the same Decision Table. Suppose the total of other
participants’ choices are as before: (nr, ny, ng) = (30, 10, 10). How many tokens would
you have earned if you had chosen M?

uTn uMn “B”

Total of Others’ Choices: 30 10 10 (50)
Your Choice: M 40 80 0

Practice Exercise 2. Consider the same Decision Table. Suppose the total of other
participants’ choices are as before: (ny, ny, ng) = (30, 10, 10). How many tokens would
you have earned if you had chosen B?



250 STAHL AND WILSON

Practice Exercise 3. Given the same Decision Table and (ny, ny, ng) = (30, 10, 10),
which choice would have earned you the most tokens:

T, M, or B ? ({(circle one)

oy

With the next exercises, we will demonstrate how the choices of the other participants
affect your token earnings. Consider the same Decision Table, but suppose that the other
participants’ choices were 10 T's, 0 M’s, and 40 B’s; i.e., (ng, my, ng) = (10, 0, 40).

Practice Exercise 4. How many tokens would you have earned if you had chosen T?

wTt e B
Total of Others’ Choices: 10 0 40 30
Your Choice: T 30 20 70

Practice Exercise 5. Consider the same Decision Table. Suppose the total of other
participants’ choices are as before: (ny, ny, ng} = (10, 0, 40). How many tokens would you
have earned if you had chosen M?

Wt wMr <R
Total of Others’ Choices: 10 0 40 (50)
Your Choice: M

Practice Exercise 6. Consider the same Decision Table. Suppose the total of other
participants’ choices are as before: (ny, ny, np) = (10, 0, 40). How many tokens would you
have earned if you had chosen B?

Practice Exercise 7. Given the same Decision Table and (ny, ny, ng) = (10, 0, 40),
which choice would have earned you the most tokens:

T, M, or B ? (circle one)

ok KA o sk s ok o o o Ko ok 6o R ok o ko e o o ok ke o o o ks e oo sk o o o ok ok o ok

CAUTION: The numbers used in these exercises were selected solely to make the arithmetic
easy. They are not intended to suggest reasonable beliefs about how participants might
respond if this Decision Table were used in the actual experiment.

Given your beliefs about the other participants’ choices (i.e., ny, ny, ng) in this session,
you can compute your potential earnings for your choice via simple arithmetic (as above).
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You know that the other participants are intelligent human beings like yourself, and that
they are facing exactly the same Decision Table as you are.

Next I will give everyone a ten-minute Screening Test to ensure that everyone understands
how his/her token earnings will depend on his/her choice and all other participants’s choices
in this session. The questions are like the practice exercises we just did. You must pass the
screening test in order to participate in the experiment.

WAIT FOR MY SIGNAL BEFORE TURNING THE PAGE.

SCREENING TEST
Consider the following Decision Table:

L N ‘.Mn uBn

T 40 0 60

M 50 10 100
B 20 30 50

For all four questions, assume the total of other participants’ choices are: 20 T’s, 20 M’s,
and 10 B's: i.e., (ng, ny, ng) = (20, 20, 10).

Question 1. What would be your token earnings if you had chosen T?

ASK ME TO CHECK YOUR ANSWERS BEFORE PROCEEDING.

Question 2. What would have been your token earnings if you had chosen M?

ASK ME TO CHECK YOUR ANSWER BEFORE PROCEEDING.
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YOU MUST ANSWER THE NEXT TWO QUESTIONS CORRECTLY TO PASS THIS
TEST.

Question 3. What would have been your token earnings if you had chosen B?

Question 4. Which choice would have earned you the most tokens?
T M B (circle one)

ASK ME TO CHECK YOUR ANSWERS BEFORE PROCEEDING.
CONGRATULATIONS, you have passed the screening test and may now participate.

Stage 1 will take 36 minutes. Every participant in this room will be presented with twelve
Decision Tables just like the examples we went through. There are four Decision Tables
on each of the next three pages. DO NOT TURN THE PAGE until instructed to do so.
Each Decision Table will also be displayed at the front of the room. You may use the biank
space next to the Decision Tables as a scratch pad, and you may use a pocket calculator.

Paper clipped to the last page of this packet is a pink RECORD SHEET. Remove that
sheet now. AFTER I give you the signal to start, you MUST DO two things for each Decision
Table:

(1) Indicate your choice by circling T, M, or B on the left-hand side of each Decision
Table. One and only one choice is permitted. You are not permitted to make more than
one choice and you are not permitted to skip any Decision Table without making a choice.
Failure to make exactly one choice for each of the iwelve Decision Tables will mean forfeiture
of your token earnings for the entire experiment.

(2) Record your choice in column 2 of the pink Record Sheet. Each Decision Table
will be numbered 1 to 12. Be sure to record your choice in the proper place. This Record
Sheet that will be used to determine your token earnings.

You will be told when 18, 10, 5, and 1 minutes remain in Stage I. You will also be issued
a final 10 second warning. When the 36 minutes is up, you will be told to STOP, and pass
in your Record Sheet.

Each Decision Table will be treated completely separately. That is, your token earnings
for a specific Decision Table will depend on your choice and the choices of all other
participants in this session for that Decision Table by itself. There is absolutely no linkage
between different Decision Tables.

The following Stage II instructions will be repeated at the beginning of Stage II. I will
need about 10 minutes to enter your choices into the computer. During this time, you will
be asked to fill out the brief Post-Experiment Questionaire on the last page of this packet.

Also paper-clipped to the back of this packet is a blue EARNINGS SHEET on which
you should record your choices for your personal record after turning in your pink Record
Sheet. You will need this blue Earnings Sheet to convert token earnings into cash winnings.

After the choice data have been processed, the total responses for each Decision Table
will be posted, and you will be invited to examine the Record Sheets to verify these totals.
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You might also want to record these totals on your Earnings Sheet. [Then, you will have
all the information necessary to verify the calculations of your token earnings.]

One at a time, each participant will be asked to come to the front station with the computer.
You will be told privately and confidentially your token earnings for each Decision Table,
and you will record these earnings on your Earnings Sheet. You will then proceed to the
dice station, where you throw the dice and record the results on your Earnings Sheet.

Finally, you will proceed to the payment station, where your dollar winnings will be
verified and paid to you in cash.

This is a serious scientific experiment, and as such, no TALKING, SIGHING, GROAN-
ING, LOOKING AROUND, or WALKING AROUND will be permitted. If you violate
these rules, you will be asked to leave and all your potential winnings will be forfeited. If
you have any questions during the experiment, raise your hand and 1 will come around.
However, the scientific protocol will severely limit how I can respond after the experiment
starts. Therefore, if you have any questions, you should ask them now.

WAIT FOR MY SIGNAL BEFORE TURNING THE PAGE.
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