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Econometrica, Vol. 50, No. 6 (November, 1982) 

STRATEGIC INFORMATION TRANSMISSION 

BY VINCENT P. CRAWFORD AND JOEL SOBELI 

"Oh, what a tangled web we weave, when first we practice to deceive!" 
-Sir Walter Scott 

This paper develops a model of strategic communication, in which a better-informed 
Sender (S) sends a possibly noisy signal to a Receiver (R), who then takes an action that 
determines the welfare of both. We characterize the set of Bayesian Nash equilibria under 
standard assumptions, and show that equilibrium signaling always takes a strikingly simple 
form, in which S partitions the support of the (scalar) variable that represents his private 
information and introduces noise into his signal by reporting, in effect, only which element 
of the partition his observation actually lies in. We show under further assumptions that 
before S observes his private information, the equilibrium whose partition has the greatest 
number of elements is Pareto-superior to all other equilibria, and that if agents coordinate 
on this equilibrium, R's equilibrium expected utility rises when agents' preferences become 
more similar. Since R bases his choice of action on rational expectations, this establishes a 
sense in which equilibrium signaling is more informative when agents' preferences are more 
similar. 

1. INTRODUCTION 

MANY OF THE DIFFICULTIES ASSOCIATED with reaching agreements are informa- 
tional. Bargainers typically have different information about preferences and 
even about what is feasible. Sharing information makes available better potential 
agreements, but it also has strategic effects that make one suspect that revealing 
all to an opponent is not usually the most advantageous policy. Nevertheless, it 
seems clear that even a completely self-interested agent will frequently find it 
advantageous to reveal some information. How much, and how the amount is 
related to the similarity of agents' interests, are the subjects of this paper. 

While our primary motivations stem from the theory of bargaining, we have 
found it useful to approach these questions in a more abstract setting, which 
allows us to identify the essential prerequisites for the solution we propose. There 
are two agents, one of whom has private information relevant to both. The 
better-informed agent, henceforth called the Sender (S), sends a possibly noisy 
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Econometric Society, and a Stanford IMSSS workshop for helpful comments. We owe special thanks 
to Co-Editor James Mirrlees, who made numerous helpful expository criticisms of earlier drafts, 
insisted that a result along the lines of Theorem 2 was available (and that we prove it), and suggested 
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work was partially supported by the SSRC while he was at Nuffield College, Oxford, in connection 
with the project, "Incentives, Consumer Uncertainty, and Public Policy." 
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signal, based on his private information, to the other agent, henceforth called the 
Receiver (R). R then makes a decision that affects the welfare of both, based on 
the information contained in the signal. In equilibrium, the decision rules that 
describe how agents choose their actions in the situations in which they find 
themselves are best responses to each other. 

The model and its relationship to the literature are described in Section 2. 
Under assumptions akin to those commonly maintained in the signaling lit- 
erature, equilibrium is characterized in Section 3 in a strikingly simple way. 
Although S's choice of signaling rule is not restricted a priori, in equilibrium he 
partitions the support of the probability distribution of the variable that repre- 
sents his private information and, in effect, introduces noise into his signal by 
reporting only which element of the partition his observation actually lies in. This 
represents S's optimal compromise between including enough information in the 
signal to induce R to respond to it and holding back enough so that his response 
is as favorable as possible. 

There are, in general, several essentially different equilibria, but we argue in 
Sections 4 and 5 that the one whose partition has the greatest number of 
elements is a reasonable one for agents to coordinate on, because it is both 
salient and, before S observes his private information, Pareto-superior to all 
other equilibria. Given this selection, we show under stronger assumptions that, 
in a sense made more precise in Sections 4 and 5, the more similar agents' 
preferences, the more informative the equilibrium signal. 

Section 6 concludes the paper with a brief summary and suggestions for 
further study. 

Our results have, in addition to their intrinsic interest, important implications 
for the design of models that relate the quality of bargaining outcomes to the 
bargaining environment. In particular, the rationalist explanations of the occur- 
rence of bargaining impasses, and of the relationship of their frequency to the 
bargaining environment, with which we are familiar (see Chatterjee and Samuel- 
son [1], Crawford [2], and Sobel and Takahashi [14], for example) all rest on 
agents having different information, either about preferences or about the extent 
to which they have succeeded in committing themselves to their demands. These 
models all abstract from the possibility that agents may find it useful to 
communicate other than by their demands. Our model sheds some light on when 
this is an innocuous simplification, and when it is likely to distort the conclu- 
sions. 

Our model is also potentially applicable to many other situations where 
strategic communication is a possibility. Example applications include business 
partnerships, doctor-patient and lawyer-client relationships, and oligopoly (see 
Novshek and Sonnenschein [12]). Finally, it can be viewed as a principal-agent 
model, with S the agent and R the principal. As will become clear in Section 2, 
however, we depart from the principal-agent literature by treating the principal 
and the agent strategically symmetrically, in contrast to the usual treatment of 
the principal as a Stackelberg leader. 
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2. THE MODEL 

There are two players, a Sender (S) and a Receiver (R); only S has private 
information. S observes the value of a random varible, m, whose differentiable 
probability distribution function, F(m), with density f(m), is supported on [0, 1]. 
S has a twice continuously differentiable von Neumann-Morgenstern utility 
function Us(y,m, b), where y, a real number, is the action taken by R upon 
receiving S's signal and b is a scalar parameter we shall later use to measure how 
nearly agents' interests coincide. R's twice continuously differentiable von 
Neumann-Morgenstem utility function is denoted UR(y, m). All aspects of the 
game except m are common knowledge. 

Throughout the paper we shall assume that, for each m and for i = R, S, 
denoting partial derivatives by subscripts in the usual way, U'(y, m) = 0 for some 
y, and U',(.) < 0, so that Ui has a unique maximum in y for each given (m, b) 
pair; and that U12(*) > 0. The latter condition is a sorting condition analogous to 
those that appear in the signaling literature; it ensures that the best value of y 
from a fully informed agent's standpoint is a strictly increasing function of the 
true value of m. 

The game proceeds as follows. S observes his "type," m, and then sends a 
signal to R; the signal may be random, and can be viewed as a noisy estimate of 
m. R processes the information in S's signal and chooses an action, which 
determines players' payoffs. 

The solution concept we shall employ is Harsanyi's [4] Bayesian Nash equilib- 
rium, which is simply a Nash equilibrium in the decision rules that relate agents' 
actions to their information and to the situations in which they find themselves. 
Each agent responds optimally to his opponent's strategy choice, taking into 
account its implications in the light of his probabilistic beliefs, and maximizing 
expected utility over his possible strategy choices. Although S's signal necessarily 
precedes R's action in time, because R observes only the signal (and not the 
signaling rule) S's choice of signaling rule and R's choice of action rule are 
strategically "simultaneous." Since we do not allow R to commit himself to an 
action rule and communicate it before S chooses his signaling rule, our solution 
concept differs from that employed in principal-agent models like Hoim- 
strom's [6]. 

The Bayesian Nash equilibrium is both the natural generalization of the 
ordinary Nash equilibrium to games with incomplete information and a natural 
extension of the concept of rational-expectations equilibrium to situations where 
strategic interactions are important. It is, therefore, a sensible choice of equilib- 
rium concept with which to study strategic communication, guaranteeing that in 
equilibrium, agents who understand the game extract all available information 
from signals. To put it another way, this equilibrium concept guarantees that 
agents' conditional probabilistic beliefs about each other's actions and character- 
istics are self-confirming. 

Formally, an equilibrium consists of a family of signaling rules for S, denoted 
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q(n I m), and an action rule for R, denoted y(n), such that: 

(1) for each m E [0,1], q(n I m) dn = 1, where the Borel set N is 

the set of feasible signals, and if n* is in the support of q(* I m), 

then n* solves max Us(y(n), m, b); and 

(2) for each n,y(n) solves maxf UR (y,iM)p(iM I n)dm, 

wherep(m I n)- q(n I m)f(m)/J q(n I t)f(t)dt.2 

Condition (1) says that S's signaling rule yields an expected-utility maximizing 
action for each of his information "types," taking R's action rule as given. 
Condition (2) says that R responds optimally to each possible signal, using Bayes' 
Rule to update his prior, taking into account S's signaling strategy and the signal 
he receives. Since URl(_) < 0, the objective function in (2) is strictly concave iny; 
therefore, R will never use mixed strategies in equilibrium. 

Our model departs from the non-strategic signaling literature (see, for example, 
Spence [15]) principally in the nature of its signaling costs. Signaling models 
typically have exogenously given differential signaling costs, which allow the 
existence of equilibria in which agents are perfectly sorted. Our model has no 
such costs. But R's equilibrium choice of action rule generally creates endogenous 
signaling costs, which allow equilibria with partial sorting. This shows that 
exogenous differential signaling costs are not always needed for informative 
signaling. 

Our model is closely related to that of Green and Stokey [3], who study 
strategic information transmission using a definition of equilibrium that differs 

2More precisely, we may define an equilibrium to be an action rule for R, denoted y(n), and, for 
S, a probability distribution A on the Borel-measurable subsets of [0, 1] X [N] for which '(A X [N]) 
= fAf for all measurable sets A. Loeve [8, pp. 137-138] shows that in this setting there exist regular 
conditional distributions q( I m) and p( I n) for (m, n) E [0, 1] x [N]. Then, in place of (1) we have 

(a) A solves max 'f Us(y(n), m, b) d/L, 

where the maximum is taken over all measures on the Borel-measurable subsets of [0, 1] X [N]. Since 

(b) rf fU S(y (n), m, b) dU = f 1 f US(y (n), m, b)q (dn I m)] dm, 

the conditional distributions q( Ii m) satisfy (1). 
Milgrom and Weber [11], who introduced this distributional approach, show that it is equivalent to 

the mixed strategies used in the text. In the present context, this formulation guarantees that q( I m) 
and p( I n) are measurable functions of m and n and hence that the integrals in (1) and (2) are 
well-defined. References to the measure A, as well as to the fact that equalities hold almost surely, are 
suppressed in the text. If S observes m before choosing q(n I m), the signaling rules for values of m 
other than the true one should be viewed as a way of formalizing R's beliefs about the meaning of 
S's signals. 
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from ours only in assuming that an agent learns his private information after his 
choice of strategy. We have adopted the alternative assumption that agents 
already know their private information when choosing their strategies, but in the 
present context the two definitions are equivalent. Thus, the main difference 
between our paper and Green and Stokey's is the question considered. They take 
preferences as given and study the effects of improved information on agents' 
welfares at equilibrium; we take information as given and study how agents use 
it differently when their preferences become more similar. (Holmstrom [6] studies 
the latter question in a principal-agent model.) Green and Stokey's [3] model has 
many equilibria, including some, which they call "partition" equilibria, in which 
S introduces noise only by not discriminating as finely as possible in his signal 
among the different information states he is capable of distinguishing; they focus 
on these. As pointed out above, our model has multiple equilibria as well, but 
only partition equilibria. This difference arises because of our additional restric- 
tions on preferences. 

Our model is also related to those of Kreps and Wilson [7] and Milgrom and 
Roberts [9,10], who handle the problem of information transmission in the same 
way we do. Milgrom and Roberts' [9] model is closest in form to ours; but they 
focus mainly on perfectly informative equilibria. This precludes the study of the 
optimal amount of noise to include in a signal. Perfectly informative equilibria 
do not exist in our model, mainly because we assume that signaling has no cost 
to S other than that inherent in its effect on R's choice of action. 

3. EQUILIBRIUM 

This section establishes the existence of equilibria in our model, and character- 
izes them. It is shown that all equilibria are partition equilibria, in which, in 
effect, S introduces noise into his signal only by not discriminating as finely as 
possible among the information states he can distinguish. Further, we show that 
if R's and S's preferences differ, there is a finite upper bound, denoted N(b), on 
the "size" (that is, the number of subintervals) of an equilibrium partition; and 
that there exists at least one equilibrium of each size from one through N(b). 
Necessary and sufficient conditions for a partition of a given size to be consistent 
with equilibrium are given. In Sections 4 and 5, we give conditions that guarantee 
uniqueness of equilibrium for each size, and argue that agents might reasonably 
be expected to coordinate on the equilibrium of size N(b). 

We shall defer, for the sake of exposition, consideration of the form of the 
equilibrium signaling rules, and begin by considering the structure of the set of 
actions that, in equilibrium, are chosen by R with positive prior probability. 

Let N {n :y(n) =y}. We say that an actiony is induced by an S-type mn if 
jN q(n I Fli) dn > 0. Notice that if Y is the set of all actions induced by some 
S-type, then if mi induces y, Us(y, iii, b) = maxy, y Us(y, rn, b). (We assume 
without loss of generality that R takes actions in Y for values of n not in the 
support of any q( I m).) Since U sj(.) < 0, US(y, m, b) can take on a given value 
for at most two values of y. Thus, mn can induce no more than two actions in 
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equilibrium. Define, for all m E [0, 1], 

(3) y S(m, b) _ arg max Us(y, m, b) 

and 

(4) yR(m) -arg max UR (y, m), 

where arg max Us(y,m, b), for example, denotes the value of y that maximizes 
Us(y,m,b). Since U",(*) < O and U2( )> O, i=R,S,yS(m, b) and yR(m) are 
well defined and continuous in m. 

LEMMA 1: If yS(m, b) == y R(M) for all m, then there exists an E > 0 such that if 
u and v are actions induced in equilibrium, Iu - vI > e. Further, the set of actions 
induced in equilibrium is finite. 

PROOF: Let u and v, with u < v, be two actions induced in equilibrium. Since 
an S-type who induces u (v) thereby reveals a weak preference for that action 
over v (u), by continuity there exists an mii E [0, 1] such that Us(u, iii, b)= 
US(vfii, b). Since U( ) < 0 and U (s) > 0, it follows from this that 

(5) u<ys(ii,b)<v, 

(6) u is not induced by any S-type m > m, and 

(7) v is not induced by any S-type m < mii. 

In turn, (6), (7), and our assumption that U1R(_) > 0 imply that 

(8) u?yR(rn)<v. 

However, if yR(m) #yS(m,b) for all m E [0,1], there is an e > 0 such that 

IYR(m) -ys(m,b)i I e for all m E [0,1]. It follows from (5) and (8) that v - u 
> e. Since the set of actions induced in equilibrium is bounded by yR(Q) and 

yR(l) because UR(.) > 0, this completes the proof. Q.E.D. 

REMARKS: Lemma 1 establishes that, under our assumptions, equilibrium must 
involve noisy signaling unless agents' interests coincide. Because signaling is a 
purely informational activity in our model, it cannot be perfectly invertible and 
informative, as it is, for example, in the principal equilibria of Milgrom and 
Roberts [9]. The argument of Lemma 1 can be used to establish that if Us2 and 
UR are one-signed, but have opposite signs, then only one action can be induced 
in equilibrium. Thus in this case no information is transmitted. 

We shall now argue that when agents' interests differ, all equilibria in our 
model are partition equilibria of a particular kind. First, some notation for 
describing partition equilibria is needed. Let a(N) -(aO(N), .. *. , aN(N)) denote 
a partition of [0, 1] with N steps and dividing points between steps ao(N), . . ., 
aN(N), where 0 = ao(N) < al(N) < ... < aN(N) = 1. Whenever it can be done 
without loss of clarity in what follows, we shall write a or a, instead of a(N) or 
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ai(N). Define, for all a, a E [0, 1], a < a, 

I arg max uR (y, m)f(m) dm if a<a, 

yR(a) if a=a. 

Now we are ready to state Theorem 1, which establishes the existence of 
equilibria, and characterizes them. 

THEOREM 1: Suppose b is such that y S(m, b) # y R(m) for all m. Then there 
exists a positive integer N(b) such that, for every N with 1 < N < N(b), there exists 
at least one equilibrium (y(n), q(n I m)), where q(n I m) is uniform, supported on 
[ai, ai, 1] if m E (ai, ai+ 1) 

(A) US(y(ai, a,+ 1), ai, b) - Us(Y(ai_ 1, a), ai, b) = 0 

(=1,9 .. N -1), 

(10) y(n) = y(a1 , ai+ 1) for all n E (a9, a1+ j) 

(1 1) ao= 0 and 

(12) aN= 1. 

Further, any equilibrium is essentially3 equivalent to one in this class, for some value 
of N with 1 <N<N(b). 

REMARKS: Theorem 1 establishes the existence of a partition equilibrium of 
every size from one (completely uninformative) to N(b) (the most informative, in 
a sense made precise below), where N(b) is determined by b, the preference- 
similarity parameter. If preferences are identical for some value of b, or if 
y S(m, b) =yR(m) for some m, existence is easily established, but finiteness does 
not hold in general. 

PROOF: The outline of the proof is as follows. Given Lemma 1, each S-type 
must, in an equilibrium of size N, choose from a set of N values of y. Since 
Ujs(-) > 0, the S-types for whom each value of y that occurs in equilibrium is 
best form an interval, and these intervals form a partition of [0, 1]. The partition, 
a, is determined by (A), a well-defined second-order nonlinear difference equa- 
tion in the ai, and (11) and (12), its initial and terminal conditions. Equation (A) 
is an "arbitrage" condition, requiring that S-types who fall on the boundaries 
between steps are indifferent between the associated values of y. With our 
assumptions on Us, this condition is necessary and sufficient for S's signaling 
rule to be a best response to y(n). Finally, given the signaling rules in the 

3By "essentially," we mean that all equilibria have relationships between m and R's induced 
choice of y that are the same as those in the class described in the Theorem; they are, therefore, 
economically equivalent. 
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statement of the Theorem, it is easily verified that the integral on the right-hand 
side of (9) is R's expected utility conditional on hearing a signal in the step (a, a). 
It follows that (10) gives R's unique best response to a signal in (ai, ail i), and 
that the signaling rules given in the Theorem are in equilibrium. Any other 
signaling rules that induce the same actions would also work;4 and we close by 
arguing that any other signaling rules consistent with an equilibrium of a given 
size must, given Lemma 1, induce the same actions. 

Formally, we begin by showing that (A), (11), and (12) form a well-defined 
difference equation, that it has a solution for any N such that 1 < N < N(b), and 
that any solution, a, together with the signaling rules given in the Theorem, is a 
best response for S to they(n) that satisfies (10) for the same a. In the rest of this 
section we sometimes suppress the dependence of Us on b for notational clarity. 

First, note that, by (9) and our assumption that UR(.) > 0, y(ai, ai + ) must be 
strictly increasing in both of its arguments. Let a' denote the partial partition 
ao, .. ., ai, which is strictly increasing and satisfies (A). There can be at most 
one value of ai I > ai satisfying (A), because Usl(-) < 0 and y(-) is monotonic. 
Thus any history ao, . . ., ai determines at most one relevant ai+ 1 > ai.5 

Let 

K(a) max{i: there exists 0 < a < a2 < . . . < a, < 1 satisfying (A)}. 

When y s(m, b) y R(m) for every m, it follows from Lemma 1 that y(a1, ai + ) - 
y(ai-, ai) E for some e > 0; hence ai+ 2- ai is bounded above zero for any 
solution of (A). Thus K(a) is finite, well defined, and uniformly bounded, so 
supO<a< IK(a) is achieved for some a Ee (0, 1]. Let N(b) _ K(a) < oo. It remains 
to show that for each N such that 1 < N < N(b), there is a partition a satisfying 
(A), (11), and (12). Let a K(a) be the partial partition of length K(a) that satisfies 
(A) and al (a) = a. Since solutions to (A) vary continuously with respect to initial 
conditions, if aK(a) (the last term in the partial partition a K(a)) is less than unity, 
K(-) is continuous (and therefore locally constant) at a; moreover, K(a) can 
change by at most one at a discontinuity. Finally, K(l) = 1, so K(a) takes on all 
integer values between one and N(b). If K(a,) = N and K(a) is discontinuous at 
a = a,, then a satisfies (A), (11), and (12). 

Now we shall argue that if a satisfies (A), (1 1), and (12), any signal in (ai, ai+ 1) 
is a best response for an S of type m E (ai, ai + ) to they(n) given by (10). More 

4In particular, there is a pure-strategy equilibrium in which the S-types within each step send a 
given signal that differs from those sent by other S-types. To support an equilibrium described this 
way, it is necessary to include, as part of the equilibrium, a specification of how R interprets signals 
that are not in the support of the signaling rule used by some S-type in equilibrium. In the present 
context, any such specification that does not expand the set of R's best-response actions will do. 

5We are able to restrict attention to the strictly increasing partitions that satisfy (A) because 
Us(.) < 0 and the monotonicity of y( ) ensure that the only nondecreasing solutions, a, to (A), (11), 
and (12) satisfy ai < ai+ 1 unless ai = 0 or ai+ I = 1. In the latter two cases, an extreme S-type is 
indifferent between perfectly revealing his type and sending a signal in the adjacent step. Because 
m = 0 and m = 1 occur only with zero probability from R's standpoint, these equilibria are therefore 
essentially equivalent to those in which the extreme S-type does not reveal himself. 
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precisely, (A) implies that 

(13) Us(y(a,,a+,+),m)=maxUs(y(aj,aj+),m) forall mE [a,,a,1j], 

where the maximum in (13) is taken overj = O,.. , N - 1. To see this, note that 
because Us 1(*) < 0 and y(ai, ai+ 1) > y(ai -1, ai), (A) implies (13) for m = ai. Since 
Uj( ) > 0 and m E [ai,aj+1], 

(14) US(y(a1, ai+ 1), m) - US(y(ak , ak+ 1) m) 

> US(y(a, ai+ 1), ai) - US(y(ak, ak+ 1), ai) ? 0 and 

(15) Us(y(ai, ai+ 1), m) - US(y(a, a+ 1), m) 

> US(y(a, ai+ 1), ai+ 1) - US(y(a, aj+ 1), ai+ 1) ? 0, 

where (14) and (15) hold for any 0<k<i<j<N and mE[ai,ai+I]. Con- 
versely, it is clear from this argument that, except for S-types who fall on the 
boundaries between steps, only signals of this kind are best responses for S. 

Now consider R. Provided that S's signaling rule is chosen to be uniform as in 
the statement of the Theorem, when R hears a signal in the step (ai, ai+ 1) 

(16) p(m I n) q(n I m)f(m) fa+'q(n I t)f(t)dt=f(m) fa+If(t)dt. 

Thus his conditional expected utility is 

(17) aia i UR(y, m)p(m I n) dm = + lUR (y, m)f(m) dm f+ 'f(t) dt. 

Therefore, y(ai, ai + ) as defined in (9) is a best response for R to a signal 
n E (ai, ai+ 1) 

Conversely, Lemma 1 shows that any equilibrium is a partition equilibrium, 
and the above arguments show that any equilibrium partition, a, must satisfy 
(A), (11), and (12) for some value of N between unity and N(b). Let yi be the 
action induced by an S-type m e (ai,ai+1) and let Ni {n :y(n) =yi}; if R 
hears a signal n E Ni in such an equilibrium, his conditional expected utility is 
proportional to fiaUR(y(n); m)q(n I m)f(m) dm. Since is a best response to 
any signal n E Ni, it must also maximize 

(18) fai+ I UR (y(n), m)q(n I m)f(m) dn dm I+UR (y(n), m)f(m) dm, 

where the identity follows because y(n) is constant over the range of integration 
and conditional densities integrate to unity. It follows that all equilibria are 
essentially equivalent to those with uniform signaling rules, as given in the 
statement of the Theorem. Q.E.D. 

For 0 < ai-1 < ai < a+j1 < 1, let 

(19) V(a_1 , ai, ai+ 1, b) Us(y(ai, ai+l ), ai, b) - Us(y(ai_1, ai), ai, b). 
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V( ) is the difference in utility to S-type ai between y(ai, ai+) and y(ai1, ai). 
The following Lemma establishes properties of V that are useful in proving 

Corollary 1 and in the analysis of Section 5. 

LEMMA 2: If V(ai-1,ai,ai 1,b) = 0 for 0 < ai-I < ai < ai+I < 1, then 
Us (y(a, ai), ai, b) > 0 and VI(a, ai, ai, 1, b) <0 for all a E [0, aJ 1], and Us (y(ai, 
a), ai, b) < 0 and V3(ai 1, ai, a, b) < Ofor all a E [ai+1, 1]. 

PROOF: Since Us(y(ai- 1, ai), ai, b) = Us(y(ai, ai+ 1), ai, b) by hypothesis, y(ai, 
ai+ 1) > y(ai- 1, ai), and U1s1(-) < 0, Uj (y, ai, b) > 0 for y < y(ai1,ai) and Uj(y, 
ai, b) < 0 for y ? Yj(ai, ai+ ). The Lemma follows from the definition of V 
becausey(.) is strictly increasing in both of its arguments. Q.E.D. 

The next result provides a simple condition on preferences that guarantees 
they are far enough apart so that the only equilibrium is totally uninformative. 

COROLLARY 1: If V(O, a, 1, b) > 0 for all a E [0, 1], then N(b) = 1; that is, the 
only equilibrium is uninformative. 

REMARKS: If yS(a, b) > yR(a) for all a, as we assume in Section 5, then 
V(O, a, 1, b) > 0 for all sufficiently large values of a. This is because if y S(a, b) 
2 y R (1) then an S of type a wishes to induce R to take as large an action as 
possible. In particular, if y S(Q, b) 2 yR(l) then N(b) = 1. Under the monotonic- 
ity condition, (M), we shall impose in the comparative statics analysis of Section 
5, the condition of the Corollary is equivalent to Us(y(O, 1), 0, b) > Us(y(O, 0), 
0, b). This means that an S of type m = 0 would rather be completely disguised 
than perfectly revealed. 

PROOF: It follows from Lemma 2 that if V(O, a,, a2, b) = 0 for some 0 < a, 
< a2 < 1 then V(O,a,, 1,b) < 0. Hence V(O,a, 1,b) > 0 for all a E [0, 1] implies 
that there is no partition equilibrium of size two. Thus, by Theorem 1, N(b) = 1. 

Q.E.D. 

4. AN EXAMPLE 

This section works out a simple example, to serve as an antidote to the 
abstractness of the previous section and an introduction to the comparative 
statics questions we shall ask in the next section. In the example, F(m) is uniform 
(on [0, 1]), Us(y,m, b) - (y - (m + b))2, where b > 0 without loss of general- 
ity, and UR(y, m) - (y - M)2. These specifications satisfy all of our main- 
tained assumptions, and have a convenient certainty-equivalence property. 

Consider the conditions that characterize a partition equilibrium of size N. 
Letting a denote the partition as before, we can compute 

y(iai, = .a 
X 

a /1^2 i :- 0r .. N - 
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The arbitrage condition (A) specializes to 

(20) -a( a12 + - b) b( i- a1 -a1-b) 

(i =1, . .. , N -1), 

which can only hold, given the monotonicity of a, if 

(21) ai+1 = 2ai-aai- + 4b (i= 1, ..., N-1). 

This second-order linear difference equation has a class of solutions parametrized 
by al (given that ao = 0): 

(22) a,=a,i+2i(i-l)b (i=1,...,N). 

N(b) in Theorem 1 is the largest positive integer i such that 2i(i - l)b < 1, which 
is easily shown to be 

(2 2 b 1+- 

(where <z> denotes the smallest integer greater than or equal to z). Thus, it is 
clear that the closer b approaches zero-the more nearly agents' interests 
coincide-the finer partition equilibria there can be. (We use "finer" informally, 
not in the sense of information theory.) As b -* oo, N(b) eventually falls to unity, 
and only the completely uninformative equilibrium remains; in fact, this occurs 
in our example as soon as b exceeds 1/4, as predicted by Corollary 1. 

It is natural to ask which of these equilibria is best for R and S. In general, the 
answer ex post will be different for different values of m; but ex ante, the answer 
is simple. If am2 denotes the residual variance of m R expects to have after hearing 
the equilibrium signal, it is easy to verify that R's and S's ex ante expected 
utilities are given by EUR = _ 2 and EUs = - (a2 + b2). These expressions 
reflect the facts that quadratic loss equals variance plus the square of bias and 
that the rational-expectations character of Bayesian Nash equilibrium eliminates 
all unconditional bias from R's interpretation of S's signal. R's desire to sety at 
a level b units lower than S would prefer appears as a bias from S's standpoint. 
As the expressions for EUR and EUs make clear, before S learns his type, he has 
an incentive to join with R in reducing variance as much as possible. 

Using (22) and substituting for the value of a,, (1 - 2N(N - I)b)/N, deter- 
mined by aN = 1 yields 

(23) ai = N+2bi(i-N) =0, * * N), 

and 

(24) ai-ai- I + 2b(2i-N-1). 
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It follows that 
N ai_1 +a1 2 1N 

(25) 12 dm Jai - a;,_ 
c q 1E3 

(25) 2 [ m- +2b(2i-N-1) - _ 
If N 71:~v.lI )-12N2 + 3 

For a given value of N, am2 is a convex function of N positive terms that sum to 
unity, so moving the terms closer together always reduces am2. Letting b approach 
zero clearly does this, and am2 is plainly minimized, for given N, when b = 0, since 
only then are all terms equalized. The expression in (25) can be used to show that 
for a given value of b, the partition equilibrium of size N(b) (the largest possible) 
minimizes a 2, and is therefore ex ante Pareto-superior to all other equilibria. 
Since we shall later prove a generalization of this, these calculations are not 
reproduced here. 

While it must be admitted that comparative statics is a risky business when 
there are multiple equilibria, we view these results as tending to confirm our 
intuition that equilibrium should involve more informative signaling the closer 
agents' interests. There are two reasons for this. First, for a partition of given size, 
letting b approach zero reduces the equilibrium variance in our example. And 
second, letting b approach zero, when it expands the set of sizes of partition 
equilibria that can exist, always does so in the direction of making possible 
equilibria with "finer" partitions, and therefore lower variances. Because F is 
fixed and R bases his choice of y on rational expectations, it is natural to take his 
expected utility as a measure of informativeness. In the quadratic case, EUR 
= - am2, so if jumps from one size of partition to another occur, if at all, only in 
the direction in which the set of equilibria expands, our intuition about compara- 
tive statics will be fully borne out. These conclusions suggest that it might be 
useful to seek more general conditions under which making preferences more 
similar shifts the set of equilibria in a more informative direction; we do this in 
the next section. 

But first, we would like to consider, in the relatively simple context of our 
example, whether complete agnosticism about which equilibrium will occur is 
justified, or if some can be ruled out by making further plausible assumptions. 
Two promising avenues of this type seem open to us. The first is to apply 
Schelling's [13, Chapter 4] idea of seeking equilibria that seem "prominent," in 
the hope that they might serve as "focal points" to help agents coordinate their 
strategy choices. It seems clear to us that in our model, the coarsest and the finest 
partition equilibria for a given value of b are prominent. The coarsest one, which 
is necessarily totally uninformative, does not seem very sensible to us (partly for 
efficiency reasons discussed below), so there remains a case for the equilibrium 
with N = N(b). 

The second avenue is to apply Harsanyi's [5, Chapter 7] suggestion that only 
equilibria that are not Pareto-inferior to other equilibria are likely to be observed. 
The idea here is that if the possibilities for enforcing agreements have been 
properly included in the specification of the game, only equilibria are really 
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enforceable. But within the set of equilibria, the usual ceteris paribus tendency 
for efficient outcomes to prevail in economic situations should remain. If agent S 
learns his type before he has an opportunity to reach an agreement with R about 
coordinating strategy choices, there is little to be gained from this approach. As 
we shall see shortly, different S-types have quite different desires about which 
equilibrium should occur, and it would therefore be quite difficult for an S who 
knew his type to negotiate about a selection from the equilibrium correspondence 
without revealing information about his type beyond that contained in his signal 
(and thereby vitiating our characterization of equilibrium). But if the selection 
agreement is made ex ante for a single play of the game, or if it is viewed as a 
convention evolved over repeated play against different opponents, a strong case 
can again be made, in the example, for the equilibrium with the finest partition: 
N = N(b). This leads to the comparative statics results we hoped to establish. 
The arguments of the next section show that this case for the finest partition 
equilibrium remains intact under a reasonable assumption that is satisfied in our 
example but goes considerably beyond it. We conclude that the problems 
inevitably associated with multiple equilibria are particularly mild here. 

Continuing the analysis of the example, consider the case b = 1/20. Then 
N(b) = <- 1/2 + (1/2)V4T1 > = 3, and there are three partition equilibria: K = 1, 
with ao(1) = 0 and al(1) = 1; K= 2, with ao(2) = 0, a1(2) = 2/5, and a2(2) = 1; 
and K = 3, with ao(3) = 0, al(3) = 2/15, a2(3) = 7/15, and a3(3) = 1. The reader 
can easily verify that for K = 1, the utility of an S of type m (who faces no 
uncertainty) is - ((9/20) - m)2; for K = 2, it is - ((3/20) - m)2 if m E [0,2/5) 
and -((13/20) - m)2 if m E (2/5, 1]; and for K = 3, it is -((1 /60) - m)2 if 
mrE[0,2/15), -((1/4)-rm)2 if mrE(2/15,7/15), and -((41/60)-rm)2 if m 
E (7/15, 1]. These imply, as Figure 1 shows, that K= 1 is best for m E (7/20, 

0.0 KX3 
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K I KI 
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11/20); K= 2 is best for m E (1/12,1/5) and m E (11/20,2/3); and K= 3 is 
best for m E [0,1/12), m E (1/5,7/20), and m E (2/3, 1]. Different S-types 
generally prefer different equilibria. 

Before moving on to the more general analysis of the next section, consider 
how the equilibrium payoffs of the S-types in the equilibria just characterized 
compare with the payoffs that would result from the truth, if it were believed 
byR. (The truth always yields R a payoff of zero.) The reader can verify that S's 
equilibrium payoff is as good or better than truth-telling, which yields him 
- b2= - 1/400, if and only if (barring ties): m E (2/5,1/2) when K = 1; 
m E (1/10, 1/5) or m E (3/5,7/10) when K = 2; and m E [0, 1/15), m E (1/5, 
3/10), or m E (19/30,11/15) when K = 3. It is therefore frequently true that a 
commitment to tell the truth would, if believed, pay off. (In the example, such 
commitments are always beneficial ex ante, since they raise EUs from - (b2 + 
a2) to - b2; we have been unable to verify whether this is true under more 
general conditions.) In our model, such commitments are impossible because 
they are unenforceable: R would interpret a true signal incorrectly because he is 
aware of the incentives for S to lie, and S cannot, within the confines of our 
game, remove these incentives. Even though he would like to tell the truth, he is 
forced to cut his losses by lying as the equilibrium in force dictates. This result is 
strongly reminiscent of the main result in Milgrom and Roberts [9]. 

5. COMPARATIVE STATICS 

It is natural to ask at this point to what extent the strong comparative statics 
results that hold in our example can be generalized beyond the specifications 
used in Section 4. While we cannot offer a complete answer to this question at 
present, this section provides more general sufficient conditions to establish that 
the results are not merely artifacts of our choice of example. 

Recall that V(ai1,ai,ai+1,b)_ Us(y(ai,ai+1),ai,b) - Us(y(ai1,ai),ai,b). It 
will be assumed throughout this section that Us(y, m, 0) _ UR(y, m), that b ? 0, 
and that Us3(-) > 0 everywhere. These assumptions guarantee that V4(-) > 0 and 
that y s(m, b) > y R(m) for all b > 0; they are satisfied in our examples. That 
Us(-) > 0 means that an increase in b shifts S's preferences away from R's for 
all values of m. For a fixed value of b, we shall call a sequence {ao, . . . , aN} a 
forward (backward) solution to (A) if V(ai -1, ai, ai+ 1, b) = 0 for 0 < i < N and 
ao < a, (ao > a,). We shall impose in addition the following monotonicity condi- 
tion on solutions of (A): 

(M) For a given value of b, if a' and a are two forward solutions of (A) with 
aO = ao and a, > a-, then ai> ai for all i> 2. 

At times it will be convenient to use the following equivalent form of (M): 

(M') For a given value of b, if a and a are two backward solutions of (A) with 
aO = ao and al > a-, then ai > ai for all i > 2. 
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Assumption (M) requires that for a given value of b, starting from any 
ao E [0, 1], the economically relevant solutions of (A) must all move up or down 
together. It therefore guarantees that the boundary-value problem defined by 
(A), (11), and (12) has at most one solution for fixed N, and thus enables us to 
compare partitions of fixed size as b varies. It is immediately clear from (22) that 
(M) is always satisfied in our example and that it is robust at least to small 
deviations from our example. Theorem 2 provides conditions on priors and 
preferences that imply (M): 

THEOREM 2: For a given value of b, if U2s(y, a, b) + Us(y, a, b) is nondecreasing 
in y and fa U/(y, m)f(m) dm + U1R(y, a)f(a) is nonincreasing in a, then all solu- 
tions to (A) satisfy condition (M). 

PROOF: Let ao E [0, 1) be given. To study how solutions to (A) change when 
the initial conditions vary, we specify yo > y R(ao). Let a-{ ao,... , aN } and 
Y-{YO YO YN} be the sequences that satisfy 

(26) fai+iU (yi,m)f(m)dm= O (i O, ... N-1), 

and 

(27) Us(yi, ai, b)- Us(y 1, ai, b)=O? (i= 1,*, N-1). 

Given ai, (26) determines ai +1 as a function of yi; given yi - 1, (27) determines yi as 
a function of ai. Totally differentiating (26) with respect to yi and (27) with 
respect to ai yields 

(28) fai+ i uR (yi ,m)f(m) dm 

-UR(yi, ai+ 1)f(ai+ )vi - UR(yi, ai)f(ai)wi- 
I 

(i =O,~...,9N -1), 

and 

(29) Us(yi, ai, b) - U2(yi- 1, ai, b) =Us(yi- 1, ai, b)vi_1 - Us(yi, ai, b)wi 

(i = ,. N -1), 

where vi _ dai+I/dyi (i = O, ... , N - 1), wO1 0, and wi dyi/dai (i = 1, 
.. , N - 1). For fixed ao, an initial specification of yo determines 

vo= a , UR (yo , m)f(m) dm/ UiR(y0, a,l(a ) 

and then (28) and (29) determine vi and wi for i = 1, . .. , N - 1. Since dai+ I/daI 
is given by IIJ 1wjvj, to prove the Theorem it suffices to show that wi > 1 and 
vi >Ifori= 1,. . .,N-1. 
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First, vo 2 1, since 

(30) Sa, UR (yo m)f(m) dm Ja, UR 1(yo m)f(m)dm 

+ faoU(yo ,m)f(m) dm 

? UR(yo, al)f(al) - U(y0, ao)f(ao) 

? UR (y0, alfflal) > OX 

The first inequality in (30) follows by hypothesis, since a, > ao, while the second 
and third follow from (26), since URl(_) < 0, UR2(.) > 0, and a, > ao. The proof 
now follows by induction, for if vi_ 1 1 then wi 2 1 by (29), the fact that 
yi > yi- 1, Lemma 2, and the hypothesis that Us(y, a, b) + Uls(y, a, b) is nonde- 
creasing in y. If wi 2 1, then vi > 1 follows by a similar argument from (28). 

Q.E.D. 

REMARKS: The conditions of Theorem 2 are met by our example. They also 
hold for more general specifications. For example, if F(m) is uniform (on [0, 1]) 
and, for i = R, S, U'(*) depends on y and m only through y - m (that is, if there 
exist concave functions Ui such that Us(y,m, b) -US(y - m,b) and UR(y, m) 
-UR(y- iM)), then the functions required by the hypotheses of Theorem 2 to 
be nondecreasing and nonincreasing are both constant. Thus, (M) is guaranteed 
to hold if, after m is rescaled to make F(m) uniform (which can be done without 
affecting the signs of the U'1(.) and UlI2( )), each player's preferences shift 
uniformly with m. It is also clear from the proof that the hypotheses of Theorem 
2 are significantly stronger than (M): the proof established that an increase in a, 
leads to larger increases in all subsequent ai, but all that (M) really requires is 
that all of the subsequent ai increase. Since (M) is, in turn, only a sufficient 
condition for the comparative statics results that follow, the hypotheses of 
Theorem 2 are quite far from being necessary for the comparative statics results 
to hold. 

We shall now pause to establish a few useful lemmas. 

LEMMA 3: For a given value of b, if 1 < N < N(b), there is exactly one partition 
equilibrium of size N. Further, if a(N, b) and a(N', b) are two equilibrium partitions 
for the same value of b, and if N' = N + 1, then ai- 1(N, b) < ai(N', b) < ai(N, b) 
for all i= 1, . . ., N. 

PROOF: The first statement is an immediate consequence of Theorem 1 and 
assumption (M). That ai(N', b) < ai(N, b) follows because if ai(N', b) 2 ai(N, b) 
for some i = 1, . .. , N, then a1(N', b) 2 aI(N,b) by (M). This leads to a contra- 
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diction of aN,(N', b) = aN(N, b) = 1. That ai -(N, b) < ai(N', b) follows from 
(M') by a similar argument. Q.E.D. 

Lemma 4 says that if two partial partitions have the same endpoints, the 
partition associated with agents' preferences closer together begins with larger 
steps. This follows because the rate of increase of step size increases as prefer- 
ences diverge. That is, if ai_- < ai are fixed and b > b', then whenever ail I(b) 
and ai+ I(b') > ai satisfy 

V(a- 1' a1 , a1+l I(b), b) = V(a- 1, ai , ai + I(b ), b) = 0, 

then ai+ I(b) > ai+ I(b'). 

LEMMA 4: If a(K, b) and a(K, b') are two partial partitions of length K satis- 
fying (A) with b' < b, and ao(K, b) = ao(K, b') = 0, then aK(K, b) = aK(K, b') 
implies that ai(K, b) < ai(K, b') for all i = 1, . . . , K - 1. 

PROOF: The proof is by induction on K. For K = 1, the Lemma is vacuously 
true. Suppose that K > 1 and that the conclusion of the Lemma is true for all 
i = 1, ... , K- 1. Fix b > b', and let a(K, b) and a(K, b') be as in the statement 
of the Lemma. Suppose by way of contradiction that aj(K, b) ? aj(K, b') for 
somej such that 0 < j < K; suppose further thatj is the largest index less than K 
such that this inequality is satisfied, so that ai(K, b) < ai(K, b') for all i such that 
j < i < K. Let Xa (xa0,xaj, . .. , Xaj) be the partial partition that satisfies 
V(xai- ,xai,xai+i,b')=O for i = 1, . . . ,j-1 with xa0= 0 and XaI = x. Since 
aj(K, b') =aI(Kb' )a and, by assumption, aj(K, b) > aj(K, b'), it follows from (M) 
and the continuity of Xa in x that there is an x- > aI(K, b') such that aj(K, b) = Xaj 
and that Xaj ? ai(K, b') for 1 < i < j. Let xa =_. We can establish the following 
relationships: 

(31) V(dj1, aj(K, b), aj+ I(K, b), b) ? V(- 1, aj(K, b), aj+ I(K, b'), b) 

> V(d -,_,aj(K,b),aj+I(K,b'), ?) 

= V(ja- I_ l, a->,a+ i(K, bl),bl) 2 0. 

The first step follows because a>+ 1(K, b) < a>+ 1(K, b') and Us(y(aj(K, b), a), 

aj(K, b), b) is decreasing in a for a > aj+I (K, b) by Lemma 2; the second step 
follows because V(., b)> V(, b'); the third step follows because aj(K, b) = 

a->. To verify the final inequality first observe that Us(y(a>_ 1, a.), a, b') < 
Us(yR(a->),a-j,b'), since Us(y,a->,b') is increasing in y for y < ys(a-j,b) and 

y(a->_ l, a->) <KyR(a-1) <Ky S(a); this implies that either V(aj 1, -, a,b') > 0 and so 
V(d-> j, a->, a,) > 0 for all a E - 1] or there is a unique aj>+ I E (a>, 1] such that 
V(d - -j, a-j + 1, b') = 0 and V( 1,aj, a, b') ? 0 for a E [a->, a->+ I1. If a>j+ I exists, it 
follows from the construction of a- that a->+ 1 ? aj 1(K, b') > aj+ 1(K, b). On the 
other hand, since aj = aj(K, b), the induction hypothesis ensures that i-_ 1 
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? aj (K, b), and V(aj_ 1(K, b), aj(K, b), a>+ 1(K, b), b) = 0 by construction. But 
then Lemma 2 implies that V(j1, aj(K, b), a>+ 1(K, b), b) < 0, contradicting (31) 
and establishing the Lemma. Q.E.D. 

LEMMA 5: If a(K, b) and a(K, b') are two partial partitions of length K satisfying 
(A) with b > b' and ao(K, b) = ao(K, b') = 0, then aI(K, b) = aI(K, b') implies that 
ai(K,b) > ai(K,b') for all i = 2, ... , K. 

Lemma 5 is an immediate consequence of Lemma 4 and assumption (M). 
Therefore the proof is omitted. 

LEMMA 6: The maximum possible equilibrium partition size, N(b), is nonincreas- 
ing in b, the difference between agents' preferences. 

PROOF: Suppose b' < b. Let a(N(b), b) be a partition equilibrium of size N(b), 
and let a(N(b), b') be the partial partition satisfying (A) with a1(N(b), b') 
= a1(N(b), b). By Lemma 5, ii(N(b), b') < ai(N(b), b) for all i = 2, . .. , N(b). In 
particular, a(N(b), b') is at least of length N(b). It follows that N(b') 2 N(b). 

Q.E.D. 

We are now ready to generalize the comparative statics results of Section 4. 

THEOREM 3: For given preferences (i.e., b), R always strictly prefers equilibrium 
partitions with more steps (larger N's). 

REMARK: Since R bases his choice of y on rational expectations and F is fixed, 
the Theorem extends the argument of Section 4 that equilibria with more steps 
are, ceteris paribus, more informative. A similar comment applies to Theorem 4 
below, in connection with changes in b. 

PROOF: Fix b, and let a(N) be a partition equilibrium of size N < N(b). We 
shall argue that a(N) can be continuously deformed to the (unique) partition 
equilibrium of size N + 1, increasing the expected utility of R, denoted EUR, 

throughout the deformation. 
Let ax _ (aox,aIx, . .. , a1 + ) be the partition that satisfies (A) for i = 

2, .. ., N with ax = 0, ax = x, and a1+j = 1. If x = aN-l(N) then ax =0, and 
if x = aN(N + 1) then ax = a(N + 1) and (A) is satisfied for all i = 1, ... ,N. 
When x E [aN- (N), aN(N + 1)], which is a nondegenerate interval by Lemma 3, 
EUR(x) is strictly increasing in x. To see this, note first that V(c, ax, ax, b) 
7 0 for all c e[0, a] if xE[aN- (N), aN(N + 1)). This follows because 

(aN+ (N + 1), aN+I(N), . . ., aN+ (l), aN+ 1(0)) is a backward solution of (A) of 
length N + 1, and (M') guarantees that any other backward solution of (A), a, of 
length N + 1 with ao = 1 and al = x must satisfy x > aN+ 1(N). Moreover V(O, 
a,(N + 1), a2(N + 1), b) = 0 by the definition of a(N + 1), and hence - V(c, 
a,(N + 1), a2(N + 1), b) > 0 for all c E (0, aI(N + 1)] by Lemma 2. It follows 
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from the continuity of V with respect to x that 

(32) - V(c, ax, aa, b) _ Us(y(c, al), ax, b) - Us(y(a, ax), al Xb) > 0 

forall xE[aN-l(N),aN(N+ 1)) and cE[0,ala. 

Now EUR(x) is given by 

N+ 1 

(33) EUR(X) = E ajx UR(y(ax_ 1, ajx) m)f(m) dm 
j=1 9i 

Since y(ajx 1,ajx), defined in (9) as R's best response to a signal in the step 
[ajx 1,ajxI, maximizes the jth term in the sum and since a1+- 1, the Envelope 
Theorem yields 

dEUR(X) N dajxu 
(34) dx - f(ax) d [UR(y (ax, ajx), ajx) 

- uR(y(ajx, ajx+ 1), aj)]. 

Assumption (M) guarantees that dajx/dx > 0 for all] = 1, ... .,N, and 

(35) UR(y(aAx, ax) ax) - UR(y(ax Wax+ x) aX) 

? Us(y(ajx 1, ajx) ajx, b) - Us(y(ajx, aj+ ), ajx, b) 

(j= 1, ...N) 

The first inequality in (35) holds because y(ajx, ajx) <y(ajX, ax+) and Us ( .) 
> 0; the second inequality is an equality for j = 2, . .. , N by (A) and the 
definition of ax, and holds strictly for j = 1 by (32). This establishes the 
Theorem. Q.E.D. 

THEOREM 4: For a given number of steps (i.e., N), R always prefers thle 
equilibrium partition associated with more similar preferences (i.e., a smaller value 
of b). 

The proof of Theorem 4 is a straightforward application of Lemma 5 and an 
argument like that used to prove Theorem 3, and is therefore omitted. 

THEOREM 5: For given preferences (i.e., b), S always strictly prefers ex ante 
(that is, before learning his type) equilibrium partitions with more steps (larger N's). 

PROOF: Maintaining the notation used in the proof of Theorem 3, 

N+ 1 

(36) EUs(x) = f raj Us(y(ajx 1, ajx) m, b)f(m) dm. 
j=1 IJ-1 
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It follows that 

dEUS(X) N dax 
(37) dx -2f(aJ) dx [Us(y(ajx A,ajx),ajx,b) 

- Us(y(ajx , aj+ 1) ajx, b)] 

N+ I 
fd- 

(aj , a 

+ E d(a J) raxU(y(ajx 1,ajx),m,b)f(m)dm. 

The first term on the right-hand side of (37) is positive by (A), (32), and the 
definition of ax. The second term is nonnegative since dy(ajx , ajx)/dx > 0 by 
(M), and the integral expressions are all nonnegative by our assumption that 
Us3(-) > 0 and by the first-order conditions that determine R's optimal choice of 
they(axI, ajx). Q.E.D. 

6. CONCLUSION 

This paper represents an attempt to characterize rational behavior in 
interactive two-person situations where direct communication between agents is a 
possibility. While we have considered explicitly only a small subset of the 
universe of possible models with this property, our results can be generalized 
immediately beyond the confines of our model in several directions. These results 
hint that there may be a good case for presuming that direct communication is 
more likely to play an important role, the more closely related are agents' goals. 
Other interesting conclusions suggested by our theory are that perfect communi- 
cation is not to be expected in general unless agents' interests completely 
coincide, and that once interests diverge by a given, "finite" amount, only no 
communication is consistent with rational behavior. 

Some worthwhile extensions of the model are suggested by the fact that the 
structure of our model interacts with the rational-expectations character of our 
solution concept in such a way that concepts like lying, credibility, and credulity 
-all essential features of strategic communication-do not have fully satisfac- 
tory operational meanings within the model. Generalizations that would test the 
robustness of our results and help to remedy this defect include allowing lying to 
have costs for S, uncertain to R, in addition to those inherent in its effect on R's 
choice of action; allowing R to be uncertain about S's preferences, and therefore 
about his incentives to communicate truthfully; and allowing S to be uncertain 
about R's ability to check the accuracy of what he is told. 

University of California, San Diego 
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