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Abstract. We study a general equilibrium system where agents have heterogeneous beliefs concern-
ing realizations of possible outcomes. The actual outcomes feed back into beliefs thus creating a
complicated nonlinear system. Beliefs are updated via a genetic algorithm learning process which
we interpret as representing communication among agents in the economy. We are able to illustrate a
simple principle: genetic algorithms can be implemented so that they represent pure learning effects
(i.e., beliefs updating based on realizations of endogenous variables in an environment with hetero-
geneous beliefs). Agents optimally solve their maximization problem at each date given their beliefs
at each date. We report the results of a set of computational experiments in which we find that our
population of artificial adaptive agents is usually able to coordinate their beliefs so as to achieve the
Pareto superior rational expectations equilibrium of the model.
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1. Introduction

The rational expectations assumption has become a standard feature of gener-
al equilibrium economic theorizing. Many economists argue that while such an
assumption may seem extreme, it can be justified as the eventual outcome of a
(usually unspecified) learning process. This argument has led many researchers to
theorize as to how such a learning process might work and whether systems with
expectations so defined would actually converge to a rational expectations equilib-
rium. Some authors have begun to investigate general equilibrium learning models
based omenetic algorithmgswith largely promising resultsIn this paper we study
a general equilibrium system where agents have heterogeneous beliefs about the
future values of endogenous variables. These beliefs affect actual outcomes, which
in turn feed back into beliefs, creating a complicated nonlinear system. We use a
genetic algorithm to update agents’ beliefs. Our primary objective is to illustrate
how the modelling of such a system can be implemented without compromising
the standard economic assumption that agents optimize given their beliefs.

Such anillustration is interesting, in our view, because genetic algorithm learn-
ing can be implemented in two different ways. In the first method, agents are viewed
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aslearning how to optimizen the sense that they experiment with different values

of their choice variable(s) based on which values worked well for other agents in the
past. Most of the general equilibrium applications of genetic algorithms of which
we are aware use this first methdth the second method, agents are viewed as
learning how to forecastneaning that they select a value for their forecast variable
based on which values have worked well in the past, and then solve a maximization
problem to find the value of their choice variable given their fore¢agtth this
second method, the assumption that agents maximize utility is maintained. In this
paper we provide an example of this second method and discuss its strengths and
weaknesses.

In order to define an evolutionary approach to an individual agents’ problem in
the general equilibrium-homogeneous preferences environment that we consider, it
is necessary both to define how the agent views the future and how the agent choos-
es a value of the choice variable. In tearning how to optimizénplementation
of genetic algorithm learning, one assumes (implicitly or explicitly) that all agents
have the same view of the future, and that the genetic algorithm is used to assign
agents a value of the choice variable given the set of commonly held expectations.
Clearly, if all the agents optimized a common objective given these common expec-
tations, all agents would make the same decision and the heterogeneity on which the
genetic algorithm depends would be I6&ather than optimize, the agents simply
choose values of the choice variable according to the genetic algorithm assignment.
This method has been successfully applied in several recent papers. In this case,
however, the researcher is weakening both the assumption that agents have rational
expectations (expectations are updated adaptively, since rational expectations are
not well defined) as well as the assumption that agents optimize given their beliefs.
Nevertheless, once equilibrium is attained, beliefs and actions of all agents are
consistent with rational expectations and utility maximization.

In applying genetic algorithms to learning problems, many researchers might
want to relax the rational expectations assumption without relaxing the optimization
postulate. One reason for adopting such an approach is that model economies where
both assumptions hold tend to have multiple equilibria. It is not clear what an
individual agent with rational expectations should believe since there are multiple
outcomes that are consistent with equilibrium, and which one is ‘right’ depends
on what all the other agents believe. Achieving one of these equilibria requires a
certaincoordinationof beliefs among all of the agents in the population.

In the example of genetic algorithm learning that we present in this paper,
agents are viewed &sarning how to forecastAgents initially have heterogeneous
views of the future which they use to individually solve their common maximization
problem. The genetic algorithm is used only to update beliefs. Thus, in the example
we develop, the only departure from standard assumptions is that agents initially
have heterogeneous beliefs which they eventually learn to coordinate in order to
achieve an equilibrium outcome. We believe that this exercise is an especially
useful application of genetic algorithm learning, as it is applied to an area of
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economic modelling for which economists have the least knowledge: the formation
and evolution of expectations. The fact that expectations are easily modeled and
updated using a genetic algorithm is interesting in itself. Our example also helps
illustrate the fact that genetic algorithms provide us with a flexible tool that can be
used in many different ways.

The model we use is a two-period endowment overlapping generations economy
with fiat money. We outline the model in the next section. In Section 3 we describe
the model under learning, and in Section 4 we show how to apply a genetic
algorithm in a manner consistent with utility maximization. The final sections
display the results of some computational experiments and provide a summary of
the main findings.

2. The Model

Time ¢ is discrete with integet € (—oo0,00). Agents live for two periods and
seek to maximize utility over this two period horizon. The population of agents
alive at any date is fixed at 2x N where N is the number of agents in each
generation. There is a single perishable consumption good and a fixed supply of
fiat money. Agents are endowed with an amauntf the consumption good in the
first period of life, and an amount of the consumption good in the second period
of life, wherew; > wy > 0. In the first period of life, agents may choose to simply
consume their endowments, or they may choose to save a portion of their first
period endowment in order to augment consumption in the second period of life.
Since the consumption good is perishable, agents in this economy can save only
by trading a portion of their consumption good for fiat money. In the second period
of life, they can use any fiat money they acquired in the first period to purchase
amounts of the consumption good in excess of their second period endowment.
Each agent € [1, N] born at timet solves the following probler:

“max  U(c},¢4q) = Incy(t) +Incj(t + 1),
cp(t),ch (t+1)

subject to:
ci(t) + ¢t + 1)B'(t) < w1+ w2 (8),

wherecg(t + j) denotes consumption in periad- j by the agent born at time
t andg'(t) denotes agenits time ¢ forecast of the gross inflation factor between
datest andt + 1:

Fi[P(t +1)] = B(t)P(1),

whereP(t) denotes the timeprice of the consumption good in terms of fiat money,
andF"[P(t + 1)] is agent’s time ¢ forecast of the price of the consumption good
at timet + 1. This forecast can be formed in any number of ways. For the moment
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we consider the case where &ll agents have perfect foresight, in which case

F[P(t+1)] = P(t + 1) for all i, so thatgi(t) = ((t) = Pg(t)l) for all 4.
Combining the first order conditions with the budget constraint, one finds that

the first period consumption decision for allagents is given by:
; w
ci(t) == [\ + 6]

whereA = w1/wy. It follows that each agerits savings decision at timeis the
same and is given by:

si(t) = w1 — (1) = 5 [\ = B(1)]. (1)

Fiat money is introduced into this economy by a government that endures
forever. The government prints fiat money at each daite the amount)M ()
per capita. It uses this money to purchase a fixed, per capita amoointhe
consumption good in every period:

P(t)g = M(t) — M(t — 1). )

It is assumed that these government purchases do not yield agents any additional
utility. Note that while government purchases are exogenous, the evolution of the
nominal money supply is determined endogenously depending on the realization
of the price levelP(t) at each date. The price level realization depends, in turn,
on the forecast of the gross inflation factor. Thus, in this model the evolution of the
nominal money supply depends in part on the beliefs of the agents.

Since agents can save only by holding fiat money, the money market clear-
ing condition is that aggregate savings equals the aggregate stock of real money
balances at every date

N M (%)
si(t) = N——. 3)

The explicit introduction of unsecured debt — in our case, the fiat money printed
by the government — serves to ensure that Walras’ Law holds for this ecdhomy.
Therefore, by Walras’ Law, market clearing in the money market implies market
clearing in the consumption good market as well.

Substituting Equations (1)—(2) into (3) and rearranging, one obtains the follow-
ing first order difference equation i#(¢):

9 __ X
w2 Bt—1)
Equation (4) has two stationary equilibrium solutions, given by

Bt) =1+ - (4)

2
1+A—§—gi\/(1+x—5—g) —a)
= 2 ,

BH,L
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wi=4, w2=1, g=.333, Steady States = 1.333 and 3.
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Figure 1 The model under perfect foresight.

whereg! denotes the higher of the two stationary values@hdenotes the lower
stationary value. These two solutions will be real valued if government purchases
of the consumption good are not too great. In particular, we require that

o<g<%[1+x—2\/§]. (5)

Given condition (5) and the restrictions on endowments that implyXhatl,
Equation (1) implies that both stationary solutiofgg, and ", involve positive
savings amounts, so that fiat money is positively valued at both stationary equilibria.
Condition (5) can then be interpreted as a restriction on the government’s ability
to finance all of its purchases through the printing of money while maintaining a
positive valued fiat currencit is easily established that the Pareto superior steady
state is the low inflation steady staf#;. Under the assumption of perfect foresight
this solution is locally unstable. The other steady staté, is locally stable in
the perfect foresight dynamics, and is an attractor for all initial values of the gross
inflation factor3(0) € (3%, )).8

The two stationary equilibria are illustrated in Figure 1, which depicts the
qualitative graph of Equation (4) for a particular case that will be studied later
in the paper. In the case illustratgd= 0.333, 3" = 1.333 ands” = 3.0. As
government expenditures per capiajncrease, the curve representing Equation
(4) shifts downward and the two stationary equilibrium valy#@sands, move
closer together.
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3. Learning

The assumption that agents have perfect foresight is useful for understanding the
dynamics of the modethen agents know the mod®le now relax the assumption

that agents have perfect foresight knowledge of future prices. Instead we assume
that all N agents who are in the first period of life at timhéorecast future prices
using the simple linear model:

F'[P(t+1)] = V' (1) P(1), (6)

whereb’(t) denotes the parameter that agert 1,2, ..., N of generationt uses

to forecast next period’s price. While aN agents use the same specification
(6) for their forecast model, each agent may hawkffarent beliefregarding the
appropriate value of the unknown parameéteWe further restrict agent’s beliefs
regarding the parameteto fall in the interval:

0<bi(t) <\, Vi, t.

The lower bound ensures that price forecasts are always nonnegative. The upper
bound ofA represents the highest inflation factor that agents would need to forecast
in order to achieve a feasible equilibrium. From Equation (1) we see that inflation
forecasts in excess afimply that the agent’s optimal savings decision is negative,
that is, the agent would like to borrow from another agent in the ‘consumption
loan’” market. However, for simplicity, we have chosen to rule out the possibility
of borrowing by agent8 Thus inflation forecasts that are equal to or exceedll
all result in the same consumption allocation, namely that agents save nothing and
simply consume their endowments. Later in the paper, we consider an example
economy where the domain for inflation forecasts is enlarged to include forecasts
that may exceed the value &f

Each agent uses their individual forecast of future inflation to solve the con-
strained maximization problem given in the previous section. The more accurate
the agent’s forecast, the higher is the agent’s utility. Therefore, it is in the agent’s
interest to approximate the ‘true’ value of the unknown paranieter closely as
possible. Of course, while agents are learning, this ‘true’ value for the gross inflation
factor will depend on all agents’ beliefs, and will thereforetioee-varying

We stress that the specification for the agent’s forecast model (6) is consistent
with the actual law of motion for pricewhen agents have perfect foresighhe
consistency of the agent’s forecast model with the actual law of motion enables us
to examine whether or not agents can learn the true model. Agents wiltbave
dinated belief®r, alternativelywill have converged upon a stationary equilibrium
if bL(t) = 0(t) = ... =bN(t) = B(t) = P(t + 1)/ P(t), thatis, if all agents have
identical forecast models, and their forecasts are always correct.

Of course, with this specification, forecast models differ only slightly across
agents. One could easily design a more complicated example where the set of
forecast models varied to a much greater dedfe@ur intention in this paper,
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however, is simply to illustrate an alternative approach to genetic algorithm learning
that maintains the assumption that agents optimize given their beliefs.

4. The Evolution of Beliefs

We now introduce the genetic algorithm which we use to determine the evolution
of the parameter® (¢) over time. We first describe how forecast models are coded
as binary strings and then we illustrate how the genetic operators of the genetic
algorithm are used to update agents’ beliefs.

4.1. GODING OFBELIEFS

At every moment in time, there are two generations &f agents alive in the
population. The first generation is the current ‘young’ generation (agents in the
first period of life) while the second generation is the current ‘old’ population
(agents in the second period of life). Each member of each generation may initially
have a different belief about the paramédtemheir belief as to the true value of
this parameter — their ‘model’ — is encoded in a bit string of finite ledgth the
first period,t = 1, N ¢-bit strings are chosen randomly for each generation. These
bit strings are sufficient to completely characterize each agent’s consumption and
savings behavior as we shall now demonstrate.

Let the bit string for agentbe given by:

(ai1(t), aia(t), ..., a;p(t)) Whereaij (t) € {0,1}.

The agent’s bit string can be decoded to a base 10 integer using the formula:
Z .
di(t) =Y ai(t) - 279,
j=1

To calculate agents parameter estimaté’(t), we take the value of;(¢) and
divide it by the maximum possible decoded valiigix = Zﬁzl 2¢=5. Theresultis
avalue in the intervdD, 1]. This fraction is then multiplied by the maximum gross
inflation factor that the agent would need to forecast, consistent with equilibrium,
which is given by the value of the parameteHence, each agent’s value fé(t)

is determined according to the formula:

b’i (t) . dz (t)

 dmax

A

Once a value fob’(t) is determined, the agent uses this value to forecast next
period’s priceP (¢ + 1). With this forecast the model is closed and the agent is able
to solve the maximization problem. The algorithm that we developed for this paper
actually solves this constrained maximization problem for each agent, given the
agent’s parameter estimate forThus agents have no difficulty in our framework
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in solving a constrained maximization problem. They are only uncertain as to the
correct value of the parameterThis uncertainty can be viewed as arising naturally

if we think of agents as initially uncertain about the beliefs of the other agents.
Initial uncertainty of this type may come about even if all agents understand well
the nature of their situation. Since there are multiple beliefs that are consistent with
equilibrium, the ‘correct’ belief at every date depends on the beliefs of all of the
other agents.

4.2. (ENETIC UPDATING OF BELIEFS

Agents of generatiohform forecasts of future prices only in periodwhen they
are members of the ‘young’ generation. Taetualinflation factor between dates
t andt + 1 depends on the aggregate savings decision of the subsequent young
generatiort + 1, and will not be revealed to members of generationtil these
agents are in the second period of their lives, that is, when they are members of
the ‘old’ generation. Thus, the success or failure of a particular forecast cannot be
immediately ascertained.

The genetic updating of beliefs proceeds as follows. The first step is to calculate
aggregate savings by the young generation born atttifikis is done by solving
each young agent’s maximization problem, conditional on that agent’s belief, and
obtaining an individual savings amouw{t). Aggregate savings is then given by:

N
S(t) = si(t).
i=1
Using this value for aggregate savings in Equation (3), and using Equation (2) to
substitute out for real money balances, we have that the new, realized inflation
factor3(t — 1) is given by:

_P() S(E-1)
S G VRO )

The value of3(t—1) depends on aggregate savings at thiawed attime —1, as well

as on the value of per capita government purchas¥sOnces(t — 1) is known, it

is possible to evaluate the forecasts made by generatidnAlternatively, one can
now calculate thectual lifetime utility achieved by each member of generation
t — 1. These lifetime utility values will be used in the first step of the genetic
algorithm.

The genetic algorithm is used to model how the next generation’s beliefs evolve.
The first step in the genetic algorithm rieproductionbased on relative fithess
(i.e. natural selection). Here we use a simple tournament selection method. Two
members (bit strings) of the most recent old generation alive at timel are
selected at random and their lifetime utility values are compared. Comparison of
lifetime utility values is equivalent to assessing how close each of these two agents
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came to correctly forecasting actual inflation, since the two agent’s forecast rules
were used to solve the same utility maximization problem. The bit string of the
old agent with the highest lifetime utility value (the closest forecast) is copied and
placed in the population of ‘newborn’ agents. This tournament selection process
is repeatedV times so as to create a population 8fnewborn bit strings. We
stress that it is forecast models that are being copied. These forecast models have
been shown to be relatively more successful than other forecast models used by
members of generatian— 1.

The next step in the genetic algorithm is the application of the crossover and
mutation operators. In addition to these two standard genetic operators, we have
augmented our genetic algorithm with an elitist selection operator that we will refer
to as theelection operatoffollowing Arifovic (1994). We view all three of these
operators as describing a process by which the ‘newborn’ generation (the product of
the reproduction operator) experiments with ‘alternative forecast models’ before
deciding upon the forecast model they will actually use when they are ‘born’
into next period’s young generation. The ‘alternative forecast models’ are created
through the crossover and mutation operators.

The crossover operator is applied to Allstrings in the newborn population.
First, theN newborn strings are randomly paired. Then, for each pair of strings, the
crossover operation is performed with some probability> 0; with probability
1—p°crossoveris not performed on the pair. If crossoveris to be performed, the pair
of newborn strings are cut at a randomly chosen integer pojtt én- 1]. All bits
to the right of the cut point are then swapped and the two strings are recombined.
The resultis two new strings that share bits of the genetic material that made up the
original two newborn strings. Following application of the crossover operator the
resulting strings are subjected to the mutation operator. Every bitiM bitstrings
is subject to being mutated. With probabilit§f > 0 each bita;;(t), is changed to
the value k- a;;(t); with probability 1— p™, the bit remains unchanged. The result
of the crossover and mutation operators is a séX @liternative forecast models.

Following application of the crossover and mutation operatorsytinewborns
must decide whether they want to adopt any of the alternative forecast models as
their own. In order to make this decision, the newborns consider how well the
alternative forecast modelgould have performedad these models been used in
the recent past. The alternative forecast models are first decoded and then used
to obtain an inflation forecast. The utility maximization problem is then solved,
given this forecast. Utility is evaluated using the most recent actual inflation rate
B(t — 1), and a lifetime (expected) utility value is calculated for each alternative
forecast model. Once this process is complete elkeetionoperator determines
how newborn agents choose between the string (model) they have inherited and
the alternative string (model) they have ‘created’.

Pairs of newborn agents are matched with their associated alternatives. The
election operator then chooses the two forecast models (out of four) that yielded
the highest lifetime utility from among the two newborns and the two alternatives.
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The two ‘winners’ become the forecast models used by the two members of the
newborn generation; the ‘losers’ are discardéd@he election operator is applied
N/2 times so as to obtain a newborn generatioiVaigents:

Once the strings of the newborn generation have been chosen, time changes to
the next period{ + 1, and the population of agents is aged appropriately. Agents
who were born at time¢ — 1, and who were members of the old generation at
time ¢, cease to exist. Agents who were born at tinad who were members of
the young generation at timtenow become members of the old generation. The
newborn generation is the new young generation ‘born’ at timel. The process
described in this section is then repeated again, beginning with the calculation of a
new value for aggregate saving&; + 1).

Our genetic algorithm learning system generates a sequence of gross inflation
factors, a sequence @f-string generations, and a sequence of sef§ éérecast
errors. We allow the system to evolve until the following convergence criteria are
met. First, we require that inflation is at a steady state level predicted by the model
under perfect foresight; second, all strings within the most recent generation must
be identical; and third, the most recent two sets of forecast errors must all be equal
to zero up to a predefined tolerance. If these criteria were not met after 1,000
iterations, the process was terminated.

4.3. REMARKS ON INTERPRETATION

We prefer to think of the agents in this economy as choosif@ecast model

This forecast model is then used to predict future prices and hence future gross
inflation factors. Thus, in principle it idifferent forecast modekhat agents are
experimenting with, not different beliefs about future inflation. However, in the
simple application that we consider here, it turns out that the forecast model
parameter valu# (¢) that agents are learning about is equivalent to their individual
forecast of gross inflation. As we have previously noted, we chose this forecast
model specification in order to keep our illustration simple. One can easily imagine
a different environment where agents considered a more complicated set of forecast
models with more than one parameter value, and in such cases, there would no
longer be a one-to-one mapping from parameter values to forecast Values.

We note that the election operator implies that newborn agents are capable of
assessing the relative performance of different forecast models. Given this ability,
one might wonder why all newborn agents don’t simply chdbséorecast model
that yielded the highestlifetime fithess value in the most recent past. In our example
economy this would amount to all newborn agents setting the parametgpral
to last period’s gross inflation factgt, the standard against which all forecast
models are assessed. One reason that agents might not behave in this manner is
that the economy is not initially in a steady state (and there is no guarantee that it
will necessarily ever achieve a steady state). Prior to the achievement of a steady
state, the actual inflation factor will not remain constant but will instead vary from
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one period to the next. If agents recognize the time-varying nature of the inflation
factor during the transition to a steady state then they may rationally choose to
use forecast models that differ from those that worked best in the previous period.
Thus, during the transition to a steady state it may not make sense for agents to
simply set the parametérequal to the previous period’s realized inflation factor,

[, even though the previoys is used by newborn agents to assess the lifetime
utility they might expect to obtain from each forecast model.

We also stress that we do not need to think of the model as sets of agents
actually passing along genetic information via a biological process. Instead, we
might view new agents coming into the model as new entrants to the workforce.
They communicate with other agents concerning possible forecast models for future
inflation, and take actions based on the forecast model they adopt. Thus, agents
can be viewed as exchanging ideas about the best way to forecast the future. The
reproduction operator ensures that the better ideas from the older generation are
adopted by the younger generation. The crossover and mutation operators allow
the agents to experiment with alternative forecasts. The election operator ensures
that agents are not forced to adopt any ‘bad ideas’.

5. Parameterization and Results

Our results are intended to illustrate dearning how to forecasmplementation
of genetic algorithm learning, and should be regarded as suggestive rather than an
exhaustive study of this interpretation of genetic algorithm learning. We begin with
our choice of parameter values for the genetic algorithm aspect of the model. In all
of our simulations, we chose to set a high rate of crosspvet, 1, and a relatively
low rate of mutationp™ = 0.033. The high probability of crossover is possible
because of the election operator: if agents are allowed to discard ‘bad ideas’, there
is no harm in experimenting extensively. We chose to consider populations of two
different sizes)N = 30 andN = 60. These parameter values all fall within the
ranges recommended in the genetic algorithm literdftite. addition, we chose
two different values for the length of the agent’s bit stridg= 4, and/ = 8.
When/ = 4, agents choose from amonfy2 1 or 15 different parameter values
for b. When/ = 8, a similar calculation reveals that agents choose from among
255 different parameter values fr

We also had to chose values for a number of parameters relating to the overlap-
ping generations economy. We chose to use the same endowment amounts in all
simulationsw; = 4 andw, = 1. We considered two different values for per capita
government purchaseg—= 0.333, andy = 0.45. The principle advantage to con-
sidering two different levels fog is that the two steady state equilibria are moved
closer together ag increases. In particular, when= 0.333, the two stationary
values for inflation argg” = 1.333 and3” = 3.0. Wheng is increased to @5,
these two values change® = 1.6 andg” = 2.5.
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5.1. MAIN FINDINGS AND INTERPRETATION

Our main result is that, in almost all of the computational experiments that we
conducted, the algorithm satisfied our criterion for convergence to the low inflation
stationary equilibriumg”, of the model within the allotted 1,000 iterations. In
some replications of the last experiment reported below, convergence failed to
obtain within 1,000 iterations.

The genetic algorithm’s selection of the low inflation equilibrium stands in con-
trast to the stability properties of the model under the perfect foresight assumption.
Recall from our earlier discussion that under perfect foresight, it ifitpeinfla-
tion stationary equilibriumga?, that is the attractor for all initial values of inflation
in the interval B~, \).

However, the genetic algorithm’s selection of thes inflation stationary equi-
librium is in accord with the predictions of a number of studies that replace the
perfect foresight assumption in the overlapping generations economy with some
kind of adaptive expectations scheme. Lucas (1986), for example, showed that if
agents forecast future prices using a simple past average of prices, the economy
would be locally convergent to the low inflation stationary equilibritinMarcet
and Sargent (1989) obtained a local stability result for the low inflation stationary
equilibrium when agents forecast future prices using a least squares autoregression
on past prices, but only for situations where the level of the government’s real
deficit, g, was low enough. Bullard (1994) analyzed, in a closely related model, the
bifurcation involved in moving from a money growth rate that was too low to one
that was too high under the Marcet and Sargent learning scheme. The picture that
emerges from these studies is that stability of the low inflation steady state of this
model under the adaptive learning schemes considered is at best local, and that for
some parameter configurations even local stability fails to obtain.

Arifovic (1995) studied genetic algorithm learning in the Marcet—Sargent model
using alearning how to optimiz@nplementation. She also found that the genetic
algorithm system she studied converged to the low inflation steady state even in
cases where least squares learning failed to converge.

While our computational experiments are only suggestive, we find that again,
the low inflation stationary equilibrium seems to be much more of an attractor
under our genetic algorithm learning scheme than it is under the perfect foresight
assumption. As in Arifovic (1995), the genetic algorithm learning approach has a
much more global flavor as compared with least squares learning, since the strings
representing agent’s forecast models in the genetic algorithm are initially randomly
generated and thus the economy may start very far away from equilibrium.

The explanation for the convergence results we obtain under genetic algorithm
learning differs from the explanations for convergence offered by Lucas and Marcet
and Sargent. Both Lucas and Marcet and Sargent showed that under their respective
adaptive learning schemes, the dynamics of the model environment were reversed,
so that the low inflation stationary equilibrium became the attractor, and the high
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inflation stationary equilibrium became unstable. The explanation for the con-
vergence of the genetic algorithm learning model to the low inflation stationary
equilibrium would seem to be that this equilibrium provides agents with the highest
lifetime utility (fitness) possible in this economy as it is the Pareto superior equilib-
rium of the model. The genetic learning algorithm conducts an extensive directed
search of the parameter space; the aim of this search is to find this global optimum.
Thus, one interpretation is that when convergence is obtained, it is because the
genetic algorithm has located the global optimum, the object of its search.

This explanation for the convergence of the genetic algorithm to the low inflation
steady state would be straightforward if agents were learning in a static environment
with a unique and unchanging global optimum. However, as noted previously,
agents are in a dynamic environment where their beliefs interact with outcomes,
and outcomes interact with agents’ beliefs, so that the landscape that is being
searched may be constantly changing. In such an environment, the low steady
state inflation factor will only yield the highest possible level of lifetime utility
if all agents have coordinated on forecasting this level of inflation. Prior to such
coordination, there may be other forecast rules that lead to higher levels of lifetime
utility. Thus a question remains as to how the genetic algorithm is able to achieve
coordination on the low inflation steady state in the dynamic environment that we
consider® In an effort to address this question, we have examined the evolution
of lifetime utility, or lifetime fitnesdor a couple of different forecast rules in a
number of our simulations. In particular, we have looked at the evolution of the
fitness value that would be assigned to a forecast model that always forecast the low
steady state inflation factor as well as the fitness value that would be assigned to
a forecast model that always forecast the high steady state inflation ¥awttth
the exception of the first few initial periods, we always find that the fitness value
of the low inflation steady state forecast is significantly greater than that of the
high inflation steady state forecast. Therefore, a fitness distinction between these
two stationary outcomes is nearly always present in the landscape that agents are
searching. We believe that the presence of this distinction in steady state fithess
levels is responsible for the convergence results that we are obtaining in most
parameterizations of our model.

Figure 2 serves to illustrate this fithess distinction. This figure depicts the
evolution of the hypothetical fithess value that would be attached to both the
low and the high steady state inflation forecasts from one of our computational
experiments wher&V = 30, g = 0.333 and/ = 8. The figure also shows the
evolution of the actuahveragefitness value from the population of 30 agents.
This illustration is typical of other simulations we have conducted. We see that
the fitness value associated with the low inflation steady state forecast is always
higher than the fithess value associated with the high inflation steady state forecast.
Notice that these fithess values vary over time due to the interaction of outcomes
and beliefs. Note further that tlaweragepopulation fithess value in this illustration
is initially intermediate to the low and high steady state inflation fitness values but
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30 Agents, Bitstring Length = 8, Steady States = 1.333 and 3.
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Figure 2 The evolution of fitness values.

very quickly moves toward the fitness level associated with the low inflation steady
state forecast and follows this level very closely until the convergence criteria have
been satisfied at the end of 34 iterations. We conclude from this exercise that there
is typically a distinct advantage, in terms of lifetime fitness, from a forecast model
that is consistent with the low inflation steady state, and that this advantage may
well explain the convergence results that we are obtaining.

We now turn to a discussion of some of the more specific results of the exper-
iments that we performed to determine the role played by the different parameter
values of the model.

5.2. EXPERIMENT1

In our first experiment, we sgt= 0.333,N = 30, and we considered two different
values for the length of agents’ bit strings= 4 and/ = 8. When/ = 4, the
population of 30 agents considers just 15 different valuesf@o the ratio of
different possible beliefs to agents is 0.5. WHea 8, the population of 30 agents
considers 255 different values férand the ratio of different possible beliefs to
agentsis 17 times higher, at 8.5. This experiment is intended to determine whether
the degree of heterogeneity is a factor in the speed with which the algorithm
converges to the low stationary inflation value. The results are reported in the
first column of Table I, which presents the mean and standard deviation of the
number of iterations to convergence from 100 computational experiments for each
parameterization. As the table reveals, increasing the heterogeneity of beliefs by
lengthening the bit string from 4 to 8 led to an increase in the mean number of
iterations it took the algorithm to converge, as well as an increase in the standard
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Table I. Convergence results for different GA parameterizations.

Length of Numberof N =30 N =60

bitstring  b'(t) values Mean Std. dev. Mean Std. dev.
4 15 11.24 3.47 10.43 1.46

8 255 50.49 54.96 2239 7.84

30 Agents, Bitstring Length=8, Steady States = 1.333 and 3.
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Figure 3 The evolution of inflation forecasts.

deviation. We conclude that the increase in the number of inflation forecasts that
agents might consider made it more difficult for these agents to coordinate on a
single forecast corresponding & .

Figure 3 depicts the inflation forecasts of 30 agents at each iteration from one of
the simulations conducted in Experiment 1 whéte 8 (the same experimentillus-
trated in Figure 2). We see that agents very quickly coordinate on a neighborhood
of the low inflation stationary equilibriun” = 1.333 within about 10 iterations;
however it takes agents a total of 34 iterations to actually reach consensus on the
same inflation forecast value.

5.3. EXPERIMENT2

In another experiment, we repeated Experiment 1, but increased the size of each
generation fromN = 30 to N = 60. The results are reported in the second
column of Table I1. WhenV is increased to 60, the ratio of different possible
forecasts to agentiecreasesand so it takes agents less time to find good forecasts
—samplingby the population has increased. Evidently, widea 4 and there are
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Table Il. Convergence results for different valuegof

Length of Number of ¢ = 0.333 g =045
bitstring  b'(t) values Mean Std. dev. Mean Std. dev.
4 15 11.24 3.47 13.19 7.90

only 15 inflation forecasts, the increase in the population size does not make much
difference. However, when there are more possible forecasts than agents, as when
¢ = 8, an increase in the population size leads to a considerable reduction in the
mean number of iterations to convergence.

5.4. EXPERIMENT3

In a third experiment we once again get 4 andN = 30 and examined the effect

of increasing the size of government expenditures fjcm0.333 tog = 0.45. This
increase iy moves the two stationary equilibria closer together. The hypothesis we
sought to test was whether the algorithm would have greater difficulty coordinating
on the low inflation stationary equilibrium when it was closer to the high inflation
stationary equilibrium. The mean number of iterations to convergence from 100
computational experiments for each valuegofs reported in Table II, which
repeats some information found in Table I. The increase ooes lead to an
increase in the mean number of iterations to convergence as well as in the standard
deviation, indicating that coordination is made more difficult when equilibria are
closer together.

5.5. EXPERIMENT4

In the final experiment that we report we get= 0.333, N = 30 and/ = 8,

and we considered whether our convergence results were robust to an increase in
the maximum inflation forecast that agents could make. Recall that the domain
of possible inflation forecasts in all previous experiments was the interval from
Oto\ = Z—; = 4. Note that this interval contains both of the stationary infla-
tion values in all of the experiments we considered. When young agents forecast
inflation factors above, their optimal consumption decision is to consume more
than their endowment in the first period, through borrowing. Consequently their
savings is negative. Since consumption loans from old agents to young agents are
not possible, and since we do not allow young agents to lend or borrow among
themselves, inflation forecasts abavweould simply result in the agent consuming

his endowment in both periods and saving nothing. Thus, inflation forecasts above
A have the same effect on aggregate savings as an inflation forecast egual to
Nevertheless, increasing the maximum forecast aboveplies that more agents

will initially choose to save zero, and this could affect our convergence results.
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Table Ill. Convergence results for different maximum inflation forecasts.

Length of Number of  Max forecast A Max forecast= A\ + 1
bitstring  b'(t) values Mean Std. dev. Mean Std. dev.
8 255 50.49 54.96 67.60 85.90

The experiment we considered was increasing the maximum inflation forecast
from A = 4to X + 1 = 5, (while maintaining the same endowment sequence,
w1 = 4 andwy, = 1). With £/ = 8, the number of possible inflation forecasts
remains fixed at 255. However, the number of inflation forecasts that imply a zero
savings decision has increased substantially. When the upper bound on inflation
forecasts is equal th = 4, only 1 out of 255 possible inflation forecasts will imply
a zero savings decision, but when the maximum inflation forecast is 5, there are
51 out of 255 inflation forecasts or 20% of all possible forecasts that will imply
a zero savings decision. The mean number of iterations to convergence from 100
computational experiments in which the maximum inflation forecasts\ amed
A+ 1 are reported in Table 3, which repeats some information from Table |.

In Table IIl, the mean and standard deviation of the number of iterations to
convergence in the final column are based on those simulations where convergence
was obtained. In 17 out of 100 replications for the case where the maximum
forecast was\ + 1, the system failed to meet our convergence criteria within the
allotted 1,000 iterations. Nevertheless, it is quite possible that the algorithm would
eventually have satisfied the convergence criterion if it were allowed to corffinue.
The weight of the evidence, then, is that it does take longer for the system to
converge in the case where the maximum forecastisl as opposed to the case
where the maximum forecastis We conclude from this exercise that researchers
will have to give some consideration to the set of possible forecast rules they allow
agents to choose from.

6. Summary

Economists have only recently begun to apply genetic algorithms to economic
problems. In this paper we have provided a simple illustration of an alternative
implementation of the genetic algorithm in an overlapping generations economy.
In typical applications, agents are viewedlaarning how to optimizewhile in

our alternative implementation, agents are viewel@¢ashing how to forecasihe
agents in our implementation optimize given their beliefs, so that the researcher
relaxes standard economic assumptions along only one dimension, proceeding
from homogeneous to heterogeneous beliefs. Our implementation may be viewed
as especially useful for economists who wish to study problems of coordination of
beliefs?!
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Our experimental findings are mainly illustrative. We found that agents can
indeed coordinate beliefs and learn the Pareto superior equilibrium of an overlap-
ping generations model. We have offered a possible explanation for this result.
Our results are consistent with the much more extensive results of Arifovic (1995),
who used dearning how to optimizanplementation of the genetic algorithm. Our
initial impression is that theearning how to forecastersion of genetic algorithm
learning converges faster than tearning how to optimizenplementation studied
by Arifovic (1995). To the extent this result holds up under further computational
experimentation, it would be consistent with results found in a series of two-period
overlapping generations experiments with human subjects conducted by Marimon
and Sunder (1994). These authors report that learning to make good forecasts
‘seems to come faster’ to their human subjects than does learning to solve a maxi-
mization problent? We also found that coordination was more difficult when the
number of inflation values considered by agents was higher, when the two sta-
tionary equilibria of the model were closer together, and when agents entertained
inflation rate forecasts outside the bounds of possible stationary equilibria.
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Notes

1. See, for example, Arifovic (1995, 1996), Arifovic, Bullard and Duffy (1997), Bullard and Duffy
(1998a, b), Routledge (1995) and Sargent (1993). For some other economic applications of
genetic algorithms see the special issu€ofmputational Economic¥ol. 8, No. 3 (1995), edited
by Chris Birchenhall. Goldberg (1989) and Mitchell (1996) provide excellent introductions to
the use of genetic algorithms.

2. Bullard and Duffy (1998a, b) are an exception.

3. Marimon and Sunder (1994) view the distinction betwleaming how to optimizandlearning
how to forecasas a key experimental design challenge in the context of setting up overlapping
generations experiments with human subjects.

4. In most learning models in a macroeconomic context, including many with least squares learn-
ing, there is, in effect, a representative agent who maximizes given expectations, and the
expectations are updated according to some fixed adaptive rule.

5. The choice of logarithmic preferences implies that consumption in both periods of life are
gross substitutes. This choice of preferences rules out the possibility that the limiting perfect
foresight dynamics are periodic or chaotic. For an analysis of genetic learning in a model where
consumption in the two periods of life are non-gross substitutes, see Bullard and Duffy (1998b).

6. This condition for Walras’ Law to hold is discussed in Pingle and Tesfatsion (1994). More
generally, as Wilson (1981) and others have shown, Walras’ Law may fail to hold in infinite
horizon overlapping generations economies.

7. The government’s purchase gfunits per capita of the consumption good at every date
is feasible since each agent alive at date endowed with some amount; or w; of the
consumption good and both of these amounts exgeesican be seen from condition (5).

8. For an analysis of the dynamics under a least squares learning scheme see Marcet and Sargent
(1989) and Bullard (1994).
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9. When all agents have the same endowments, preferences and beliefs, a consumption loan market
involving borrowing and lending among agents of the same generation cannot exist. However,
when agents are heterogeneous in some respect, e.g. when they have heterogeneous beliefs as we
assume here, then an active consumption loan market becomes possible. The implementation
of a consumption loan market in an economy where agents have heterogeneous beliefs is a
challenging task which we leave to future research.

10. See e.g. Bullard and Duffy (1998a).

11. Note thatwe mustalso ha{®(¢t) — Ng) > 0to ensure that the inflation factor is positive. Given
the restrictions og, and assuming perfect foresight, this condition will always be true. However,
under alearning assumption, such as GA learning, this condition may be violated. The algorithm
that we developed checks at each iteration to ensure that the conditfen— Ng) > O is
satisfied. If it is not, the algorithm is reinitialized and the simulation is begun anew.

12. Thus, in contrast to Arifovic (1994), it is the forecast models of agents that are discarded, rather
than the agents themselves.

13. The election operator is properly viewed as an elitist selection operator. Some type of elitist
selection is necessary to ensure that the genetic algorithm converges asymptotically to the global
optimum. See Rudolph (1994).

14. See Bullard and Duffy (1998a) for an example of such an environment.

15. Atissue is the following trade-off: while it is important to have a universal fitness criterion so
as to apply some selection pressure, it is also important to maintain some heterogeneity in the
population of candidate forecast models so as to ensure a good global search.

16. See, for instance, Grefenstette (1986) or Goldberg (1989).

17. The Lucas (1986) example would correspond to oufs=f0. Wheng # 0, using the average
of past prices as a learning rule will never suffice since the equilibrium price sequence would
be nonstationary.

18. Arifovic and Eaton (1995) have an application of genetic algorithm learning in a dynamic
environment in which, under certain parameterizations, the genetic algorithm fails to find a
Pareto dominant equilibrium, converging instead to a Pareto inferior equilibrium. Thus, there is
no guarantee that a genetic algorithm will always find the global optimum.

19. Note that these are hypothetical fitness values, associated with unchanging, steady state forecast
rules that are not necessarily present in the population of decision rules. If each of these rules
were actually in use in the population then the observed outcomes would be slightly altered.

20. In all instances of non-convergence the algorithm was observed to be rather close to the low
inflation stationary equilibrium. We speculate that convergence to the low stationary equilibrium
would have occurred if a mutation or two in a particular bit value had occurred and the correctly
mutated string had been randomly selected by the reproduction tournament.

21. Forexamples of genetic algorithm learning in other types of coordination problems, see Arifovic
and Eaton (1995) and Bullard and Duffy (1998b).

22. Marimon and Sunder (1994), p. 143.
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