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PROBABILITY LEARNING IN 1000 TRIALS'?

WARD EDWARDS

Engineering Psychology Laboratory, Institute of Science and Technology,
University of Michigan

This paper reports a simple two-
alternative noncontingent probability
learning experiment with an uncon-
ventional feature: each S made 1000
consecutive predictions, making pos-
sible very detailed analysis of re-
sponses which occurred after learning
was essentially completed.

Some abbreviations will be useful.
The S predicts either L or R; after
each prediction he observes either 1
orr. The probability that .S will make
prediction L on trial ¢+ 1 will be
called p;. The probability of 1 on
any trial is a constant for any given
S it will be called «. The occurrence
of a prediction will be called a re-
sponse; the occurrence of a display
of an event following a response will
be called an outcome. An outcome
follows each response; the nature of
the outcome is independent of the
nature of the response.

The interpretation of this experi-
ment will focus on three issues:

1. The probability maiching hypothesis.
The probability matching hypothesis
(PMH) asserts that the asymptotic
probability of choice, p, (P = lim py;
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it is assumed that this limit exists)
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equals m. It was originally proposed
by Grant, Hake, and Hornseth (1951),
is predicted by the Estes learning model
(Estes, 1950, 1957; Estes & Burke,
1953; Estes & Straughan, 1954) and
by the equal-alpha case of the Bush-
Mosteller learning model (Bush & Mos-
teller, 1955), and has been supported by
a number of experiments, though not by
others.

2. The extreme-asymptote generaliza-
tion. In 1956 1 reported an experiment
which argued against PMH and in favor
of a theory about p, which I call the
extreme-asymptote generalization. That
generalization asserts that p, is more
extreme than w, and as the absolute
value of the difference between 7 and
0.5 increases the difference between p,
and m also increases until p, be-
comes 1 or 0. As stated, this hypothesis
makes only ordinal predictions; a way
of making it yield ratio scale predictions
(and also of applying it to situations in
which amount of payoff is varied) is
discussed in Edwards (1956) and applied
later in this paper.

3. Sequential dependencies, the gamb-
bler's fallacy, and path independence,
Stochastic learning theories often assume
that the effects of events prior to a given
trial are summarized in a set of prob-
abilities for the responses available on
that trial; this assumption is known
as the path independence assumption
(for a better definition, see Bush &
Mosteller, 1955, p. 17). Contradictory
to this is the common observation that if
a flipped coin comes up heads eight or
nine times in a row, S is likely to decide
that tails is ““due’” and so predict or bet
on it on the next toss. This and similar
sequential effects have been called the
gambler's fallacy ; they have beer demon-
strated experimentally by many Es.
Other hypotheses about sequential ef-
fects in probability learning have also
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been proposed, with varying degrees of
empirical support.

Adequate study of each of these
issues depends on long experiments;
the reasons why will be examined
in the discussion section. Both PMH
and sequential dependencies are harder
to examine at more extreme prob-
abilities than at less extreme ones.
So this experiment used only the
probabilities 0.5, 0.6, and 0.7 and
their complements.

METHOD

Apparatus.—Each S was given a tray
containing 1?2 IBM mark sense multiple
choice answer sheets. On top of the stack
of sheets was a covering board with 80 pairs
of holes in it, each hole filled by an ordinary
cork, Each hole exposed two adjacent spaces
where a mark could be made on the answer
sheet. The mark sense sheets were prepared
in advance by filling in one of the two mark
spaces under the right-hand hole of each
pair.

Subjects—The Ss were 120 basic airmen,
trainees at Lackland Air Force Base. They
were unselected except that no S who fell
in Category 4 (the lowest category) of the
Armed Forces Qualification Test, a paper-
and-pencil test of general intelligence, was
used. But the population of basic airmen
includes relatively few college level men.
The Ss used in this experiment, therefore,
are selected from a population which has
almost no overlap with the college population
from which Ss have been selected for other
probability learning experiments, except
those by Neimark and Shuford (1959) and
Nicks (1959), who also used basic airmen.

Instructions—Each S was told to lift the
upper left hand cork, and to make-a mark in
either the left or the right space on the sheet
underneath it. A mark in, for instance, the
left space was a prediction that the left space
under the other cork of the pair would turn
out to be filled in. After making the mark,
he lifted the other member of the pair of
corks, and saw whether his prediction had
been correct or incorrect. After this, he
replaced both corks, lifted the cork immedi-
ately beneath the first one he had lifted, and
made his next prediction. When he finished
80 predictions, he removed the covering board,
put the finished answer sheet underneath the
stack, replaced the covering board, and con-
tinued making predictions. All Ss were
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instructed:; “Your purpose is to get as many
predictions correct as possible. You will not
be able to get all of them correct at any time
during the test. Thereis no pattern or system
you can use which would make it possible to
get all of your answers correct. But you will
find that you can improve your performance
in the test if you pay attention and think
what you are doing,”

Experimental design.—There were 12 groups
of 10 men each; each S made 1000 binary
predictions in one unbroken session, usually
lasting about 3 hr. The .Ss came in groups of
12; each S was arbitrarily assigned to one of
the experimental groups. Twelve Ss and E
sat at a long conference table; E monitored
continuously to make sure that all Ss fol-
lowed instructions and kept at the task.
No effort was made or needed to pace Ss.
Each S present at a given time was a member
of a different experimental group from all
others then present, so no S could profit
from looking at another S’s predictions,

Three basic probabilities were used: 0.5,
0.6, and 0.7. These numbers are the prob-
abilities that a prediction of left will be
correct. Sequences of 1000 trials embodying
these probabilities were prepared in two dif-
ferent ways, which this paper will call con-
strained and random. All constrained se-
quences were prepared as follows. First, the
expected number of occurrences of runs of
length 1, 2, ... n for each of the two
alternatives was calculated, up to a value of
# for which that expected number is less than
0.5. All numbers were rounded off to integers,
The runs of 1 were put in one box, the runs
of r were put in another, and runs were drawn
at random from the two boxes alternately
until both were empty. This procedure makes
not only run lengths but also conditional
probabilities (based on sequences which are
short compared with #) come out at their
expected values. The random sequences were
simply chosen from a table of random num-
bers in accordance with their probabilities,
with no constraints at all.

Three probabilities and two ways of pre-
paring sequences require six sequences. Six
more sequences, each a mirror image of one
of the six original sequences, were also used,
The mirror image sequences were prepared by
substituting an [ for each r and an r for each
1. One of these 12 sequences was adminis-
tered to each of the groups; all Ss in a group
got the same sequence.

REsurts

Asymptotic probabilities.—Figure 1
shows mean relative frequencies of
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choice by blocks of trials. Each data
point represents 40 binary choices
by each of 10 Ss, or 400 binary choices
in all. In each of the eight groups for
which the probability of reward is
not 0.5 and so for which PMH and
the extreme-asymptote generalization
make different predictions, the results
support the extreme-asymptote gen-
eralization. Inspection of the 50-50
groups suggests that there is a bias in
favor of the R response (which is sur-
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prising, since for a right-handed S the
L response is a trifle easier to make),
but the bias is not large enough to
affect the finding.

Inspection of Fig. 1 indicates that
Ss tended to follow local changes in
the probability of reward. A local
increase in frequency of 1 events
produces a local increase in frequency
of L predictions, and similarly for
decreases. This effect is superim-
posed on the slower and larger changes

RANDOM

LI B A St S S S S S St B L B B S B B B N B S

90 07

.80

/b-ﬂ/\ ,\‘/p‘ A

.70
V’\y”\\l" Y \}{/ ¥

o———o MEAN RESPONSES
©0— = =0 MEAN OUTCOMES

60

FUUNR TR T T T T S T T |
LI N et Bt Mt Bt et

PROBABILITY OF OCCURRENCE OF LEFT

i } f—t

}
T T
50 0. 3 (MIRROR OF 07)

40

0.3 {(MIRROR OF 0 7)

A
[
LA A AN}

30

20F

e O RS e T o ST NS ST ST b,

2
/ \V\ s F\/;Q\/)‘\\ R 1N A
w YA y

A_Pyvan
AN AL A S A
[ \II

0’ 80 160 240 320 400 480 860 840 720 800 860

40 120 200 280 360 440 820 60Q 680 760 B4Q 920 1000}

"160_ 240 320 400 480 560 640 720 800 880 960
4071207205 580" 380 440 520° 800 Sa0Ten 845 228 B0

TRIALS IN 40-RESPONSE BLOCKS

Fi1G. 1,

Probability of left response in 40-trial blocks.
rectangle is the = for that group, as is also the thin horizontal line within each rectangle.

(The number at the top of each
Each

data point connected with solid lines is the relative frequency of prediction of left on a given

block of trials; each point is based on 400 binary choices.

Each point connected with dashed

lines is the relative frequency with which the left event actually occurred in that block of 40

trials.)



388

WARD EDWARDS

TABLE 1

PERCENTAGE OF PREDICTIONS OF LEFT ON LAST 80 TriaLs FOrR EacH S Not
IN A 50-50 GroUP

T =07 ™ =06 (Mirrors:r of 0(.)64Groups) (Mirror;r of 0(.)'73Grou ps)
Constrained Random Constrained Random Constrained Random Constrained [ Random
1009, 10097, 769 9197, 489, 499, 269, 269,

97 93 74 90 47 43 20 20
96 88 70 85 46 40 17 13
95 88 69 81 43 35 12 13
91 87 66 77 43 31 11 13
85 85 64 74 31 26 8 13
80 80 64 71 29 21 4 11
75 65 61 63 22 16 4 8
70 60 59 61 20 15 0 0
58 56 46 56 0 i1 0 0

Note.—The actual relative frequencies of outcomes in the last 80 trials deviated slightly from the theoretical

probabilities.

They were 0,73 for the 0.7 constrained group, 0.74 for the 0.7 random group, 0.61 for the 0.6 con-

strained and random groups, 0.28 for the 0.3 constrained group, 0.26 for the 0.3 random group, and 0.39 forthe 0.4

constrained and random groups.

If these rather than the theoretical probabilities are used in the nonparametric

test discussed in the text, no change in conclusions results,

in prediction with which PMH and
the extreme-asymptote generalization
are concerned.

Finally, inspection of Fig. 1 indi-
cates that the difference between con-
strained and random sequences is
relatively unimportant except for the
fact that constrained sequences come
out more nearly to the expected
number of I's and r's in each block of
trials, and so provide slightly less
scope for the probability following
phenomenon discussed above to be-
come visible.

A significance test for the difference
between the estimated p, and = is
desirable. Table 1 exhibits the per-
centage of choices of L on the last 80
trials for each S, omitting 50-50
groups. Only 16 Ss out of 80 have
estimated p,, equal to or less extreme
than #. If PMH were correct, at
least half the Ss should have estimated
e equal to or less extreme than .
The difference is significant beyond
the .0001 level. Table 1 also makes
it clear that the distribution of esti-
mated p, is not bimodal; indeed, it
looks relatively normal. That fact
permits the use of more sensitive

parametric tests of significance—but
the results of the nonparametric test
given above makes the use of more
sensitive tests unnecessary.

Since so many data were collected,
a number of the variables and inter-
actions not mentioned here were in
fact statistically significant; this dis-
cussion has dealt with all which are
believed to be also intelligible and
important. All subsequent statistics
will combine corresponding random
and constrained groups and will com-
bine all 50-50 groups. Each statistic
was calculated separately for each of
the 12 groups; in no case does the com-
bining average numbers or functions
which appeared dissimilar.

Sequential effects: Information anal-
ysis.—To study the determiners of
responses in a more specific way than
Fig. 1 permits, detailed examination
of sequences of responses and out-
comes is necessary. For this purpose,
multivariate information transmission
analysis (Garner & McGill, 1956;
McGill, 1954) is exceptionally con-
venient. The model underlying the
use of this statistic assumes stable
conditional probabilities; the analysis
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avoided basing calculations on chang-
ing overall probabilities by using only
the last 480 trials. Special attention
to the nonorthogonality of predictor
variables and to the clioice of proper
degrees of freedom for the Miller-
Madow (1954) bias correction and
significance test was necessary; for
a discussion of these issues and related
ones concerning the application of
information statistics to sequences of
responses, see Edwards (1954; in
press).

Figure 2 shows the effect of taking
increasingly remote predictor vari-
ables into account in predicting re-
sponses in the last 480 trials. (In all
information calculations, no differ-
ences worth noting existed between
original and mirror groups, so they
are combined in Fig. 2 and 3.) Note
that the y axis is the percentage
of information in the responses not
accounted for by the predictor varia-
bles considered. It is evident that
although increasing numbers of pre-
dictor variables improve predictions
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F1G. 2. Percentage of total response in-
formation unexplained by various predictor
variables. (The x axis is cumulative. At
Step 0, only Ssare used as predictor variables,
At Step 1, Ss and the immediately preceding
outcome are used. At Step 2, the variables
already listed and also the immediately
preceding response are used. At Step 3,
the variables already listed and also the second
preceding outcome are used. And so on.
Only the last 480 trials were used.)
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transmitted by preceding trials to the present
response. (The Ssand trials which intervene
between the predictor trial and the predicted
response are held constant, Only the last
480 trials were used.)

(amathematical necessity), the asymp-
totic level of predictive effectiveness
leaves about 759, of the response
information unexplained. If these
numbers were variances, this would
seem like a very large amount of
unexplained variance. But they are
not variances; they are ratios of bits
of information. Users of multi-
variate information transmission anal-
ysis always report large percentages of
unexplained response information; in
fact, experiments in which as much
as 259, of response information is
explained by predictor variables are
very rare (except in psychophysical
scaling). No formal discussion of
this common finding is known, but an
obvious hypothesis is that the loga-
rithmic nature of the information
measure accounts for this difference
between information and variance
analyses.

Figure 2 shows how much predic-
tion can be done, but does not show
how to do it. In order to get a better
idea about that, consider Fig, 3. It
shows the amount of information
(in bits, not a ratio) transmitted to
the present response by the pre-
ceding three trials (calculations for
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the second and third preceding trials
hold what happened in intervening
ones constant). Again calculations
are for the last 480 trials only. It is
apparent that the most information
is transmitted by the immediately
preceding trial, and lesser amounts
by trials prior to that. All amounts
of information in Fig. 3 are signifi-
cantly different from zero by the
Miller-Madow test (1954).

What is doing the transmitting
from each trial to the present re-
sponse? It could be responses, out-
comes, interactions between them,
or any combination of these three
factors. Unfortunately, the inter-
actions between responses and out-
comes are not directly interpretable
because of the nonorthogonality of
the predictor variables. Figure 2
is based on a definition of outcomes
as being 1 or r; call this noncon-
tingent coding. It would also be
possible to define outcomes as + or
— (meaning in agreement or disagree-
ment with the preceding prediction);
call this contingent coding. Further
analysis of the data using noncon-
tingent coding shows that almost all
information transmitted by a trial
is transmitted by its outcome; the
amount of information transmitted
by responses is trivial (though signifi-
cant; because of the large numbers
of responses involved, just about all
differences which are observable at
all are significant in this experiment).
The implication, a sensible one, is
that Ss pay little or no attention to
their own previous responses and
instead concentrate on the previous
set of outcomes in determining their
present response.

Of course, similar analysis applied
to contingently coded data shows
that almost all information trans-
mitted by a trial is transmitted by its
response; this is an inevitable conse-
quence of the fact that a 4 or — is
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TABLE 2

INFORMATION IN BiTs TRANSMITTED FROM
PrEVIOUS RESPONSE TO PRESENT RE-
SPONSE BY THREE METHODS OF
CALCULATION

Analysis
05 | 0.6 | 0.7

Intervening outcome ignored .024 | .040 | .016
Intervening outcome held
constant, noncontingent coding | .031 | .045 | .020
Intervening outcome held
constant, contingent coding .104 | 131 | 058

meaningless as a predictor variable
unless the preceding response which
defines it is also considered. So two
different methods of coding the data
lead to two different interpretations
of the results. A decision between
these interpretations would require
examination of the interactions, and
nonorthogonality rules out the obvi-
ous ways of doing so. But a stab at
it is available. If only the trial
immediately preceding a response is
considered, then the information trans-
mitted from the response and in-
formation transmitted from the out-
come should be orthogonal to each
other. The information ‘transmitted
from the response can be calculated
two different ways: with the effect
of the outcome partialled out, or with
the effect of the outcome uncontrolled.
Table 2 presents the results of these
two methods of calculation for each
method of coding. No substantial
difference between methods of calcu-
lation appears unless the method of
coding forces it to appear by making
the outcome variable taken by itself
meaningless. For that reason, this
paper used the noncontingent method
of coding, and will accept the con-
clusion that Ss are much more con-
cerned with previous outcomes than
with their own previous responses.
Conclusive resolution of the dilemma,
however, would require a three-
alternative experiment, in which case
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contingent and noncontingent coding
would not in general lead to the same
amounts of information transmission.

Seguential effects: Run analyses.—
The information statistics presented
above examine sequential effects in
a manner which assumes that the
extent of sequential dependency is
independent of the particular se-
quence considered. Clearly that as-
sumption can be only a first approxi-
mation. The literature suggests that
one kind of past history is especially
likely to lead to sequential effects:
homogeneous runs of previous out-
comes. Rather than examine such
runs by information methods, it is
easier to examine conditional prob-
abilities based on them directly.
Figure 4, again based on the last 480
trials only, shows the conditional
probability (multiplied by 100) that
L will be predicted given each possible
preceding homogeneous outcome run
of length eight or less. The data do
not permit these probabilities to be
estimated for longer runs with ac-
ceptable accuracy. An example may
make the interpretation of the x
axis easier. The value 4 on the right
run side of the x axis means, for
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F16. 4. Percentage of left responses fol-
lowing homogeneous outcome runs, (The x
axis indicates the number of left or right out-
comes included in the run for further ex-
planation, see text. Only the last 480 trials
were used.)
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Fi16. 5. Percentage of left responses fol-
lowing homogeneous outcome runs for 50-50
group Ss only. (The axes have the same
meaning as those in Fig. 4.)

example, that the points plotted above
it are conditional probabilities of pre-
dicting L given that the last five out-
comes preceding the prediction were
Irrrr. (Note that one actually knows
five preceding outcomes, not four,
since the outcome preceding a homo-
geneous outcome run of r must
necessarily be 1, and vice wversa.)
Figure 4 justifies the conclusion that
outcome runs of length up to four
certainly influence responses, and so
indicates that for at least some past
histories the extent of sequential
dependencies is longer into the past
than the information analysis taken
alone would suggest. But the nature
of the dependencies is that the longer
an outcome run gets, the more likely
S is to predict that outcome. What
happened to the gambler's fallacy?
Most experiments which have found
gambler's fallacies used fewer trials
than this one. Perhaps the gambler’s
fallacy is a phenomenon of early
trials and vanishes later. If so,
strictly speaking no run curves like
those in Fig. 4 are appropriate to use
in studying it during early trials,
while response probabilities are chang-
ing rapidly. But it is reasonable to
assume as a first approximation that
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at least for the 50-50 groups the over-
all probabilities are not changing
very fast, and so curves like those in
Fig. 4 can be based on early trials for
those groups. Figure 5 presents such
curves for Trials 1-200, 201-400,
and 401-1000 for all 50-50 Ss. A
small gambler’s fallacy, much smaller
than any previously reported, ap-
pears in the first 200 trials; there-
after the pattern of run effects sys-
tematically shifts in the direction
of those found in Fig. 4.

DiscussioN

Probability matching.—In 1956 1 re-
viewed all experiments relevant to a
narrow definition of PMH published
up to that time (Edwards, 1956, pp.
184-185). Only experimental groups
in which the two outcomes were mutually
exclusive and exhaustive, in which
successive outcomes were independent,
in which 7 was not 0, 0.5, or 1, and in
which S had had no previous experi-
mental experience with a different value
of m were considered. Of 11 groups
meeting these conditions, only 1 had
an estimated p, which was equal to or
less extreme than x. In the other 10
groups, P, was always more extreme
than . The differences were small, but
they were all in the same direction.

Of experiments containing relevant
groups published since then, those by
Gardner (1957), Cotton and Recht-
schaffen (1958), and Nicks (1959) are
inconsistent with PMH; those by Nei-
mark (1956), Engler (1958), Neimark
and Shuford (1959), and Rubinstein
(1959) support PMH. No probability
learning experiments (as here narrowly
defined) reviewed in 1956 or published
since then used more than 300 trials at a
fixed probability except those by Gard-
ner (1957), Cotton and Rechtschaffen
(1958), and Nicks (1959), all three of
which are inconsistent with PMH.
Figure 1 indicates that in this experi-
ment probabilities of choice were still
becoming more extreme at Trial 300 and
beyond. Longer experiments at fixed
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« values might perhaps have produced
fewer acceptances of PMH.

Why did PMH, at best dubiously sup-
ported by experimental data, achieve
such widespread acceptance as a well-
established truth? Three reasons seem
plausible. First, itis a good first approxi-
mation to the truth. It is more nearly
correct than the assertion that p, = 0.5
for any value of w, or that p, =1
whenever 7 is greater than 0.5. Further-
more, it is predicted by some (not all)
stochastic learning models, which them-
selves are good first approximations to
the truth. Secondly, few experiments
have run enough trials to obtain a
reasonable estimate of p,. Inclusion of
trials on which p, is still changing sub-
stantially as a function of ¢ in estimates
of p, will, of course, produce estimates
of p, which are less extreme than they
should be, and so come closer to sup-
porting PMH than they should. (The
use of cumulative relative frequency as
an estimator of P, as in Estes [1957],
will of course bias the estimates in favor
of PMH still more.) Finally, the custom
of obtaining an estimate of ., and testing
the null hypothesis that that estimate
is not significantly different from = is
widespread in the probability learning
literature (and was done in this paper).
Such a procedure constitutes attempting
to prove a null hypothesis; the smaller
the amount of data or the greater its
variability, the more likely it is that such
a procedure will “confirm” PMH. This
is why the small but consistent disagree-
ments with PMH revealed by most
probability learning experiments have
not been noticed.

The RELM rule.—The extreme-asymp-
tote generalization is not very specific.
The data from the previous experiment
and from this one are consistent with a
much more specific hypothesis called the
Relative Expected Loss Minimization
(RELM) rule (Edwards, 1956, pp. 182—
185). Thatrule includes but goes beyond
the extreme-asymptote generalization,
and is applicable to a wide variety of
experiments. For this kind of experi-
ment, the linear form of that rule pre-
dicts that p, = 0.5 + K(4w — 2), where
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K is a fitted constant greater than
0.25. The size of K presumably varies
with motivational and other character-
istics of the experimental design. A
least squares fit shows that for the data
obtained in this experiment K = 0.3935.

Sequential effects—The surprise in this
experiment is the weakness of the gam-
bler’s fallacy found, and its disappear-
ance in later trials. Nicks (1959),
Anderson (1960), and Anderson and
Whalen (1960) found much larger gam-
bler's fallacies in appropriate groups; in
fact, Anderson found gambler’s fallacy
effects even when his sequences were
designed so that the probability of an
outcome repetition was higher than it
would have been had successive out-
comes been independent. (Jarvik [1951]
also found large gambler’s fallacies, but
his experiment was so designed that they
were not at all fallacious.) But this
experiment does not stand alone; Feld-
man (1959b) found no gambler's fallacy
at all in his 200-trial experiment.

No real explanation of this divergence
in presumably similar experiments is
apparent. It is possible, however, that
the relative inconvenience of the re-
sponses in this experiment served to
increase the monotony of what was in
any case an exceedingly monotonous
task. The gambler's fallacy is in a sense
a highly intellectual response. The S
must have some idea of what probabili-
ties are and also must to some degree
keep track of several preceding outcomes
in order to exhibit it. For this non-
college population boredom may reduce
the amount of intellectual effort applied
to the task below the level necessary
to sustain a gambler’s fallacy.

The gambler's fallacy is important
because it is inconsistent with most rein-
forcement theories. Bush and Morlock?
have formulated a general conditioning
axiom which in effect asserts that gam-
bler’s fallacies cannot occur. They have
proposed a procedure for examining run
effects different from that used in Fig.
4 and 5; they examine only the responses
and outcomes included in outcome runs

2 Bush and Morlock, personal communi-
cation,
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of a specified length (or longer). These
data were analysed by their method
for Run Lengths 5 and 7. The results
were essentially similar to those in Fig.
4 and 5, but the greatly decreased num-
ber of observations per point resulted
in a considerable decrease in stability.
The evidence about the general condi-
tioning axiom from this experiment
remains ambiguous.

Hypothesis-testing behavior—Goodnow
and her collaborators (e.g.,, Goodnow,
1955; Goodnow & Postman, 1955),
Feldman (1959a), and I (Edwards, 1956)
have argued that people base predictions
in probability learning on local hypothe-
ses about sequential dependencies. This
idea is very attractive; the sequential
effects examined in this paper make it
more so. Unfortunately, too many
hypotheses (most necessarily incorrect)
are possible, and they change too fast
and too irregularly, to make this an easy
idea to use. Feldman, working with
verbal statements as well as predictions,
has found it necessary to construct one
hypothesis per S. This is the end point
of any attempt to give a detailed, explicit
account of probability learning from a
hypothesis-testing point of view. We
need higher order models, so that each
specific set of hypotheses can be included
within some more general classificatory
or explanatory scheme. No such models
are available at present.

SUMMARY

A probability learning experiment is re-
ported in which each of 120 Ss made a se-
quence of 1,000 predictions about which of
two mutually exclusive events will occur.
After each prediction, one of the two events
occurs ; the probability of occurrence of each
event is constant (0.5, 0.6, 0.7 and their
mirror images). Sequences were randomized
in two different ways. For all relevant groups,
the asymptotic probability of prediction was
more extreme than the probability of occur-
rence of the event predicted; probability
matching did not occur. The Ss responded
to small increases or decreases in the relative
frequency of an event in a block of trials by
similar small increases or decreases in their
predictions of that event in that block; this
phenomenon was named probability following.
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Examination of sequential dependencies
by means of information measures indicates
that about 259% of response information can
be accounted for by the identity of Ss and the
results of the last three trials. The Ss ap-
parently pay most attention to previous out-
comes, and much less attention to previous
responses, Most of the predicting is done by
the immediately preceding trial; trials further
back contribute only small amounts of
additional transmitted information.

Analyses of homogeneous outcome runs
on later trials show that the longer the run of
occurrences of an event, the more likely S
is to predict that event. For early trials,
however, .Ss show a slight tendency to predict
the event less often as its run length increases;
this is the gambler's fallacy.
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