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We consider a game in which “meta-players” choose finite automata to play a 
repeated stage game. Meta-players’ utilities are lexicographic, first increasing in the 
(limit-of-the-means) payoffs of the repeated game and second decreasing in the 
number of states in their automaton. We examine the outcomes in this game which 
satisfy a version of evolutionary stability that has been modified to permit existence. 
We find that such automata must be efficient, in that they must maximize the sum 
of the (limit-of-the-means) payoffs from the repeated game. Journal of Economic 
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1. PREVIEW 

Although the results in this paper are applicable in general, attention will 
often be focused on the Prisoners’ Dilemma in the form given on the left 
of Fig. 1. The shaded region in the diagram on the right of Fig. 1 is the set 
of payoff pairs that the “Folk Theorem” (Aumann [3]) shows to be 
achievable by equilibrium play in the infinitely repeated version of the 
Prisoners’ Dilemma with “limit-of-the-means” payoffs (which we call 
“profits” in this paper). 

Abreu and Rubinstein [l] study a model in which each of two 
“metaplayers” choose a finite automaton to play the infinitely repeated 
Prisoners’ Dilemma on their behalf. In one specification of this model, the 
metaplayers have lexicographic preferences. They seek to maximize their 
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FIG. I. The Prisoner’s Dilemma 

profit; but if two automata achieve the same profit, a metaplayer prefers 
whichever is less complex. Nash equilibrium outcomes in this automaton 
selection game are the rational points lying on the cross shown on the right 
of Fig. 1. 

Abreu and Rubinstein interpret their result in terms of decision-makers 
of unbounded rationality who must delegate authority to subordinates who 
can only reliably execute simple decision rules. The interpretation to be 
explored in this paper is that the metaplayers are a metaphor for an 
evolutionary process. That is to say, the automata represent rules-of-thumb 
that have evolved during past plays of the (infinitely repeated) game. If 
metaplayers are to be seen as a metaphor for an evolutionary process, then 
it is natural to replace the notion of a Nash equilibrium by an appropriate 
version of the idea of an evolutionarily stable strategy. This paper examines 
the evolutionary viability of strategies in automaton selection games of the 
Abreu-Rubinstein variety. 

With the notion of evolutionary viability that we employ, only (2,2) in 
the diagram on the right of Fig. 1 survives as a possible equilibrium out- 
come of the infinitely repeated Prisoners’ Dilemma. The same argument, 
applied to a general two-player, normal-form game’ shows that only 
utilitarian outcomes are substainable as evolutionary viable equilibria. 
However, we are anxious that the paper not be seen as a stylized defense 
of utilitarianism valid for all societies without qualification. Some of our 
assumptions need to be treated with great reserve for the reasons explained 
in Section 4. 

’ The extensions to n-player games are straightforward, but we do not discuss them. 
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FIG. 2. Some automata 

The idea behind our argument is of ancient vintage. Recent papers that 
use the idea include Binmore [S], Fudenberg and Maskin [13] and 
Robson [23]. An initially nonutilitarian population is vulnerable to 
invasion by mutants who recognize each other by means of what Robson 
[23] calls a “secret handshake.” This private signal allows the mutants to 
form an insider group who cooperate among themselves but treat outsiders 
as outsiders treat each other. As a result, insiders earn a higher average 
payoff than outsiders, and so the latter are displaced. Only utilitarian 
machines can be immune to such invasions and so they are the only 
possible candidates for evolutionary viability. 

Axelrod and Hamilton [6] are perhaps the most notable of the con- 
tributors to what is now a large literature on the “evolution of coopera- 
tion.” Their evolutionary defense of TIT-FOR-TAT as a strategy for the 
infinitely repeated Prisoners’ Dilemma is much cited. 

Figure 2 shows a representation of TIT-FOR-TAT as a finite 
automaton’ along with a number of other strategies for the infinitely 

2The particular type of automaton we use is called a Moore machine (Hopcraft and 
Ullman [14]). Appendix B discusses some of the formal issues, but the paper can be read 
without penetrating these mysteries. 
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repeated Prisoners’ Dilemma. 3 Each circle in a diagram of Fig. 2 indicates 
a possible state of the machine. The letter written inside the circle shows 
the action the machine will take in the Prisoners’ Dilemma when in that 
state. The arrows indicate how machines make transitions from one state to 
another. For example, after TIT-FOR-TAT has just defected (D), it will 
remain in its D state if the opponent just played D, but will shift to its C 
state if the opponent just cooperated (C). The initial state of a machine is 
shown by an arrow with no source. 

When only profits are considered, all the strategies represented by the 
automata of Fig. 2 are Nash equilibria against themselves except for 
COOPERATE and TWEETYPIE.4 In particular, as emphasized by 
Axelrod and Hamilton [6], TIT-FOR-TAT is a Nash equilibrium against 
itself. However, two TIT-FOR-TAT machines do not constitute a Nash 
equilibrium for the automaton selection game of Abreu and Rubinstein 
based on the Prisoners’ Dilemma. COOPERATE is a better reply to 
TIT-FOR-TAT than TIT-FOR-TAT is to itself, because COOPERATE 
gets the same profit in the repeated Prisoners’ Dilemma when playing 
TIT-FOR-TAT, but COOPERATE has the additional advantage of being 
less complex than TIT-FOR-TAT. In our evolutionary model, this implies 
that a population consisting entirely of TIT-FOR-TAT machines can be 
invaded by COOPERATE mutants. 

In Axelrod’s [S] terminology, a nice machine is one that is never the first 
to defect. TIT-FOR-TAT is therefore a “nice” machine. Axelrod [S] 
emphasizes the success of nice machines in his setting. However, in our 
model the same reasons that destabilize TIT-FOR-TAT also apply to any 
population consisting entirely of nice machines.5 A population therefore 
cannot be evolutionarily viable in our model unless it contains at least 
some machines that are nasty (i.e. not nice). To this extent, our work is at 
variance with Axelrod’s. 

The machine TAT-FOR-TIT of Fig. 2 is a nasty machine. It begins by 
defecting and treats a corresponding defection by the opponent as a secret 
handshake signaling a switch to its C state. In contrast to the case of two 
TIT-FOR-TAT machines, two TAT-FOR-TIT machines constitute a 
Nash equilibrium in the Abreu-Rubinstein automaton selection game. 
Moreover, two TAT-FOR-TIT machines achieve the utilitarian out- 
come (2,2) and so do no worse than two TIT-FOR-TAT machines. 

3 Appendix A contains a listing of all one and two state machines capable of playing the 
infinitely repeated Prisoners’ Dilemma. 

4 Appendix A contains a payoff table for all pairs of one and two state machines. 
‘Any population of nice machines is vulnerable to invasion by COOPERATE mutants 

except a population consisting entirely of COOPERATE machines. But such a population is 
vulnerable to invasion by DEFECT mutants. 
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The fact that two TAT-FOR-TIT machines are a Nash equilibrium does 
not guarantee that a population of TAT-FOR-TITS is evolutionarily 
stable in the Abreu-Rubinstein automaton selection game. In fact, the 
game has no strategies that are evolutionarily stable according to the 
standard definition. This is not a problem that is special to Abreu and 
Rubinstein’s model. Existence problem for evolutionarily stable strategies 
have been well-documented in a number of other variants of the infinitely 
repeated Prisoners’ Dilemma (Boyd and Lorberbaum [9], Farrell and 
Ware [ 111, and Kim [ 163). The nonexistence problem arises because the 
standard definition requires that any mutant bridgehead will be entirely 
eliminated. However, a mutant player whose behavior would differ from 
that of an existing strategy only off the equilibrium path will necessarily be 
indistinguishable from existing strategies on the equilibrium path, and 
hence cannot be driven out. 

Using a modified definition of evolutionary stability that takes account 
of this difficulty, we show that a population consisting entirely of TAT- 
FOR-TIT machines is evolutionarily viable. However, the new definition 
makes it impossible to ignore the case of polymorphous populations 
in which different machines may co-exist in a symbiotic relationship. 
Extending our analysis to include such populations, we show in general 
that only utilitarian outcomes are evolutionarily viable. 

The paper is organized in the following way. Sections 2 and 3 provide a 
discussion of the issues that motivate our work. Section 4 considers some 
of the modeling problems that our approach entails and explains how we 
deal with some of these problems and evade others. Sections 5 and 6 intro- 
duce the necessary formalities, and introduce our modified definition of an 
evolutionary stable strategy. Section 7 establishes that a population 
consisting of only one type of machine must be utilitarian if it is to be 
evolutionarily stable according to our modified definition. Section 8 seeks 
to explain why such a result needs to be generalized to the case of 
polymorphous populations of machines. Section 9 provides such a 
generalization. 

2. EQUILIBRIUM SELECTION 

When more than one equilibrium exists, the problem of selecting one 
from among them is not easy. But progress on this front is necessary if 
game theory is to break out of the beachhead it has established in the 
social sciences. 

In seeking insight into the equilibrium selection problem, it is sensible to 
first look at simple examples. In such simple examples, the “right” 
equilibrium often seems glaringly obvious, and it may be easy to give lists 



EVOLUTIONARY STABILITY 283 

of plausible ad hoc reasons why the right equilibrium should be selected. 
However, such principles are notoriously unreliable when applied in 
general. The purpose of the enterprise is not to pluck a selection criterion 
from the air that happens to be intuitively satisfying in particular cases. It 
is to find selection criteria that are defensible from first principles. Our 
selection criteria, for example, choose the utilitarian outcome. One could 
give a hundred reasons drawn from political philosophy why the utilitarian 
outcome should be desirable, but none of these reasons are relevant to our 
concerns.6 

Our approach to the equilibrium selection problem is based on studying 
“trembles,” as is the widely advertised “refinements of Nash equilibrium” 
literature. Indeed, this seems inevitable. In traditional analyses, players use 
their equilibrium strategies because of what would happen if they did not. 
It is therefore necessary to contemplate counterfactual hypotheses of the 
type: suppose a player who is sure to play his equilibrium strategy, doesn’t. 
Philosophers (e.g., D. Lewis [ 183) discuss the meaning of such counter- 
factuals in terms of “possible worlds.” It is true that no player will deviate 
from his equilibrium strategy in this world, but there are possible worlds in 
which he would. Our task is to find the closest possible world to our own 
in which the deviation occurs. A tremble can then be thought of as being 
the change in our own world necessary to bring about the closest possible 
world in which the deviation occurs. Equilibrium selection proceeds by 
retaining only those equilibria that remain equilibria in the analyst’s 
favored closest possible world. 

But the word “closest” has no a priori definition in this context. An equi- 
librium selection theory that employs this methodology must assign the 
word a meaning by choosing the nature of the trembles it takes as being 
relevant. It is natural that economists should be reluctant to abandon 
the paradigm of an economic agent as a “perfectly rational” optimizer. 
Traditionally, trembles are therefore imposed only on the rules of the 
game, the preference of the players, or the beliefs that the players hold. 
A strong bias exists in favor of the first of these. This is explicit in Selten’s 
[25] “trembling-hand perfect” equilibrium, which is obtained by adding 
appropriate chance moves to the original game. A similar attitude pervades 
the refinements literature, being implicit, for example, in the definitions of 
sequential or subgame-perfect equilibrium.7 

60~r aims are the same as the even more easily misunderstood work of Aumann and 
Sorin [4] or Anderhni [2] who are concerned with equilibrium selection in games of pure 
coordination in which one equilibrium Pareto-dominates the others. Nothing could be easier 
or less relevant than to solve the problem they set for themselves by inventing “collective 
rationality” principles like: reject any equilibrium Pareto-dominated by another. 

’ Even the successive deletion of weakly dominated strategies requires a similar treatment 
of counterfactuals. 
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Unlike the refinements literature and the otherwise closely related work 
of Fudenberg and Maskin [13], we see the traditional types of tremble 
only as epiphenomena. Such trembles will indeed be significant in many 
cases, especially in evolutionary animal biology, but they are seen here as 
secondary in games played by humans. For this reason, we do not consider 
environmental trembles in this paper.’ 

The trembles this paper takes as primary are those in the thinking pro- 
cesses of the players. The idea is that, if an opponent plays irrationally, the 
explanation of first resort should be that he or she reasoned irrationally 
(and therefore may perhaps reason irrationally in the future). The trembles 
we wish to study are therefore internal to the players rather than external, 
as in traditional treatments.’ Such an approach requires modeling the 
thinking processes of the players explicitly. 

How are the thinking processes of a player to be modeled? The avenue 
of investigation that we regard as most promising abandons the theory that 
people think deeply about their behavior when interacting with others 
in game-like situations. Instead, they are seen as hosts for “memes.” 
Dawkins [lo] uses the term meme to include rules-of-thumb, social norms, 
conventions, or other more complex idea systems that a human being may 
use in translating a stimulus into a response. Evolution is seen as being 
responsible for a selection being made from the pool of possible memes. 
After evolution has operated, non-selected memes play a role in inter- 
preting counterfactuals much like that played by trembles in traditional 
refinement theory. In brief, the non-selected memes serve as “explanations” 
for what would happen if selected memes were to deviate from equilibrium 
play. 

3. BOUNDED RATIONALITY 

The previous section explains why we seek to model the thinking pro- 
cesses of the players in a game explicitly. The device used for this purpose 
is the idea of a finite automaton as outlined in Section 1 and, more for- 
mally, in Appendix B. The exposition is often less clumsy if players are 
identified with the finite automaton that represents the strategy they are 
using. However, a more generally applicable paradigm sees the finite 
automaton as something like a virus that controls the strategy of a player 

’ The common criticism of Axelrod’s work, that a pair of TIT-FOR-TAT strategies is not 
subgame-perfect, is therefore not relevant to our concerns. Nor is Kalai and Neme’s [IS] 
similar criticism of the results of Abreu and Rubinstein [ 1). 

9 With the notable exception of the “gang of four” paper [17] and related work. 
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who gets infected with it. The virus then spreads at a rate determined by 
how well the strategy performs relative to other strategies currently in use. 

One virtue of working with finite automata is that they focus attention 
on the complexity of strategies and the possible cost of complexity. It is 
not, however, obvious how such costs are to be incorporated into a formal 
model. It is often taken for granted in the literature on “bounded 
rationality” that one should work with a fixed, exogenously determined 
upper bound on the complexity of the automata to be studied. We would 
prefer to characterize work in which this assumption is made, notably that 
of Neyman [22], as being concerned with uniformly bounded rationality. 
With such an assumption, it is easy to see that a pair of GRIM machines 
(Fig. 2) is a Nash equilibrium for an automaton selection game based on 
a 100 times repeated Prisoners’ Dilemma provided that machines with more 
than 99 states are excluded. This cooperation is achieved because a 
machine that plays better against GRIM than GRIM itself will necessarily 
cooperate in every round but the last, when it will defect. Such a machine 
must be able to count to 100 in order to know when the last round has 
arrived, but a machine with only 99 states can count only to 99.” 

The difficulty with models incorporating an exogenously determined 
upper bound on the complexity of a machine is that cases can arise in 
which a highly complex machine may achieve only a relatively small payoff 
in equilibrium, although a much higher payoff might be achieved if the 
machine were replaced by another machine with just one additional state. 
Because of this difficulty, we follow Abreu and Rubinstein [l] in studying 
models in which the bound on complexity is endogenously determined. l1 
Such an assumption always permits a machine to be displaced by another 
machine of slightly greater complexity if the resulting improvement in game 
payoffs is sufficiently large. (One may always “think a little harder” if the 
prospective benefits make it seem worthwhile.) 

In measuring complexity, we simply count states. The complexity Ial of 
a machine a is therefore how many states it has. All the machines of 
Figure 2 have complexity 2 except for DEFECT and COOPERATE which 
have complexity 1. .4 discussion of this complexity measure, which is 
arbitrary to a considerable degree, is postponed until the next section. 

‘” Neyman [22] shows that a clever construction of the implicit messages that the machines 
send each other through their behavior in the early stages of the game allows equilibrium 
payoffs very close to the utilitarian outcome to be achieved in a 100 times repeated Prisoners’ 
Dilemma, even when the uniform bound on the complexity of a machine is very much higher 
than 99. 

‘I It is sometimes argued that such models are not properly models of “bounded 
rationality”. If this argument is thought persuasive, then one can refer to “imperfect 
rationality” or “costly rationality” to describe our approach. 
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4. MODELING ISSUES 

In evolutionary game theory, a game G is seen as being played 
repeatedly. Each time it is played, Nature chooses its players from a 
population whose composition changes over time. The players do not think 
about how to play G. They are endowed with strategies by a process of 
mutation and selection that tends to eliminate strategies that are relatively 
less successful. In the literature, G is usually a normal-form game, but in 
our paper it is itself the repeated game G”. 

Ideally, one would evaluate the players’ income streams in G” using a 
discount factor p that represents the probability that the game will coin- 
tinue beyond any stage reached in G”. Thus, although G’̂  would be 
modeled as an infinite game, it would end in finite time with probability 
one, so that no difficulty arises in constructing an evolutionary model in 
which the “infinitely repeated” game G z is repeatedly played. Within this 
context, we are interested in cases in which p is relatively large, so that 
the future is relatively important. In order to construct a mathematically 
simple model, however, we first assign payoffs to income streams using 
the limit-of-the-means criterion rather than discounting. This can be viewed 
as focusing on the case in which p approaches unity while glossing over 
the problems that arise in going to the limit. Appendix C examines these 
limiting problems in the course of extending the results to the case of 
discounting. Whether discounting or limit-of-the-means payoffs are used, it 
is essential to our analysis that players be patient. This ensures that the 
mutants we construct can deliver their secret handshakes without suffering 
undue payoff losses. 

The strategies that players use in G” are modeled as finite automata. 
Our basic intuition is that interesting evolutionary processes will tend to 
select against complex machines unless their complexity generates real 
gains compared with less complex machines. We model this by introducing 
costs of complexity into players’ utility functions. 

The crudeness of such an approach is compounded by our measuring 
complexity by simply counting states. It is important to our analysis that 
states be costly, as this ensures that existing machines will not contain 
states that are not used in equilibrium but could be used to inflict harsh 
punishments on machines which offer secret handshakes. As Banks and 
Sundaram [7] have shown, however, other measures of complexity may 
lead to different conclusions. Moreover, we look at the extreme case in 
which costs of complexity are ranked lexicographically behind profits. We 
should stress that this allows us much freedom in constructing possible 
mutants when testing the stability of populations. Successful mutants may 
be vastly more complex than the population they invade provided only 
that they succeed in achieving a slightly higher profit. 
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We follow the standard practice of evading a study of the dynamics of 
the evolutionary process by appealing to the idea of an evolutionarily 
stable strategy. Our modification of this definition to suit our special cir- 
cumstances, though essential to our results by allowing us to avoid the dif- 
ficulties arising out of the nonexistence of an evolutionarily stable strategy, 
will probably not be controversial. However, it is important to stress that 
evolutionarily stable strategies are desgined for use in a biological context. 
Mutations are then rare, so that after each mutant invasion, the system has 
time to attain a new equilibrium before the next mutant invasions. Is such 
a model appropriate in our context? We think that socioeconomic evolu- 
tion would be better modeled by supposing that mutations are sufficiently 
frequent that the systems do not have time to adjust to the last mutation 
before the next appears. In particular, we plan a future paper in which 
there is a steady stream of mutations consisting of simplified versions of 
those machines that are currently present in the population.” 

In pointing out this last possible inadequacy in our model, we are 
agreeing with Fudenberg’s [12] criticism that our model is overly 
restrictive in the type of trembles that equilibrium strategies must confront. 
Note, however, that our remedy does not lie in appealing to Selten’s 
trembling hand but in expanding the set of mutations to be considered. 

5. FORMALITIES 

Only two-player games are considered. The underlying game G is 
specified by a quadruple (S, , S,, 7c,, x2) in which S, and S, are strategy 
sets and the payoff functions are 7ti: S, x S, + R (i= 1,2). The Prisoners’ 
Dilemma on the left of Fig. 1 will be the principal example. 

A repeated game G” = (R,, R,, P,, P2) with the underlying game G as 
its stage-game, is constructed in the usual way. The payoff functions P, and 
P2 are defined as limits of the means.13 (Discounting is discussed in 
Appendix C.) Thus 

P,(rl, r2) = !FE $ 'f ' ~i(rl(hr), r2(h,)), 

t=0 

“We believe that such a model may lead to markedly different conclusions, Linster [ 193 
provides some support for such a conjecture while pursuing Nachbar’s [21] criticisms of 
Axelrod’s “Olympiad” simulations. He Ends that GRIM does exceedingly well, much better 
than TIT-FOR-TAT, in simulations of evolutionary competition between one and two state 
machines provided that the inflow of mutants is sufficiently rich and varied. 

I3 Since only strategies implementable by finite automata are considered, P,(r,, r2) will 
always be defined. 
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where h, denotes the history of the game up to and including time t, and 
rj(h,) is the action in Sj taken by player i at time t + 1. The number 
Pj(r, , r2) will be called a profit. 

An automaton selection game G# is defined as in Abreu and 
Rubinstein [ 11. The strategy space Ai consists of a set of finite automata 
(Moore machines) described formally in Appendix B. An automaton a in 
the set Ai is capable of occupying the role of player i in the repeated game 
G”. No confusion will result from using a to denote the strategy imple- 
mented by the automaton a in G” as well as the automaton a itself. 

The automaton selection game G# = (A,, A,, U, , U2 ) is played by two 
metaplayers. The payoff functions Uj reflect the fact that the metaplayers 
are assumed to care, not only about profits in G’“, but also about the com- 
plexity (al of the machine to which they delegate the duty of playing G”‘. 
The precise assumption to be made attributes lexicographic preferences to 
the metaplayers. More precisely 

U,(a, c) > U,(b, cl- {P,(a, cl> P,(b, cl) or 

{P,(a, c) = P,(b, cl and I4 < I4 1, 

with a similar requirement for U,. (Recall that Ial is the number of states 
in the machine u.)r4 

6. EVOLUTIONARY STABILITY 

In Abreu and Rubinstein [ 1 ] a metaplayer’s choice of an automaton is 
interpreted as an act of delegating responsibility for the play of G” to a 
simple-minded underling. In this section, the choices attributed to the 
metaplayers are assumed to emerge from an evolutionary process. 

The case when G is symmetric will be studied first. Then G# is also sym- 
metric and we may write A = A, = A2 and Ul(u, b) = U(u, b) = U,(b, a). 
For the moment, forget that U represents lexicographic preferences. If, 
instead, U measures fitness, then the standard criteria (Maynard 
Smith [20]) for a to be an euolutionurily stable strategy (ESS) are 

(I) U(a, a) > u(b, a), or 
(II) U(u, a) = U(b, a) and U(u, 6) > U(b, b), 

for all possible mutants b. These conditions imply that a is a best response 
to itself, and hence (a, a) is a symmetric Nash equilibrium for G#. In addi- 

I4 We choose to represent the lexicographic preferences here with a utility function (which 
exists because the set of finite automata is countable) in order to ease comparison of our 
modified definition of evolutionary stability with the standard definition. 
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tion, the ESS conditions incorporate a stability requirement. For any alter- 
native best response b to a, a must be a better response to b than b is itself. 
The ESS requirements are intended to capture the idea that a population 
of replicas of a should be invulnerable to invasion by sufficiently small 
groups of mutant b’s. 

With lexicographic preferences, (I) and (II) need to be modified. The 
modified requirements for a to be an ESS are 

(i) P(a, a) > P(b, a), or 

(ii) P(a, a) = P(b, a) and P(a, b) > P(b, b), or 

(iii) Z’(a, a) = P(b, a) and P(a, b) = P(b, b) and Ial < jbl, 

for all possible mutants b. The principle is that profits are always counted 
before complexity. 

Various authors have commented on the existence problem for an evolu- 
tionarily stable strategy in the repeated Prisoners’ Dilemma, including 
Boyd and Lorberbaum [9], Kim [16], and Robson [23]. Existence is also 
a problem for the modified definition of an ESS given above. Since it is 
easy to see that COOPERATE and DEFECT can both be invaded, the 
following result shows that no automaton satisfies this definition of an ESS 
when G is the Prisoners’ Dilemma. 

LEMMA 6.1. For any G, an automaton a that satisfies (i), (ii) or (iii) for 
all automata b has only one state. 

Proof This is obvious if G has only one action. If G has two actions, 
consider an automaton a with more than one state that satisfies (i), (ii) and 
(iii). Suppose that a uses action x in its initial state. Now construct a 
mutant b that is identical to a except that, if its opponent plays something 
other than x when b is in its initial state, then b switches to a different state 
from that to which a would switch. Then la1 = lb1 and P(u, a) = 
P(b, a) = P(u, b) = P(b, b). The reason for the latter set of equations is that 
a and b always use x in their initial state, and a and b are indistinguishable 
in play provided that their opponent uses x in its initial state. Thus the 
hypothesis that a has more than one state leads to the conclusion that none 
of (i), (ii), or (iii) hold. 1 

Existence problems of this type seem to us to be an artificial construct 
arising from a definition of an ESS that is not entirely appropriate to the 
situation. l5 The standard definition of an ESS demands that any sufficiently 
small invading group of mutants be eventually eradicated. One certainly 

I5 The existence problem does not arise because automata are used. Any pure strategy will 
always yield a host of out-of-equilibrium paths in a repeated game, and invading mutants can 
be constructed by altering behavior on these paths. 

64?‘57:?-3 
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would wish to use a definition that precludes mutant invasions in which the 
original small mutant bridgehead expands at the expense of the original 
normal population. But what of mutant invasions after which the original 
bridgehead neither expands nor contracts? The original normal population 
and the mutant invaders will then survive together in a state of peaceful 
co-existence. In particular, the observed behavior of both natives and 
invaders may be precisely the same, their differing strategies leading to 
different behavior only under unrealized contingencies. As regards putative 
applications to human societies, who cares if different people would behave 
slightly differently under certain unrealized contingencies if, in fact, they all 
cooperate in sustaining a utilitarian outcome? 

To accommodate this issue we introduce a further modification into 
the evolutionary viability requirement to be studied. A machine a will be 
called a modzj2ed evolutionary stable strategy (MESS) if, for all possible 
mutants b, 

(1) P(a, a) > Ptb, a), or 

(2) P(a, a)=P(b, a) and P(a, b)>P(b, b), or 

(3) P(a, a) = P(b, a) and P(a, b) = P(b, b) and Ial < Jbl. 

As will become clear, one cannot dispense with the definition of a MESS 
simply by considering a mixed ESS or a polymorphous extension of the 
ESS idea.16 On the other hand, polymorphous MESSES will be important 
for the reasons given in Section 7. However, in this and the following 
section, the polymorphy issue is put to one side in an attempt to ease the 
exposition. 

Complexity is important in the requirements for a MESS because its 
inclusion means that a MESS a can have no states that are not used when 
a plays G ” against itself. i’ If an unused state existed, an automaton b 
could be constructed that is similar to a but which dispenses with the 
unused state so that 161 < Ial. The automaton b plays G” exactly as a plays 
G” provided that its opponent has always played G” exactly as a plays 
G” in the past. It follows that P(a, a) = P(b, a) = P(u, b) = P(b, b), and 
hence Condition (3) for a MESS is violated. This is one of the easier 
arguments of Abreu and Rubinstein [l] adapted to our purpose. 
Appendix B (Lemma B. 1) provides the formal details. 

Note that it follows from the fact that all states must be used in equi- 

I6 A mixed ESS occurs when no suhiciently small group of mutants can invade a population 
whose members all play the same mixed strategy. A polymorphy occurs when no member of 
the population randomizes, but the effect is the same for an invading mutant because different 
members of the original population use different pure strategies. 

” Rubinstein’s [24] original work on automata used a criterion that called for all states to 
be used infinitely ofren. We see no grounds for imposing such a constraint here. 
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librium that neither TIT-FOR-TAT nor GRIM can be a MESS (although 
this does not preclude their being constituents of a polymorphous MESS). 

So far, only the case of a symmetric underlying game G has been con- 
sidered. This section concludes by describing how asymmetric games may 
be addressed. In the symmetric case, automata do not “know” whether 
they are player 1 or player 2. Even if the payoff matrix for G is symmetric, 
this lack of information may be a handicap. For example, if the 3s in the 
version of the Prisoners’ Dilemma of Figure 1 are replaced by 6s it ceases 
to be true that the sum of the payoffs is maximized at (C, C), The sum is 
maximized instead at (C, D) or (D, C) (or some mixture of these). 

If this problem arises or the payoff matrix of G is asymmetric, we will 
follow the standard practice in evolutionary game theory of introducing a 
symmetrized version of G# to be denoted by G# #. The first event in G” # 
consists of the automata receiving a signal indicating whether they are to 
be player 1 or player 2, where each signal is received with probability l/2. 
An automaton a can then be seen as a pair (a,, a,) of simpler automata in 
which a, is used when a acts as player 1, and a2 is used when a acts as 
player 2. 

The profit for player 1 in the symmetrized game G# # is given by 

The complexity of the machine a = (a,, az) in the symmetrized game is 
taken to be la\ = la, 1 + la, I. These definitions allow a utility function V to 
be defined lexicographically by writing 

V(a, c) > V(b, c)o {P(a, c) > P(b, c)} or 

{p(a, c) = Y(b, c) and Ial < Ib( >. 

One may then take G # # to be the quadruple 

in which V, and V, are defined by V,(a, 6) = V(a, 6) = V,(b, a). 

7. UTILITARIAN AUTOMATA 

When a plays itself in G ’ # the largest value its profit can be is , 
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An automaton a* that achieves this maximum will be called a utilitarian 
automaton for G## because it acts to maximimize the sum of payoffs in the 
underlying game G. ‘* 

A utilitarian automaton a* in G# is defined to be one that satisfies (I), 
but with the maximization subject to the additional constraint that s, =s2. 
This constraint reflects the fact that no mechanism is provided in G” for 
breaking the symmetry of G. Of course, when G is the Prisoners’ Dilemma 
of Fig. 1, the utilitarian profits for G” and G## are the same. Unless this 
is the case, the definition of a utilitarian automaton for G# is of no great 
interest. 

THEOREM 7.1. An automaton a can be a MESS in G## only if a is 
urilitarian. 

Proof: Let a* be a utilitarian automaton and, for the purposes of con- 
tradiction, let a be an automaton which is a MESS but is not utilitarian. 
It will be shown that a population consisting entirely of replicas of a can 
be displaced by a mutant b. The mutant b will be more complex than a, 
but complexity counts after profit in the lexicographic preferences described 
by U. 

The mutant b is constructed to have the following properties: 

l Initially, 6, outputs a strategy for G that differs from ai’s initial 
output. 

l If the initial output of the opposing machine differs from a-$‘s 
initial output, then bi “knows” that it is playing a replica of itself. It there- 
fore continues by mimicking the utilitarian automaton a,* 

l If the initial output of the opposing machine is the same as a pi’s 
initial output, then 6, “knows” that it is playing a. It therefore emits an out- 
put in the next period that “convinces” a that its opponent is a replica of 
itself, and then continues by mimicking ai, and so achieves a profit of 
P(a, a). 

If such a machine b can be constructed, then it follows from the third 
property that P(b, a) = P(a, a) = P(a, b). But P(b, b) = P(a*, a*) > P(a, a). 
Thus none of the criteria (1) (2), or (3) for a MESS are satisfied and the 
theorem follows. 

It remains to be confirmed that the third property for the mutant b can 
be satisfied, and so P(b, a) = P(a, a) = P(a, 6). This is not entirely obvious. 
For example, if a were the GRIM strategy of Fig. 2 and G were the 
Prisoners’ Dilemma of Fig. 1, then b’s playing differently from a at the first 

I* But one must recall that P is a “limit of means.” Thus a* need not maximize the sum of 
payoffs in every stage game. 
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stage of G” would push a into its punishment phase for ever. Thus 
P(b, a) = 0 < 2 = P(a, a). Note, however, that the GRIM strategy is not a 
MESS because it has a state that is unused in equilibrium. This observation 
is the key in establishing that P(b, a) = P(a, a) = Z’(a, b). 

Suppose that b,‘s initial action switches uei from its initial state q,, to 
another state q. Since all of C,‘S states are used in equilibrium, uei would 
eventually reach state q when playing a,. At that time, let a, be in state q* 
generating output r. The automaton h should therefore be constructed so 
that, if the opponent’s initial output is the same as a- ;‘s, then b switches 
to a state which we will label q* and emits the output r. After that, b can 
mimic ui without difficulty. Appendix B (Lemma B.2) provides the details. 
A machine designed in this way satisfies the third of the three properties 
attributed to b. In particular, P(b, a) = P(u, a) = P(u, b). 1 

Theorem 7.1 provides a necessary condition for an automaton to be a 
MESS in G##. The same necessary condition, of course, holds for G#. 

Sufficient conditions for the existence of a MESS are easily obtained 
using Folk Theorem arguments. We again quote only the result for G##. 

THEOREM 7.2. Let ti denote the pure strategy minimux point of the 
underlying game G. Let u be its utilitarian outcome. Then a sufficient condi- 
tion for the existence of a MESS in G’ # is that u 2 rii. 

Note that the sufficient condition of Theorem 7.2 need not be satisfied. 
Its failure will sometimes be a consequence of the exclusion of mixed 
strategies from the analysis. Our results can be extended to machines that 
output mixed strategies for G rather than just pure strategies.lg One can 
then replace ti in Theorem 7.2 by its mixed strategy equivalent V < ti. 
However, there remains no guarantee that u > 6. If this inequality fails, a 
MESS fails to exist. 

8. POLYMORPHOUS POPULATIONS 

The definition of an evolutionarily stable strategy is designed for the case 
when mutations come at sufficiently infrequent intervals that the system 
can fully recover from the effects of repelling one mutation before the next 
appears. The definition of a MESS is inconsistent with such a story because 
it allows for the possibility that certain mutations may not be repelled at 
all. After an invasion by such a mutant, the system will therefore not revert 
to its original state. This section illustrates the significance of this feature 
of the definition. 

I9 An alternative would be to allow the machines access to random inputs, but to continue 
to insist on pure outputs. This approach creates difficulties for our analysis, 
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Appendix A summarizes the relevant properties of all one and two state 
machines that are capable of playing the infinitely repeated Prisoners’ 
Dilemma. Observe that a population consisting entirely of TIT-FOR-TAT 
machines will be displaced by an invasion of mutant COOPERATE 
machines. After the invasion, all machines will be getting the utilitarian 
profit, but COOPERATE has an advantage in that it is less complex. With 
the exception of a population consisting only of copies of the 
COOPERATE machine, the same goes for any population of nice 
machines. 

This argument shows that no nice machine can be a MESS.” A machine 
can be an optimal reply to itself in our framework only if it exhibits some 
nasty behavior in equilibrium. The simplest such machine is DEFECT, but 
DEFECT is not a MESS because an invasion by TIT-FOR-TAT will 
expand from its initial bridgehead. 

The simplest machine that is a MESS is TAT-FOR-TIT (Fig. 2). But 
the fact that no invading mutant can expand at the expense of TAT-FOR- 
TIT does not imply that TAT-FOR-TIT cannot be invaded. In the nota- 
tion of Appendix A, TAT-FOR-TIT can be invaded by “cc”, “cd”, “AA”, 
“AC”, or “CA”. (Small letters indicate machines that begin by cooperating; 
large letters indicate machines that begin by defecting.) A tiny invading 
group of one of these machines will not expand, but neither will it be 
driven to extinction. 

The inability of a MESS to repel all invaders implies that the purity of 
a MESS in which the whole populations consists of copies of a single 
machine will eventually be sullied. This makes it necessary to study 
polymorphous populations. The next section offers a definition of a 
polymorphous MESS, and proves an appropriate generalization of 
Theorem 7.1. This section continues with a simple example that is intended 
to indicate some of the complexities that this analysis evades. 

In a population consisting of positive fractions of TAT-FOR-TIT, 
TWEEDLEDUM (cc), and TWEEDLEDEE (cd) all machines will always 
earn the utilitarian profit. The population cannnot be invaded by any one 
or two state machine except TWEETYPIE (CA). Nor can any machine of 
complexity greater than two invade. However, after an attempted invasion 
has been repelled, the proportions of the three types of machine may be 
altered. For example, an attempted invasion by “AC” will increase the 
relative numbers of TWEEDLEDUM and an attempted invasion by “AA” 
will reduce the relative numbers of TWEEDLEDEE. In the long run, the 
proportions of the different types in the population will therefore be subject 
to drift in the face of mutations. 

*‘This argument also shows that, with the definition of a polymorphous MESS given in the 
next section, no population consisting entirely of “nice” machines can be a MESS. 
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Not only this, none of the three machines are equipped to repel 
TWEETYPIE. TWEETYPIE can therefore invade the population. After 
the invasion, all machines will still always earn the utilitarian profit. 
However, once TWEETYPIE gets established, its toothlessness allows 
suitable machines (of complexity greater than two) to gain a temporary 
foothold. Such machines will get more than the utilitarian payoff when 
playing TWEETYPIE who will consequently get less than the utilitarian 
payoff. Eventually, the invading machines will lose their edge when their 
exploitation of TWEETYPIE results in its being eliminated. They will then, 
in turn, be eliminated themselves because their greater complexity no 
longer generates any extra advantage. This restores a population of 
TAT-FOR-TIT, TWEEDLEDUM, and TWEEDLEDEE in which all 
machines earn the utilitarian payoff. 

A population consisting of suitable fractions of TAT-FOR-TIT, 
TWEEDLEDUM, TWEEDLEDEE, and transient numbers of 
TWEETYPIE can therefore co-exist in a relationship whose stability is 
somewhat precarious. The proportions in which they are present will drift 
depending on the shocks the system receives as different mutants appear. 
Although the symbiotic relationship may persist for long periods of time, 
it will be stressed to the point of collapse if a sufficiently adverse sequence 
of mutations is encountered. 

Perhaps more satisfactory stability situations exist at higher complexity 
levels. At the two state level, little more can be said without information 
about how mutations arise. 

9. POLYMORPHOUS MESSES 

It remains to confirm that the conclusion of Theorem 7.1 is valid in the 
presence of polymorphy. To this end, let F denote a population in which 
the automaton u” occurs with frequency fn > 0 (n = 1, 2...N). Define 

P(a, F)= i f,P(a, a”). 
n=l 

A population F will be said to be a polymorphous MESS if, for all possible 
mutants b and all u” in F, 

(1) P(u”, F) > P(b, F), or 

(2) P(un, F) = P(b, F) and P(un, b) > P(b, b), or 

(3) P(u”, F) = P(b, F) and P(a”, b) = P(b, b) and \a”( d Jbl. 

The conditions for a polymorphous MESS ensure that each machine in 
the population does at least as well as any potential invader, provided the 
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latter appears in sufliciently small numbers. Some examples for the case 
when the underlying game G is the Prisoners’ Dilemma of Fig. 1 may help 
to clarify the definition. We have seen that a population consisting entirely 
of TIT-FOR-TAT is not a MESS. However, a population consisting 
entirely of TAT-FOR-TIT is a MESS. So is any population consisting of 
specimens of TAT-FOR-TIT, TWEEDLEDUM, and TWEEDLEDEE. 
But the addition of small numbers of TWEETYPIE generates a population 
that is not a MESS. 

Since any member of the population can itself appear as a mutant 6, a 
polymorphous MESS must have the property that P(u”‘, F) = P(a”, F) for 
all am and an in F. It follows from part (2) of the definition of a 
polymorphous MESS that, for all am and an in F, 

We define 

P(um, a”) 2 P(a”, a”). (2) 

z = min P(a”, a”) E P(ak, ak). 
n (3) 

It follows from parts (2) and (3) of the definition of a polymorphous MESS 
that, for all 8’ and an in F, 

P( am, a”) 2 z. (4) 

A population F will be said to be utilitarian if, for all am and un in F, 
P(um, a”) B P(a*, a*) = u, where a* is a utilitarian automaton.21 

THEOREM 9.1. If the underlying game G is symmetric, then a population 
F can be a polymorphous MESS for G# only if F is utilitarian. 

Proof: Let F be a population that is a polymorphous MESS. The 
theorem will follow from (4) if it can be shown that z > u. 

The first step is to prove that, for any am in F, 

P(am, ak) >, u 

where ak satisfies (3). 

or (P(ak, a*), P(am, a”)) = (z, z), (5) 

Suppose that (5) fails. Then there exists ui in F for which 

P(aj, ak) < u and (P(ak, a’), P(a’, a”)) # (z, z). (6) 

*I If the automaton selection game is Gx#, then it is also true that P(a”, a”) < P(a*, a*) for 
all a”’ and u” in E This also holds when G is symmetric and the automaton selection game 
is G* provided that, as in the Prisoners’ Dilemma of Figure 1, the utilitarian profit in G* 
coincides with that of G**. If this proviso does not hold, the definition of a utilitarian 
population is not very interesting for Gr. 
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It will be shown that (6) allows the construction of a mutant b that does 
better than aj. The mutant plays as follows: 

l Initially, b mimics ak, and continues to do so unless a cycle is 
established that generates a profit pair of (z, z). (Because each automaton 
in F is finite, b can be programmed to detect the occurrence of one of the 
finitely many cycles generated by the automata in F which yields the profit 
pair (z, 2)). 

l If such a cycle is established, b sends an identifying signal. If this 
is reciprocated, b “knows” it is playing itself and thereafter mimics a*. 

l If the signal is not reciprocated, b experiments until it learns the 
identity of the automaton a’ in F that it is playing. 

l This will leave a” in some state q. For familiar reasons, a” must 
use q in playing against at least one automaton am in F. Thus b may now 
mimic a”’ thereafter, and hence, by (4), secure a profit of at least z. 

To see that the mutant b so constructed does better than a’, first observe 
that, for all a” in F,22 

P( b, a”) 2 P( ak, a”). (7) 

It follows that P(b, F) > P(ak, F) = P(aj, F). The first of the conditions for 
a polymorphous MESS is therefore not satisfied. The second and third 
conditions are not satisfied either because P(b, 6) = P(a*, a*) = U, and 
P(aj, 6) = P(a’, ak) < U, by (6). Thus, P(aj, b) < P(b, b). It follows that (5) 
must hold if F is a MESS. It remains to complete the proof by showing 
that z 2 u follows from (5) and the fact that F is a MESS. A mutant b is 
constructed exactly as in the first part of the proof, but we now examine 
how this mutant performs in comparison to ak rather than aj. As before, 
the mutant satisfies (7) for all an in F. 

When playing ak, the mutant b eventually behaves like some machine am 
in F. Suppose that P(b, ak)= P(am, uk) 3~. If u> z= P(uk, uk), then (7) 
holds with strict inequality when n = k. It follows that P(b, F) > P(uk, F). 
This contradicts the assumption that F is a MESS. Thus, either z > u as we 
are trying to prove, or else P(um, a”) < u. 

We therefore consider the case when P(um, ak) < U. Then (5) implies that 
P(ak, b) = P(ak, am) = z. Since P(b, F) 2 P(ak, I;), the second and third 
conditions for a polymorphous MESS yield that P(ak, b) 2 P(b, b) = u. On 
combining these results, we therefore obtain again that z >, U. [ 

22T~ establish (7), notice that if urn is the automaton that b mimics against a” in the last 

part of the description of b, then P(b, a’) = P(a”, a”) 2 P(ak, a”), since otherwise P(&, 0”) > 
P(a”, a”) 3 z (from (2)-(3)), precluding the ability of b and a” to yield a cycle of profits (z, Z) 
and yielding a contradiction. 
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THEOREM 9.2. A population F can he a polymorphous MESS for G# # 
only if F is utilitarian. 

Proof We note only that, in adapting the proof of Theorem 9.1, one 
need not construct a mutant that signals its identity under certain con- 
tingencies both when in the role of player 1 and in the role of player 2. It 
is enough to do better than a machine in the current population in one of 
the two roles. 1 

10. CONCLUSION 

We have examined circumstances under which the only evolutionarily 
viable outcome in an infinitely repeated game is utilitarian. The argument 
depends on the players being boundedly rational, but no uniform bound is 
imposed on the complexity of their thinking processes. 

Our notion of evolutionary viability, captured by the modified 
euolutionarily stable strategy (MESS) permits players operating different 
strategies to co-exist in a symbiotic relationship that sustains the utilitarian 
outcome against any single potential disrupting mutant invasion. However, 
questions remain about the viability of such populations in the presence of 
repeated invasion attempts. We feel that the examination of more stringent 
stability requirements than those studied in this paper is an important area 
for further research. In particular, it is not clear that one should follow the 
biologists in supposing that the interval between successive invasion 
attempts is sufliciently large that a nonviable mutant will be entirely 
eliminated before the appearance of a new mutant. Overlapping invasions 
would seem more suited to a social context. 

APPENDIX A 

This appendix contains a listing of all 26 one and two state Moore 
machines capable of playing the infinitely repeated Prisoners’ Dilemma. 
The entry in row r and column c in the Figs. 3 and 4 give the profit (the 
limit-of-the-means payoff) that machine r gets when it plays machine c. 
Machines that cooperate in their initial state are labeled with lower case 
letters. Machines that defect in their initial state are labeled with upper case 
letters. 

APPENDIX B 

This appendix discusses some formal issues in the theory of finite 
automata that are neglected in the text. For more details, see Hopcraft and 
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Ullman [14]. We work with a particular type of finite automaton called a 
Moore machine. A Moore machine capable of serving as player i in the 
repeated game G” has the set Si of player i’s actions in the underlying 
game G as its output (or response) set. The set SPi of actions jointly 
available to the other players in G is its input (or stimulus) set. 

Formally, a Moore machine with these input and output sets is a 
quadruple (Q, qO, t, u). The set Q is finite. An element q E Q is interpreted 
as a state of the machine. The output function t: Q -+ Sj describes the action 
t(q) used by the automaton when it is in state q. The first time that the 
machine plays G, it is in its initial state qO. The transition function 
u: Q x Sei + Q describes how other states are reached. If the machine is in 
state q, it will play t(q) in the current repetition of G. The other players will 
use some joint action s _ ;. This shifts the automaton to state u(q, s-,), 
where it will remain until after the next repetition of G. 

For simplicity, the following results are confined to the case when G is 
symmetric. 

LEMMA B.l. If an automaton a is a MESS for G#, then every state oj 
a is used when a plays G# against itself. 

Proof. Suppose that a = ((2, qO, t, u) has a state q* that is not reached 
when it plays itself. A machine b = (Q’, qb, t’, u’) is then constructed as 
follows. Take Q’=Q\{q*) and qb=qO (#q*). Define u’:Q’xS-~-Q’SO 
that u’(q, smi)=u(q, s-;), unless u(q, s_,)=q*. In the latter case, take 
u’(q, spi) = q. The game G” will then be played the same whether the 
players are two a machines, two b machines, or an a machine and a b 
machine. Thus, P(a, a) = P(b, a) = P(a, b) = P(b, b). All the conditions for a 
to be a MESS then fail because lb1 < la(. m 

LEMMA B.2. If an automaton a is a MESS for G# and u is the utilitarian 
payoff, then there exists a machine b such that P(b, b) = u and 
P(b, a) = P(a, a). 

Proof: Suppose that a = (Q, qO, t, u ). Let t(q,,) = x. The lemma is 
immediate unless G admits a second action y. Let u(q,, y) = q*, Take 
Q=Qu {r,s}, and define b=(e , r, 1, 6) so that I(r) = y and i(s) =z, 
where z is the utilitarian action in G. Define 2(q) = t(q), for all q E Q. Define 
ii(r, y) = s and E(r, w) = q* for all w  # y. Define z?(s, w) = z for all w. Define 
ii(q, w) = u(q, w) for all w  and all q E Q. 

Then P(b, b) = u because, after observing the opponent play y, the 
automaton b switches from state r to state s, where it remains thereafter 
using action z. Why is P(b, a) = P(a, a)? After b plays y and a plays x in 
their respective initial states, both automata then switch to state q* and 
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play like a thereafter. Since all of a’s states are used when a plays itself (by 
Lemma B.l), it follows that P(b, a) = P(a, a). 1 

The formalities for the corresponding results for polymorphous MESSes 
and for asymmetric underlying games G are similar but have longer proofs. 

APPENDIX C 

The main body of the paper looks only at limit-of-the-means profits in 
the repeated game G”‘. This appendix indicates some extensions to the dis- 
counting case. Only pure populations and a symmetric underlying game G 
will be considered. 

If an automaton a plays G” with a second automaton b, denote the 
stage-game payoff to the former at time t by ~‘(a, b). Denote the “continua- 
tion payoff’ at the Tth stage of G” by 

P&b)=(l-6) f sz-~rcr(u,b), 
r=T 

where 6 is a discount factor satisfying 0 < 6 < 1. The function 
P,(u, b) = Pi(u, b) then replaces the profit function of the text. Complexity 
considerations remain unchanged. 

More liberties will be taken with the definition of evolutionary stability. 
If 0 < 6 < 1 and E > 0, a population will be said to be (6, &)-viable if a 
mutant bridgehead consisting of a fraction E of the population cannot 
expand when the discount factor is 6. An automaton a will be said to be 
a GUESS if, whenever E = U( 1 - 6) as 6 + 1, a population consisting 
entirely of specimens of a is (6, &)-viable for all 6 sufficiently close to 1. 

The following theorem is a limiting result. Away from the limit, one can 
not guarantee that machines are utilitarian. One can only ask that they be 
approximately utilitarian. 

THEOREM Cl. Zfu is a GUESS, then 

P,(u, a) + u us s --) 1, 

where u is the utilitarian payoff: 

Proof If a is a GUESS, then it has no unused states for familiar 
reasons. Let t = T be the first stage at which Pi(u, a) achieves its minimum. 
Assume for the moment that T>O. Construct a mutant b with the 
following properties: 

l Until time T- 1, the mutant b mimics a. 
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l At time T- 1, the mutant b outputs something different from a. 

l If the signal is reciprocated, b continues by mimicking the 
utilitarian machine from period T onwards. 

l If the signal is not reciprocated, b returns to mimicking a from 
T onward, but starting from the state to which a was switched by b’s 
deviation at time T - 1. 

The expected continuation profit from time T- 1 to the a automaton 
after an invasion by a fraction E of b mutants is 

(1 -S){(l -&)nr-‘(a,a)+~n~~‘(a, b)} 

+6((1-~)PgT(u,u)+&P,T(u,b)}. (8) 

The expected continuation profit from time T- 1 to the b automaton after 
the invasion is 

(l-6){(1-~)+‘(b,u)+~n~-‘(b,b)} 

+6{(1 -E) P,‘(b, u)+cP;(b, b)}. (9) 

Both a and b get the same profit flow up to time T - 1, and so a will get 
displaced if (9) exceeds (8). If m and M are the minimum and maximum 
values in the payoff matrix for G, we obtain the following sufficient condi- 
tion for (9) to exceed (8) and hence for a to be displaced by b: 

(1 -E) P,‘(u, a) + &‘;(a, b) - (1 -E) P;(b, a) 

< EP,T(b, b) - 

A simpler sufficient condition is obtained by noting that P,‘(b, b) = U, and 
that 

P,‘( u, b) = P,‘( b, a) >, P,T(u, a). 

The latter observation follows from the fact that b mimics u from time T 
onward, and hence Pf(a, 6) = P,T(b, a) 2 Pi(a, a) 2 P,‘(u, a), for some t. On 
substituting, we obtain our final sufficient condition that b be able to 
displace a. The sufficient condition is 

EP;( U, U) < EU - 

Suppose that it is false that P,(u, a) + u as 6 + 1. Then there exists an 
YI > 0 and a sequence ~5~ + 1 such that P,,(a, a) < u - r]. It follows that, 

P~(d”(u,u)~P,,(u,u)$u-?<u- 2 
( > 

(M-m), (11) 
I I 
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provided that 
l-6. 

( > * (M-m)<v. 
I 1 

To obtain a contradiction, it remains to select 

2 (1-S;) 
E-Z--. 
’ rl hi 

Then si = 0( 1 - S,), but (11) and hence (10) hold. Therefore b can displace 
a for each value of i. Thus a is not a GUESS. 

This proves the theorem provided that it is never true that T=O. If 
T= 0, b is constructed to screen at time 0. Then Pj(b, a) = Pi(u, b) 3 
Z-$(Q, a), and (10) must be replaced by 

(1-E)P;(a,a)-(1-2&)P~(a,a)<EU- 
( > 

7 (M-m). 

Since Pj(a, a)= Pf(u, a)+ O(1 -6), the result still follows after a little 

extra algebra. 
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