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Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 30 IntroductionGame theory, like any discipline which attempts to provide systematic tools for describingand analyzing real life situations, faces the problem of the confrontation of its idealizedtheoretical objects with their real-life counterparts. In this respect classical game theorysu�ers from several de�ciencies:(i) It is based on the unrealistic assumption that players are perfectly rational and possessfull knowledge of the structure of the game, including the strategy spaces and thepayo�s as well as the information and the rationality of the other players.(ii) Nash's equilibrium concept, essential to the theory, is based on the players' ability toplay mixed strategies. This raises the question of the justi�cation and interpretationof mixed strategies.(iii) A fundamental problem is that of multiplicity of equilibria. Even if the rationalisticjusti�cation of the Nash's equilibrium concept is satisfying when a game admits aunique equilibrium, it becomes highly problematic when there are several equilibria.Deductive equilibrium selection theories| such as Harsanyi and Selten's tracing pro-cedure (1988)| argue that some equilibria are more reasonable than others. Thesetheories, however, require very strong assumptions on the rationality of players, andthere is no general and convincing argument in explaining how players can determinewhich equilibrium should be played.One way of addressing theoretically some of the questions raised by (i) and especially (ii)is to introduce perturbations of the game in the sense of Harsanyi. In a perturbed gamewhere each player has a small amount of private information represented by a privatelyobserved (small) random perturbation of his own payo�s, all equilibria are essentially pure.Moreover, each regular equilibrium of the original game can be approximated by the beliefsresulting from the game of incomplete information (Harsanyi, 1973).This approach provides a convincing justi�cation and interpretation of mixed strategyequilibria. However it is not entirely satisfying with respect to (i), because the justi�cationof equilibria in terms of rational behavior requires that the probability distributions of thepayo�s be common knowledge.An alternative approach to these problems is to replace the rationalistic explanationswith an adaptive or learning interpretation of game-theoretic concepts such as equilibriaand mixed strategies. Along these lines, Fudenberg and Kreps (1993) recently proposed anadaptive model for games with randomly disturbed payo�s, based on the method of �ctitiousplay in which players| by playing the game over and over| adapt to their opponents' longterm strategies and adapt their own responses over time.1 At the start of each game, eachplayer knows her own payo�matrix and the empirical frequencies of opponents' past actions,but no information about opponents' payo�s. Each player selects an action (pure strategy)1There is an important literature on this subject. For an introduction and further reference the reader isrefered to the recent book by Fudenberg and Levine (1996).



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 4that maximizes her immediate expected payo� under the assumption that opponents willplay the mixed strategy by the historical frequencies of past plays.With regard to the points (i) and (ii) above, this kind of model enjoys some attractivefeatures: There is no assumption of unrealistic common knowledge. Players have no anyother information than their own payo� and the structure of the game. And players playonly pure strategies, determined by their observation of the previous plays rather than bya complex reasoning process.When adaptation according to �ctitous play is added to Harsanyi's setup for a 2 � 2game, it turns out that that empirical frequencies of action choices converge. Moreover,with su�ciently small noise in payo� matrices, pure equilibria are almost surely selected overmixed equilibria (Kaniovski & Young 1995; Hirsch & Bena��m 1994; Theorem 2.8 below).This is in surprising contrast to one of the fundamental conclusions of Harsanyi's theory,namely, that privately observed random perturbations of the payo�s should stabilize themixed equilibria. This phenomenon illuminates the di�erence between Harsanyi's one-shotgame situation, in which players are assumed to act on identical correct beliefs about theiropponent strategies (regardless of the credibility of these beliefs), and the present context,in which players arrive at their beliefs| correct or not| as the result of the long-termlearning adaptive process of �ctitious play. We discuss this further in Section 2.Stochastics and Dynamics of Fictitious Play Since payo�s vary stochastically in aFudenberg-Kreps game, the in�nitely repeated game gives rise to a stochastic process. Thefundamental object of interest is the state sequence fxkg, where xk is a vector listing theempirical frequencies with which each player's pure strategies have been played in the �rstk games. The state sequence is a Markov process with countable state space, essentially ageneralized urn process.The stochastic process fxkg is caricatured by the dynamics of the deterministic gamevector �eld F on the state space: F (x) points in the direction of the conditional expectedchange in the state vector, given that the current state is x (see Equations (15), (16), (17)).Equilibria (zeroes) of F are Nash distribution equilibria of the unperturbed game. Themathematical relationship between state sequence and the game vector �eld is summarizedin the crucial recurrence schemexk + 1� xk = 1k + 1[F (xk) + Zk+1];where fZk+1g is a random variable whose conditional expectation given xk is zero. Suchschemes are studied in Stochastic Approximation, whose results play a key role in analyzing�ctitious play.It has long been known that if the vector �eld F admits a unique, globally asymptoticallystable equilibrium x�, then almost surely xk ! x�; this is the classical Monro-Robbinstheorem. Arthur et al. (1987) show that when F is a gradient vector �eld with �nitely manyequilibria, then almost surely fxkg converges; they also prove that fxkg cannot converge toa totally unstable equilbrium. A result of Pemantle (1990) implies that only asymptoticallystable equilibria can have positive probability of being the limit of the state sequence.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 5Fudenberg and Kreps proved the convergence of the �ctitious play adaptive processfor those 2-player, 2-strategy games with unique Nash equilibria (possibly mixed). Whiletheir analysis provides quite an interesting interpretation of mixed equilibria as the result oflearning in a situation of incomplete information, it doesn't address the important di�cultiesraised in (iii).Kaniovski and Young (1995) and independently Bena��m & Hirsch (1994) showed thatunder generic conditions, when the payo�s are subject to su�ciently small independentrandom perturbations, the sequence of empirical frequency pairs converges almost surely toan equilibrium of the perturbed game which is close to an equilibrium of the unperturbedgame. And this will be a pure equilibrium of the unperturbed game, if any exists. This resultis given in Theorem 2.8 below under hypotheses slightly di�erent from those of Kaniovskiand Young (1995).Previous results have been limited to proving convergence of the state sequence forcertain situations, and to characterizing limiting equilibria. On the other hand, such gamesform an extremely small part of all games, and to concentrate on convergence is to ignoremany interesting phenomena. Our point of view is that the entire limit set of the statesequence is of considerable interest. In this paper we use recent advances in dynamicalsystems and stochastic approximation to analzye the limit set for several classes of games,including some where convergence has zero probability.As we will show, it is impossible to expect general convergence for noisy adaptive gameshaving more than two players. In contrast to 2 � 2 games, even for games with a uniqueNash distribution equilibrium there may be zero probability of convergence. Therefore animportant question is to understand how qualitative features of the learning process, such asconvergence or nonconvergence, can be deduced from structural features of the unperturbedgame and the noise. We give several examples of this kind of analysis, using as our maintool the asymptotic dynamics of the game vector �eld.The Main ResultsIn this paper we treat games with multiple equilibria, and games where oscillation andnot convergence is the most likely behavior. The main tool is a recent theorem of Bena��m(1996), called here the Limit Set Theorem: Almost surely the limit set of fxkg has theimportant dynamical property of being attractor-free for the dynamics of F . In many casesthis gives a great deal of information about the asymptotics of the game.We prove that for 2 � 2 games having countably many Nash (distribution) equilibria,fxkg converges almost surely to a Nash equilibrium.For any number of players, we show that every asymptotically stable equilibrium haspositive probability of being selected (i.e., of being the limit of the game sequence). Bya result of Pemantle (1990), an equilibrium which is not stable has no chance of beingselected.These results lead to the following conclusion for �ctitious play with randomly perturbedpayo�s: Where there is more than one asymptotically stable equilibrium of the game vector�eld, it is certain that the empirical frequencies of players' pure strategies will converge



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 6to such an equilibrium. Unfortunately it does not appear to be possible to predict withcertainty which equilibrium will be selected.This seemingly unsatisfactory state of a�airs is simply an ineluctable fact about �ctitiousplay. Much as we might desire a unique equilibrium, nature does not behave that way exceptin very special cases. The limiting equilibrium in 2� 2 games is a random variable; it is achallenging problem to analyze its distribution.When there are more players or strategies, even very simple games can have complicateddynamics under randomized �ctional play. We give an example of an n-player matchinggame whose sample paths have positive probability of clustering at all points of a limit cycleof the game vector �eld. For n = 3 this behavior has probability 1.More generally, we investigate n-player, 2-strategy coordination and anticoordinationgames. In a coordination game, payo�s are such that it is to the advantage of each pairof players to make choose identical actions, while in an anticoordination came the oppositeholds. Players do not have this knowledge, however. It turns out (under generic assump-tions) that for 3 player coordination games, sample paths almost surely converge. Foranticoordination games we give examples of parameter ranges where this holds, and otherswhere convergence is not certain.From a strictly mathematical point of view, our results are consequences of a theory ofasymptotic pseudotrajectories and its applications to stochastic approximation processes,recently developed by Bena��m (1996), Bena��m and Hirsch (1995, 1996), relying heavilyon methods developed in the literature on stochastic approximation (e.g., Kushner andClark (1978), Arthur et al. (1987), Du
o (1990, 1996).) The results on coordinationand anticoordination games use di�erentiable ergodic theory and the theory of monotonedynamical systems.Results in this �eld depend in subtle ways on the nature of the noise in the payo�matrices. Some theorems need the noise to be su�ciently di�use; some proofs require thatthe conditional distribution of payo�s to any player depends on her action choice alone.Sometimes abstract properties of noise densities, such as analyticity, are useful in drawingconclusions about the dynamics of the game vector �eld. As in all mathematical modeling,such assumptions may have no practical interpretation, and may in fact be unnecessaryfor validity of the theorems. In such cases the mathematical results should be viewed asinsights into the nature of the real world situation being modeled.Outline of ContentsThe organization of the paper is as follows:Section 1 brie
y review FK-games.Section 2 contains the general analysis of 2�2 FK-games and states the main convergencetheorems, with applications to games whose payo�s are subjected to small privately observedrandom shocks. We discuss relations between our results and Harsanyi's puri�cation on onehand, and the risk-dominance criterion on the other hand.Section 3 contains the proof of our basic mathematical result, the Limit Set Theorem.Section 4 contains applications of the Limit Set Theorem and further proofs.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 7Section 5 discusses some adaptive FK-games with more than two playersSection 6 contains the proof of Theorem 2.8.Acknowledgments We are grateful to Emmanuelle Auriol and Paolo Ghirardato forhelpful advice and discussion, and to Drew Fudenberg for valuable comments. Critiquesby Douglas Gale and anonymous reviewers of earlier drafts have considerably improved theexposition.1 Games with Randomly Perturbed Payo�sIn this section we introduce the adaptive model considered by Fudenberg and Kreps (1993,Section 7) in which players play pure strategies determined by privately observed noisypayo�s, in the spirit of Harsanyi's puri�cation Theorem (1973).The basic model is an in�nitely repeated game played by � � 1 players labeled byi 2 f1; : : : ; �g at times k = 1; 2 : : : It is convenient to use superscript �i to refer to the setof players 6= i. In a 2 player game, �i refers to the player di�erent from player i.We assume that player i has a �xed �nite setAi = f1; 2; : : : ; digof (pure) strategies, called player i's action space. The cartesian product of the otherplayers' action sets is denoted by A�i; it has cardinality d�i = �j 6=i dj .The set Si of mixed strategies for player i is the unit simplex �di�1 � Rdi of dimensiondi � 1: Si = fz 2 Rdi : diXl=1 zl = 1; zl � 0g:We identify Si with the set of probability measures on Ai. If ai 2 Ai we let ai 2 Si denotethe corresponding vertex (i.e, the lth component of ai is 1 for l = ai and 0 otherwise).We set S�i = �j 6=iSj . An element r 2 S�i is a list frjgj 6=i of mixed strategies for playeri's opponents.The game's state space is the compact convex polyhedronS = S1 � � � � � S� � Rd1 � � � � �Rd� :A state s = (s1; : : : ; s�) 2 S of the game is a list of mixed strategies. We de�nes�i 2 S�iby deleting si from S. The payo�s to player i are determined by her payo� functionV i : Ai �A�i ! R:When she plays l 2 Ai and her opponents play r 2 A�i, her payo� is V i[l; r]. We representV i by a matrix of shape di � d�i, also denoted by V i. The payo� function V i is extendedto a function V i : Si � S�i ! R by multilinearity.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 8Nash Distribution Equilibria for a Randomly Perturbed GameBefore analyzing �ctitious play, we review one-shot games in which payo�s are randomlyperturbed; here we do not consider repeated plays or adaptation.Let fV ig be the payo� matrices for a classical �-player game. A corresponding aug-mented (or perturbed) game (Fudenberg and Kreps (1993)) is speci�ed by random di � d�imatrices Ui = V i +Ei; i = 1; : : : ; �; (1)where the Ei are matrix-valued random variables with zero means. There is no assumptionhere that Ei and Ej are independent for i 6= j.2 When playing the game, each player knowsonly her own payo� matrix.Properly speaking, the data (1) specify not a single game but a random game. We referto it as an FK-game.Let r 2 S�i be a set of mixed strategies for player �i's opponents. An action l 2 Aiis called a best response of player i to r if it maximizes the expected payo� to player i,assuming that she plays l and her opponents plays r. Thusl = Argmaxm2f1;:::;dig Ui[m; r]:To ensure uniqueness of the best response, we assume from now on that the random variablesUi satisfy the following ad hoc condition:Hypothesis 1.1 For e very mixed strategy z 2 S�i and every m; l 2 Ai with m 6= l;PfUi[m; z] = Ui[l; z] g= 0:For each z 2 S�i the set of di � d�i matrices U such that U [m; z] = U [l; z] for some l 6= mhas zero Lebesgue measure. Therefore Hypothesis 1.1 is easily seen to be valid for a largeclass of random matrices.The best response map of player i is the deterministic map�i : S�i ! Side�ned as follows: For s�i 2 S�i and l 2 f1; : : : ; dig, let �i(s�i)l denote the probabilitythat action l is the best response of player i when the opponent uses the mixed strategys�i. Thus for each l 2 f1; : : : ; dig:�i(s�i)l = Pfl = Argmaxm2f1;:::;dig Ui[m; s�i]g: (2)De�nition 1.2 The Nash map is the map� : S ! S;�(s1; : : : ; s�) = (�1(s�1); : : : ; ��(s��)): (3)To a joint mixed strategy s, the Nash map � assigns the list comprising each player's bestresponse to the opponents' strategies listed in s.2Later we will assume such independence in order to compare our results with Harsanyi's theory ofpuri�cation.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 9The Nash map will play a key role in the further analysis.De�nition 1.3 A Nash distribution equilibrium of the augmented game is a �xed points� 2 S of the Nash map.Remark 1.4 If � is continuous, the existence of Nash distribution equilibria follows fromthe Brouwer �xed point theorem. But the calculation of these equilibria by the playerswould require that the marginal probability laws of the random payo�s Ui are commonknowledge. In this situation a Nash distribution equilibrium is the probability distributionof a Nash equilibrium for the augmented game (see Harsanyi (1973) or Fudenberg and Kreps(1993)). There is no implication here that the players have this knowledge. But we shallprove that in many cases, the adaptive process of �ctitious play for in�nitely repeated FKgames causes empirical frequencies to converge to some Nash distribution equilibrium.Let P(A) denote the set of probability measures on A, which is naturally identi�ed withthe simplex �d�1 � Rd where d =P�i=1 di: Closely related to the Nash map for two playersis the joint best response map.De�nition 1.5 The joint best response map is the map�̂ : S ! P(A) = �d�1; (4)de�ned for a = (a1 : : :a�) 2 A by�̂(s)a = Pfai = Argmaxj2f1;:::;dig Ui[j; s�i] : i = 1; : : :�g: (5)The number �̂(s)a gives the probability that a 2 A constitutes the joint best responses tothe mixed strategy pro�le s 2 S:Notice that when the matrices fEig are independent, then�̂(s)a = ��i=1�i(s�i)ai: (6)The Game Vector Field for Adaptive FK-GamesWe now consider �ctitious play, with payo�s subject to random perturbations. Before eachround of play, each player knows her own payo� matrix, but not the opponents'. Buteach player keeps track of the opponents' empirical frequencies of actions, and chooses hernext action deterministically to optimize her expected payo� conditioned on the opponentsplaying the mixed strategy given by their current empirical frequencies of actions. Thisadaptive behavior is known as �ctitious play.We denote the set f0; 1; 2; : : :g of natural numbers by N and the set of positive naturalnumbers by N+. The Euclidean norm of a vector z 2 Rn is jjzjj = qPmj=1 x2j :We consider the state spaceS = �d1�1 � � � � ��d��1 � Rd1 � � � � �Rd�



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 10to be a submanifold (with corners) in Rd; d = d1 + � � �+ d�. Its tangent space at everypoint is identi�ed with the linear subspaceTS = f(y1; : : : ; y�) 2 Rd1 � � � � �Rd� : diXj=1 yij = 0; i = 1; : : : ; �:g (7)A vector �eld on S is a map from S to TS.The action of player i in game k 2 N+ is denoted by aik 2 Ai, and aik denotes thecorresponding vertex of the simplex Si = �di�1. We may consider aik either as a purestrategy in the simplex of all strategies, or as a Dirac measure in the simplex of measureson the �nite action space Ai.The �-tuple ak = (a1k; : : : ; a�k) 2 A1 � � � � �A� = Ais the action pro�le at time k. Corresponding to ak is the action vertexak = (a1k; : : : ; a�k) 2 S;which is an extreme point of the convex polyhedron S. Thus a sequence of games producesthe sequence fakg of action pro�les, and the equivalent sequence of fakg of vertices of S.The empirical frequency vector xik 2 Si of player i after the �rst k � 1 games is thevector xik = 1k kXj=1 aij (8)The mth component (xik)m of xik is the proportion of times in the �rst k games that playeri has played action m 2 Ai.The state of the game at time k � 1 is the vector xk 2 S listing the players' empiricalfrequencies at time k: xk = (x1k; : : : ; x�k) 2 S1 � � � � � S�;or equivalently xk+1 = kk + 1xk + 1k + 1ak+1: (9)We call fxkgk2N the state sequence of the in�nitely repeated game.The empirical joint frequency tensor at time k is the d1 � � � � � d� tensor Ck : A ! Rgiven by Ck = 1k kXj=1 a1j 
 � � � 
 a�j ; (10)where y1 
 � � � 
 y� is de�ned by y1 
 � � � 
 y�[l1; : : : ; l�] = ��i=1yili : Thus Ck[a] is theproportion of time in f1; : : : ; kg that action pro�le a 2 A has been played.An �-player adaptive FK-game is a sequence of independent, identically distributed(IID) FK-games. It is speci�ed by datafAi; fUikgk2N+ ; k = 1; 2 : : :g



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 11where Ai is player i's action set, and Uik is a random di � d�i matrix of the formUik = V i +Eik ; k = 1; 2; : : : ; (11)such that Vi is a �xed deterministic matrix, and fEikgk2N+ is a sequence of IID randommatrices having mean zero. (We do not assume Eik and Ejk are independent for i 6= j.)Let k 2 N. After the �rst k games (if k � 1), the players play the augmented gamede�ned by the matrices Uik+1. They use the following adaptive procedure, �ctitious play,for determining their next actions aik+1. Player i knows her own payo� matrix Uik+1 forround k+1 and her opponent's empirical frequency vector x�ik . She assumes the opponentswill use the mixed strategy x�ik 2 S�i, and she computes and plays her best response actionaik+1 2 Ai to x�ik . Thus aik+1 = Argmaxm2f1;:::;dig Uik+1[m; x�ik ]:Therefore the state sequence fxkg is a nonstationary discrete-time Markov process, withvalues in the compact, convex set S.Using the best response maps �i (see Equation (2)) and the Nash map � (Equation (3))we obtain the formulas: Pfaik+1 = ljxk = xg = (�i(x�i))l; (12)E(ak+1jxk) = �(xk): (13)From (9) and (13) we derive:E(xk+1 � xk j xk) = 1k + 1(�xk + �(xk)): (14)We will describe the long term behavior of this Markov process in terms of the dynamicsof the game vector �eld F : S ! TS (see Equation (7)) on the state space, de�ned as:F : S ! TS � Rd1 � � � � �Rd� ;F (x) = �x+ �(x): (15)F (x) measures the discrepancy of x 2 S from being a Nash distribution equilibrium (De�-nition 1.3). Equations (13) and (14) give further meaning to F :F (x) = E(ak+1 � xk jxk = x) (16)= (k + 1)E(xk+1 � xk j xk = x): (17)In other words: If the state at time k is x, then F (x) is k+ 1 times the expected change inthe state.Our analysis of the �ctitious play process will rely heavily on a close connection be-tween the asymptotic behavior of sample paths of such a stochastic process fxkg and thedeterministic dynamical system dxdt = F (x): (18)



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 12We call this the game di�erential equation. In a similar way, we will analyze the empiricaljoint frequencies in terms of the dynamics of the system of di�erential equationsdxdt = F (x);dCdt = �C + �̂(x):In the next section we give some interesting consequences of the general theory whichcan be easily stated without the full mathematical formalism of Section 3.We record for reference the obvious but useful fact alluded to above:Proposition 1.6 The zeroes of the game vector �eld F are the Nash distribution equilibria.2 Asymptotic Behavior of Adaptive 2� 2 FK-gamesIn this section we describe the asymptotic behavior of the state sequence for 2� 2 adaptive2�2 FK-games having arbitrarily many Nash distribution equilibria. Proofs are postponedto sections 3 and 4.Convergence of Empirical FrequenciesLet (A1; fU1kg; A2; fU2kg) be an adaptive 2-player FK-game in which each player has twopure strategies; the 2�2 randommatricesUik are as in (11). Here each action set Ai; i = 1; 2has cardinality 2, and Si is a 1-dimensional simplex. We identify Si with the closed unitinterval I = [0; 1] by the map (s; 1 � s) 7! s. In this way a game state in the originalsimplicial coordinates ((x1; 1� x1); (x2; 1� x2))is given the interval coordinates (x1; x2) 2 I � I:In addition to Hypothesis 1.1 we also assume:Hypothesis 2.1 The Nash map � : I � I ! I � I is Lipschitz continuous.This is a technical assumption which is crucial to our analysis, as it validates the standardtheorems of existence, uniqueness and continuity of solutions to di�erential equations. Insome cases, as for example in classical �ctitious play for games with �xed payo� matrices,this hypothesis is not satis�ed. However, as soon as the game is subject to some kind ofrandom perturbation this assumption is very likely to be satis�ed. This is the case with theadaptive FK-games of Section 1 under the mild restrictions of Hypothesis 1.1. Hypothesis2.1 is valid for a large class of random matrices Ei.Given a state sequence fxkgk2N in I � I resulting from in�nitely repeated �ctitiousplay| thus a sample path of a stochastic process satisfying (14)| we say that a point



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 13x� 2 I � I is a limit point of fxkgk2N if limi!1 xki = x� for some sequence ki ! 1: Thelimit set of fxkgk2N is the set of all these limit points.3The following theorem is one of the main results of the paper. It extends Proposition8.1 of Fudenberg and Kreps (1993) to arbitrary 2� 2 games. Recall that �̂ is the joint bestresponse map de�ned in Equation (5).Let E � I � I denote the set of Nash distribution equilibria.Theorem 2.2 Consider a 2� 2, adaptive FK-game satisfying Hypotheses 1.1 and 2.1. Letfxkg denote the sequence of empirical frequency vectors, and fCkg the sequence of empiricaljoint frequency matrices. Then:(a) With probability one, the limit set L � I � I of fxkg is a point or a compact arc inE, such an arc being simultaneously the graph of a strictly increasing or decreasingfunction and the graph of the inverse of such a function.(b) If E is �nite or countably in�nite then almost surely fxkg converges to a Nash distri-bution equilibrium.(c) Let x� be a Nash distribution equilibrium such that Pfxk ! x�g > 0. ThenPfCk ! �̂(x�) j xk ! x�g = 1:This result shows that when there are only �nitely or countably many Nash distributionequilibria, players behave in the long run as though they have computed the equilibria ofthe game.4It is a generic condition for a vector �eld to have �nite equilibrium set, that is, it holdsfor a dense open set of C1 �elds on any compact manifold. In this sense, (b) and (c) implythat for most games of the type considered, sequences of sample paths and joint frequencymatrices converge almost surely. The following corollary of (a) gives another condition forconvergence:Corollary 2.3 In addition to the assumptions of 2.2, assume that the Nash map � : [0; 1]�[0; 1]! R2 is real analytic (e.g., noise matrices have real analytic distributions), and thatat least one of the following conditions holds:(i) (0; 0) (1; 1) are not both �xed points of �;(ii) (0; 1) (1; 0) are not both �xed points of �.Then E is �nite. Therefore sample paths, and joint frequency matrices, converge almostsurely.3The state limit set is actually not a set in the usual sense, but rather a set-valued random variable, thatis, a function assigning a set to each element of a probability space. By exension of the usual probabilisticconvention we call it a set, analogous to way that numerical random variables are treated as numbers.4Players who know the probability laws of the stochastic matrices U1 and U2, and who read Remark1.4, can do that.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 14Theorem 2.2(c) and Equation (6) imply:Corollary 2.4 Let x� 2 I � I be as in Theorem 2.2(c). Suppose that for each k, the twopayo� perturbation matrices E1k ; E2k are independent random variables. Then almost surelythe sequence of empirical joint frequency matrices Cn converges to the 2�2 matrix [x�ix�j ].The proof of Theorem 2.2 makes use of the material presented in Sections 3 and 4. Part(a) is a consequence of the Limit Set Theorem 3.3; part (b) derives from Lemma 4.4, and(c) from Theorem 4.1. Details are given in Section 4.Remark 2.5 Our assumptions on the noise matrices in Theorem 2.2 and 2.4 are consider-ably less restrictive than those of Fudenberg and Kreps (1993).Equilibrium Selection and Path DependenceIn this section we sharpen our analysis of 2� 2 adaptive FK-games, focussing attention onthe problem of equilibrium selection: Given that the empirical frequencies converge almostsurely, can we predict which Nash distribution equilibria are likely to be selected? Theorem2.6 states that under mild restrictions, only asymptotically stable equilibria of the gamevector �eld can be limits of the state sequence.In interval coordinates the Nash map is represented as� : [0; 1]� [0; 1]! [0; 1]� [0; 1];�(x1; x2) = ( b1(x2); b2(x1) ); (19)the game vector �eld F (x) = x � �(x) is thenF : [0; 1]� [0; 1]! R2;F (x1; x2) = (�x1 + b1(x2); �x2 + b2(x1) ):Recall that a Nash distribution equilibrium x� 2 I�I is an equilibrium of F , i.e., a solutionto F (x) = 0. Thus it is represented by a solution to the equationx1� = b1(x2�); x2� = b2(x1�):We call x� simple if F (and thus also �) is C1 (continuously di�erentiable) in some neigh-borhood of x�, and the Jacobian matrix DF (x�) is nonsingular. As the determinant ofDF (x�) is 1� b10(x2�)b20(x1�), we see that x� is simple if and only if the derivatives bi0 at x�verify b10(x2�)b20(x1�) 6= 1:We say that x� is linearly stable if b10(x2�)b20(x1�) < 1 (20)



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 15and linearly unstable if b10(x2�)b20(x1�) > 1: (21)The reason for these names is given after Theorem 2.6.The following result characterizes entirely the qualitative behavior of adaptive 2 � 2FK-games under the generic assumption that Nash distribution equilibria of the extendedgame are simple:Theorem 2.6 Consider an adaptive 2 � 2 FK-game satisfying Hypotheses 1.1 and 2.1.Assume that all Nash distribution equilibria of the extended game are simple. Then:(i) The sequence fxkg of empirical frequency vectors converges with probability one to aNash distribution equilibrium.(ii) Let x� be a linearly unstable equilibrium such that the Nash map is C2 in a neighbor-hood of x�, and the joint best response matrix �̂(x�) has strictly positive entries (seeEquation (4)). Then Pf limk!1 xk = x�g = 0:(iii) Suppose that each state x 2 I � I, the joint best response matrix �̂(x) has strictlypositive entries. Then at every linearly stable equilibrium x� we have:Pf limk!1 xk = x�g > 0:Part (i) of this theorem follows directly Theorem 2.2(b) since it is easy to prove that simpleequilibria are isolated. Parts (ii) and (iii) follow from the more general results (Theorems4.5 and 4.7) given in Section 4.The assumption in (ii) that b1 and b2 are C2 is technical and perhaps unnecessary.However, the assumption that �̂(x�) has strictly positive entries is fundamental. It meansevery action pro�le has a positive probability of being chosen in response to any pair ofmixed strategies.The intuition behind assertions (ii) and (iii) is part of the general philosophy (which willbecome precise mathematics in Section 3), according to which the long term behavior ofthe state sequence fxkg is closely related to the dynamics of the game di�erential equation(18). Indeed, as already noticed (Proposition 1.6), the Nash distribution equilibrium x� isalso an equilibrium for the dynamics of the game vector �eldF = (F 1; F 2) : [0; 1]� [0; 1]! R2;F 1(x1; x2) = �x1 + b1(x2);F 2(x1; x2) = �x2 + b2(x1):An elementary computation shows that the Jacobian matrix DF (x1�; x2�) has eigenvalues�1�qb10(x2�) b20(x1�): Our de�nitions of linear stability and instability of x� correspond to



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 16the synonymous properties of x� = (x1�; x2�) as an equilibrium of F : Linear stability impliesthat the forward trajectories of all initial states su�ciently near x� converge uniformly tox�; this dynamic condition is called asymptotic stability of x�. Linear instability implies thatexactly two forward trajectories other than x� converge to x�. We point out in Theorem4.7 that the condition of linear stability in assertion (iii) of Theorem 2.6 can be replaced byasymptotic stability.If we view the sequence fxkg as a noisy numerical integration of F (see Equation (31)),it seems natural that linear instability should imply that a typical sequence fxkg of gamestates does not converge toward any unstable equilibrium of F ; Theorem 4.7(ii) validatesthis intuition under somewhat restrictive hypotheses.Independent Small Perturbations of Payo�sLet �(0) denote a classical 2-player, 2-strategy game in normal form, speci�ed by the pairof 2� 2 payo� matrices V 1 and V 2. We call such a game generic if the four numbersM i = V i11 � V i12; (22)N i = V i12 � V i22 (23)are nonzero for i = 1; 2: The set of all generic 2� 2 games is identi�ed, via the componentsof the payo� matrices, with an open subset of R8 whose complement has Lebesgue measurezero.We consider two levels of extensions of the game �(0). First, for each " > 0 we consideran augmented game �(") determined by random payo� matrices Ui = V i + "Ei; i = 1; 2.Second, we consider the in�nitely repeated FK-game speci�ed by the random matrices Ui.That is, for each i let fEikgk2N be an IID sequence of random matrices with the samedistribution as Ei, and take player i's payo� matrix at round k to beUik = V i + "Eik :Each player uses �ctitious play to select deterministically the next action aik in her actionset Ai = f1; 2g.We now make the following assumptions:Hypothesis 2.7(i) The payo� matrix for player i isUi = V i + "Ei; i = 1; 2where Ei is a random matrix having the following special form:Ei = " �i1 �i1�i2 �i2 # ;whose columns �1 = (�11; �12)T and �2 = (�21; �22)T are independent random vectors withzero mean.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 17(ii) Each random variable �i2 � �i1 admits a strictly positive continuous density functionf i : R! R+ such that limjtj!1 tf i(t) = 0:Assumption (i) means that the perturbations to player i's payo�s are independent of theother player's strategies. It is chosen here for the sake of simplicity, but is not reallyessential and could easily be weakened. Assumption (ii), a technical one needed for ourproof, is satis�ed by many density functions. Remark 2.9 discusses what can be proved fordensities that are merely integrable.Corresponding to the �rst two levels of games there are two levels of Nash equilibria:� Mixed or pure Nash equilibria for �(0).� Nash distribution equilibria for the augmented game �("), for a given value of " (seeDe�nition 1.3).It is straightforward to show that �(0) has at most two pure and one mixed Nash equi-librium. More precisely: using interval coordinates (subsection 2), denote by (p; q) 2[0; 1] � [0; 1] the pair of mixed strategies where player 1 plays action 1 with probabilityp and player 2 plays action 1 with probability q. Then a computation shows that (p; q) is aNash equilibrium provided M1q +N1(1� q) � 0 and M2p+N2(1� p) � 0 (see Equations(22) and (23)). In interval coordinates we have the following easily veri�ed characterizationof equilibria:� (1; 1) 2 [0; 1]� [0; 1] is a pure Nash equilibrium if M1;M2 > 0.� (0; 0) is a pure Nash equilibrium if N1; N2 < 0.� (1; 0) is a pure Nash equilibrium if N2 > 0 > M2.� (0; 1) is a pure Nash equilibrium if N1 > 0 > M2.� (p; q) is a mixed Nash equilibrium if0 < p = N2N2 �M2 < 1;0 < q = N1N1 �M1 < 1:A direct computation shows that in interval coordinates the Nash map (see Equation (19))�" : [0; 1]� [0; 1]! [0; 1]� [0; 1]for the augmented game �(") is given as follows. SetH i(s) = Z s�1 f i(t)dt:
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(I) (II)Figure 1: Three possibilities for �(") and ". (I):M1 > 0 > M2 and N1 < 0 < N2. The unperturbedgame admits one mixed Nash equilibrium. (II): M1 > 0 > N1 and M2 < N2 < 0. The unperturbedgame admits one pure Nash equilibrium, at (0; 0). (III): M i > 0 > N i; i = 1; 2. The unperturbedgame admits one mixed Nash equilibrium, and pure Nash equilibria at (0; 0) and (1; 1).Then: �"(x1; x2) = ( b1"(x2); b2"(x1) )where b1"(x2) = H1 (M1 �N1)x2 +N1" ! ;b2"(x1) = H2 (M2 �N2)x1 +N2" ! :The Nash distribution equilibria, �xed points of the Nash map, are the solutions (x1; x2)of the system x1 = b1"(x2); x2 = b2"(x1): (24)They are equivalently determined by taking x1 to be a �xed point of the composite mappingb1" � b2" : [0; 1]! [0; 1]and setting x2 = b1"(x1).Figure 1 illustrates some generic situations of �(") for a small value of ". The curvesp2 = b2"(p1) and p1 = b1"(p2) are labeled (a) and (b) respectively. Their intersection pointsare the Nash distribution equilibria.Let x� be a Nash equilibrium for the unperturbed game �(0), with interval cooordinates(x1�; x2�) 2 I � I , and simplicial coordinates(�1�; �2�) = ((x1�; 1� x1�); (x2�; 1� x2�)) 2 �1 ��2 � R2 �R2:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 19The expected payo� P i(x�) to player i, given that both players play these mixed strategies,is given by the formulaP i(x�) = V i11x1�x2� + V i12x1�(1� x2�) + V i21(1� x1�)x2� + V i22(1� x1�)(1� x2�) (25)in interval coordinates, and byP i(��) = Xm;l=1;2V iml(�1�)m(�2�)l): (26)in simplicial coordinates.Consider now the further extension of the extended game to the stochastic sequenceof in�nitely repeated FK-games driven by �ctitious play, with noise parameter ". Thecumulative average payo� to player i at time k is de�ned, using simplicial coordinates, tobe P ik(") = 1k kXj=1Uij [aij ; a�ij ]:If P ik(") converges as k ! 1, the limit can be regarded as the long run average payo� toplayer i in the in�nitely repeated game. More generally, the closed interval[ lim infk!1 P ik("); lim supk!1 P ik(") ]gives the essential range of player i's long run average payo�s, for �xed noise parameter" > 0.Theorem 2.8 Let �(0) be a generic 2 � 2 game, and assume Hypothesis 2.7 for the one-parameter family of adaptive FK-games f�(")g. Then:(i) If " > 0 is �xed at a su�ciently small value, the sequence of empirical frequencies of�(") converges almost surely to a Nash distribution equilibrium x�(") of �("):(ii) As " goes to zero, x�(") converges to a Nash equilibrium x�(0) of �(0):(iii) The essential range of long run average payo�s to each player i reduces to the expectedpayo� at x�(0) for �(0), as "! 0:lim"!0 lim infk!1 P ik(") = lim"!0 lim supk!1 P ik(") = P i(x�(0)):(iv) If �(0) admits a pure Nash equilibrium, then x�(0) in (ii) is necessarily a pure Nashequilibrium. If there are two pure Nash equilibria (I) and (II) for �(0), each has apositive probability to be selected as x�(0) in (ii). That is:0 < Pfx�(0) = (I)g= 1� Pfx�(0) = (II)g< 1:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 20The proof of this theorem is based on Theorems 2.2 and 2.6. As it is rather long andtechnical, although elementary, we have postponed it to Section 6.Remark 2.9 We do not know if the full strength of Hypothesis 2.7 is needed for Theorem2.8. If we weaken part (ii) of the hypothesis by assuming only that the densities f i areintegrable, then the �rst part of the proof goes through to show: If " is su�ciently small,then �(") has a linearly stable Nash distribution equilibrium arbitrarily near any given pureNash equilibrium of �(0).Remark 2.10 Results similar to parts (i) and (ii) of Theorem 2.8 were obtained by Kan-iovski and Young (1995) under di�erent assumptions on the noise matrices Ei: Insteadof Hypothesis 2.7, they assume the 8 matrix entries to be independent and normally dis-tributed with variance �. Part (iii) appears to be new. Part (iv) may be well known to urntheorists.Equilibrium Selection, Stability and Harsanyi's Puri�cationAt this stage it is interesting to compare our results with Harsanyi's justi�cation of mixedequilibria. For this purpose let �(0) be a 2 � 2 game which is generic (see Section 2) andadmits three Nash equilibria (I), (II) and (III), with (I) and (II) pure and (III) mixed.As predicted by Harsanyi's theory (1973), all three equilibria of �(0) can be approxi-mated by distribution equilibria of �(") as " goes to zero. In particular, the mixed equi-librium (III) is the limit of a Nash distribution equilibrium (III)". For the unperturbedgame, (III) is unstable in the sense that a player can make small deviations from thisequilibrium without loss.An important conclusion of Harsanyi's theory is that the randomness introduced in thegame stabilises this equilibrium, in the following sense. Suppose (in the notation of Hy-pothesis 2.7(i)) that the matrices V 1; V 2, the parameter " and the probability distributionof E1 and E2 are common knowledge. Assume that player �i plays the mixed strategygiven by the Nash equilibrium whose distribution is (III)". Then, almost surely, at eachround of the game, the best response of player i is uniquely determined, and player i cannotdeviate from it without penalty.An alternative interpretation, more closely related to our context, is that only one playercomputes and plays this equilibrium, while the other player simply follows the behavior ruleof �ctitious play. It can be shown in this case that the empirical frequencies of both playerswill converge with probability one to (III)".On the other hand, suppose players know neither opponents' payo� matrices, nor thedistributions of their own matrices, and let both players adapt their strategies by �cti-tious play| the adaptive FK-game. Then according to Theorem 2.8(iv), almost surelythe sequence of empirical frequencies will not converge to (III)"; in this context (III)" isunstable. Hence we see that there is a considerable di�erence between stability of a Nashequilibrium in Harsanyi's context and in ours.The key point is that these two notions of stability correspond to di�erent scenarios,based on very di�erent degrees of knowledge. For Harsanyi it is implicit and essential



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 21that each player knows the mixed strategy played by his opponent and chooses his ownaccordingly. (Perhaps an outside mediator has informed the players of the strategy pro�lewhose distribution is (III)".) In the repeated FK game, in contrast, neither player actson any a priori knowledge of the opponent's strategies. Instead, each player predicts|generally in error!| that the opponent plays the mixed strategy based on the opponent'spast empirical frequencies of actions, and the player then chooses his own pure strategyaccordingly.Theorem 2.2 means that these predictions become self-ful�lling prophecies as playersgradually obtain knowledge of each other's play and empirical frequencies of actions con-verge; and Theorem 2.8 shows that mixed equilibria of the unperturbed game are unstable.Payo� Dominance, Risk-Dominance and Path DependenceSuppose that �(0) is the symmetric coordination game given by the (constant) matricesV1 = V2 = " a bc d # (27)with a > c; d > b. As a normalization we also suppose a � b. This game admits three(necessarily symmetric) Nash equilibria (p�; p�), which we denote by (I), (II) and (III) asfollows: (I) p(I)� = 1;(II) p(II)� = 0;(III) p(III)� = �=(1 + �);where � = d� ba� c: Equilibria (I) and (II) are pure and (III) is mixed. The payo�s at (I),(II), (III) are respectively a; d; and a�2 + (c+ b)� + d(1 + �)2 :From these expressions it is easily seen that (I) Pareto dominates (II) and (III). Thus,if the players could coordinate they would certainly choose to coordinate on (I): Howeverin absence of coordination, the riskiness of (I) relative to (II) is relevant and can lead theplayers to choose other strategies.Harsanyi and Selten (1988) say that (I) risk-dominates (II) if (I) is associated with thelargest product of deviation losses, that is if a � c > d � b: Similarly (II) risk-dominates(I) if a� c < d� b: In the latter situation there is con
ict between payo� dominance andrisk-dominance and it is not obvious that a Nash equilibrium will be played.Consider now a parameterized family �(") of adaptive 2 � 2 FK-games. Theorem 2.8(iii) shows that players are led to coordinate on a Nash equilibrium whose distribution isclose (for small noise) to a pure equilibrium of the unperturbed game, and both equilibria(I)" and (II)" have a positive probability to be selected. Therefore, while (I)" is the more
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θ/(1+θ)Figure 2: The phase portrait of a vector �eld corresponding to a small perturbation �(") of asymmetric coordination game �(0) with � > 1 (i.e (II) risk-dominates (I)). The equilibrium withthe larger basin of attraction is close to the risk-dominant equilibrium of the unperturbed game.e�cient equilibrium, it can happen that the state sequence converge toward the less e�cientequilibrium (II)".The economic phenomenon captured by this last result is usually called path dependenceand has been largely discussed in the literature on economic history (Arthur, (1989)).Contrasting path selection is presented by models considered by Young (1993), Kandoriet al. (1993) or Ellison (1993): noise and myopic responses by bounded rational players leadto selection of the risk-dominant equilibrium. In these models, players selected from a �nitepopulation are repeatedly matched. They adapt their strategies according to a deterministicrule based on the current strategy distribution of the population; but they also can alwaysdeviate from this rule and play any arbitrary strategy with a small probability controlledby a mutation parameter ".There are several di�erences between the process considered in this paper and the modelsstudied by these authors. Without going into details, we point out the fundamental di�er-ence that our model is a nonstationary Markov chain, while theirs is stationary. Therefore,under natural assumption, their underlying process is ergodic, meaning that the currentprobability distribution converges toward an invariant measure �(") regardless of the initialconditions.5 By using a characterisation of such invariant measures due to Freidlin andWentzel (1984), the authors cited above show that as " goes to zero, the invariant measure�(") tends to concentrate on the Dirac measure supported at the risk-dominant equilibrium.In our process, each equilibrium (I)" and (II)" has a positive probability to be selected.This gives some plasticity to the process; in the beginning of the play the state sequence fxkgbehaves roughly as an ergodic process in the sense that it has a nonnegligeable probabilityto visit abitrary small neighborhoods of both equilibria. However, since players take intoaccount the entire past in adapting their strategies, the e�ect of a new information tends5As pointed out by Ellison (1993), this property is meaningful only if the limiting measure is reached ina reasonable amount of time.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 23to vanishe in the long run, and the process eventually homes in to one of the two equilibria.One cannot predict which equilibrium will be selected since this depends on the initial stateand the particular sequence of payo� perturbations.We conjecture, however, that the risk-dominant equilibrium has a larger probability tobe selected than the other equilibrium. The intuition behind this conjecture is that forthe deterministic dynamical system (18), the risk-dominant equilibrium corresponds to theequilibrium of (18) having the larger basin of attraction (see Figure 2).3 Continuous Time Dynamics Arising From Fictitious PlayThis section introduces the mathematical basis for our analysis of adaptive FK-games, basedon the dynamics of the game vector �eld (15):F : S ! TS;F (x) = �x + �(x)and the corresponding game di�erential equation on S:dxdt = F (x): (28)The Limit Set TheoremThroughout the remainder of this section we assume:Hypothesis 3.1 The game vector �eld F is locally Lipschitz.Next we introduce tools enabling us to analyze game asymptotics in terms of the dynamicsof F .The Limit Set Theorem given below describes the state limit set Lfxkg in terms of thedynamics of the game vector �eld F . The point of this result is that for various types ofgames, it leads to much information about the probable location and shape of the limitset L of sample paths of the repeated game. As we will show, for some games L must be(with probability one) a stable equilibrium; for others L must be contained in a rather smallattractor approximating a point; for still others there is a positive probability that L is alimit cycle.Denoting the dimension of S byn = �X1 (di � 1) = d� �;we identify S with a compact convex subset of Rn having nonempty interior, and TSwith Rn; for convenience we assume the origin belongs to the interior of S. Under thisidenti�cation, the game vector �eld is a Lipschitz mapF : S ! Rn:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 24It is convenient to extend F to a Lipschitz map de�ned on all of Rn. This is possible bystandard theory; an explicit construction is to de�ne F (x), for x outside S, to be F (�(x))where � : Rn ! S is the retraction along rays emanating from the origin. Notice that thismakes F : Rn ! Rn a bounded Lipschitz map.It follows that F is completely integrable, meaning that its trajectories are de�ned forall values of t. Therefore F generates a 
ow� : R�Rn ! Rn;where for each y 2 Rn, the function t 7! �t(y) is the solution to the initial value problemdxdt = F (x) (29)x(0) = y: (30)The parameterized curve t 7! �t(y) is the trajectory of y; the image of this curve is the orbitof y.For each �xed t 2 R, the map y 7! �ty is a homeomorphism of Rn. We view the 
owas the collection of maps f�t : Rn ! Rngt2R, with �0 denoting the identity map of Rn.We have the composition law �s � �t = �s+t.An equilibrium (or stationary point) p is a zero of F ; this is equivalent, by uniquenessof solutions, to �t(p) = p for all t. We call a point y periodic if �T (y) = y for some T > 0:The limit set (more properly, the omega limit set) of y (and of its orbit and trajectory) isthe set of points of the form limk!1 �tk(y) for some sequence tk !1.An invariant set for F is a set Q � Rn such that �t(Q) = Q for all t. Equilibria andperiodic orbits are invariant sets; more generally, limit sets of orbits are invariant.For any invariant set Q we denote by �jQ the restriction of the 
ow � to Q, that is, thecollection of maps �tjQ : Q! Q obtained by restricting each �t to Q.Let Q denote a compact invariant set. A subset K of Q is called an attractor for �jQprovided K is nonempty, compact and invariant, and there is an neighborhood U � Q ofK with the property that limt!1 dist(�tx;K) = 0 uniformly for x 2 U . Here dist(a;K)means the distance from a to the nearest point of K. Speaking loosely, we say that anattractor captures the orbits of nearby points.An asymptotically stable limit cycle or equilibrium is an example of an attractor. Thewhole space Q is, trivially, an attractor; any other attractor is a proper attractor.The basin of an attractor K is the set of all points whose trajectories tend to K. If thebasin of K is all of Q then K is a global attractor.We call Q attractor-free if Q is a nonempty compact invariant set that contains noproper attractor. Many compact invariant sets are known to be attractor-free, such asperiodic orbits and limit sets of trajectories. The closure of the union of any collection ofattractor-free subsets of Q is attractor-free, as is the intersection of a nested collection. Ifthe 
ow is ergodic for a Borel measure supported everywhere in Q, then Q is attractor-free.If �ty ! p 6= y as t ! �1 then the closure of the orbit of y (called a homoclinic loop) isattractor-free.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 25The interplay between attractors and attractor-free sets is very useful in analyzing long-term dynamical behavior. In the following simple but useful result we consider the basicdynamical system to be �jQ. It says that an attractor-free compact invariant set is con-tained in every attractor whose basin it meets:Lemma 3.2 Let Q and � � Q be compact invariant sets for the 
ow �, and assume �j� isattractor-free. Then if � meets the basin of an attractor A for �jQ, it follows that � � A.Proof Let x 2 � be a point in the basin of A. Since the trajectory of x has limit pointsin A, and � is closed, limit points lies in �. Thus � \ A is a nonempty compact invariantset, and it is an attractor for the 
ow in �. Being attractor-free, � therefore coincides with� \A. QEDThe following theorem, the mathematical basis for our results, concerns the game vector�eld F of an adaptive FK-game. Recall that Lfxkg denotes the state limit set.Theorem 3.3 (Limit Set Theorem) With probability one, the state limit set Lfxkg hasthe following properties:(a) Lfxkg is an invariant set for the 
ow of the game vector �eld F .(b) Lfxkg is compact, connected and attractor-free.From Lemma 3.2 we obtain a useful corollary:Corollary 3.4 With probability one, the state limit set is contained in every attractor whosebasin it meets. In particular it is contained in every global attractor.The proof of Theorem 3.3 is based on the following recursion relationxk+1 � xk = 1k + 1[F (xk) + Zk+1]; (31)where fZk+1gk2N is a sequence of random variables de�ned by (31), that is,Zk+1 = (k + 1)(xk+1 � xk)� F (xk):Lemma 3.5 The processes fxkg; fZk+1g in Equation (31) satisfy the following conditions:(i) The vector �eld F is locally Lipschitz.(ii) There exists R > 0 such that jjxkjj < R; jjZk+1jj < R for all k = 0; 1; 2; : : :(iii) E(Zk+1 jxk) = 0:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 26Proof Conditions (i) is Hypothesis 3.1, while (ii) and (iii) easily follow from equation(14). QEDProof of Theorem 3.3. A recursion such as (31) is a particular form of a stochasticapproximation process, and Theorem 3.3 follows from a general result6 proved in (Bena��m,1996) (see also (Bena��m and Hirsch (1996)), concerning the asymptotic behavior of stochas-tic approximation processes satisfying Lemma 3.5. QED4 Applications of the Limit Set TheoremCorrelated Strategies and Average Payo�sTheorem 3.3 give us valuable information on the asymptotic behavior of the empiricalfrequencies of actions played by each player. But there are other interesting questions, suchas:(a) What is the long term behavior of the joint empirical frequencies of action pro�les?7(b) Where do the payo�s of the in�nitely repeated game tend to cluster?To address such questions, we consider more generally an arbitrary function H : A !Rm: After round k, this function is evaluated on the current action pro�le ak 2 A; in thisway we obtain a stochastic process fH(ak)g. The empirical frequency of fH(ak)g is thevector hHik = 1k kXj=1H(aj):The limit set of the sequence fhHikg is denoted by L[H ].The following result uses the machinery of the Limit Set Theorem to estimate thelocation of L[H ]:Theorem 4.1 Let H : A! Rmbe such that the map H : S ! Rm is Lipschitz, whereH(x) = E(H(ak+1)jxk = x) = Xa2AH(a)�̂(x)aand �(x)a is given by de�nition 1.5. Then the limit set of the sequence fhHikg is almostsurely a compact connected subset of the closed convex hull of H(L(fxkg)):6This result is stated in terms of chain recurrent sets rather than attractor-free sets, but the two notionsare equivalent by a theorem of Conley (1978).)7Even though the players act independently, it can happen that the state of Nature correlates theirstrategies.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 27Before proving Theorem 4.1 we make some remarks, and apply the theorem to some speci�cfunctions H :Remark 4.2(a) Observe �rst of all that when the state sequence converges almost surely toward anequilibrium x� (for example, as in Theorem 2.2(b)), then Theorem 4.1 implies thathHin converges to H(x�):(b) Consider the function H : A! RA;(a1; : : : ; a�) 7! a1 
 � � � 
 a�:In this case hHik is just the empirical joint frequency tensor Ck (see Equation (10))and Theorem 4.1 implies that the limit set of the sequence fCkg is almost surely acompact connected set contained in the convex hull of �̂(Lfxkg), where �̂ is the jointbest response map (Equation (5)). Therefore in case fxkg converges almost surely,we can conclude that fCkg converges to �̂(limk!1 xk):(c) Now consider the function H : A� ! R;a 7! Ui[ai; a�i]:Then fhHikg is the sequence of cumulative average payo�s to player 1 at time k, andTheorem 4.1 characterizes its limit set.Proof of Theorem 4.1 We de�ne a new repeated game, the cascaded game, having oneadditional silent player. This (�+ 1)th player takes no actions, or rather, always takes thesame action. At time k the silent player's game state is uk = hHik 2 Rm: Thus the statesequence of the cascaded game isf(xk; uk) 2 Rn �Rmgk2N:Let F denote the game vector �eld of the orginal game. Then the game vector �eld forthe cascaded game, on Rn�Rm, is easily worked out to give the tame di�erential equationdxdt = F (x); dudt = �u +H(x): (32)Notice this system is in cascade form, that is, the evolution of x(t) is independent of u.Let L � Rn denote the limit set of fxkg, and let L0 � L �Rm denote the limit set ofthe sequence f(xk; uk)g:Since L is invariant under F , it is clear that L�Rm is invariant under system (32).Let � denote the 
ow of (32) and let C � Rm denote the closed convex hull of H(L).We claim L � C is a global attractor for �j(L�Rm).



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 28Suppose this claim is true. Then L0 � L�C by Lemma 3.2. This implies the conclusionof Theorem 4.1.We now pass to the proof of the claim. Let V : L�Rm ! R+ be the map de�ned byV (x; u) = dist(u; C). By convexity of C, we havedist((1� t)u+ tH(x); C) � (1� t)dist(u; C) + tdist(H(x); C)= (1� t)dist(u; C);where the last equality holds because H(x) 2 C. Thusdist(u+ t(�u +H(x)); C)� dist(u; C)t � �dist(u; C):Now the map V (x; u) being convex and continuous because C is convex, so it admits a rightpartial derivative with respect to u. Therefore letting t goes to zero in the last inequalitygives ddtV (�t(x; u)) � �V (�t(x; u));whence V (�t(x; u)) � e�tV ((x; u)) by a standard theorem in di�erential inequalities. Thisimplies that L� C is a global attractor for �j(L�Rm): QEDProof of Theorem 2.2Let E � S denote the set of Nash distribution equilibria, which are the equilibria (zeroes)of F .The proof is based on the following:Lemma 4.3 The 
ow � of the game vector �eld is area-decreasing.Proof Here n = 2. As usual we identify the state space with I�I . Consider �rst the casewhere the case where F and hence the Nash map � are C1 (continuously di�erentiable).Then the game vector �eldF : I � I ! R2; F (x) = �x+ �(x)has negative divergence. For by de�nition of the Nash map (Equation (3)),F i(x1; x2) = �xi + �i(x�i); i = 1; 2; (33)whence the divergence of F at x is @F 1@x1 + @F 2@x2 = �2:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 29Therefore Liouville's formula (Hartman, 1964) showsddtDet(D�t(x)) = �2;showing that �t decreases areas for t > 0. The case where F is merely Lipschitz follows byapproximating each component �i by a C1 map I ! I , and applying standard continuitytheorems in di�erential equations. QEDCorollary 4.4 No compact set invariant under � can separate the plane.Proof Suppose a compact invariant set L � I�I separates the plane. Its complement hasat least one bounded connected component A. Then A is an open invariant set containedin I � I , hence A has the same area as �tA = A, contradicting Lemma 4.3. QEDProof of Theorem 2.2. We �rst prove that the limit set � of a state sequence fxkg isalmost surely contained in E .By Theorem 3.3, � is almost surely a compact, connected attractor free invariant set.Consider the dimension d 2 f0; 1; 2g of � (see Hurewicz and Wallman (1948) for dimensiontheory). If d = 1 we apply a result of (Hirsch and Pugh, 1988), implying that if a 1-dimensional attractor-free set for a planar 
ow contains a nonstationary point, the setmust separate the plane. Since we have seen that � cannot separate the plane, � consistsentirely of stationary points. If � is 2-dimensional then it has nonempty interior, then theboundary of its interior contains an invariant 1-dimensional continuum which separates theplane, leading to a similar contradiction. If � is 0-dimensional then, being connected, itis a singleton (because a 0-dimensional set is totally disconnected); hence � is a singleton,necessarily an equilibrium by invariance. Therefore in every case � is a connected subsetof the stationary set, proving part (i).If the compact connected set � is �nite or countably in�nite, then it reduces to asingleton p 2 E .Suppose � is not a singleton. By Equation (19), the set of equilibria is the intersectionof two graphs: E = f(x2; x1) : x2 = �2(x1)g\f(x1; x2) : x1 = �1(x2)g:Therefore the projection I�I ! I on the �rst (or second) factor maps � homeomorphicallyonto a compact connected subset of I . Therefore � is homeomorphic either to a point ora compact interval. This concludes the proof of assertions (a) and (b) of Theorem 2.2.Assertion (c) follows Theorem 4.1 and Remark 4.2 (b). QED



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 30Equilibrium Selection, Local Stability, and Path DependenceEven if we know that the �nal outcome of the game has to be an equilibrium, it is notobvious which equilibrium will be selected. This section addresses this important questionof equilibrium selection and the related problem of path dependence.We recall some standard terms from dynamical systems. A map is Cr; r � 1 if itis di�erentiable and its partial derivatives up to order r are continuous; and C0 meanscontinuous. The game vector �eld F : S ! TS is Cr provided the perturbation matrices Eiin Equation (1) have Cr�1 densities. Assume F is at least C1. Let x� 2 S be an equilibriumof F If the Jacobian matrix DF (x�) is invertible, x� is called simple. If all eigenvalues of theJacobian matrix DF (x�) have nonzero real parts, x� is called hyperbolic. If all eigenvalueshave negative real parts, x� is linearly stable, while if some eigenvalue has positive real partx� is linearly unstable.Equilibrium x� of F is called asymptotically stable if there exists a neighborhood U � Sof x� such that limt!1 �t(y) = x� uniformly in y 2 U , where � denotes the 
ow of F (seeEquations (29), (30)). In particular, linear stable equilibria are asymptotically stable.Let x 2 S be a game state for an adaptive FK-game with any number � of players. Wesay the game is di�use at x if whenever the game state is x, every action pro�le a has apositive probability of being selected at the next play: For all a 2 A;�̂(x)a > 0:If this holds for all x 2 S, we say the game is di�use.The following theorem shows that unstable equilibria of the game vector �eld are elim-inated as outcomes of di�use adaptive FK-games with C2 game vector �elds:Theorem 4.5 Let x� 2 S be a linearly unstable equilibrium of F . If F is C2 in a neigh-borhood of x�, and the game is di�use at x�, then:Pf limk!1 xk = x�g = 0:Proof We derive Theorem 4.5 from the following useful result due to Pemantle (1990):Theorem 4.6 (Pemantle) Consider the stochastic approximation process (31) in Rn:xk+1 � xk = 1k + 1[F (xk) + Zk+1]where the sequence fZk+1g of Rn-valued random variables is a priori bounded with zeroconditional expectations. Let x� be a linearly unstable equilibrium of F . Assume F is C2in a neighborhood of x�, and that there exists c > 0 and a neighborhood N of x� such thatfor every unit vector � 2 Rn; the following condition holds:E(max(0; hZk+1;�i) j xk 2 N) > c: (34)Then Pf limk!1 xk = x�g = 0:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 31Using the joint best response map, the game vector �eld can now be expressed asF (x) = Xa2A �̂(x)aa� x;by Equations (13) and (15). Since F (x�) = 0 we havex� = Xa2A �̂(x�)a a: (35)This exhibits x� as a convex combination of all the extreme points a of S with strictlypositive coe�cients. Considering S as a convex body in Rn, we have proved that the di�useequilibrium x� is in the interior of S.We use this to verify Pemantle's hypothesis (34). The function of x 2 S de�ned asE(max(0; hZk+1;�i) j xk = x)is independent of k and continuous in x. It therefore su�ces to show:E(max(0; hZk+1;�i) j xk = x�) > 0: (36)From equation (14) we haveZk+1 = ak+1 � E(ak+1 j xk)= ak+1 �Xa2A �̂(xk)aa: (37)Fix a unit vector � 2 TS. Let A+ denote the set of extreme points a 2 A for whichha� x�;�i > 0:Then A+ is nonempty: for from Equation (35) and the identity Pa2A �̂a � 1 we get:Xa2Aha� x�;�i = Xa2Ah�̂(x�)a(a� a);�i = 0:From the de�nition (7) of TS there exists a 2 A such that ha � x�;�i 6= 0, so the lastequation implies A+ is nonempty. We therefore have from (37):E(max(0; hZk+1;�i) j xk = x�) = E(max(0; hak+1 �Xa2A�a(x�)a;�i j xk = x�)= E(max(0; hak+1 � x�;�i j xk = x�) (by (35));= Xa2A �̂(x�)amax(0; ha� x�;�i)= Xa2A+ �̂(x�)aha� x�;�i > 0:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 32This veri�es (36), and Theorem 4.5 follows from Pemantle's theorem. QEDThe assumption that the game vector �eld is twice continuously di�erentiable is notalways satis�ed; it is used in existing proofs of Pemantle's theorem, but may be unnecessarythere. Theorem 4.5 does not need the full generality of Pemantle's result, as it deals with aMarkov process. There are in fact earlier results similar to Pemantle's, for more restrictedclasses of stochastic processes, which do not assume C2 vector �elds; but we do not �ndthem entirely satisfactory for present purposes.Theorem 4.7 Consider a di�use adaptive FK-game with any number of players, havingstate space S. For every attractor A � S of the game vector �eld,Pf limk!1 dist (xk;A) = 0g > 0:In particular, if x� 2 S is an asymptotically stable equilibrium thenPf limk!1 xk = x�g > 0:For asymptotically stable equilibria, the proof is a consequence of a more or less well knowngeneral result for urn processes that exploits the countable cardinality of the state space(Arthur et al. (1987), Bena��m and Hirsch (1995a)). For general attractors the proof easilyfollows from Theorem 6.3 of Bena��m (1997). This result shows that for a di�use adaptiveFK game admitting several asymptotically stable equilibria, even if a particular equilibriumis more e�cient than the others, at every stage there is positive probability that the statesequence converges toward a less e�cient equilibrium. The coordination games consideredin Section 2 is a good illustration of this phenomenon.The following result shows that the probable action sequences in di�use games aresomewhat restricted. It implies that even if such rules entail convergence to a clearly optimalequilbrium, the players will occasionally, but in�nitely often, play the worst possible actions.Proposition 4.8 Consider an adaptive FK-game with any number of players. Let x� de-note a zero of the game vector �eld. Suppose that x� is a di�use state, and thatPf limk!1 xk = x�g > 0:Then the conditional probability that every action pro�le a 2 A is played in�nitely often,given that xk ! x�, is 1.Proof Let �̂(x�)a = c > 0: Let Fk denote the sigma �eld generated by a1; a2; : : :ak . Bythe generalized Borel-Cantelli lemma (Doob (1953), p.324) the following two sets of eventscoincide except for a set of measure zero:fak = a in�nitely ofteng;



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 33and fXk Pfak+1 = a jFkg =1g:Observe also that:fXk Pfak+1 = a jFkg =1g = fXk �̂(xk)ag =1g � fxk ! x�gwhere the last inclusion stands because �(xn; a) converges toward c > 0 on the set of eventsfxk ! x�g: Therefore, modulo sets of measure zero:fxk ! x�g � fak = a in�nitely ofteng:QED5 Beyond 2� 2 Adaptive FK-GamesIn this section we consider some adaptive FK games with more than 2 players.First we treat an adaptive FK version of Jordan's 3 player matching game. It turns outthat convergence depends on the noise, in quanti�able ways. For su�ciently concentratednoise (e.g., low variance if the noise is Gaussian), almost surely sample paths do not convergeto the unique Nash distribution equilibrium; and for n = 3, almost surely sample pathscluster at a periodic orbit of the game vector �eld. For su�ciently di�use noise, on theother hand, sample paths almost surely converge.In the subsequent subsection we describe a larger class of n�3 generalized coordinationgames, and identify a subfamily where convergence is guaranteed.Jordan's Nonconvergent Matching GameIt is known since Shapley (1964) that �ctitious play in a deterministic context fails toconverge for a family of 3 � 2 games (3 players, each with 2 pure strategies). Jordan(1993) exhibited a simple three-player game with the same property. Cowan (1992) gaveexamples of deterministic �ctitious play in 2-player, 4-strategy games having rigorouslyproved \chaotic" behavior.Following Jordan, we describe here a family of n-player two-strategy games with aunique Nash equilibrium that includes his example. The unperturbed game is the n-playersversion of the matching pennies game considered by Jordan (1993) where n � 3 is anarbitrary number. There are n players choosing among two strategies (i.e. Ai = f1; 2g).Players are labeled modulo n (i.e., player n + 1 =player 1). Player i 2 f1; : : : ; n � 1g isrewarded for matching player i+ 1, that is, making the same action choice, but player n isrewarded for not matching player 1.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 34The payo�s are as follows. Let V denote the matrix:V = " 1 �1�1 1 # :For i = 1; : : : ; n� 1, the payo� to player i is given by V i = V : if players i; i+1 respectivelyplay k; l 2 f1; 2g then the payo� to i is V ikl. Thus player i tries to match player i+ 1. Thepayo� matrix for player n is V n = �V = " 1 �1�1 1 # ;player n tries not to match player 1.Consider now the in�nitely repeated adaptive game de�ned by payo� noisy matricesV ik = V i +Eik ; i = 1; : : : ; nwhere fEikgk2N+ is an IID sequence of random 2� 2 matrices with zero means, having theform Eik = " �i1;k �i1;k�i2;k �i2;k # : (38)We assume the rows of Eik have probability distributions given by smooth (C1) densities onR2. Then for each (i; k) the random variable �i2;k��i1;k also has mean zero, and has a smoothstrictly positive density function f i : R ! R+. We denote its probability distributionfunction by Ki : R! [�0; 1];Ki(x) = Z x�1 f i(u)du: (39)Note that zero mean implies Ki(0) = 12 ; (40)while positivity of f i implies 0 < Ki < 1:Write xik = (pik; 1� pik) where pik 2 [0; 1] is the frequency with which player i has playedstrategy 1 in the �rst k games. After game k, player i observes his payo� matrixV ik+1 = V i + Eik+1for game k+1 and the empirical frequency vector xi+1k for player i+1. Then in game k+1he plays the pure strategy that maximizes his expected payo�, under the assumption thatplayer i+ 1 plays the mixed strategy xi+1k . Thus the probability, conditioned on xi+1k , thatplayer i plays strategy 1 in game k + 1, is the same as the conditional probabilityPf(V ik+1xik+1)1 � (V ik+1xik+1)2 j xik+1g:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 35From the assumptions on V ik+1 this is easily calculated to beKi(4pi+1k � 2) if i < n;1�Kn(4p1k � 2) if i = n:To compute the the game vector �eld using Equations (16) and (17), we de�nehi : [0; 1]! [0; 1];hi(s) = Ki(4s� 2);note that 0 < hi < 1and hi0(s) = 4Ki0(4s� 2) = 4f i(4s� 2) > 0: (41)Then the game di�erential equation expressed in variables p1; : : : ; pn takes the formdpidt = F i(p) � �pi + hi(pi+1); i = 1; : : : ; n� 1;dpndt = Fn(p) � �pn + 1� hn(p1): (42)Note that while the state space for the extended game is [0; 1]n, the game vector �eld Fis de�ned in all of Rn. It is easily seen that at F points into the interior Int ([0; 1]n) atboundary points of [0; 1]n. Therefore there is a compact attractor in Int ([0; 1]n) whose basincontains Int ([0; 1]n).Lemma 5.1 The extended game admits a unique Nash distribution equilibrium p�, givenby p1� = p2� = : : : = pn� = 12 :Proof Equation (40) implies that the right hand side of system (42) equals zero if p = p�.If (p1; : : : ; pn) is any equilibrium of (42), it must satisfyp1 = h1 � : : : � hn�1(1� hn(p1)):Since the hi is strictly increasing, p1 = 1=2 is the unique solution to this �xed point equa-tion. By induction it follows that pi = 1=2 for all i: QEDNotice that the Nash distribution equilibrium p� is also the unique Nash equilibrium ofthe unperturbed game.The following two theorems illustrate how the noise densities f i in
uence the gamedynamics:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 36Theorem 5.2 AssumenYi=1 f i(0) > supf14 j cos(2k�n )j�n; k = 0; : : : ; n� 1g: (43)Then(i) The probability that the sequence of empirical frequencies fxkg converges to the uniqueNash distribution equilibrium p� is zero.(ii) Assume n is odd and the Ki are analytic. Then there exists a closed curve � 2 [0; 1]nwhich is an attracting periodic orbit of (42), such that the limit set Lfxkg is � withpositive probability.(iii) Assume n = 3 and the Ki are analytic. Then there exists only a �nite number ofperiodic orbits of (42), and almost surely Lfxkg is one of them.Remark 5.3 When the perturbations have the form Eiml = "�im, then inequality (43)holds if the parameter " is small enough.Proof Part (i). The characteristic polynomial P (�) of DF (p�) is easily computed to beP (�) = �(1 + �)n � (4�)nwhere � = �Qni=1 f i(0)�1=n : Therefore the eigenvalues of DF (0) are�k = �1 + 4� exp(i2k�n ) : k = 0; : : : ; n� 1; i = p�1:Under the assumption of Theorem 5.2, all eigenvalues have nonzero real parts and someeigenvalues have positive real parts. Part (i) of the proposition follows from Theorem 4.5.Part (ii): System (42) is a monotone cyclic feedback system, in the terminology ofMallet-Paret and Smith (1990), and it satis�es the hypothesis of Theorem 4.3 of that paper.According to this theorem, system (42) admits a periodic orbit � which is an attractor. Byan argument similar to the proof of Bena��m and Hirsch (1993, Theorem 2.5), one can showthat the probability that (Lfxkg) is contained in any given attractor| in particular, �|is positive. Because Lfxkg is invariant under the 
ow of the game vector �eld (Theorem(3.3)), and � is a single orbit, if Lfxkg � � then Lfxkg = �. ThusPfLfxkg = �g > 0:Part (iii): Assume n = 3. Under the change of variablesy1 = p1; y2 = 1� p2; y3 = p3;



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 37which amounts to relabeling the action sets for player 2, and doesn't change the coordinatesof the equilibrium), System (42) becomesdy1dt = G1(y) � �y1 + h1(1� y2)dy2dt = G2(y) � �y2 � h2(y3)dy3dt = G3(y) � �y3 + 1� h3(y1): (44)This is a totally competitive system, meaning that Jacobian matrices have no positive en-tries. Inequality (43) implies that DF (p�), and hence (DG(p�), has one negative eigenvalueand two complex eigenvalues with positive real parts. Moreover the negative eigenvaluehas an eigenvector with all components positive, while the invariant linear subspace corre-sponding to the other eigenvalues is transverse to all positive vectors. (These are well-knownimplications of the Perron-Frobenius theorem applied to �DF (p�).)A fundamental property of C1 totally competitive systems is the existence of a globallyattracting invariant surface S homeomorphic to an open subset of the plane; see Theorems1.1 and 1.7 of Hirsch (1988); also Hirsch (1989). Moreover S is transverse to vectors in thepositive octant R3+, in the sense that y � z 62 R3+ if y; z 2 S; y 6= z. This implies thatthe 2-dimensional unstable manifold of x� is a neighborhood of x� in S. Therefore x� is arepellor for the 
ow in S.All chain recurrent points are contained in S, and Poincar�e-Bendixson theory impliesthat the only connected chain recurrent sets are periodic orbits and the equilibrium. Realanalyticity of the game vector �eld can be used to show that the nonstationary periodicorbits �i are �nite in number. As Lfxkg cannot be x� by Pemantle's theorem 4.5, it mustbe one of the �i by the Limit Set Theorem (3.3).The following result shows that if the noise is su�ciently di�use, then there is con-vergence to the unique Nash distribution equilibrium. This is not surprising, but it isinteresting to obtain a concrete estimate.Theorem 5.4 Assume that n = 3 and the densities f i satisfy f i(s) < 1=2 if jsj < 2. Thenalmost surely fxkg converges to p�.Proof It is easy to see that now all eigenvalues of DG(p�) have negative real parts, so p�is an attractor for the 
ow � = f�tgt2R induced by G.We use the coordinates yi, described above, that make G totally competitive. As in part(iii) of Theorem 5.2, there is an invariant C1 surface S � R3 that attracts all solutions.The restriction of the 
ow to S is denoted by �jS.Let W � S denote the the basin of attraction of p� for the 
ow in S. We show bycontradiction that W � [0; 1]3 \ S: (45)



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 38Suppose this does not hold. Then the Poincar�e-Bendixson theorem implies that theboundary in S of the open set W is a periodic orbit� � Int ([0; 1]3) \ (S n p�):But this will imply that � is an attractor, which contradicts � being the boundary of W .Fix z 2 � and a unit vector u 2 R3. Recall that the curvec : R! R3; c(t) = D�t(z)usatis�es the variational equation dcdt = DG(�tz)c(t):Estimating dc=dt we obtain:jjD�t(z)ujj = jjD�0(z)u+ t ddt jt=0 D�t(z)ujj+ o(t)= jj(I + tDG(z))ujj+ o(t)� etjjDG(z)jj + o(t)where I is the identity matrix and jjAjj denotes the operator norm of matrix A. Fromsystem (44) and the hypothesis of Theorem 5.4, we derive the estimatejjDG(z)jj< 1 + 4 � 12 = 3;whence jjD�t(z)ujj < e3t + o(t):Since D��t(z) = (D�t(z))�1, we also havejjD�t(z)ujj > e�3t + o(t):From the chain rule and invariance of Int ([0; 1]3) under D�t for t � 0 , one then deducesjjD�t(z)ujj > e�3t: (46)This implies that every real eigenvalue of D�t(z) is greater than e�3t.Let � have period T > 0 and �x a point q 2 �. Because the matrices �DG(x) arenonnegative and irreducible, the matrix D��T (q) is strictly positive (Hirsch 1984, Kunze& Siegel 1994, Smith 1995). By the Perron-Frobenius theorem, D��T (q) has a simpleeigenvalue � > 0 equal to the spectral radius of D��T (q), and corresponding to � there isunique positive unit eigenvector v for D��T (q). Since ��1 is an eigenvalue of D�T (q), witheigenvector v, we have ��1 > e�3T : (47)



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 39Now D�T (q) also has the eigenvector F (q) for the eigenvalue 1. The two eigenvectors F (q)and v are independent, because v is positive (all components are positive), while if F (q)were positive or negative, then the forward orbit of q would converge (Selgrade 1979).Therefore there must be a third eigenvector w of D�T (q) such that w; F (q) and v arelinearly independent. Because q lies in the invariant surface S, it follows that w is tangentto S at q.Let � > 0 be the third eigenvalue of D�T (q). Because the determinant is the productof the eigenvalues, DetD�T (q) = ��1� > e�3T�: (48)On the other hand, Liouville's formula (Hirsch & Smale 1974)DetD�T (q) = exp(Z T0 TrDG(�tq)dtwhere Tr denotes the trace of a matrix. It is easy to see from Equation (41) thatTrDG(�tq) = �3:Therefore from Equation (48) we get� < e3T DetD�T (q) = e3Te�3T = 1:Thus the two eigenvalues for D(�T jS)(q) are 1 and �; 0 < � < 1. This makes � an attractorfor �jS, leading to the desired contradiction. This proves 45.It follows that fp�g is a global attractor for the 
ow in [0; 1]3. Therefore almost surelysample paths converge to p�, by the Limit Set Theorem 3.3. QEDConvergence in 2� 3 Generalized Coordination GamesIn this section we consider a broad class of n�2 (n players, 2 strategies) adaptive FK gameswhose game vector �elds have very convenient dynamical properties. For general n we showthat for many coordination games there is at least a positive probability of convergence.For n = 3 we exhibit several classes of games, both coordination and anticoordination, inwhich convergence is guaranteed. In contrast, Jordan's matching game discussed aboveis an anticoordination game in which, for certain parameter values, there is no chance ofconvergence.We keep the notation of section 1, assuming additionally that each player has exactlytwo pure strategies.Consider �rst a classical 2 � 2 game with payo� matrix V i for player i 2 f1; 2g. It issometimes informally called a coordination game when the diagonal entries of V i dominatecolumns, i.e., V i11 > V i12; V i22 > V i21;because players do better if they both play the same action rather than di�erent actions.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 40We call a 2�2 game a generalized coordination game if each payo� matrix has the weakerproperty that the sum of the diagonal entries is not less than the sum of the o�-diagonalentries, that is, V i11 + V i22 � V i21 + V i12:When the opposite inequality holds for both matrices, the game is called an generalizedanticoordination game. We call use the term strict if the inequalities are strict.An example of a 2� 2 generalized coordination game is given by payo� matricesV 1 = " 0 01 2 # ; V 2 = " 2 10 0 # :There is a unique Nash equilibrium: It is clearly optimal for Player 1 to play action 2 andplayer 2 to play action 1. Thus the players do not necessarily \coordinate" their actions.Remark 5.6 gives a sense in which action choices tend to reinforce each other under �ctitiousplay.A n�2 game, n � 3, is a generalized coordination (respectively, anticoordination) gameif each partial 2 � 2 game, meaning a game obtained by �xing the actions of all but twoplayers, has the corresponding property. Such a game is called irreducible if for every pair(i; j) of distinct players there exists m � 2 and sequence of players i1; : : : ; im such thati = i1; j = im, and the partial 2� 2 games for players il and il+1 are strict for l = 1; : : : ; m.The next proposition gives conditions on the game vector �eld that are equivalent togeneralized coordination and anticoordination.Recall that a vector �eld G in Euclidean space is cooperative its Jacobian matrices havenonnegative o�-diagonal terms, i.e., @Gi=@xj � 0 for i 6= j. When the o�-diagonal termsare nonpositive, G is called competitive. If the Jacobian matrices are irreducible, G is calledirreducible.Proposition 5.5 Let F denote the game vector �eld of an n� 2 adaptive FK game whoseunperturbed game is denoted by �. Then F is cooperative (respectively, competitive) if � ageneralized coordination (respectively, generalized anticoordination) game. In either case,F is irreducible provided � is irreducible.Remark 5.6 This gives the following interpretation to an FK generalized coordinationgame: Suppose the actions of all players except i and j are kept �xed. Then at each roundof play player i's probability of playing action a 2 f1; 2g is a nondecreasing function ofplayer j's empirical frequency of past plays of a. For this is implied by @Fi=@pj � 0 fori 6= j. Analogously for anticoordination.Proof of Proposition 5.5 It is convenient to rephrase our de�nitions as follows. LetI = (i1; : : : ; im) be a sequence of m distinct players and J = (b1; : : : ; bm) 2 f1; 2gm asequence of m pure strategies. For any action pro�le a 2 A, let T IJ (a) denote the actionpro�le obtained from a by replacing ail by bl for l = 1; : : : ; m. It is clear that we have acoordination game if and only if for every pair of distinct players i 6= j,we have



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 41V i � T i;j1;1 + V i � T i;j2;2 � V i � T i;j1;2 + V i � T i;j2;1and a generalized anticoordination game if and only ifV i � T i;j1;1 + V i � T i;j2;2 � V i � T i;j1;2+ V i � T i;j2;1:Consider now an n � 2 adaptive FK game with action set Ai = f1; 2g for each player,determined by the random perturbations Ei and equation 11 where we assume that(i) Ei(a) = �i(ai) for each action pro�le a = (a1; : : : ; an) 2 A = A1 �An.(ii) The probability density f i of �i(2)� �i(1) is smooth and strictly positive.Let 0 � pi � 1 represent the mixed strategy (pi; 1� pi) for player i in which he plays action1 with probability pi and action 2 with probability (1� pi).Any function 	 : A! R of joint pure actions is extended to joint mixed strategy pro�lesas follows. For any strategy pro�le p = (p1; : : : ; pn) we de�ne 	(p) to be the expected valueof 	(a) when a is a random variable with probability distribution p:	(p) = Xa2A	(a)�nk=1P(ak)where P(ak) = pk if ak = 1 and P(ak) = 1� pi if ak = 2. With this notation the Nash mapEquation (3) is given by�i(p) = Ki h(V i � T i1 � V i � T i2)(p)i ; i = 1; : : : ; n (49)where Ki is the probability distribution of �i(2)� �i(1), (Equation (39)).Recall that the associated vector �eld is F (x) = �x + �(x): Thus a key property of Fis that @Fi@pi = �1and @Fi@pj = f i[V i � T i1 � V i � T i2][V i � T i;j1;1 + V i � T i;j2;2 � V i � T i;j1;2 � V i � T i;j2;1]for i 6= j: The latter formula implies the proposition. QEDRemark that our de�nition of coordination obviously depends on the labeling of theactions. The following proposition shows that it is sometime possible to transform a givengame into a generalized coordination game by a convenient relabeling.An n � 2 game is called sign symmetric if every 2 � 2 partial game corresponding toevery pair of distinct players i; j has payo� matrices V i; V j such that the signs (1;�1 or 0)of the numbers �i; �j are the same, where�i = (V i11+ V i22)� (V i21+ V i12)



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 42and �j = (V j11 + V j22)� (V j21+ V j12):To a sign symmetric n � 2 game we associate a nonoriented signed graph G with verticesf1; : : : ; ng, as follows. For distinct players i; j there is an edge with positive sign (respectivelynegative sign) if �i + �j > 0 (respectively, �i + �j < 0.Now consider a loop in G. The loop is called frustrated if it has an even number (possiblyzero) of negative edges and nonfrustrated otherwise. The game is called frustrated if it hasat least one frustrated loop, and nonfrustrated otherwise.Proposition 5.7 For any nonfrustrated sign symmetric game, there exists a relabeling ofthe strategies which transform the game into a game of coordination.The proof is left to the reader.A similar proposition holds for generalized anticoordination games. For instance, Jor-dan's matching game of the preceding section can be transformed into a generalized anti-coordination game provided the number of players is odd.We have seen above in Theorem 5.2 that in an adaptive FK form of Jordan's 3 � 2matching game, there is zero probability of convergence to the unique Nash distributionequilibrium. The following results shows that under quite broad conditions, this is not thecase for generalized coordination games:Theorem 5.8 Consider an n� 2 FK game, n � 2, that is an irreducible generalized coor-dination game. If either(a) the set of Nash distribution equilibria is �nite; or(b) the maps Ki are analytic,then there exists a Nash distribution equilibrium p� such that the sequence of empiricalfrequency vectors converge to p� with positive probability.Proof Proposition 5.5 says that the game vector �eld is cooperative and irreducible. Un-der hypothesis (a) or (b) F has dissipative dynamics (i.e., there is a global attractor), andtherefore there exists at least one asympotically stable equilibrium for F by Hirsch (1985a)or Jiang (1991). Thus the result follows from Theorem 4.7 QEDWe now assume there are n = 3 players. Let �(p) denote the spectral radius of theJacobian matrix D�(p): In principle this can be calculated from (49).Theorem 5.9 Assume n = 3 and one the following conditions holds:(a) The game is an irreducible generalized coordination game; or(b) The game is an irreducible generalized anticoordination game, and �(p) < 2 for allp 2 [0; 1]3.



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 43Then:(i) The limit set of the sequence of empirical frequencies is almost surely a connected setof Nash distribution equilibria.(ii) If the Ki are analytic, then the the set of Nash distribution equilibria is �nite, andalmost surely sequence of empirical frequencies converges to one of them.Proof From Equation (49) we obtain the game vector �eld F = I � � and the gamedi�erential equation:dpidt = F i(p) � pi +Ki hV i(T i1(p))� V i(T i2(p))i ; i = 1; 2; 3: (50)Since pi does not enter into T i1(p) or T i2(p), it follows that F has negative divergence; moreprecisely, @F i@pi = �1; TraceDF(p) = �3: (51)By the Limit Set Theorem 3.3 we may assume the limit set of a sample path is connected,compact and attractor-free.We �rst deal with conclusion (i).Assume hypothesis (a), so that F is a cooperative irreducible vector �eld by Proposition5.5. We show L consists of equilibria. By (Hirsch 1988), L is unordered and lies in aninvariant surface S homemorphic to an open subset of the plane. An argument similarto (Hirsch 1989) shows that L does not separate S when, as in this case, F has negativedivergence. Therefore L consists entirely of equilibria by (Hirsch & Pugh 1988).Now assume hypothesis (b). For every q 2 S let e(q) = fe1(q); e2(q)g be an orthonormalbasis for the tangent plane TqS to S at q. Let Aq(t) denote the 2� 2 matrix expressing thelinear transformation D�t(q)jTq(S) : TqS ! T�tqSin the bases e(q); e(D�t(q)).We now prove that the 
ow f�tg generated by F decreases area in S for t > 0, byshowing that DetAq(t) < 1 for t > 0. Fix T > 0. An argument similar to that in the proofof Theorem 5.4 shows that the Jacobian matrix D�T (p) has a real eigenvector v transverseto S at q, with eigenvalue � > e�3T : (52)By Equation (51), DetD�T(q) = e�3T: (53)Set �T q = p. The 3� 3 matrix M expressing the linear transformation D�T (q) : R3 ! R3in the bases fv; e1(q); e2(q)g and fD�T (q)v; e1(p); e2(p)g



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 44has the form M = 264 � 0 00 a b0 c d 375where " a bc d # is the matrix A(q)T . It follows from (52) and (53) that DetA(q)T < 1.Because the 
ow in S decreases area, it follows that L consists of equilibria, by the sameargument as in the proof of Theorem 2.2 in Section 4. This completes the proof of (i).Now assume the Ki, and hence F , are analytic. Then the equilibrium set is a compact,real analytic variety Z � R3. We will prove Z is zero dimensional, whence it consists ofisolated points and (ii) will follow from (i). We may assume dim (Z) � 2).Let X � Z be a connected component. One can show F is dissipative; then by (Jiang1991), X is unordered. By (Hirsch 1988) this implies X lies in an invariant planar surfaceS; therefore X has dimension at most 2. It is known that S is a smooth surface (Tere�s�c�ak1994).We use the fact that analytic varieties can be triangulated. Suppose X is one dimen-sional. It is known that every vertex must belong to at least two 1-simplices. Therefore Y isnot a tree, that is, it contains loops, which implies that Y separates S. But under assump-tion (b), this contradicts the earlier conclusion that the 
ow in S decreases area. Underhypothesis (a) we use the fact that the 
ow is strongly monotone and volume decreasing;in this case (Hirsch 1988) contradicts the existence of an unordered loop of equilibria.Suppose X is two dimensional. Then the boundary of a 2-simplex is a loop of equilibria,and we reach the same contradictions as above. QED6 Proof of Theorem 2.8As usual, the index i takes values 1; 2.By hypothesis M i 6= 0 and N i 6= 0. There are several di�erent cases to consider,depending on the signs of M i and N i: We prove assertions (i), (ii) and (iv) for the caseM i > 0 > N i(see Figure 2(iii)); the other cases are left to the reader.For parts (i), (ii) and (iv) we work in interval coordinates. In the case under consid-eration, �(0) has pure Nash equilibria are (1; 1) and (0; 0), and a mixed Nash equilibrium(p1c ; p2c), where p1c = �N2M2 �N2 ; p2c = �N1M1 �N1 :Note that then 0 < pic < 1:



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 45The main task is to show: For all su�ciently small " > 0 there are three Nash distribu-tion equilibria: two are linearly stable and are respectively close to the pure equilibria (1; 1)and (0; 0) of �(0), while the third is linearly unstable and is close to the mixed equilibriumof �(0).We rewrite the components of the Nash map asb1"(x2) = H1 D1(x2 � x2c)" ! ; (54)b2"(x1) = H2 D2(x1 � x1c)" ! : (55)where Di =M i �N i > 0.Fix a small number � in the range0 < � < 1�max(p1c ; p2c):Since limt!1H i(t) = 1 and limt!�1H i(t) = 0, it is easy to see that there exists r =r(�) > 0 such that for all " > 0 we have:pi > pic + r" implies bi0" (pi) > 1� �: (56)It follows that if (p1; p2) is a solution to (24) such that p1 � p1c > r" or p2 � p2c > r", thenboth p1 and p2 must be in the interval [1� �; 1]:We claim that for " small enough (depending on �), the composite mapping b1" � b2"restricts to a contraction from [1 � �; 1] into itself. To see this, compute the derivative ofthe composite mapping b1" � b2" : [0; 1]! [0; 1] by the chain rule:(b1" � b2")0(s) = b1" 0(b2"(s))b2" 0(s);and use Equations (54) and (55) to get:bi0(s) = Di" f i(Di" (s� pi0c )): (57)Take " so small that pi0c + r" < 1� �. Set t = Di" (s� pi0c )) and rewrite (57) asbi0(s) = 1s� pi0c tf i(t):Now js�pi0c j is bounded away from 0 when s 2 [1��; 1], and limjtj!1 tf i(t) = 0 (Hypothesis2.7). We conclude that by taking " su�ciently small, we can make the derivative of b1" � b2"arbitrarily small on [1� �; 1], which makes it a contraction on that interval.The contracting map theorem now shows that for " su�ciently small, there is a unique�xed point w1(") 2 [1� �; 1] for b1" � b2".



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 46Setting w2(") = b2"(w1(")), we see that the following holds: Given 0 < � < 1 �max(p1c ; p2c), there exists r > 0 and "0 > 0 with the following property. For any " 2 (0; "0],the Nash map �" has a unique �xed point w(") = (w1("); w2(")) in the regionfx 2 [0; 1]� [0; 1] : x1 > p1c + r" or x2 > p2c + r"g;and w(") 2 (1� �; 1]� (1 � �; 1]. Furthermore w(") is a linearly stable Nash distributionequilibrium for �(") (see (20)). Lastly, w(") lies in the �-neighborhood of the pure Nashequilibrium (1; 1) of �(0):A similar analysis shows that if 0 < � < min(p1c ; p2c), we can choose "0 and r to havethe following additional property: For 0 < " � "0, the Nash map �" also has a unique �xedpoint v(") in the set f(x 2 [0; 1]� [0; 1] : x1 < p1c � r" or x2 < p2c � r"and v(") 2 [0; �)� [0; �). This �xed point is also a linearly stable Nash distribution equi-librium for �("), and it lies in the � neighborhood of the pure Nash equilibrium (0; 0) of�(0).From what has been shown about bi0 it follows that for small enough " we have 0 <bi0(wi(")) < 1. This implies that at w("), the curve y = b1(x) has smaller slope than thecurve x = b2(y). The same is true at the �xed point v("). This implies the two �xed pointsare stable Nash distribution equilibria.This also implies that the two curves must meet at at at least one other �xed point forthe Nash map. Moreover we proved earlier that all �xed points u other than w(") and v(")must satisfy jui(")� picj � r": (58)To conclude the analysis of �xed points, we show that we can choose "0 to satisfy thefollowing further condition: If 0 < " � "0, then every �xed point for �" with both coordinatesin the interval [pic� r"; pic+ r"] is linearly unstable. This will show that there is exactly one�xed point in that interval, and that it is linearly unstable.To this end we use Hypothesis 2.7(ii) to �nd a strict lower bound � > 0 for the setff i(s) : jsj � rDig:Then from Equation (57) for su�ciently small " for all s 2 [pic � r"; pic + r"], we havebi0(s) � Di" �:Now take 0 < "0 < Di�. Then if 0 < " � "0, every �xed point satisfying (58) is linearlyunstable, as required.Assertions (i) and (iv) of Theorem 2.8 now follow from Theorem 2.6.We pass to the proof of assertion (iii). We work in simplicial coordinates. Denote thepayo� matrix to player i for the kth play byUi(k) = V i + "Ei(k); k = 1; 2 : : :



Bena��m & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 47where Ei(k)lm = �il(k):Recall that aik 2 Ai = f1; 2g denotes player i's action in game k. We employ the notationalconvention given at the begining of Section 1: numbers aij in square brackets are subscriptsin vectors or matrices. The cumulative average payo� to player i in the �rst k games is:P ik(") = 1k kXj=1V i[a1j ; a2j ] + "1k kXj=1 �i(j)[aij];Thus lim supk!1 jP ik(")� 1k kXj=1V i[a1j ; a2j ]j � " lim supk!1 1k kXj=1(j�1(j)1j+ j�2(j)2j)= "E(j�11j+ j�22j) = O("); (59)using the Law of Large Numbers.On the other hand, we have from the de�nition (10) of the empirical joint frequencymatrix Cn for game n: 1n nXj=1V i[a1j ; a2j ] = 2Xm;l=1V i[m; l]Cn[m; l]:According to Corollary 2.4, in interval coordinates we havelimk!1Ck[m; l] = x�(")1mx�(")2l :Therefore from Equation (59) we have:lim supk!1 jP ik(")� 2Xm;l=1V imlx1�(")m(x2�(")l)j = O("):Letting " go to zero, and using Equations (25), (26) we obtainlim supn!1 P in(") = P i(x�(0)):The proof for lim inf is similar. QED
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