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Abstract

Fudenberg and Kreps (1993) consider adaptive learning processes, in the spirit of
fictitious play, for infinitely repeated games of incomplete information having randomly
perturbed payoffs. They proved the convergence of the adaptive process for 2 x 2 games
with a unique completely mixed Nash equilibrium. Kaniovski and Young (1995) proved
the convergence of the process for generic 2 x 2 games subjected to small perturba-
tions. We extend their result to 2 x 2 games with several equilibria— possibly infinitely
many, and not necessarily completely mixed. For a broad class of such games we prove
convergence of the adaptive process; stable and unstable equilibria are characterized.

For certain 3-player, 2-strategy games we show that almost surely the adaptive
process does not converge. We analyze coordination and anticoordination games.

The mathematics is based on a general result in stochastic approximation theory.
Long term outcomes are shown to cluster at an attractor-free set for the dynamics of
a vector field F' canonically associated to an infinitely repeated p-player game with
randomized payoffs, subject to the long-run adaptive strategy of fictitious play.

The phase portrait of F' can in some cases be explicitly described in sufficient detail
to yield information on convergence of the learning process, and on stability and location
of equilibria.

*M. Hirsch was partially supported by a grant from the National Science Foundation. Financial support
from NATO (Grant CRG 950857) is gratefully acknowledged by both authors.
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0 Introduction

Game theory, like any discipline which attempts to provide systematic tools for describing
and analyzing real life situations, faces the problem of the confrontation of its idealized
theoretical objects with their real-life counterparts. In this respect classical game theory
suffers from several deficiencies:

(i) It is based on the unrealistic assumption that players are perfectly rational and possess
full knowledge of the structure of the game, including the strategy spaces and the
payoffs as well as the information and the rationality of the other players.

(ii) Nash’s equilibrium concept, essential to the theory, is based on the players’ ability to
play mized strategies. This raises the question of the justification and interpretation
of mixed strategies.

(iii) A fundamental problem is that of multiplicity of equilibria. Even if the rationalistic
justification of the Nash’s equilibrium concept is satisfying when a game admits a
unique equilibrium, it becomes highly problematic when there are several equilibria.
Deductive equilibrium selection theories— such as Harsanyi and Selten’s tracing pro-
cedure (1988)— argue that some equilibria are more reasonable than others. These
theories, however, require very strong assumptions on the rationality of players, and
there is no general and convincing argument in explaining how players can determine
which equilibrium should be played.

One way of addressing theoretically some of the questions raised by (i) and especially (ii)
is to introduce perturbations of the game in the sense of Harsanyi. In a perturbed game
where each player has a small amount of private information represented by a privately
observed (small) random perturbation of his own payoffs, all equilibria are essentially pure.
Moreover, each regular equilibrium of the original game can be approximated by the beliefs
resulting from the game of incomplete information (Harsanyi, 1973).

This approach provides a convincing justification and interpretation of mixed strategy
equilibria. However it is not entirely satisfying with respect to (i), because the justification
of equilibria in terms of rational behavior requires that the probability distributions of the
payofls be common knowledge.

An alternative approach to these problems is to replace the rationalistic explanations
with an adaptive or learning interpretation of game-theoretic concepts such as equilibria
and mixed strategies. Along these lines, Fudenberg and Kreps (1993) recently proposed an
adaptive model for games with randomly disturbed payoffs, based on the method of fictitious
play in which players— by playing the game over and over— adapt to their opponents’ long
term strategies and adapt their own responses over time.! At the start of each game, each
player knows her own payoff matrix and the empirical frequencies of opponents’ past actions,
but no information about opponents’ payoffs. Each player selects an action (pure strategy)

'There is an important literature on this subject. For an introduction and further reference the reader is
refered to the recent book by Fudenberg and Levine (1996).
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that maximizes her immediate expected payoff under the assumption that opponents will
play the mixed strategy by the historical frequencies of past plays.

With regard to the points (i) and (ii) above, this kind of model enjoys some attractive
features: There is no assumption of unrealistic common knowledge. Players have no any
other information than their own payoff and the structure of the game. And players play
only pure strategies, determined by their observation of the previous plays rather than by
a complex reasoning process.

When adaptation according to fictitous play is added to Harsanyi’s setup for a 2 x 2
game, it turns out that that empirical frequencies of action choices converge. Moreover,
with sufficiently small noise in payoff matrices, pure equilibria are almost surely selected over
mized equilibria (Kaniovski & Young 1995; Hirsch & Benaim 1994; Theorem 2.8 below).
This is in surprising contrast to one of the fundamental conclusions of Harsanyi’s theory,
namely, that privately observed random perturbations of the payoffs should stabilize the
mixed equilibria. This phenomenon illuminates the difference between Harsanyi’s one-shot
game situation, in which players are assumed to act on identical correct beliefs about their
opponent strategies (regardless of the credibility of these beliefs), and the present context,
in which players arrive at their beliefs— correct or not— as the result of the long-term
learning adaptive process of fictitious play. We discuss this further in Section 2.

Stochastics and Dynamics of Fictitious Play Since payoffs vary stochastically in a
Fudenberg-Kreps game, the infinitely repeated game gives rise to a stochastic process. The
fundamental object of interest is the state sequence {x}, where z} is a vector listing the
empirical frequencies with which each player’s pure strategies have been played in the first
k games. The state sequence is a Markov process with countable state space, essentially a
generalized urn process.

The stochastic process {x} is caricatured by the dynamics of the deterministic game
vector field I’ on the state space: I'(z) points in the direction of the conditional expected
change in the state vector, given that the current state is  (see Equations (15), (16), (17)).
Equilibria (zeroes) of F' are Nash distribution equilibria of the unperturbed game. The
mathematical relationship between state sequence and the game vector field is summarized
in the crucial recurrence scheme

2+ 1 —a2p= [F'(2k) + Zky1],

1
k+1
where {Z;11} is a random variable whose conditional expectation given zy is zero. Such
schemes are studied in Stochastic Approximation, whose results play a key role in analyzing
fictitious play.

It has long been known that if the vector field F' admits a unique, globally asymptotically
stable equilibrium z,, then almost surely z; — z.; this is the classical Monro-Robbins
theorem. Arthur et al. (1987) show that when F'is a gradient vector field with finitely many
equilibria, then almost surely {x;} converges; they also prove that {z;} cannot converge to
a totally unstable equilbrium. A result of Pemantle (1990) implies that only asymptotically
stable equilibria can have positive probability of being the limit of the state sequence.
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Fudenberg and Kreps proved the convergence of the fictitious play adaptive process
for those 2-player, 2-strategy games with unique Nash equilibria (possibly mixed). While
their analysis provides quite an interesting interpretation of mixed equilibria as the result of
learning in a situation of incomplete information, it doesn’t address the important difficulties
raised in (iii).

Kaniovski and Young (1995) and independently Benaim & Hirsch (1994) showed that
under generic conditions, when the payoffs are subject to sufficiently small independent
random perturbations, the sequence of empirical frequency pairs converges almost surely to
an equilibrium of the perturbed game which is close to an equilibrium of the unperturbed
game. And this will be a pure equilibrium of the unperturbed game, if any exists. This result
is given in Theorem 2.8 below under hypotheses slightly different from those of Kaniovski
and Young (1995).

Previous results have been limited to proving convergence of the state sequence for
certain situations, and to characterizing limiting equilibria. On the other hand, such games
form an extremely small part of all games, and to concentrate on convergence is to ignore
many interesting phenomena. Our point of view is that the entire limit set of the state
sequence is of considerable interest. In this paper we use recent advances in dynamical
systems and stochastic approximation to analzye the limit set for several classes of games,
including some where convergence has zero probability.

As we will show, it is impossible to expect general convergence for noisy adaptive games
having more than two players. In contrast to 2 X 2 games, even for games with a unique
Nash distribution equilibrium there may be zero probability of convergence. Therefore an
important question is to understand how qualitative features of the learning process, such as
convergence or nonconvergence, can be deduced from structural features of the unperturbed
game and the noise. We give several examples of this kind of analysis, using as our main
tool the asymptotic dynamics of the game vector field.

The Main Results

In this paper we treat games with multiple equilibria, and games where oscillation and
not convergence is the most likely behavior. The main tool is a recent theorem of Benaim
(1996), called here the Limit Set Theorem: Almost surely the limit set of {z;} has the
important dynamical property of being attractor-free for the dynamics of F. In many cases
this gives a great deal of information about the asymptotics of the game.

We prove that for 2 X 2 games having countably many Nash (distribution) equilibria,
{x} converges almost surely to a Nash equilibrium.

For any number of players, we show that every asymptotically stable equilibrium has
positive probability of being selected (i.e., of being the limit of the game sequence). By
a result of Pemantle (1990), an equilibrium which is not stable has no chance of being
selected.

These results lead to the following conclusion for fictitious play with randomly perturbed
payoffs: Where there is more than one asymptotically stable equilibrium of the game vector
field, it is certain that the empirical frequencies of players’ pure strategies will converge
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to such an equilibrium. Unfortunately it does not appear to be possible to predict with
certainty which equilibrium will be selected.

This seemingly unsatisfactory state of affairs is simply an ineluctable fact about fictitious
play. Much as we might desire a unique equilibrium, nature does not behave that way except
in very special cases. The limiting equilibrium in 2 X 2 games is a random variable; it is a
challenging problem to analyze its distribution.

When there are more players or strategies, even very simple games can have complicated
dynamics under randomized fictional play. We give an example of an n-player matching
game whose sample paths have positive probability of clustering at all points of a limit cycle
of the game vector field. For n = 3 this behavior has probability 1.

More generally, we investigate n-player, 2-strategy coordination and anticoordination
games. In a coordination game, payoffs are such that it is to the advantage of each pair
of players to make choose identical actions, while in an anticoordination came the opposite
holds. Players do not have this knowledge, however. It turns out (under generic assump-
tions) that for 3 player coordination games, sample paths almost surely converge. For
anticoordination games we give examples of parameter ranges where this holds, and others
where convergence is not certain.

From a strictly mathematical point of view, our results are consequences of a theory of
asymptotic pseudotrajectories and its applications to stochastic approximation processes,
recently developed by Benaim (1996), Benaim and Hirsch (1995, 1996), relying heavily
on methods developed in the literature on stochastic approximation (e.g., Kushner and
Clark (1978), Arthur et al.  (1987), Duflo (1990, 1996).) The results on coordination
and anticoordination games use differentiable ergodic theory and the theory of monotone
dynamical systems.

Results in this field depend in subtle ways on the nature of the noise in the payoff
matrices. Some theorems need the noise to be sufficiently diffuse; some proofs require that
the conditional distribution of payoffs to any player depends on her action choice alone.
Sometimes abstract properties of noise densities, such as analyticity, are useful in drawing
conclusions about the dynamics of the game vector field. As in all mathematical modeling,
such assumptions may have no practical interpretation, and may in fact be unnecessary
for validity of the theorems. In such cases the mathematical results should be viewed as
insights into the nature of the real world situation being modeled.

Outline of Contents

The organization of the paper is as follows:

Section 1 briefly review FK-games.

Section 2 contains the general analysis of 2x2 FK-games and states the main convergence
theorems, with applications to games whose payoffs are subjected to small privately observed
random shocks. We discuss relations between our results and Harsanyi’s purification on one
hand, and the risk-dominance criterion on the other hand.

Section 3 contains the proof of our basic mathematical result, the Limit Set Theorem.

Section 4 contains applications of the Limit Set Theorem and further proofs.
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Section 5 discusses some adaptive FK-games with more than two players
Section 6 contains the proof of Theorem 2.8.

Acknowledgments We are grateful to Emmanuelle Auriol and Paolo Ghirardato for
helpful advice and discussion, and to Drew Fudenberg for valuable comments. Critiques
by Douglas Gale and anonymous reviewers of earlier drafts have considerably improved the
exposition.

1 Games with Randomly Perturbed Payoffs

In this section we introduce the adaptive model considered by Fudenberg and Kreps (1993,
Section 7) in which players play pure strategies determined by privately observed noisy
payoffs, in the spirit of Harsanyi’s purification Theorem (1973).

The basic model is an infinitely repeated game played by p > 1 players labeled by
i€{l,...,u} at times k = 1,2... It is convenient to use superscript —i to refer to the set
of players # ¢. In a 2 player game, —¢ refers to the player different from player .

We assume that player ¢ has a fixed finite set

A ={1,2,...,d;}

of (pure) strategies, called player ¢’s action space. The cartesian product of the other
players’ action sets is denoted by A~%; it has cardinality d_; = ;2 d;.
The set S* of mixed strategies for player i is the unit simplex A%~! ¢ R% of dimension
d; — 1:
d;
Si:{ZERdi 222’1:172’120}.
=1
We identify S* with the set of probability measures on A'. If ¢’ € A’ we let al € St denote
the corresponding vertex (i.e, the {th component of al is 1 for [ =a'and 0 otherwise).
We set S™0 = T1;4;57. An element r € S™%is a list {r/};; of mixed strategies for player
U’s opponents.
The game’s state space is the compact convex polyhedron

S=8"x---xS*CRY x .. x R,
A state s = (s,...,s*) € S of the game is a list of mixed strategies. We define
ste STt
by deleting s* from S. The payoffs to player i are determined by her payoff function
ViiA'x AT = R

When she plays [ € A* and her opponents play r € A~ her payoff is V[, r]. We represent
Vi by a matrix of shape d; X d_;, also denoted by V*. The payoff function V* is extended
to a function V* :5* x S7" — R by multilinearity.
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Nash Distribution Equilibria for a Randomly Perturbed Game

Before analyzing fictitious play, we review one-shot games in which payofls are randomly
perturbed; here we do not consider repeated plays or adaptation.

Let {V'} be the payoff matrices for a classical p-player game. A corresponding aug-
mented (or perturbed) game (Fudenberg and Kreps (1993)) is specified by random d; x d_;
matrices

U=V 4+E,i=1,..., 1 (1)
where the E? are matrix-valued random variables with zero means. There is no assumption
here that E' and E’ are independent for i # j.2 When playing the game, each player knows
only her own payoff matrix.

Properly speaking, the data (1) specify not a single game but a random game. We refer
to it as an FK-game.

Let » € S~% be a set of mixed strategies for player —i’s opponents. An action [ € A’
is called a best response of player 7 to r if it maximizes the expected payoff to player ¢,
assuming that she plays [ and her opponents plays r. Thus

[ = Argmax, ey, 4,y U'lm, 7).

To ensure uniqueness of the best response, we assume from now on that the random variables

U* satisfy the following ad hoc condition:
Hypothesis 1.1 For e very mized strategy = € S~ and every m,l € A with m # I,
P{U'[m,z]=U'[l,2]} =0.

For each z € S™° the set of d; x d_; matrices U such that U[m, z] = U[l, 2] for some [ # m
has zero Lebesgue measure. Therefore Hypothesis 1.1 is easily seen to be valid for a large
class of random matrices.

The best response map of player ¢ is the deterministic map

pST o 5

defined as follows: For s™ € S~ and [ € {1,...,d;}, let 3*(s™*); denote the probability
that action [ is the best response of player ¢ when the opponent uses the mixed strategy
s7'. Thus for each [ € {1,...,d;}:

B(s™) = P{l = Argmax,,eqy,q; U'lm,s7']}. (2)
Definition 1.2 The Nash map is the map
v:S5—=585,
v(sty. .., 8") = (BU(s™h), ..., B8R (sTH)). (3)

To a joint mixed strategy s, the Nash map v assigns the list comprising each player’s best
response to the opponents’ strategies listed in s.

2Later we will assume such independence in order to compare our results with Harsanyi’s theory of
purification.
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The Nash map will play a key role in the further analysis.

Definition 1.3 A Nash distribution equilibrium of the augmented game is a fixed point
s« € S of the Nash map.

Remark 1.4 If v is continuous, the ezxistence of Nash distribution equilibria follows from
the Brouwer fixed point theorem. But the calculation of these equilibria by the players
would require that the marginal probability laws of the random payoffs U’ are common
knowledge. In this situation a Nash distribution equilibrium is the probability distribution
of a Nash equilibrium for the augmented game (see Harsanyi (1973) or Fudenberg and Kreps
(1993)). There is no implication here that the players have this knowledge. But we shall
prove that in many cases, the adaptive process of fictitious play for infinitely repeated F K
games causes empirical frequencies to converge to some Nash distribution equilibrium.

Let P(A) denote the set of probability measures on A, which is naturally identified with
the simplex A"t ¢ R? where d = S°F , d;. Closely related to the Nash map for two players
is the joint best response map.

Definition 1.5 The joint best response map is the map
P8 = P(A) = AT (4)
defined for a = (a'...a") € A by
D(s)a = P{a’ = Argmax;eqy, 4 Ui, s™"] si=1,...u}. (5)

The number (s), gives the probability that @ € A constitutes the joint best responses to
the mixed strategy profile s € S.
Notice that when the matrices {E'} are independent, then

D(s)a = W B (57 ). (6)

The Game Vector Field for Adaptive FK-Games

We now consider fictitious play, with payoffs subject to random perturbations. Before each
round of play, each player knows her own payoff matrix, but not the opponents’. But
each player keeps track of the opponents’ empirical frequencies of actions, and chooses her
next action deterministically to optimize her expected payoff conditioned on the opponents
playing the mixed strategy given by their current empirical frequencies of actions. This
adaptive behavior is known as fictitious play.

We denote the set {0, 1,2,...} of natural numbers by N and the set of positive natural

m .2

numbers by Ni. The Fuclidean norm of a vector = € R" is [|2|| = {/>°7L, o7

We consider the state space

S=AT"ly . x Al cRY x ... x R
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to be a submanifold (with corners) in RY,d = dy +---+ d,. Its tangent space at every
point is identified with the linear subspace

d;
TS={(y"....y") eRT x - xR™ : Y yi=0, i=1,...,n} (7)
J=1

A wvector field on S is a map from S to T'S.

The action of player ¢ in game k € N, is denoted by a}; € A', and a}; denotes the
corresponding vertex of the simplex S* = A%~!. We may consider a}; either as a pure
strategy in the simplex of all strategies, or as a Dirac measure in the simplex of measures
on the finite action space A‘.

The p-tuple

ap = (ap,...,a}) € A x - x AP = A

is the action profile at time k. Corresponding to ay is the action vertex

a, = (a},...,a}) €S,
which is an extreme point of the convex polyhedron S. Thus a sequence of games produces
the sequence {a;} of action profiles, and the equivalent sequence of {a;} of vertices of S.
The empirical frequency vector xj € S* of player ¢ after the first & > 1 games is the
vector

| =

k
Gty (5)
j=1
The mth component (wﬁg)m of 952 is the proportion of times in the first & games that player
i has played action m € A°.

The state of the game at time k > 1 is the vector x; € .S listing the players’ empirical
frequencies at time k:

ap = (Thy ..., 2k) €51 x - x SH
or equivalently
k 1
$k+1=k+1$k—|—k+1ak+1- 9)

We call {z}ren the state sequence of the infinitely repeated game.
The empirical joint frequency tensor at time £ is the d; X ---x d, tensor C}, : A =+ R
given by

1
Ck:E]Z::laj@---@a;; (10)

where y!' @ --- @ y# is defined by y' @ --- @ y*[l1,..., 1] = Hley;i. Thus Cgla] is the
proportion of time in {1,...,k} that action profile « € A has been played.
An p-player adaptive FK-game is a sequence of independent, identically distributed

(IID) FK-games. It is specified by data

{Ai7 {U};}kEN_F; k= 1,2.. }
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where A’ is player i’s action set, and U}; is a random d; X d_; matrix of the form
V=VI+EL k=1,2,..; (11)

such that V; is a fixed deterministic matrix, and {E};}keNJr is a sequence of 1ID random
matrices having mean zero. (We do not assume E{ and Efg are independent for i # j.)
Let k € N. After the first k games (if £ > 1), the players play the augmented game
defined by the matrices Uj ;. They' use the following adaptive procedure, ﬁctitioqs play,
for determining their next actions aj_,. Player ¢ knows her'own payoff matrix Uj, for
round k+1 and her opponent’s empirical frequency vector z; ‘. She assumes the opponents
will use the mixed strategy @, € 7', and she computes and plays her best response action

apyq € At to z; ‘. Thus

i i —i
Apy1 = Afgmaxme{L...,dﬁ Uk+1[m7 xy ']

Therefore the state sequence {1} is a nonstationary discrete-time Markov process, with
values in the compact, convex set S.

Using the best response maps 3 (see Equation (2)) and the Nash map v (Equation (3))
we obtain the formulas:

Plakps = llow = 2} = (@), (12)
E(@pazr) = v(z"). (13)

From (9) and (13) we derive:
E(arer — ax | 20) = 27%71(-xk Fu(ah). (14)

We will describe the long term behavior of this Markov process in terms of the dynamics
of the game vector field F': S — T'S (see Equation (7)) on the state space, defined as:

F:8 — TSCR® x...xR%,
F(z) = —a+v(z). (15)

F(z) measures the discrepancy of 2 € S from being a Nash distribution equilibrium (Defi-
nition 1.3). Equations (13) and (14) give further meaning to F:

F(z) = E(agt1 — 2k |2k = 2) (16)
= (k+1)E(zpy1 — ar | 21 = ). (17)

In other words: If the state at time k is @, then F'(z) is k£ + 1 times the expected change in
the state.

Our analysis of the fictitious play process will rely heavily on a close connection be-
tween the asymptotic behavior of sample paths of such a stochastic process {z;} and the
deterministic dynamical system

dx
— = Fla). (18)
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We call this the game differential equation. In a similar way, we will analyze the empirical
joint frequencies in terms of the dynamics of the system of differential equations

dx

% - F($)7

dC .
% = —C—|— I/($)

In the next section we give some interesting consequences of the general theory which
can be easily stated without the full mathematical formalism of Section 3.
We record for reference the obvious but useful fact alluded to above:

Proposition 1.6 The zeroes of the game vector field F' are the Nash distribution equilibria.

2 Asymptotic Behavior of Adaptive 2 x 2 FK-games

In this section we describe the asymptotic behavior of the state sequence for 2 x 2 adaptive
2 x 2 FK-games having arbitrarily many Nash distribution equilibria. Proofs are postponed
to sections 3 and 4.

Convergence of Empirical Frequencies

Let (A, {U}}, A%, {U%}) be an adaptive 2-player FK-game in which each player has two
pure strategies; the 2 x 2 random matrices U{{ are as in (11). Here each action set A i=1,2
has cardinality 2, and S? is a 1-dimensional simplex. We identify S* with the closed unit
interval [ = [0, 1] by the map (s,1 — s) — s. In this way a game state in the original

stmplicial coordinates
((xlv 1—- wl)v ($27 1 - $2))

is given the interval coordinates
(a',2®) e I x I

In addition to Hypothesis 1.1 we also assume:
Hypothesis 2.1 The Nash map v : [ x I — I x I is Lipschitz continuous.

This is a technical assumption which is crucial to our analysis, as it validates the standard
theorems of existence, uniqueness and continuity of solutions to differential equations. In
some cases, as for example in classical fictitious play for games with fixed payoff matrices,
this hypothesis is not satisfied. However, as soon as the game is subject to some kind of
random perturbation this assumption is very likely to be satisfied. This is the case with the
adaptive FK-games of Section 1 under the mild restrictions of Hypothesis 1.1. Hypothesis
2.1 is valid for a large class of random matrices E°.

Given a state sequence {j}ren in [ X I resulting from infinitely repeated fictitious
play— thus a sample path of a stochastic process satisfying (14)— we say that a point
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z. € I x I is a limit point of {&}ren if lim;0 25, = 2. for some sequence k; — oo. The
limit set of {x}}reN is the set of all these limit points.®

The following theorem is one of the main results of the paper. It extends Proposition
8.1 of Fudenberg and Kreps (1993) to arbitrary 2 x 2 games. Recall that # is the joint best
response map defined in Equation (5).

Let & C I x I denote the set of Nash distribution equilibria.

Theorem 2.2 Consider a 2 X 2, adaptive FK-game satisfying Hypotheses 1.1 and 2.1. Let
{x} denote the sequence of empirical frequency vectors, and {Cy} the sequence of empirical
joint frequency matrices. Then:

(a) With probability one, the limit set L C I x I of {x}} is a point or a compact arc in
E, such an arc being simultaneously the graph of a strictly increasing or decreasing
Sfunction and the graph of the inverse of such a function.

(b) If & is finite or countably infinite then almost surely {x} converges to a Nash distri-
bution equilibrium.

(¢) Let x, be a Nash distribution equilibrium such that P{xp — x.} > 0. Then

P{Cr — p(zy) |2k — 2} = 1.

This result shows that when there are only finitely or countably many Nash distribution
equilibria, players behave in the long run as though they have computed the equilibria of
the game.?

It is a generic condition for a vector field to have finite equilibrium set, that is, it holds
for a dense open set of C'* fields on any compact manifold. In this sense, (b) and (c) imply
that for most games of the type considered, sequences of sample paths and joint frequency
matrices converge almost surely. The following corollary of (a) gives another condition for
convergence:

Corollary 2.3 In addition to the assumptions of 2.2, assume that the Nash map v : [0, 1] X
[0,1] — R? is real analytic (e.g., noise matrices have real analytic distributions), and that
at least one of the following conditions holds:

(1) (0,0) (1,1) are not both fized points of v;
(i1) (0,1) (1,0) are not both fized points of v.

Then & is finite. Therefore sample paths, and joint frequency matrices, converge almost
surely.

®The state limit set is actually not a set in the usual sense, but rather a set-valued random variable, that
is, a function assigning a set to each element of a probability space. By exension of the usual probabilistic
convention we call it a set, analogous to way that numerical random variables are treated as numbers.

“Players who know the probability laws of the stochastic matrices U' and U?, and who read Remark
1.4, can do that.
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Theorem 2.2(c) and Equation (6) imply:

Corollary 2.4 Let x. € I x I be as in Theorem 2.2(c). Suppose that for each k, the two
payoff perturbation matrices B}, E? are independent random variables. Then almost surely
the sequence of empirical joint frequency matrices C,, converges to the 2 X 2 matriz [x,'z.7].

The proof of Theorem 2.2 makes use of the material presented in Sections 3 and 4. Part
(a) is a consequence of the Limit Set Theorem 3.3; part (b) derives from Lemma 4.4, and
(¢) from Theorem 4.1. Details are given in Section 4.

Remark 2.5 Our assumptions on the noise matrices in Theorem 2.2 and 2.4 are consider-
ably less restrictive than those of Fudenberg and Kreps (1993).

Equilibrium Selection and Path Dependence

In this section we sharpen our analysis of 2 X 2 adaptive FK-games, focussing attention on
the problem of equilibrium selection: Given that the empirical frequencies converge almost
surely, can we predict which Nash distribution equilibria are likely to be selected? Theorem
2.6 states that under mild restrictions, only asymptotically stable equilibria of the game
vector field can be limits of the state sequence.

In interval coordinates the Nash map is represented as

v:[0,1] x [0,1] = [0, 1] x [0, 1],
v(at, a?) = (b'(2?), b*(ah) ); (19)
the game vector field F(z) = 2 — v(z) is then
F:[0,1] % [0,1] — R?,
Fet,2?) = (=2t + 01 (2?), =22+ 02(21)).

Recall that a Nash distribution equilibrium 2, € I X I is an equilibrium of F, i.e., a solution
to F'(z) = 0. Thus it is represented by a solution to the equation

vy =0 (22), 2l = 0% (a2).

We call .. simple if F' (and thus also v) is C'! (continuously differentiable) in some neigh-
borhood of z,, and the Jacobian matrix DF(z.) is nonsingular. As the determinant of
DF () is 1 —bY (22)b% (21), we see that x, is simple if and only if the derivatives b at .
verify

B (22)6 (el) # 1.

We say that z, is linearly stable if

b (a)p? (xl) < 1 (20)
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and linearly unstable if
b (22)b% (2]) > 1. (21)

The reason for these names is given after Theorem 2.6.

The following result characterizes entirely the qualitative behavior of adaptive 2 x 2
FK-games under the generic assumption that Nash distribution equilibria of the extended
game are simple:

Theorem 2.6 Consider an adaptive 2 X 2 FK-game satisfying Hypotheses 1.1 and 2.1.
Assume that all Nash distribution equilibria of the extended game are simple. Then:

(1) The sequence {x} of empirical frequency vectors converges with probability one to a
Nash distribution equilibrium.

(i) Let z. be a linearly unstable equilibrium such that the Nash map is C* in a neighbor-
hood of x., and the joint best response matriz U(x.) has strictly positive entries (see
Fquation (4)). Then

P{lim 2 = 2.} = 0.
k—oo

(iii) Suppose that each state © € I X I, the joint best response matriz v(z) has strictly
positive entries. Then at every linearly stable equilibrium x, we have:

P{lim zj = z.} > 0.
k—o0

Part (i) of this theorem follows directly Theorem 2.2(b) since it is easy to prove that simple
equilibria are isolated. Parts (ii) and (iii) follow from the more general results (Theorems
4.5 and 4.7) given in Section 4.

The assumption in (ii) that &' and % are C? is technical and perhaps unnecessary.
However, the assumption that ©(z.) has strictly positive entries is fundamental. It means
every action profile has a positive probability of being chosen in response to any pair of
mixed strategies.

The intuition behind assertions (ii) and (iii) is part of the general philosophy (which will
become precise mathematics in Section 3), according to which the long term behavior of
the state sequence {z} is closely related to the dynamics of the game differential equation
(18). Indeed, as already noticed (Proposition 1.6), the Nash distribution equilibrium z. is
also an equilibrium for the dynamics of the game vector field

F=(F'F?):[0,1]x[0,1] = R,
Fl(a',a?) = —a' b (2?),
F2 (', 2?) = —2?2 4+ b%(2l).

An elementary computation shows that the Jacobian matrix DF(xl 22) has eigenvalues

—14 /b (22) b?'(21). Our definitions of linear stability and instability of z, correspond to
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the synonymous properties of z, = (zl,#2) as an equilibrium of F: Linear stability implies

that the forward trajectories of all initial states sufficiently near z, converge uniformly to
Z.; this dynamic condition is called asymptotic stability of x,. Linear instability implies that
exactly two forward trajectories other than z, converge to z.. We point out in Theorem
4.7 that the condition of linear stability in assertion (iii) of Theorem 2.6 can be replaced by
asymptotic stability.

If we view the sequence {z}} as a noisy numerical integration of F' (see Equation (31)),
it seems natural that linear instability should imply that a typical sequence {z;} of game
states does not converge toward any unstable equilibrium of F; Theorem 4.7(ii) validates
this intuition under somewhat restrictive hypotheses.

Independent Small Perturbations of Payoffs

Let 7 (0) denote a classical 2-player, 2-strategy game in normal form, specified by the pair
of 2 x 2 payoff matrices V! and V2. We call such a game generic if the four numbers

MZ = V12:1 - VIZ:27 (22)
N = V122 - V222 (23)

are nonzero for ¢ = 1, 2. The set of all generic 2 X 2 games is identified, via the components
of the payoff matrices, with an open subset of R® whose complement has Lebesgue measure
zero.

We consider two levels of extensions of the game 7 (0). First, for each £ > 0 we consider
an augmented game ? (¢) determined by random payoff matrices U’ = V' + ¢E', i = 1,2.
Second, we consider the infinitely repeated FK-game specified by the random matrices Uj.
That is, for each i let {E{}ren be an 1ID sequence of random matrices with the same
distribution as Ef, and take player i’s payoff matrix at round k& to be

L=V 4+ <EL.

Each player uses fictitious play to select deterministically the next action a}; in her action
set A" = {1,2}.

We now make the following assumptions:
Hypothesis 2.7
(1) The payoff matriz for player i is
U'=Vi4teE,i=1,2
where B! is a random matriz having the following special form:
2

)T )T are independent random vectors with

whose columns n' = (nt, )" and n* = (9, n2

ZETO Tean.
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(ii) Pach random variable ny — n} admits a strictly positive continuous density function
f': R — R, such that limyy Lo tf* (1) = 0.

Assumption (i) means that the perturbations to player ¢’s payoffs are independent of the
other player’s strategies. It is chosen here for the sake of simplicity, but is not really
essential and could easily be weakened. Assumption (ii), a technical one needed for our
proof, is satisfied by many density functions. Remark 2.9 discusses what can be proved for
densities that are merely integrable.

Corresponding to the first two levels of games there are two levels of Nash equilibria:

e Mixed or pure Nash equilibria for 7 (0).

e Nash distribution equilibria for the augmented game 7 (), for a given value of ¢ (see
Definition 1.3).

It is straightforward to show that ?(0) has at most two pure and one mixed Nash equi-
librium. More precisely: using interval coordinates (subsection 2), denote by (p,q) €
[0,1] x [0,1] the pair of mixed strategies where player 1 plays action 1 with probability
p and player 2 plays action 1 with probability ¢. Then a computation shows that (p, ¢) is a
Nash equilibrium provided M1g+ N'(1 —¢) > 0 and M?*p+ N%(1 — p) > 0 (see Equations
(22) and (23)). In interval coordinates we have the following easily verified characterization
of equilibria:

e (1,1) €[0,1] x [0,1] is a pure Nash equilibrium if M1, M? > 0.
0,0) is a pure Nash equilibrium if N', N2 < 0.

(1, 1)
(0,0) i
e (1,0) is a pure Nash equilibrium if N% > 0 > M2
(0,1) i
(P, q) i

e (0,1) is a pure Nash equilibrium if N* > 0 > M?2.
e (p,q) is a mixed Nash equilibrium if
N2
V<P = et
Nl
0<qg = N1 Mt < 1.

A direct computation shows that in interval coordinates the Nash map (see Equation (19))
ve 1 10,1] x [0,1] — [0, 1] x [0, 1]

for the augmented game 7 (¢) is given as follows. Set

Hi(s) = /_ ; Fi(t)de
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) @ ®) @

I
1
0 P 1 0 1 0 p

0 (mn (1

Figure 1: Three possibilities for I'(¢) and . (I): M* > 0 > M? and N! < 0 < N2. The unperturbed
game admits one mixed Nash equilibrium. (IT): M > 0> N! and M? < N? < 0. The unperturbed
game admits one pure Nash equilibrium, at (0,0). (IIT): M® > 0 > N’ i = 1,2. The unperturbed
game admits one mixed Nash equilibrium, and pure Nash equilibria at (0,0) and (1, 1).

Then:
ve(at,a?) = (bz(2?),b2(2"))

where

b (a?) = 11" (<M1 ‘N%”Nl) ,

£

(et = (

The Nash distribution equilibria, fixed points of the Nash map, are the solutions (2!, 2%)
of the system

(M? — N2z + N2)
- :

et =bl(2?), 2? = bi(2h). (24)
They are equivalently determined by taking ' to be a fixed point of the composite mapping
blob?:[0,1] —[0,1]

and setting 2?2 = bl(z1).

Figure 1 illustrates some generic situations of ? (¢) for a small value of . The curves
p2 = b%(p1) and p; = bl(py) are labeled (a) and (b) respectively. Their intersection points
are the Nash distribution equilibria.

Let . be a Nash equilibrium for the unperturbed game 7 (0), with interval cooordinates

(zl,2%) € I x I, and simplicial coordinates

(al,0f) = (2,1 —2l), (e, 1 —22)) € A" x A* C R? x R%.
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The expected payoff Pi(z,) to player i, given that both players play these mixed strategies,
is given by the formula

PZ(QC*) = Vfiwiwi + szxi(l - wi) + V2i1(1 - wi)wi + Vziz(l - xi)(l - wi) (25)
in interval coordinates, and by

Pla)= 3 Vylam(al)). (26)

m,l=1,2

in simplicial coordinates.

Consider now the further extension of the extended game to the stochastic sequence
of infinitely repeated FK-games driven by fictitious play, with noise parameter . The
cumulative average payoff to player ¢ at time k is defined, using simplicial coordinates, to

be

If P,i (¢) converges as k — oo, the limit can be regarded as the long run average payoff to
player 7 in the infinitely repeated game. More generally, the closed interval

[lim inf P{(c), limsup Pi(¢)]
k—oo k—oo
gives the essential range of player ’s long run average payoffs, for fixed noise parameter

e > 0.

Theorem 2.8 Let 7(0) be a generic 2 X 2 game, and assume Hypothesis 2.7 for the one-
parameter family of adaptive FK-games {7 (¢)}. Then:

(1) If e > 0 is fived at a sufficiently small value, the sequence of empirical frequencies of
7 (¢) converges almost surely to a Nash distribution equilibrium z.(<) of 7 (¢).

(ii) As e goes to zero, x.(g) converges to a Nash equilibrium x.(0) of 7(0).

(iii) The essential range of long run average payoffs to each player i reduces to the expected
payoff at x.(0) for 7(0), as e — 0:

lim lim inf P{(c) = lim limsup Pj(s) = P'(2.(0)).

e=0 k—oo e=0  p_sao

(iv) If 7(0) admits a pure Nash equilibrium, then x.(0) in (i) is necessarily a pure Nash
equilibrium. If there are two pure Nash equilibria (I) and (II) for 7(0), each has a
positive probability to be selected as x.(0) in (ii). That is:

0 < Pl{a.(0)= (D)}
= 11— P{a.(0) = (IT)}
< 1.
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The proof of this theorem is based on Theorems 2.2 and 2.6. As it is rather long and
technical, although elementary, we have postponed it to Section 6.

Remark 2.9 We do not know if the full strength of Hypothesis 2.7 is needed for Theorem
2.8. If we weaken part (ii) of the hypothesis by assuming only that the densities fi are
integrable, then the first part of the proof goes through to show: If ¢ is sufficiently small,
then 7 (¢) has a linearly stable Nash distribution equilibrium arbitrarily near any given pure
Nash equilibrium of 7 (0).

Remark 2.10 Results similar to parts (i) and (ii) of Theorem 2.8 were obtained by Kan-
iovski and Young (1995) under different assumptions on the noise matrices E': Instead
of Hypothesis 2.7, they assume the 8 matrix entries to be independent and normally dis-
tributed with variance e. Part (iii) appears to be new. Part (iv) may be well known to urn
theorists.

Equilibrium Selection, Stability and Harsanyi’s Purification

At this stage it is interesting to compare our results with Harsanyi’s justification of mixed
equilibria. For this purpose let 7(0) be a 2 x 2 game which is generic (see Section 2) and
admits three Nash equilibria (1), (I1) and (/11), with (/) and (/1) pure and (I1]) mixed.

As predicted by Harsanyi’s theory (1973), all three equilibria of 7 (0) can be approxi-
mated by distribution equilibria of 7 (¢) as ¢ goes to zero. In particular, the mixed equi-
librium (I17) is the limit of a Nash distribution equilibrium (//7).. For the unperturbed
game, ([1I) is unstable in the sense that a player can make small deviations from this
equilibrium without loss.

An important conclusion of Harsanyi’s theory is that the randomness introduced in the
game stabilises this equilibrium, in the following sense. Suppose (in the notation of Hy-
pothesis 2.7(i)) that the matrices V!, V2, the parameter ¢ and the probability distribution
of E! and E? are common knowledge. Assume that player —i plays the mixed strategy
given by the Nash equilibrium whose distribution is (//).. Then, almost surely, at each
round of the game, the best response of player i is uniquely determined, and player ¢ cannot
deviate from it without penalty.

An alternative interpretation, more closely related to our context, is that only one player
computes and plays this equilibrium, while the other player simply follows the behavior rule
of fictitious play. It can be shown in this case that the empirical frequencies of both players
will converge with probability one to (/11)..

On the other hand, suppose players know neither opponents’ payoff matrices, nor the
distributions of their own matrices, and let both players adapt their strategies by ficti-
tious play— the adaptive FK-game. Then according to Theorem 2.8(iv), almost surely
the sequence of empirical frequencies will not converge to (/11).; in this context (I11]). is
unstable. Hence we see that there is a considerable difference between stability of a Nash
equilibrium in Harsanyi’s context and in ours.

The key point is that these two notions of stability correspond to different scenarios,
based on very different degrees of knowledge. For Harsanyi it is implicit and essential
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that each player knows the mixed strategy played by his opponent and chooses his own
accordingly. (Perhaps an outside mediator has informed the players of the strategy profile
whose distribution is (/1])..) In the repeated 'K game, in contrast, neither player acts
on any a priort knowledge of the opponent’s strategies. Instead, each player predicts—
generally in error!— that the opponent plays the mixed strategy based on the opponent’s
past empirical frequencies of actions, and the player then chooses his own pure strategy
accordingly.

Theorem 2.2 means that these predictions become self-fulfilling prophecies as players
gradually obtain knowledge of each other’s play and empirical frequencies of actions con-
verge; and Theorem 2.8 shows that mixed equilibria of the unperturbed game are unstable.

Payoff Dominance, Risk-Dominance and Path Dependence

Suppose that 7 (0) is the symmetric coordination game given by the (constant) matrices
a b
o] ] .

with @ > ¢, d > b. As a normalization we also suppose ¢ > b. This game admits three
(necessarily symmetric) Nash equilibria (p., p.), which we denote by (I), (II) and (IlI) as
follows:

(1)

p(l)« =
(17) ( ). =
(I11)  p(I11). = /(1+@)7
where O = u Equilibria (I) and (/1) are pure and (//I) is mixed. The payoffs at (),
a—c
(I1), (I11) are respectively

a®? + (c+ )0 +d

d d
a, d, an 110)?

From these expressions it is easily seen that (/) Pareto dominates (/1) and (/I1). Thus,
if the players could coordinate they would certainly choose to coordinate on (/). However
in absence of coordination, the riskiness of (/) relative to (/1) is relevant and can lead the
players to choose other strategies.

Harsanyi and Selten (1988) say that (/) risk-dominates (11) if (I) is associated with the
largest product of deviation losses, that is if @ — ¢ > d — b. Similarly (/1) risk-dominates
(I) if @ — ¢ < d—b. In the latter situation there is conflict between payoff dominance and
risk-dominance and it is not obvious that a Nash equilibrium will be played.

Consider now a parameterized family 7 (¢) of adaptive 2 x 2 FK-games. Theorem 2.8
(iii) shows that players are led to coordinate on a Nash equilibrium whose distribution is
close (for small noise) to a pure equilibrium of the unperturbed game, and both equilibria
(I)c and (1), have a positive probability to be selected. Therefore, while (I). is the more
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1
N
0/(1+0)
0 I
0 8/(1+6) 1

Figure 2: The phase portrait of a vector field corresponding to a small perturbation T'(e) of a
symmetric coordination game T'(0) with © > 1 (i.e (IT) risk-dominates (I)). The equilibrium with
the larger basin of attraction is close to the risk-dominant equilibrium of the unperturbed game.

efficient equilibrium, it can happen that the state sequence converge toward the less efficient
equilibrium (/17)..

The economic phenomenon captured by this last result is usually called path dependence
and has been largely discussed in the literature on economic history (Arthur, (1989)).

Contrasting path selection is presented by models considered by Young (1993), Kandori
et al. (1993) or Ellison (1993): noise and myopic responses by bounded rational players lead
to selection of the risk-dominant equilibrium. In these models, players selected from a finite
population are repeatedly matched. They adapt their strategies according to a deterministic
rule based on the current strategy distribution of the population; but they also can always
deviate from this rule and play any arbitrary strategy with a small probability controlled
by a mutation parameter e.

There are several differences between the process considered in this paper and the models
studied by these authors. Without going into details, we point out the fundamental differ-
ence that our model is a nonstationary Markov chain, while theirs is stationary. Therefore,
under natural assumption, their underlying process is ergodic, meaning that the current
probability distribution converges toward an invariant measure A(g) regardless of the initial
> By using a characterisation of such invariant measures due to Freidlin and
Wentzel (1984), the authors cited above show that as ¢ goes to zero, the invariant measure
A(e) tends to concentrate on the Dirac measure supported at the risk-dominant equilibrium.

In our process, each equilibrium (I). and (/7). has a positive probability to be selected.
This gives some plasticity to the process; in the beginning of the play the state sequence {z}
behaves roughly as an ergodic process in the sense that it has a nonnegligeable probability
to visit abitrary small neighborhoods of both equilibria. However, since players take into
account the entire past in adapting their strategies, the effect of a new information tends

conditions.

®As pointed out by Ellison (1993), this property is meaningful only if the limiting measure is reached in
a reasonable amount of time.
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to vanishe in the long run, and the process eventually homes in to one of the two equilibria.
One cannot predict which equilibrium will be selected since this depends on the initial state
and the particular sequence of payoff perturbations.

We conjecture, however, that the risk-dominant equilibrium has a larger probability to
be selected than the other equilibrium. The intuition behind this conjecture is that for
the deterministic dynamical system (18), the risk-dominant equilibrium corresponds to the
equilibrium of (18) having the larger basin of attraction (see Figure 2).

3 Continuous Time Dynamics Arising From Fictitious Play

This section introduces the mathematical basis for our analysis of adaptive FK-games, based
on the dynamics of the game vector field (15):

F:5 — TS,
F(z) = —-z+v(z)

and the corresponding game differential equation on .S:

dx
e F(z). (28)

The Limit Set Theorem
Throughout the remainder of this section we assume:

Hypothesis 3.1 The game vector field I is locally Lipschitz.

Next we introduce tools enabling us to analyze game asymptotics in terms of the dynamics
of F.

The Limit Set Theorem given below describes the state limit set L{zy} in terms of the
dynamics of the game vector field F. The point of this result is that for various types of
games, it leads to much information about the probable location and shape of the limit
set L of sample paths of the repeated game. As we will show, for some games L must be
(with probability one) a stable equilibrium; for others L must be contained in a rather small
attractor approximating a point; for still others there is a positive probability that L is a
limit cycle.

Denoting the dimension of S by

I

n:Z(di—l):d—,u,

1

we identify S with a compact convex subset of R™ having nonempty interior, and TS
with R™; for convenience we assume the origin belongs to the interior of S. Under this
identification, the game vector field is a Lipschitz map

F:5—=R".



Benaim & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 24

It is convenient to extend F to a Lipschitz map defined on all of R™. This is possible by
standard theory; an explicit construction is to define F(z), for  outside S, to be F(p(x))
where p : R” — S is the retraction along rays emanating from the origin. Notice that this
makes F': R® — R™ a bounded Lipschitz map.

It follows that F is completely integrable, meaning that its trajectories are defined for
all values of . Therefore F generates a flow

®:R xR"” = R",

where for each y € R", the function ¢ — ®(y) is the solution to the initial value problem

dx
il F(z) (29)
z(0) = . (30)

The parameterized curve t — ®;(y) is the trajectory of y; the image of this curve is the orbit
of y.

For each fixed t € R, the map y — ®;y is a homeomorphism of R". We view the flow
as the collection of maps {®; : R — R"};cgr, with &y denoting the identity map of R".
We have the composition law ¢, 0 &, = &, ,.

An equilibrium (or stationary point) p is a zero of F; this is equivalent, by uniqueness
of solutions, to ®;(p) = p for all t. We call a point y periodic if ®7(y) = y for some T" > 0.
The limit set (more properly, the omega limit set) of y (and of its orbit and trajectory) is
the set of points of the form limy_,, P4, (y) for some sequence ¢ — oo.

An invariant set for F is a set () C R” such that ®,(Q) = @ for all t. Equilibria and
periodic orbits are invariant sets; more generally, limit sets of orbits are invariant.

For any invariant set () we denote by ®|Q the restriction of the flow ® to @, that is, the
collection of maps ®4|@ : Q) — @) obtained by restricting each ®; to Q.

Let @@ denote a compact invariant set. A subset K of @ is called an attractor for ®|Q
provided K is nonempty, compact and invariant, and there is an neighborhood U C @ of
K with the property that lim_ dist(®;z, K) = 0 uniformly for 2 € U. Here dist(a, K)
means the distance from a to the nearest point of K. Speaking loosely, we say that an
attractor captures the orbits of nearby points.

An asymptotically stable limit cycle or equilibrium is an example of an attractor. The
whole space @) is, trivially, an attractor; any other attractor is a proper attractor.

The basin of an attractor K is the set of all points whose trajectories tend to K. If the
basin of K is all of () then K is a global attractor.

We call ) attractor-free if () is a nonempty compact invariant set that contains no
proper attractor. Many compact invariant sets are known to be attractor-free, such as
periodic orbits and limit sets of trajectories. The closure of the union of any collection of
attractor-free subsets of () is attractor-free, as is the intersection of a nested collection. If
the flow is ergodic for a Borel measure supported everywhere in (), then ) is attractor-free.
If &,y — p # y as t — Foo then the closure of the orbit of y (called a homoclinic loop) is
attractor-free.
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The interplay between attractors and attractor-free sets is very useful in analyzing long-
term dynamical behavior. In the following simple but useful result we consider the basic
dynamical system to be ®|Q. It says that an attractor-free compact invariant set is con-
tained in every attractor whose basin it meets:

Lemma 3.2 Let Q and A C Q be compact invariant sets for the flow ®, and assume ®|A is
attractor-free. Then if A meets the basin of an attractor A for ®|Q, it follows that A C A.

Proof Let 2 € A be a point in the basin of A. Since the trajectory of 2 has limit points
in A, and A is closed, limit points lies in A. Thus AN A is a nonempty compact invariant
set, and it is an attractor for the flow in A. Being attractor-free, A therefore coincides with

ANA. QED

The following theorem, the mathematical basis for our results, concerns the game vector
field I of an adaptive FK-game. Recall that L{z;} denotes the state limit set.

Theorem 3.3 (Limit Set Theorem) With probability one, the state limit set L{zy} has
the following properties:

(a) L{zy} is an invariant set for the flow of the game vector field F.
(b) L{zy} is compact, connected and attractor-free.
From Lemma 3.2 we obtain a useful corollary:

Corollary 3.4 With probability one, the state limit set is contained in every attractor whose
basin it meets. In particular it is contained in every global attractor.

The proof of Theorem 3.3 is based on the following recursion relation

[F(2k) + Zr+1], (31)

1
Tg41 — T = m

where {Zi11}ken is a sequence of random variables defined by (31), that is,
Zypr = (b + 1) (wpg1 — a) = Flag).
Lemma 3.5 The processes {xy},{Zk+1} in Fquation (31) satisfy the following conditions:
(1) The vector field F is locally Lipschit:z.
(ii) There exists R > 0 such that ||zg|| < R, || Zg41]| < R for all k =0,1,2,...

(iii)
E(Zisr |24) = 0.
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Proof Conditions (i) is Hypothesis 3.1, while (ii) and (iii) easily follow from equation
(14). QED

Proof of Theorem 3.3. A recursion such as (31) is a particular form of a stochastic
approzimation process, and Theorem 3.3 follows from a general result® proved in (Benaim,
1996) (see also (Benaim and Hirsch (1996)), concerning the asymptotic behavior of stochas-
tic approximation processes satisfying Lemma 3.5. QED

4 Applications of the Limit Set Theorem

Correlated Strategies and Average Payoffs

Theorem 3.3 give us valuable information on the asymptotic behavior of the empirical
frequencies of actions played by each player. But there are other interesting questions, such
as:

(a) What is the long term behavior of the joint empirical frequencies of action profiles?”
(b) Where do the payoffs of the infinitely repeated game tend to cluster?

To address such questions, we consider more generally an arbitrary function H : A —
R™. After round k, this function is evaluated on the current action profile a; € A; in this
way we obtain a stochastic process {H (ay)}. The empirical frequency of {H (ax)} is the
vector

1k
P g ).

The limit set of the sequence {(H )y} is denoted by L[H].
The following result uses the machinery of the Limit Set Theorem to estimate the
location of L[H]:

Theorem 4.1 Let
H:A—-SR"

be such that the map H : S — R™ is Lipschitz, where

H(z) = E(H (ajq1)|2r = 2) Z Ha
a€A

and v(x), is given by definition 1.5. Then the limit set of the sequence {(H)} is almost
surely a compact connected subset of the closed convexr hull of H(L({zg})).

6This result is stated in terms of chain recurrent sets rather than attractor-free sets, but the two notions
are equivalent by a theorem of Conley (1978).)

"Even though the players act independently, it can happen that the state of Nature correlates their
strategies.
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Before proving Theorem 4.1 we make some remarks, and apply the theorem to some specific
functions H:

Remark 4.2

(a) Observe first of all that when the state sequence converges almost surely toward an
equilibrium z, (for example, as in Theorem 2.2(b)), then Theorem 4.1 implies that
(H), converges to H(x.).

(b) Consider the function
H:A— R4,

(al,...,a“)l—>a1®---®a“.

In this case (H) is just the empirical joint frequency tensor Cj (see Equation (10))
and Theorem 4.1 implies that the limit set of the sequence {C}} is almost surely a
compact connected set contained in the convex hull of o(L{zy}), where ¥ is the joint
best response map (Equation (5)). Therefore in case {z)} converges almost surely,
we can conclude that {C} converges to D(limy_ye0 k).

(¢) Now consider the function
H: Ax —- R,

a— U'ld,a™".

Then {(H)x} is the sequence of cumulative average payoffs to player 1 at time k, and
Theorem 4.1 characterizes its limit set.

Proof of Theorem 4.1 We define a new repeated game, the cascaded game, having one
additional silent player. This (14 1)th player takes no actions, or rather, always takes the
same action. At time k the silent player’s game state is uy = (H)r € R™. Thus the state
sequence of the cascaded game is

{(ack,uk) cR" x Rm}keN.

Let F denote the game vector field of the orginal game. Then the game vector field for
the cascaded game, on R™ x R™, is easily worked out to give the tame differential equation

dz du —
%:F(av)7 %:—U—I—H($). (32)
Notice this system is in cascade form, that is, the evolution of z(¢) is independent of u.
Let L C R™ denote the limit set of {23}, and let L’ C L x R™ denote the limit set of
the sequence {(zg, ug)}.
Since L is invariant under F, it is clear that L x R™ is invariant under system (32).
Let ® denote the flow of (32) and let C' C R™ denote the closed convex hull of H(L).
We claim L x C' is a global attractor for ®|(L x R™).
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Suppose this claim is true. Then L’ C I x C' by Lemma 3.2. This implies the conclusion
of Theorem 4.1.

We now pass to the proof of the claim. Let V : L x R™ — R, be the map defined by
V(z,u) = dist(u, C'). By convexity of C', we have

dist((1 — t)u +tH(z),C) < (1 - t)dist(u,C) + tdist(H(z), C)
= (1 - t)dist(u,C),

where the last equality holds because H(z) € C. Thus

dist(u + t(—u + H(2)), C) — dist(u, C)
t

< —dist(u, C).

Now the map V (z, u) being convex and continuous because C' is convex, so it admits a right
partial derivative with respect to u. Therefore letting ¢ goes to zero in the last inequality
gives

d
2V (@i, w) < V(@i u)),

whence V(®;(z,u)) < e *V((z,u)) by a standard theorem in differential inequalities. This
implies that L x C'is a global attractor for ®|(L x R™). QED

Proof of Theorem 2.2

Let £ C S denote the set of Nash distribution equilibria, which are the equilibria (zeroes)
of F.
The proof is based on the following:

Lemma 4.3 The flow ® of the game vector field is area-decreasing.

Proof Heren = 2. As usual we identify the state space with I x I. Consider first the case
where the case where I’ and hence the Nash map v are C'! (continuously differentiable).
Then the game vector field

F:IxI—RY F(z)=—z+v(2)
has negative divergence. For by definition of the Nash map (Equation (3)),

Fial ety = —2' + 3 (7%, i=1,2, (33)
whence the divergence of I’ at z is

oF'  OF?

9l T o T %
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Therefore Liouville’s formula (Hartman, 1964) shows

d

%Det(DQt($)) = —27

showing that ®; decreases areas for t > 0. The case where F is merely Lipschitz follows by
approximating each component 3° by a C' map I — I, and applying standard continuity
theorems in differential equations. QED

Corollary 4.4 No compact set invariant under ® can separate the plane.

Proof Suppose a compact invariant set L C I x I separates the plane. Its complement has
at least one bounded connected component A. Then A is an open invariant set contained
in I x I, hence A has the same area as ®;4 = A, contradicting Lemma 4.3. QED

Proof of Theorem 2.2.  We first prove that the limit set A of a state sequence {x}} is
almost surely contained in £.

By Theorem 3.3, A is almost surely a compact, connected attractor free invariant set.
Consider the dimension d € {0, 1,2} of A (see Hurewicz and Wallman (1948) for dimension
theory). If d = 1 we apply a result of (Hirsch and Pugh, 1988), implying that if a 1-
dimensional attractor-free set for a planar flow contains a nonstationary point, the set
must separate the plane. Since we have seen that A cannot separate the plane, A consists
entirely of stationary points. If A is 2-dimensional then it has nonempty interior, then the
boundary of its interior contains an invariant 1-dimensional continuum which separates the
plane, leading to a similar contradiction. If A is 0-dimensional then, being connected, it
is a singleton (because a 0-dimensional set is totally disconnected); hence A is a singleton,
necessarily an equilibrium by invariance. Therefore in every case A is a connected subset
of the stationary set, proving part (i).

If the compact connected set A is finite or countably infinite, then it reduces to a
singleton p € £.

Suppose A is not a singleton. By Equation (19), the set of equilibria is the intersection
of two graphs:

€=A{(%a) ra? = )} (' 2?) rat = 5 (2?))

Therefore the projection I x I — I on the first (or second) factor maps A homeomorphically
onto a compact connected subset of I. Therefore A is homeomorphic either to a point or

a compact interval. This concludes the proof of assertions (a) and (b) of Theorem 2.2.
Assertion (c) follows Theorem 4.1 and Remark 4.2 (b). QED
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Equilibrium Selection, Local Stability, and Path Dependence

Even if we know that the final outcome of the game has to be an equilibrium, it is not
obvious which equilibrium will be selected. This section addresses this important question
of equilibrium selection and the related problem of path dependence.

We recall some standard terms from dynamical systems. A map is C", r > 1 if it
is differentiable and its partial derivatives up to order r are continuous; and C° means
continuous. The game vector field F : S — TS is C" provided the perturbation matrices E!
in Equation (1) have C"~! densities. Assume F is at least C''. Let 2, € S be an equilibrium
of F' If the Jacobian matrix DF'(z,) is invertible, z, is called simple. If all eigenvalues of the
Jacobian matrix DF'(z.) have nonzero real parts, x, is called hyperbolic. If all eigenvalues
have negative real parts, x, is linearly stable, while if some eigenvalue has positive real part
x, is linearly unstable.

Equilibrium z, of F is called asymptotically stable if there exists a neighborhood U C S
of z* such that lim;., ®;(y) = 2. uniformly in y € U, where ® denotes the flow of F' (see
Equations (29), (30)). In particular, linear stable equilibria are asymptotically stable.

Let z € S be a game state for an adaptive FK-game with any number p of players. We
say the game is diffuse at x if whenever the game state is x, every action profile ¢ has a
positive probability of being selected at the next play: For all @ € A,

D(x)q > 0.

If this holds for all z € 5, we say the game is diffuse.
The following theorem shows that unstable equilibria of the game vector field are elim-
inated as outcomes of diffuse adaptive FK-games with C? game vector fields:

Theorem 4.5 Let , € S be a linearly unstable equilibrium of F. If F is C? in a neigh-
borhood of x., and the game is diffuse at ., then:

P{lim 2 = 2.} = 0.
k—o0
Proof We derive Theorem 4.5 from the following useful result due to Pemantle (1990):

Theorem 4.6 (Pemantle) Consider the stochastic approximation process (31) in R":

Thet1 — Tk [F(zk) + Zit1]

Tkt 1

where the sequence {Zpi1} of R™-valued random variables is a priori bounded with zero
conditional expectations. Let z, be a linearly unstable equilibrium of F. Assume F is C*
in a neighborhood of x., and that there exists ¢ > 0 and a neighborhood N of x, such that
for every unit vector © € R"™, the following condition holds:

E(max(0, (Zx4+1,0)) |z € N) > c. (34)

Then
P{lim 2 = 2.} = 0.
k—oc0
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Using the joint best response map, the game vector field can now be expressed as

Fla)= Y ole)ea— 1,

a€A

by Equations (13) and (15). Since F'(z,) = 0 we have

r.= z)aa (35)

a€A

This exhibits z, as a convex combination of all the extreme points a of S with strictly
positive coeflicients. Considering S as a convex body in R", we have proved that the diffuse
equilibrium x, is in the interior of S.

We use this to verify Pemantle’s hypothesis (34). The function of « € S defined as

E(max(0, (Ze11,0)) |71 = @)
is independent of £ and continuous in z. It therefore suffices to show:
E(max(0, (Zg41,0)) |25 = z4) > 0. (36)

From equation (14) we have

Ziv1 = a1 — E(apgr | 2p)
= app — _ 0(2p)ea (37)
a€A

Fix a unit vector © € T'S. Let A, denote the set of extreme points @ € A for which
(a—z.,0)>0.

Then Ay is nonempty: for from Equation (35) and the identity ) o474 = 1 we get:

Z<a — 24, 0) = Z@(x*)a(a —a),0)=0.

a€A a€A

From the definition (7) of T'S there exists ¢ € A such that (¢ — z.,0) # 0, so the last
equation implies A is nonempty. We therefore have from (37):

E(max(0, (Zk4+1,0)) |2 = 2+) = E(max(0, (a1 — Z Eu(z4)a, 0) |z, = 24)
a€A
= E(max(0,(agy1 — 2+,0) |z =2.) (by (35)),

= Z U(2.), max(0, (a — z,,0))

a€A

= Z P(xd)a(a— 2., 0) > 0.

aEA+
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This verifies (36), and Theorem 4.5 follows from Pemantle’s theorem. QED

The assumption that the game vector field is twice continuously differentiable is not
always satisfied; it is used in existing proofs of Pemantle’s theorem, but may be unnecessary
there. Theorem 4.5 does not need the full generality of Pemantle’s result, as it deals with a
Markov process. There are in fact earlier results similar to Pemantle’s, for more restricted
classes of stochastic processes, which do not assume C? vector fields; but we do not find
them entirely satisfactory for present purposes.

Theorem 4.7 Consider a diffuse adaptive FK-game with any number of players, having
state space S. For every attractor A C S of the game vector field,

P{ lim dist (xx,A) =0} > 0.
k—oo
In particular, if x,. € S is an asymptotically stable equilibrium then
P{lim z; = z.} > 0.
k—oo

For asymptotically stable equilibria, the proofis a consequence of a more or less well known
general result for urn processes that exploits the countable cardinality of the state space
(Arthur et al. (1987), Benaim and Hirsch (1995a)). For general attractors the proof easily
follows from Theorem 6.3 of Benaim (1997). This result shows that for a diffuse adaptive
FK game admitting several asymptotically stable equilibria, even if a particular equilibrium
is more efficient than the others, at every stage there is positive probability that the state
sequence converges toward a less efficient equilibrium. The coordination games considered
in Section 2 is a good illustration of this phenomenon.

The following result shows that the probable action sequences in diffuse games are
somewhat restricted. It implies that even if such rules entail convergence to a clearly optimal
equilbrium, the players will occasionally, but infinitely often, play the worst possible actions.

Proposition 4.8 Consider an adaptive FK-game with any number of players. Let z, de-
note a zero of the game vector field. Suppose that z, is a diffuse state, and that

P{lim zj = z.} > 0.
k—o0

Then the conditional probability that every action profile a € A is played infinitely often,
given that x, — x,, is 1.

Proof Let ©(2.), = ¢ > 0. Let F, denote the sigma field generated by al,a?,.. .a*. By
the generalized Borel-Cantelli lemma (Doob (1953), p.324) the following two sets of events
coincide except for a set of measure zero:

{a), = a infinitely often},



Benaim & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 33

and

{Z Plary1 = a |Fr} = oo}
k
Observe also that:

{D_Plarri = a |7} =00} = {3 i(an)a} =00} D {ap = .}
k k

where the last inclusion stands because =(z,,, @) converges toward ¢ > 0 on the set of events
{z, — x.}. Therefore, modulo sets of measure zero:

{2 — 2.} C {ar = ainfinitely often}.

QED

5 Beyond 2 x 2 Adaptive FK-Games

In this section we consider some adaptive FK games with more than 2 players.

First we treat an adaptive FK version of Jordan’s 3 player matching game. It turns out
that convergence depends on the noise, in quantifiable ways. For sufficiently concentrated
noise (e.g., low variance if the noise is Gaussian), almost surely sample paths do not converge
to the unique Nash distribution equilibrium; and for n = 3, almost surely sample paths
cluster at a periodic orbit of the game vector field. For sufficiently diffuse noise, on the
other hand, sample paths almost surely converge.

In the subsequent subsection we describe a larger class of n x 3 generalized coordination
games, and identify a subfamily where convergence is guaranteed.

Jordan’s Nonconvergent Matching Game

It is known since Shapley (1964) that fictitious play in a deterministic context fails to
converge for a family of 3 X 2 games (3 players, each with 2 pure strategies). Jordan
(1993) exhibited a simple three-player game with the same property. Cowan (1992) gave
examples of deterministic fictitious play in 2-player, 4-strategy games having rigorously
proved “chaotic” behavior.

Following Jordan, we describe here a family of n-player two-strategy games with a
unique Nash equilibrium that includes his example. The unperturbed game is the n-players
version of the matching pennies game considered by Jordan (1993) where n > 3 is an
arbitrary number. There are n players choosing among two strategies (i.e. A* = {1,2}).
Players are labeled modulo n (i.e., player n 4+ 1 =player 1). Player ¢ € {1,...,n — 1} is
rewarded for matching player ¢ + 1, that is, making the same action choice, but player n is
rewarded for not matching player 1.
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The payoffs are as follows. Let V' denote the matrix:

S|

Fori=1,...,n—1, the payoff to player 7 is given by V¥ = V: if players 7, i+ 1 respectively
play k,l € {1,2} then the payoff to 7 is V},. Thus player ¢ tries to match player i + 1. The
payoff matrix for player n is

n _ 1 =1
viev=|

player n tries not to match player 1.
Consider now the infinitely repeated adaptive game defined by payoff noisy matrices

Vi=V'4E, i=1,....,n
where {E};}keNJr is an IID sequence of random 2 x 2 matrices with zero means, having the
form ' '
i Mk Mok
Ep=1 " 3" (38)
[ Mok "k ]

We assume the rows of E% have probability distributions given by smooth (C1) densities on
RZ. Then for each (i, k) the random variable N5 k=M1, also has mean zero, and has a smooth

strictly positive density function f' : R — Rg. We denote its probability distribution
function by '
K':R—[-0,1],

Ki(a) = /_ xoo Fi(u)du. (39)

Note that zero mean implies

» 1
Ki(0)= 3, (40)
while positivity of f* implies '
0< K'< 1.

Write 2t = (pt, 1 — pt) where pt € [0, 1] is the frequency with which player i has played
k k k k
strategy 1 in the first & games. After game k, player ¢ observes his payofl matrix
Vki+1 =V'+ E2+1

for game k + 1 and the empirical frequency vector x}%"’l for player ¢+ 1. Then in game k41
he plays the pure strategy that maximizes his expected payoff, under the assumption that
player 7 + 1 plays the mixed strategy x?’l. Thus the probability, conditioned on x?’l, that
player ¢ plays strategy 1 in game k + 1, is the same as the conditional probability

P{(V1§+1$2+1)1 > (V1§+1$2+1)2 | 9524-1}-
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From the assumptions on Vki—l-l this is easily calculated to be

Ki(apt —2) if i<,
1 — K"(4pp—2) if i=n.

To compute the the game vector field using Equations (16) and (17), we define
Bt [0,1] = [0,1],

hi(s) = K'(4s — 2);

note that '
0<h <1
and ' ' '
h'(s) = 4K" (4s — 2) = 4f(4s — 2) > 0. (41)
Then the game differential equation expressed in variables p!, ..., p" takes the form
dp' iy ,
dt - F(p):—p —I_h(p )72_17"'771_17
dpn T 7% e
—r = M) =—pt 1R, (42)

Note that while the state space for the extended game is [0, 1]", the game vector field F’
is defined in all of R”. It is easily seen that at I’ points into the interior Int ([0, 1]") at
boundary points of [0, 1]*. Therefore there is a compact attractor in Int ([0, 1]*) whose basin
contains Int ([0, 1]").

Lemma 5.1 The extended game admits a unique Nash distribution equilibrium p., given
by

1_.2_ _.on_*
Proof Equation (40) implies that the right hand side of system (42) equals zero if p = p,.
If (pt,...,p") is any equilibrium of (42), it must satisfy

pt=hto... 0" (1 = n"(p").

Since the h' is strictly increasing, p' = 1/2 is the unique solution to this fixed point equa-
tion. By induction it follows that p* = 1/2 for all i. QED

Notice that the Nash distribution equilibrium p, is also the unique Nash equilibrium of
the unperturbed game.

The following two theorems illustrate how the noise densities f* influence the game
dynamics:



Benaim & Hirsch: Dynamical Systems and Repeated Games October 31, 1997 36

Theorem 5.2 Assume
LI 1 2k
170 >Sup{1|cos(7ﬂ-)|_”, k=0,...,n—1}. (43)

Then

(1) The probability that the sequence of empirical frequencies {1} converges to the unique
Nash distribution equilibrium p. is zero.

(ii) Assume n is odd and the K' are analytic. Then there exists a closed curve 7 € [0,1]"
which is an attracting periodic orbit of (42), such that the limit set L{xzy} is 7 with
positive probability.

(iii) Assume n = 3 and the K' are analytic. Then there exists only a finite number of
periodic orbits of ({2), and almost surely L{x}} is one of them.

Remark 5.3 When the perturbations have the form El,; = e’ , then inequality (43)
holds if the parameter ¢ is small enough.

Proof Part (i). The characteristic polynomial P(A) of DF(p.) is easily computed to be
PO = —(14 )" = (4p)"

where p = [[T, fi(O)]l/n . Therefore the eigenvalues of DF'(0) are

2k
/\k:—1+4pexp(i—ﬂ) tk=0,...,n—-1;i=vV-1
n

Under the assumption of Theorem 5.2, all eigenvalues have nonzero real parts and some
eigenvalues have positive real parts. Part (i) of the proposition follows from Theorem 4.5.

Part (ii): System (42) is a monotone cyclic feedback system, in the terminology of
Mallet-Paret and Smith (1990), and it satisfies the hypothesis of Theorem 4.3 of that paper.
According to this theorem, system (42) admits a periodic orbit 7 which is an attractor. By
an argument similar to the proof of Benaim and Hirsch (1993, Theorem 2.5), one can show
that the probability that (L{zy}) is contained in any given attractor— in particular, 7 —
is positive. Because L{xzj} is invariant under the flow of the game vector field (Theorem
(3.3)), and 7 is a single orbit, if L{zy} C 7 then L{zx} =7. Thus

P{L{zx} =7} > 0.
Part (iii): Assume n = 3. Under the change of variables

y1 =pl,ya =1 — pa2,ys = p3,
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which amounts to relabeling the action sets for player 2, and doesn’t change the coordinates
of the equilibrium), System (42) becomes

d 1

d—yt = G'y=-y"+r'01-y%

dy?

- = Gl=-y-r0)

dQS 3 _ 3 3/..1

- = G =E-y 1=y (44)

This is a totally competitive system, meaning that Jacobian matrices have no positive en-
tries. Inequality (43) implies that DF(p.), and hence (DG(py), has one negative eigenvalue
and two complex eigenvalues with positive real parts. Moreover the negative eigenvalue
has an eigenvector with all components positive, while the invariant linear subspace corre-
sponding to the other eigenvalues is transverse to all positive vectors. (These are well-known
implications of the Perron-Frobenius theorem applied to —DF(p.).)

A fundamental property of C! totally competitive systems is the existence of a globally
attracting invariant surface S homeomorphic to an open subset of the plane; see Theorems
1.1 and 1.7 of Hirsch (1988); also Hirsch (1989). Moreover S is transverse to vectors in the
positive octant R?,, in the sense that y — 2 ¢ R®, if y,z € S,y # 2. This implies that
the 2-dimensional unstable manifold of z. is a neighborhood of z, in S. Therefore z, is a
repellor for the flow in S.

All chain recurrent points are contained in S, and Poincaré-Bendixson theory implies
that the only connected chain recurrent sets are periodic orbits and the equilibrium. Real
analyticity of the game vector field can be used to show that the nonstationary periodic
orbits 7; are finite in number. As L{zy} cannot be z, by Pemantle’s theorem 4.5, it must
be one of the 7; by the Limit Set Theorem (3.3).

The following result shows that if the noise is sufficiently diffuse, then there is con-
vergence to the unique Nash distribution equilibrium. This is not surprising, but it is
interesting to obtain a concrete estimate.

Theorem 5.4 Assume that n = 3 and the densities f' satisfy f(s) < 1/2 if |s| < 2. Then
almost surely {x} converges to p,.

Proof It is easy to see that now all eigenvalues of DG/(p.) have negative real parts, so p.
is an attractor for the flow ® = {®;};cg induced by G.

We use the coordinates y*, described above, that make G totally competitive. As in part
(iii) of Theorem 5.2, there is an invariant C'! surface S C R> that attracts all solutions.
The restriction of the flow to S is denoted by ®|S.

Let W C S denote the the basin of attraction of p, for the flow in S. We show by
contradiction that

W o [0,11°NS. (45)
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Suppose this does not hold. Then the Poincaré-Bendixson theorem implies that the
boundary in S of the open set W is a periodic orbit
A C Int ([0, 1]%) N (S \ ps)-

But this will imply that A is an attractor, which contradicts A being the boundary of W.
Fix z € A and a unit vector u € R3. Recall that the curve

c:R—= R c(t) = D®y(2)u

satisfies the variational equation

Estimating de/dt we obtain:

ID@()ull = 1DPo(=)u+ 15 [z DB(=)ull + o1
(T + DG (=)ull + o)

SAIPGE 4 o)

IA

where [ is the identity matrix and ||A]| denotes the operator norm of matrix A. From
system (44) and the hypothesis of Theorem 5.4, we derive the estimate

1
||DG(2)]] < 1—|—4-§ =3,

whence

DB, (2)al] < & + oft).
Since D®_;(z) = (D®;(z))~!, we also have

1D, ()ull > € + o{t).
From the chain rule and invariance of Int ([0, 1]°) under D®; for ¢ > 0 , one then deduces

1D®:(2)ul] > e™™. (46)

This implies that every real eigenvalue of D®;(z) is greater than e,

Let A have period 7" > 0 and fix a point ¢ € A. Because the matrices —DG/(z) are
nonnegative and irreducible, the matrix D®_7(q) is strictly positive (Hirsch 1984, Kunze
& Siegel 1994, Smith 1995). By the Perron-Frobenius theorem, D®_r(g) has a simple
eigenvalue p > 0 equal to the spectral radius of D®_1(q), and corresponding to p there is
unique positive unit eigenvector v for D®_r(q). Since p~! is an eigenvalue of D®7(q), with
eigenvector v, we have

pt > e (47)
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Now D®7(q) also has the eigenvector F'(q) for the eigenvalue 1. The two eigenvectors F'(q)
and v are independent, because v is positive (all components are positive), while if F'(q)
were positive or negative, then the forward orbit of ¢ would converge (Selgrade 1979).

Therefore there must be a third eigenvector w of D®7(q) such that w, F(¢) and v are
linearly independent. Because ¢ lies in the invariant surface 5, it follows that w is tangent
to S at gq.

Let 1 > 0 be the third eigenvalue of D®7(¢). Because the determinant is the product
of the eigenvalues,

Det DO7(q) = p~ ' > e . (48)

On the other hand, Liouville’s formula (Hirsch & Smale 1974)

T
Det D®7(q) = exp(/ TrDG (®q)dt
0

where Tr denotes the trace of a matrix. It is easy to see from Equation (41) that
TrDG(®q) = —3.
Therefore from Equation (48) we get
i< T Det D7 (q) = 3Te™3T = 1.

Thus the two eigenvalues for D(®7[5)(q) are 1 and p,0 < g < 1. This makes A an attractor
for ®|S, leading to the desired contradiction. This proves 45.

It follows that {p.} is a global attractor for the flow in [0, 1]°. Therefore almost surely
sample paths converge to p,, by the Limit Set Theorem 3.3. QED

Convergence in 2 x 3 Generalized Coordination Games

In this section we consider a broad class of n x 2 (n players, 2 strategies) adaptive FK games
whose game vector fields have very convenient dynamical properties. For general n we show
that for many coordination games there is at least a positive probability of convergence.
For n = 3 we exhibit several classes of games, both coordination and anticoordination, in
which convergence is guaranteed. In contrast, Jordan’s matching game discussed above
is an anticoordination game in which, for certain parameter values, there is no chance of
convergence.

We keep the notation of section 1, assuming additionally that each player has exactly
two pure strategies.

Consider first a classical 2 x 2 game with payoff matrix V' for player i € {1,2}. It is
sometimes informally called a coordination game when the diagonal entries of V¢ dominate
columns, i.e.,

Viy > Vig,  Viy > Vi,

because players do better if they both play the same action rather than different actions.
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We call a 2 x2 game a generalized coordination game if each payoff matrix has the weaker
property that the sum of the diagonal entries is not less than the sum of the off-diagonal
entries, that is,

Vi 4 Vi > Vi + V5.

When the opposite inequality holds for both matrices, the game is called an generalized
anticoordination game. We call use the term strict if the inequalities are strict.
An example of a 2 X 2 generalized coordination game is given by payoff matrices

1 0 0 2 2 1
A EH R FL
There is a unique Nash equilibrium: It is clearly optimal for Player 1 to play action 2 and
player 2 to play action 1. Thus the players do not necessarily “coordinate” their actions.
Remark 5.6 gives a sense in which action choices tend to reinforce each other under fictitious
play.

A nx2game, n > 3, is a generalized coordination (respectively, anticoordination) game
if each partial 2 x 2 game, meaning a game obtained by fixing the actions of all but two
players, has the corresponding property. Such a game is called irreducible if for every pair
(¢,7) of distinct players there exists m > 2 and sequence of players iy, ..., i, such that
U =11, J = Uy, and the partial 2 X 2 games for players ¢; and ¢;41 are strict for [ =1,...,m.

The next proposition gives conditions on the game vector field that are equivalent to
generalized coordination and anticoordination.

Recall that a vector field G in Euclidean space is cooperative its Jacobian matrices have
nonnegative off-diagonal terms, i.e., dG;/dz; > 0 for ¢ # j. When the off-diagonal terms
are nonpositive, G is called competitive. If the Jacobian matrices are irreducible, G is called
irreducible.

Proposition 5.5 Let F' denote the game vector field of an n x 2 adaptive FK game whose
unperturbed game is denoted by 7. Then I' is cooperative (respectively, competitive) if 7 a
generalized coordination (respectively, generalized anticoordination) game. In either case,
P is irreducible provided 7 is irreducible.

Remark 5.6 This gives the following interpretation to an FK generalized coordination
game: Suppose the actions of all players except ¢ and j are kept fixed. Then at each round
of play player i’s probability of playing action a € {1,2} is a nondecreasing function of
player j’s empirical frequency of past plays of a. For this is implied by 0F;/dp; > 0 for
¢ # j. Analogously for anticoordination.

Proof of Proposition 5.5 It is convenient to rephrase our definitions as follows. Let
I = (i1,...,1n) be a sequence of m distinct players and J = (b%,...,0™) € {1,2}™ a
sequence of m pure strategies. For any action profile @ € A, let T}(a) denote the action
profile obtained from a by replacing a” by b' for [ = 1,...,m. It is clear that we have a
coordination game if and only if for every pair of distinct players ¢ # j,we have
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VioTpi+VieTy, > Vie Ty + Vie Ty
and a generalized anticoordination game if and only if
Vio T +Vio Tyl < Ve Tyh+ Vi Ty,

Consider now an n x 2 adaptive FK game with action set A* = {1,2} for each player,
determined by the random perturbations E' and equation 11 where we assume that

(i) E'(a) = n'(a’) for each action profile a = (a',...,a”) € A= A' x A”.
(ii) The probability density f' of °(2) — n°(1) is smooth and strictly positive.

Let 0 < p' < 1 represent the mixed strategy (p', 1 — p') for player ¢ in which he plays action
1 with probability p' and action 2 with probability (1 — p').

Any function ¥ : A — R of joint pure actions is extended to joint mixed strategy profiles
as follows. For any strategy profile p = (p', ..., p") we define ¥(p) to be the expected value
of U(a) when « is a random variable with probability distribution p:

W(p) = W(a)l}_,P(a")
a€A
where P(a*) = p* if * = 1 and P(a*) = 1 — p' if ¢* = 2. With this notation the Nash map
Equation (3) is given by
vi(p) =K' [(VieT{ = VioT(p)|, i=1,....n (49)

where K' is the probability distribution of 7(2) — n*(1), (Equation (39)).
Recall that the associated vector field is F'(2) = —2 4 v(z). Thus a key property of F’
is that

oF _
ot
and OF
g =SV el = Ve TVi e Tyi + Vo Ty — Vie Typ — Ve o]

for ¢ £ j. The latter formula implies the proposition. QED

Remark that our definition of coordination obviously depends on the labeling of the
actions. The following proposition shows that it is sometime possible to transform a given
game into a generalized coordination game by a convenient relabeling.

An n X 2 game is called sign symmetric if every 2 x 2 partial game corresponding to
every pair of distinct players i, j has payoff matrices V?, V7 such that the signs (1,—1or0)
of the numbers o/, a? are the same, where

a' = (Vﬂ + Vziz) - (V2i1 + sz)
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of = (V| + Vi) — (Vi) + Viy).
To a sign symmetric n X 2 game we associate a nonoriented signed graph G with vertices
{1,...,n}, asfollows. For distinct players ¢, j there is an edge with positive sign (respectively
negative sign) if o' + a? > 0 (respectively, o' + o/ < 0.
Now consider a loop in G. The loop is called frustrated if it has an even number (possibly
zero) of negative edges and nonfrustrated otherwise. The game is called frustrated if it has
at least one frustrated loop, and nonfrustrated otherwise.

Proposition 5.7 For any nonfrustrated sign symmetric game, there exists a relabeling of
the strategies which transform the game into a game of coordination.

The proof is left to the reader.

A similar proposition holds for generalized anticoordination games. For instance, Jor-
dan’s matching game of the preceding section can be transformed into a generalized anti-
coordination game provided the number of players is odd.

We have seen above in Theorem 5.2 that in an adaptive FK form of Jordan’s 3 x 2
matching game, there is zero probability of convergence to the unique Nash distribution
equilibrium. The following results shows that under quite broad conditions, this is not the
case for generalized coordination games:

Theorem 5.8 Consider an n X 2 FK game, n > 2, that is an irreducible generalized coor-
dination game. If either

(a) the set of Nash distribution equilibria is finite; or
b) the maps K' are analytic
( p ytic,

then there exists a Nash distribution equilibrium p* such that the sequence of empirical
frequency vectors converge to p* with positive probability.

Proof Proposition 5.5 says that the game vector field is cooperative and irreducible. Un-
der hypothesis (a) or (b) I has dissipative dynamics (i.e., there is a global attractor), and
therefore there exists at least one asympotically stable equilibrium for I’ by Hirsch (1985a)
or Jiang (1991). Thus the result follows from Theorem 4.7 QED

We now assume there are n = 3 players. Let p(p) denote the spectral radius of the
Jacobian matrix Dv(p). In principle this can be calculated from (49).

Theorem 5.9 Assume n = 3 and one the following conditions holds:
(a) The game is an irreducible generalized coordination game; or

(b) The game is an irreducible generalized anticoordination game, and p(p) < 2 for all
pe 0,1
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Then:

(1) The limit set of the sequence of empirical frequencies is almost surely a connected set
of Nash distribution equilibria.

(ii) If the K' are analytic, then the the set of Nash distribution equilibria is finite, and
almost surely sequence of empirical frequencies converges to one of them.

Proof From Equation (49) we obtain the game vector field }' = I — v and the game
differential equation:

dp'

=P =0 K VIT) - VAT i = 1,2.8. (50)

Since p' does not enter into T} (p) or T4(p), it follows that F has negative divergence; more
precisely, '
JaF*

o —1, TraceDF(p) = -3. (51)

By the Limit Set Theorem 3.3 we may assume the limit set of a sample path is connected,
compact and attractor-free.

We first deal with conclusion (i).

Assume hypothesis (a), so that I is a cooperative irreducible vector field by Proposition
5.5. We show L consists of equilibria. By (Hirsch 1988), L is unordered and lies in an
invariant surface S homemorphic to an open subset of the plane. An argument similar
to (Hirsch 1989) shows that L does not separate S when, as in this case, I' has negative
divergence. Therefore L consists entirely of equilibria by (Hirsch & Pugh 1988).

Now assume hypothesis (b). For every ¢ € S let e(q) = {e1(¢), e2(¢)} be an orthonormal
basis for the tangent plane 7,5 to S at ¢. Let A, (¢) denote the 2 X 2 matrix expressing the
linear transformation

D (q)|T,(S) : 1,5 — 19,45

in the bases e(q), e(D®(q)).

We now prove that the flow {®;} generated by F decreases area in S for t > 0, by
showing that Det Ay(t) < 1 for ¢ > 0. Fix 7" > 0. An argument similar to that in the proof
of Theorem 5.4 shows that the Jacobian matrix D®7(p) has a real eigenvector v transverse

to S at g, with eigenvalue
A>T, (52)

By Equation (51),
Det Dd1(q) = e 7T, (53)

Set ®7q = p. The 3 x 3 matrix M expressing the linear transformation D®7(q) : R® — R?
in the bases

{v,e1(q), ea(q); and  {D®7(q)v,e1(p), e2(p)}
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has the form

Il
oo >
o 2 o
j S )

where Z Z is the matrix A(g)7. It follows from (52) and (53) that Det A(q)T < 1.

Because the flow in S decreases area, it follows that L consists of equilibria, by the same
argument as in the proof of Theorem 2.2 in Section 4. This completes the proof of (i).

Now assume the K, and hence F, are analytic. Then the equilibrium set is a compact,
real analytic variety Z C R>®. We will prove Z is zero dimensional, whence it consists of
isolated points and (ii) will follow from (i). We may assume dim (Z) < 2).

Let X C Z be a connected component. One can show F' is dissipative; then by (Jiang
1991), X is unordered. By (Hirsch 1988) this implies X lies in an invariant planar surface
S therefore X has dimension at most 2. It is known that S is a smooth surface (Terescdk
1994).

We use the fact that analytic varieties can be triangulated. Suppose X is one dimen-
sional. It is known that every vertex must belong to at least two 1-simplices. Therefore Y is
not a tree, that is, it contains loops, which implies that ¥ separates S. But under assump-
tion (b), this contradicts the earlier conclusion that the flow in S decreases area. Under
hypothesis (a) we use the fact that the flow is strongly monotone and volume decreasing;
in this case (Hirsch 1988) contradicts the existence of an unordered loop of equilibria.

Suppose X is two dimensional. Then the boundary of a 2-simplex is a loop of equilibria,
and we reach the same contradictions as above. QED

6 Proof of Theorem 2.8

As usual, the index ¢ takes values 1, 2.
By hypothesis M? # 0 and N* # 0. There are several different cases to consider,
depending on the signs of M* and N'. We prove assertions (i), (ii) and (iv) for the case

M >0>N°

(see Figure 2(iii)); the other cases are left to the reader.
For parts (i), (ii) and (iv) we work in interval coordinates. In the case under consid-
eration, 7 (0) has pure Nash equilibria are (1,1) and (0,0), and a mixed Nash equilibrium

(pe, p?), where
., —N? ~N!

_ 2 _
Pe= 32— N2 Pe = pn T
Note that then 0 < p’ < 1.
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The main task is to show: For all sufficiently small £ > 0 there are three Nash distribu-
tion equilibria: two are linearly stable and are respectively close to the pure equilibria (1, 1)
and (0,0) of 7(0), while the third is linearly unstable and is close to the mized equilibrium

of 7(0).

We rewrite the components of the Nash map as

b2 = H (L(ﬁ_ﬁ)), (54)

£

b2(z') = H (L@l - wi)) . (55)

£

where D' = M — N* > 0.
Fix a small number » in the range

0<yp<l— max(pi,pz).

Since lim;_., H'(t) = 1 and lim;,_., H'(t) = 0, it is easy to see that there exists r =
r(n) > 0 such that for all £ > 0 we have:

P> pl+ re implies b7 (p') > 1 —1. (56)

It follows that if (p',p?) is a solution to (24) such that p; — pl > re or py — p? > re, then
both p! and p? must be in the interval [1 — 7, 1].

We claim that for ¢ small enough (depending on 7), the composite mapping bl o b?
restricts to a contraction from [1 — 7, 1] into itself. To see this, compute the derivative of
the composite mapping bl o b2 : [0, 1] — [0, 1] by the chain rule:

(b 0 b2)(s) = b (b2(5))b%' (5),

and use Equations (54) and (55) to get:

: Dt . Dt y
b'(s) = = F (= (s~ pL)). 57
=250 (57)
Take ¢ so small that pi 4+ re < 1—17. Set t = %(s — p)) and rewrite (57) as
: 1 :
b (s) = (L),
() = a0

Now |s—p"| is bounded away from 0 when s € [1—1, 1], and limyy o0 tfi(t) = 0 (Hypothesis
2.7). We conclude that by taking ¢ sufficiently small, we can make the derivative of b! o b2
arbitrarily small on [1 — 7, 1], which makes it a contraction on that interval.

The contracting map theorem now shows that for ¢ sufficiently small, there is a unique
fixed point w!(g) € [1 —n,1] for bl o b2.
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Setting w?(e) = b%(w'(c)), we see that the following holds: Given 0 < 7 < 1 —
max(pl, p?), there exists r > 0 and g9 > 0 with the following property. For any ¢ € (0, £¢],
the Nash map v. has a unique fixed point w(s) = (w'(e), w?(¢)) in the region

{2€[0,1]x[0,1]: 2" > pl + reora? > p? + rel,

and w(g) € (1 —n,1] x (1 — n,1]. Furthermore w(e) is a linearly stable Nash distribution
equilibrium for 7 (¢) (see (20)). Lastly, w(e) lies in the 7-neighborhood of the pure Nash
equilibrium (1,1) of 7 (0).

A similar analysis shows that if 0 < 7 < min(pl, p?), we can choose g and r to have
the following additional property: For 0 < € < g, the Nash map v. also has a unique fixed
point v(e) in the set

{(z €[0,1] x[0,1]: 2" < p —reora® < p? —re

and v(e) € [0,7) X [0,7n). This fixed point is also a linearly stable Nash distribution equi-
librium for ?(¢), and it lies in the 7 neighborhood of the pure Nash equilibrium (0,0) of
7(0).

From what has been shown about b it follows that for small enough ¢ we have 0 <
b (w'(¢)) < 1. This implies that at w(e), the curve y = b'(z) has smaller slope than the
curve x = b*(y). The same is true at the fixed point v(¢). This implies the two fixed points
are stable Nash distribution equilibria.

This also implies that the two curves must meet at at at least one other fixed point for
the Nash map. Moreover we proved earlier that all fixed points u other than w(e) and v(e)
must satisfy

|u'(e) = pel < re. (58)

To conclude the analysis of fixed points, we show that we can choose gg to satisfy the
following further condition: If 0 < £ < g¢, then every fixed point for v. with both coordinates
in the interval [p% — re, p. 4 re] is linearly unstable. This will show that there is exactly one
fixed point in that interval, and that it is linearly unstable.

To this end we use Hypothesis 2.7(ii) to find a strict lower bound x > 0 for the set

{fi(s): ls| < D'}

Then from Equation (57) for sufficiently small ¢ for all s € [p. — re, pi 4 re], we have

7

b'(s) >

—K.
€
Now take 0 < g9 < D'k. Then if 0 < e < g¢, every fixed point satisfying (58) is linearly
unstable, as required.

Assertions (i) and (iv) of Theorem 2.8 now follow from Theorem 2.6.

We pass to the proof of assertion (iii). We work in simplicial coordinates. Denote the
payoff matrix to player ¢ for the kth play by

U'(k)=V' +cE'(k), k=1,2...
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where ' '
E* (E)tm = ni (k).

Recall that a}'C € A' = {1,2} denotes player i’s action in game k. We employ the notational

convention given at the begining of Section 1: numbers aé« in square brackets are subscripts

in vectors or matrices. The cumulative average payoff to player ¢ in the first k games is:

1 k
:EZ_: ]7 ] I+es 277
Thus

1 k
lim sup | P{ (s _EZ ], ] < elimsup — Z [ ()l + 1977 (5)2l)

k—o0 k—o0

eE(|m] + |772|) =0(e), (59)

using the Law of Large Numbers.
On the other hand, we have from the definition (10) of the empirical joint frequency
matrix ¢, for game n:

1 . 7 : 7
- E i [a]l, a?] = E Vim, []C,[m, (].
Jj=1 m,l=1

According to Corollary 2.4, in interval coordinates we have

lim Ci[m, ] = z.(c)}, 2. (e)7.

k—o0
Therefore from Equation (59) we have:

limsup | P (<) Z X(e))] = O(e).

Letting € go to zero, and using Equations (25), (26) we obtain

limsup Pi(c) = P'(2.(0)).

n—0oo

The proof for liminf is similar. QED
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