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We consider a game theoretic approach for sequentially
choosing decisions by combining the suggestions of a

fixed number of experts. Since the optimal decision
making strategy is often computationally expensive, we
present a methodology for obtaining approximate strate-
gies with provably good performance. These methods
are applicable to any decision problem with bounded
payoff function, are computationally feasible, and arise
naturally as approximations to the exact solution. We
illustrate the ideaa by applying our results to the prob-
lem of predicting a sequence of letters drawn from a
finite alphabet with the goal being to minimize the num-
ber of mistakes made.

1 The Setup

The space of possible decisions, D, and the space of
possible outcomes, ~, are both assumed to be compact

subsets of Euclidean space. We sequentially interact
with the system for a total of T units of time, where T

must be finite and known in advance. If we choose the

J
sequence of decisions @ = (dl, d2, . . . . dT G DT and
we observe the sequence of system states y c YT, then
our cumulative performance at time T is

T

@T = ~+(dt,yt)

t=l

where ~ : D x Y ~ R is called the payoff function

which must be continuous. We make the assumption
that the decision made does not influence the system we
are observing. This assumption holds under a variety of
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lThis assumption corresponds to being able to view each

unit of time as playing a two-player zero-sum game with
imperfect information (i.e. where each player chooses their

decision simultaneously).
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contexts including sequential prediction and gambling.
When this assumption holds, it is possible to choose our
decisions at random and talk about our expected payoff
for each possible system state. In this case, if we choose
the sequence of probability distributions {P~, }~=1 on
Vi and the sequence of system states turns out to be
y , then our expected performance at time T is

T

t=l

At each time t,and prior to choosing our distribution
PD,, we view the choices of N experts who also each
choose a probability distribution P&,,, for time t. The
expected performance of the ith expert at time T is then

~i,T = f%, [4(&,t, I/t)]

t=l

We wish to sequentially choose our distributions on D
to perform nearly as well as the best expert, no matter
who turns out to be the best expert in the end. We take
a game theoretic viewpoint and minimize the net loss,

v = mW@~,T – &J’
i

uniformly over all possible outcome sequences yT and
all possible experts. Specifically, we hypothesize the ex-
istence of an opponent whose goal is to maximize the
net loss. The choice of expert opinions and the choice
of system states are viewed as “moves” by this hostile
opponent. The value of v when both players play opti-
mally is called the value of the game.

2 Applications

By choosing V, Y, and @ appropriately, we can find
several applications that are special cases of this setup.

1. m-ary prediction.
P=y={l,2,..., ?n}

O(d, V) = I{~=V}

Equivalently, the payoff matrix is given by
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This is the problem of predicting a sequence of let-

ters drawn from an arbitrary finite alphabet, with

the goal being to maximize the number of correct

predictions. By interpreting the sequence appropri-

ately, this can correspond to predicting m possible
types of weather, the m possible ranges of a fluctu-
ating stock relative, or the m possible classes asso-
ciated with a pattern (our setup only works in a su-
pervised environment). By subtracting a constant
1/m from the payoff matrix, this setup can also cor-
respond to gambling at fair odds on a sequence of
m letters using bounded bet size, as shown in ([4])
for the binary case.

The insurance game.

D=y={o,l}

d(cl, g) = –a 11~=01 – ~ Iid=l,v=l]

Equivalently,
(~a ~0

Each year a farmer must choose whether or not to
insure his crops. If he does, he pays a flat rate of
a dollars per year. If he doesn’t, he either pays
nothing if nothing happens that year, or else b > a

dollars if some catastrophe strikes. (This problem

has been analyzed by Vovk [7],)

Discrete time signal prediction.

D= Y=[–B, E?]

~(d, y) = -(~ - d)’

This is the problem of predicting a discrete signal
one time unit in advance using squared error loss.

Gambling on a finite alphabet.
D={(d~,..., dm):dt~o, ~jdj=l}

Y={l, +.., m}

+(d, u)= log(mdy)

This is the problem of gambling on a sequence of
letters drawn from a finite alphabet. Our decision
at each time corresponds to what fraction of our
wealth we place on each letter, and the wealth we
receive is given at fair odds. Thus, the amount of
money placed on the correct letter increases by a
factor of m, while money placed on incorrect letters
is lost. We measure payoff by log-wealth since log-
wealth is additive and has a good interpretation
as the wealth growth rate. The solution to this
problem is given in [2].

Portfolio choice with bounded volatility.
D={(d~,..., dm):di20, xjdj=l}

y=[L, B]~

d(d, yf=- log(d . y)

This is the problem of how to choose a stock portfo-

lio from among m stocks if we know in advance that

each stock price cannot change by more than a fac-
tor of B in a single day. (We obtain the unbounded
volatility case in the limit that B ~ m.) Our deci-
sion at each time corresponds to the fraction of our
wealth invested in each stock. The system state y
is the observed vector of stock relatives where the
ith component is the factor by which the price of
the ith stock changes. Again, we measure payoff
by log wealth, and wish to maximize our wealth
growth rate,

Notice that an expert can correspond to any algorithm

that yields a suggested probability distribution at each

time, and need not be an actual human expert. Conse-

quently, the set of “experts” might be made to include

algorithms optimized for various modeling assumptions

such as kth order Markov models. The set might also

contain algorithms derived from various viewpoints such

as the minimum description length principle or from

Bayesian methods. The theory developed therefore not

only shows how to combine expert advice, but also shows

how to perform robust decision making and sheds light

on the limits of how good a universal decision making

algorithm can be.

3 Foundations

This setup has been considered in various forms by sev-
eral authors, ([1], [4], [7]). A theory for optimal decision
making in this context has been developed in [3], (see
also [2]), and is based on a function V* called the value
function. This function gives the value of the net loss
that will occur at the end of the game if both players
play optimally from now on as a function of the current
time index t and the past history of the game. One ex-
pression for V* is given by the following equation taken
from [3].

V*(t; zl,t, ... ,x~,t) = ~m:x

Yt+l
[

max EYT
[(

max Zi, t + S d(ei)~(v;’))y~)
{.,, S(.)’CD} ~+1 i

Sd+l )1
[,+,f 4(4(V;1),YS)max EyT

– {dg( )e’D} 11(1)
S=t+l

where xa,t = @,,, –@, is the amount by which the ith
expert is beating us at time t. Note that V* only de-
pends on the past history of the game through the set of
differences, {zi)t }~1. The function V* plays a central

role in the theory because the value of the game (our

worst case net loss) is V* (O; ON), and furthermore, our
optimal distribution at time t is given in terms of V* as

PD; = arg~$mv:x(V*(t; {5~,t(yt–l, yt)}~l)

– ED, [O(Q) w)]) (2)
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Note that this distribution is simply the optimal mixed
strategy for the minimizing player in a two-player, zero-
sum game whose payoff matrix is

.f(y,~)= v“(~; {@i,t(!/*-’, y)}~~) - d(~,Y)

Thus, by using methods from the theory of games, it is
possible to calculate this optimal distribution very ef-
ficiently if we can calculate }(y, d) easily for any given
arguments. Examples of such methods for finite games
include the simplex algorithm and the Shapley-Snow
methods (see [6]). In certain special cases (like the ex-
amples considered in section 6) it is possible to give a
simple procedure for obtaining the optimal distribution
from the function ~(y, d), (or equivalently, from V*).

Unfortunately, only in rare circumstances does there ex-

ist a nice closed form for V*. Whenever V and Y are
finite, it turns out to be possible to calculate V* ex-

actly in polynomial time using a dynamic programming
argument (as shown in [3]), but the degree of the poly-
nomial grows with AI’, ID I, and IYl so that this method
is not usually practical. Let us therefore suppose that
we cannot calculate V* exactly but are able to obtain an
approximation, V, by some easily computable method.
We might then consider choosing our distributions to
satisfy the following condition.

The D*(V) algorithm:
At time t, choose a distribution PD1 satisfying

– ED, [~(Dt, I/t)])

This method is the obvious choice because it coincides
with the optimal strategy, (ss given by (2)), when V

equals V*. As before, calculating the distribution Pb:

that satisfies this condition is straightforward if the func-
tion V can be easily calculated for any set of arguments.

The bssic result is given by the following theorem. If
we use a “pessimistic” approximation to the value func-
tion, then the actual value of the net loss when using
a strategy based on this approximation is never worse
than our pessimistic approximation for the value of the
game. Such a function is called an overvalue function.

Definition: A function, V : {0,1,..., T} x IRN -+ IR,,
is called an overwdue function if it satisfies the following
two conditions,

(’i) V(T’; %N) ~ m~zi

for all ZN G Rfi,
F

V(t; {zi + Ec, [4(G,Y)]}~,) - ED [4(D, Y)]]

for all XN G IRN.

The value function V* satisfies these conditions with
equality, which is why we refer to functions that sat-
isfy (i) and (ii) as overvalue functions; they consistently
overestimate the value function. Note, however, that a
function that always overestimates V* need not be an
overvalue function since this is not sufficient to guaran-
tee (ii).

Theorem 1 (Overvalue Theorem)

Let V be an overvalue function. If we always choose our

distribution according to the D*(V) algorithm, then the

net loss is bounded above by V(O; ON), i.e.,

for every sequence of advice {{ Ps,,, }~al}~l and eve~

sequence yT E YT.

Thus, given any overvalue function V, we immediately
have a bound on the worst case net loss when using the
D*(V) algorithm.

4 Finding Overvalue Functions

The Overvalue Theorem shows that any overvalue func-
tion will yield a strategy with provably good perfor-
mance, and furthermore, the best performance will be
achieved by the overvalue function that overestimates
V* by as little as possible. (Ideally, we should use V* it-
self.) Since every overvalue function must overestimate
V*, a good way to look for overvalue functions is to take
the expression for V* given in (1), find the tightest pos-
sible upper bound for each set of arguments, and hope
that these bounds satisfy the overvalue conditions. In
practice, this method works quite well, and any method
for overestimating V* will typically yield an overvalue
function.

To upper bound V*, we find it useful to make the fol-
lowing two definitions.

Definition: A class, C, of distributions on Y is called
complete if, for every continuous function, g : Y - ~,
C contains a distribution PY, satisfying

Pyg = argrn~m~n Ey [g(Y) – @(d, Y)]

Definition: Given any Z1 random variable X, we de-
fine its upper a expectation for each a c [0,1] by

/

1

u [cr; x] = F-l(u)du
l-a

where F– 1 is the quantile function of X, i.e. the left
continuous pseudo-inverse of the cdf of X. (Note that

U is a function of the distribution of X,)

Using these two definitions, it is possible to write down
an explicit formula for an overvalue function that will
turn out to be very useful.
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Theorem 2 Let C be complete, and define X(e, Y) to

be the random variable given by

X(e, Y)= @(e, Y) – ~:Ey [@(d, Y)], (3)

for each e E D and PY E C. If A is a random variable

satisfying

for all a c [0, 1], then

is an overvalue function where PN M the N dimensional

probability simplex and {A$}~=l are i.i. d. random vari-

ables with the same distribution as A.

At first glance, this theorem looks intimidating because
of the seemingly complex conditions required on C and
A, and because of the complex looking overvalue func-
tion, VA, that we obtain. We will find, however, that
the conditions on C and A are not difficult to verify in
practice, and the resulting overvalue function VA can
be computed very efficiently. We will now elaborate on
each of these issues.

We begin by considering the problem of finding a com-
plete class C. From the definition, it is clear that we
could always take C to be the set of all possible distri-
butions on ~, but this set is usually much larger than
is necessary, and it is desirable to have C be as small
as possible in order to yield the tightest performance
bounds. We will define a set C to be minimally com-

plet e if we cannot remove any distributions from C and
still have a complete class. We will usually only be in-
terested in classes of distributions that are minimally
complete.

When Y is finite, the notion of completeness greatly
simplifies because of the following result,

Theorem 3 Let Y be finite, and let C be a set of distri-

butions on Y. Then C is complete if and only if for every

subset Y. ~ Y, C contains a distribution PY* satisfying

Py. = arg ~Y~$YO md= EY [qb(d, Y)]

where 1P% is the set of distributions on Y. and PY* is

required to be in 1P%.

This is a much simpler condition than given in the def-
inition of completeness because it removes the depen-
dence on the arbitrary function g. For each subset Y.
of Y, a distribution satisfying the condition in the theo-
rem k obtained by finding a solution to the two-player,
zero-sum game with payoff matrix @(d, y) when the min-
imizing player’s class of decisions is restricted to Y.. As
before, this can be done using any of various methods
including the simplex algorithm and the Shapley-Snow
method. Since Y haa only finitely many subsets, the the-
orem shows that C can always be taken to be finite, and

it also gives a method for finding C; we simply solve this
equation for each subset of Y and include the solution
in C. A minimally complete class can than be obtained
from C by throwing out any unnecessary distributions,

We now consider how to find a random variable A that
satisfies (4) once a suitable C has been found. This
can be done quite easily in practice by making use of
graphical properties of the U operator. To understand
why this is so, first consider U [a; X] as a function of
a for a fixed X. It is a concave function on [0,1] and
satisfies

U[o; x]=o

U[l; X]= EIX].

Now, for each PY E C and each e E D, the random vari-
able X(e, Y) (defined by (3)) will have mean less than or
equal to zero. Consequently, the graph of U [a; X(e, Y)]
will be a concave function on [0,1] satisfying

U [O; X(e, Y)] = O

U [l; X(e, Y)] ~ O. (6)

Equation (4) simply requires that the graph of U [a; A]

lie above the graph of U [cr; X(e, Y)] for each PY c C
and each e E P. Now, given any continuous, concave

function h(cr) on [0,1] such that h(0) = O, there exists a

random variable A such that U [a; A] = h(a). Thus to
find a random variable A satisfying (4), we simply find a
concave function h(a) that lies above U [a; X(e, Y)] for
each PY c C and each e c D, and then find the random
variable A that corresponds to h.

If C and D are finite, or else if I#Jis bounded, then there
will always be a random variable, A, satisfying (4). In
fact, from the previous discussion, it is clear that there
will be infinitely many such random variables since we
can always find a concave function that lies above an-
other given concave function on [0,1]. Which random
variable should we use? Looking back at the overvalue
theorem, we see that our performance bound will be
smallest when VA is aa small as possible. This turns out
to be equivalent to choosing the random variable A*

whose U graph is as low as possible subject to the con-
straint (4). Thus, we should choose A* so that U [a; A*]

equals the convex hull of the graphs of U [a; X(e, Y)].
It is then clear that A* will satisfy (4) in the tightest
possible fashion, i.e., the graph of U [a; A*] will lie be-
low that of U [a; A] for every other A that satisfies (4).
In general, A* will depend on the particular choice of
complete class C.

Definition: The random variable A* that satisfies (4)
in the tightest possible fashion for a given set C is called
the mintmal dilation associated with C.

As mentioned previously, a sufficient condition to guar-
antee that A“ exist is that the payoff function, ~, be
bounded. Also, because of (6), A* will always be a ran-
dom variable with mean O.

Finally, having found a distribution, A, satisfying (4),
we consider how to calculate VA for any values of its
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arguments. This can readily be accomplished using the
following equivalent expression for VA that can be de-
rived from (5).

V~(t; ZN) = (1 – @k + f E [S@{$,,,>~}] (7)

i=l

where the various quantities are defined by

T

S~,~ = xi+ ~ A.

$=t+l

8=~P{Si,t>k}<l<~P{Si,t2k} (8)
i i

Thus to calculate VA, we first determine /3 and k that
satisfy (8), and then calculate VA from (7). In general,
these steps can both be accomplished very quickly, the
exact amount of computation depending on the distri-
bution A. For the examples given in the next section,
both of these steps can be accomplished in time O(T–t).
This amount of time is quite reasonable and suggests
that the D* ( VA. ) algorithm offers an acceptable com-
putational procedure for determining our distribution
at each time.

If computation time is critically important, we might
also consider other distributions satisfying (4). While
these distributions won’t yield performance as good as
A*, they may be easier to use in the sense that the com-
plexity of si,t will not grow as much with T. Since si,t
is obtained by adding independent and identically dis-
tributed (i.i.d.) copies of A, an obvious choice for A

would be a normal random variable because then Si,t
would also be normal. When ~ is bounded, we can
always find a normal distribution that satisfies (4), in
which case VA can be calculated in constant time (in-
dependent of T). The performance degradation that
results from using the normal random variable rather
than A* is typicallysmall (eg. the worst case net loss

increases by no more than a factor of @ for the ex-
amples in section 6).

We conclude this section by displaying some distribu-
tions that satisfy (4) for any bounded payoff function.

Theorem 4 If the payofl function qt satisfies

for all d G D and ally G Y, then (4) is satisfied by the

scaled Bernoulli (l/2’) random variable,

A=
{

(B+ - B-) with prob. 1/,2’
-(B+ - B-) with prob. 1/2

and also by a normal random variable with mean O and

variance T(B+ - B-)2/2.

The scaled Bernoulli random variable yields the better
performance, but the normal random variable results in
an overvalue function that is slightly easier to calculate.
Thus, without any further work, we have found an A

that works for any sequential decision problem posed
in section 1 that has bounded payoff. The D* (VA) al-
gorithm yields a computationally feasible method with
provably good performance VA (O; ON). Typically, the
optimal A* for a given problem will yield a net loss that
is only a small factor better than the net loss achieved
using either of the distributions given in theorem 4.

5 Performance Considerations

Having found a reasonable method for computing our
distribution at each time, we might wonder how the per-
formance behaves as a function of T and N, and also
how this performance compares to the best possible per-
formance that can be achieved. This section addresses
these questions.

The Overvalue Theorem shows that the D* (VA) al o-
Rrithm achieves a net loss that is bounded by VA (O; O ).

Since VA (O; ON) is computed from the distribution of
the sum of T i.i.d. copies of A, it is not surprising that
the normal distribution should play a role in the limit
of large T. The following theorem gives the precise re-
lationship,

Theorem 5 Let A satisfy (4) and have mean O and

variance U;. If f and F are the density and cdf of the

standard normal distribution, respectively, then

where the approximation holds for large N.

Thus, in the limit of large T, the bound VA(O; ON) on

the net loss is proportional to ~. This performance is
quite good since we expect the performance of the best
expert to grow linearly with T. Furthermore, in the
limit of large N, the proportionality constant is approx-

imately VA ~~ which grows only minimally with N,

How does this performance compare to the best possi-
ble performance achievable? Under quite general condi-
tions, it can be shown that V* (O; ON) must grow at least

as quickly as fl(fl) for any N, and the proportionality

constant must grow like Q(m) in the limit of large
N. To prove this fact, we generalize a method proposed
in [1]. Specifically, we consider experts that always sug-
gest a degenerate distribution on D, i.e. one that places
all of its probability y on a single decision in ‘D, where
the particular decision suggested is chosen at random
according to some dist ribut ion, PD. , The dist ribut ion
PD. that we use depends on the payoff function ~, and
must be non-degenerate (i.e. not place all of its proba-
bility on a single decision). This method will only fail if
the payoff function @(d, y), when viewed aa a two-player,
zero-sum game, has an optimal pure strategy d* for the
maximizing player. Further details and extensions can
be found in [3].
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6 Example: Sequential Prediction

In this section, we illustrate the ideas by analyzing the
problem of predicting a sequence of letters drawn from
a finite alphabet with the goal being to maximize the
number of correct predictions. (The m = 2 case has
previously received considerable attention in [1].) We
are thus considering the case,

Y = {1,..,, m}

D = {l,... jm}

This game can be interpreted in many ways (as dis-
cussed in section 2) depending on what each letter cor-
responds to.

We begin by finding a complete set of distributions.
Theorem 3 is very easy to apply in this case because
of the symmetry of the problem and yields the follow-
ing corollary.

Corollary 1 For the prediction problem, let C* be the

set of distributions on y consisting of distributions that

are uniformly distributed on some subset Y. ofy. Then

G“ is minimally complete.

We now find the distribution A* that corresponds to
the set C* given in this corollary. To obtain A*, we first
plot U [a; X(e, Y)] for each Py c C* and each e E D.
The m = 4 case is shown in figure 1 where we have only
plotted those curves that are positive at some point. In

u

A
0.25- -

0 I >
0

a
0.5 1.0

Figure 1: U [a; X(e, Y)] graphs for e < D and PY c C*.

general, there will only be m – 1 unique graphs. The

graph of U [a; A*] is then obtained as the convex hull of
these graphs as shown in figure 2. Finally, we can read
off the distribution of A* from its graph using a simple
property of the U operator, namely

P{A* = a} = ,Ceb{u : -$ U[ti; A*] = a}
&=u

Thus, the probability that A* takes on the value a is
simply the amount of time that the slope of U [a; A*]

equals a. Using this fact, we easily obtain the distribu-
tion of A* as given in the following theorem.

0.25

0 (-x

o 0.5 1.0 ‘“

Figure 2: Obtaining the graph of U [a; A*] as the convex
hull of the U [a; X(e, Y)] graphs.

Theorem 6 For the sequential prediction problem, the

minimal dilation associated with C* has the following

distribution.

{

1—.
2 with prob. ~

A* =
~ wiihprob. ~ j=2, . . ..l–l

fi
m with prob. &

It has mean O and variance u;. ~ & for all m ~ 2.

From theorem 5, we conclude that on a sequence of

length T, we make about uA. I/m more mistakes
than the best of IV experts. This is negligible since we
expect the number of errors for the best expert to be
proportional to T. In the special case m = 2, we find
that uA* = 1/2 which agrees with the result given in
[1]. For any given values of T and iV, the value of VjI.

will typically be slightly better than the bound found in
[1], but the difference will be negligible when iV and T

are both very large. Also note that a~. grows only min-
imally with m, which results in the net loss increasing
by no more than about 8% as m --i co.

Having found A*, we can also obtain other distributions
satisfying (4). For example, each of the following distri-
butions satisfies (4) for every m,

1. The uniform distribution on [-1,1].
2. The normal dist. with mean O and variance r/8.
3.

{

~
A = ;_l

with prob. ~

——
m with prob. ~

For any given random variable, A, we compute the value
of VA from (7) and (8). When A is normal or binomial,
this computation is somewhat simplified by noticing the
following two facts (shown in [3]).

1. If Z is normal with mean O and variance 1, then

E [ZI{Z>~l] = ~(k)

where f is the density function,

f(z) = (1/fi)exp(-z2/2).
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2. If Z = ~~’1 A, where
ables with distribution,

{

1

A= 21
——

2

A, are i.i.d. random vari-

with prob. ~

with prob. ~

then

‘[21{2>’}]‘7WR,)
Finally, we discuss how to compute the distribution
suggested by the D* (VA) algorithm now that VA can
be efficiently computed for any arguments. In gen-
eral, to determine our distribution at time t, we must
calculate VA (t; {~i,t(y~- 1, y)}) for each y in ~. Here,

@i,t(y~- 1, y), is the cumulative score of the ith expert
up through time t if the next letter (the tth letter) turns
out to be y. WJe can calculate each of these scores be-
cause we are given the distributions of each expert for
time t prior to having to choose our own distribution at
time t.

For the prediction problem, the optimal prediction can
be computed by a “reverse water-filling” method. We
begin by making a bar graph where w~include a “bar”
having width one and height VA (t; {@~,t (/- 1, Y)}~l)

for each y E Y. This is shown in figure 3 for the m = 4

case. We reverse water-fill on this bar graph (gravity

y=l y=2

Shaded area equals amount of
probability to allocate to each y

y=3

L
In this case,

we allocate no

probability to y=%

y=4

Figure 3: Obtaining our distribution by reverse water-
filting.

goes upward) with total water one. The amount of “wa-
ter” that goes into each bar is precisely the amount of
probability the distribution Pb: will allocate to that

value of y.
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