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At each point in time a decision maker must make a decision. The payoff in
a period from the decision made depends on the decision as well as on the state
of the world that obtains at that time. The difficulty is that the decision must be
made in advance of any knowledge, even probabilistic, about which state of the
world will obtain. A range of problems from a variety of disciplines can be framed
in this way. In this paper we survey the main results obtained, as well as some of
their applications. Journal of Economic Literature Classification Numbers: C70, C73.
© 1999 Academic Press

1. INTRODUCTION

At each (discrete) point in time a decision maker must make a decision.
The loss (or reward) from the decision made depends on the decision and
the state of the world that obtains at that time. If dt is the decision made
at time t and Xt is the state of the world at time t, the loss incurred is
L�dt;Xt� and is nonnegative and bounded. The catch is that the decision
must be made prior to knowing anything about which state of the world
will obtain. The decision maker’s goal is to select a sequence of decisions
�dt�t≥0 such that his or her total loss,

T∑
t=0

L�dt;Xt�;
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is small. We call this the on-line decision problem (ODP). The decision
maker’s goal as we have described it is not well defined. We return to
this issue later in this section. ODPs are different from many of the on-
line problems considered in computer science in that the loss incurred in
each period does not depend on decisions taken in earlier periods. The
interested reader should consult Irani and Karlin (1996) for a brief survey
of work on on-line problems in computer science.

A range of problems from a variety of disciplines can be framed as ODPs.
One example of an ODP that has received much attention is the problem
of predicting a sequence of 0’s and 1’s in such a way as to minimize the
number of incorrect predictions (see, for example, Cesa-Bianchi et al., 1993
or Vovk, 1990). In this case there are two possible decisions in each time
period, predict a 1 or predict a 0; i.e., dt = 0; 1. In each time period there
are just two possible states of the world, 0 or 1; i.e., Xt = 0; 1. The loss
function will be L�dt;Xt� = �dt −Xt �. Other examples will be mentioned
in the body of the paper when appropriate. ODPs have been the subject
of study for over 40 years now in statistics, computer science, game theory,
information theory, and finance. Furthermore, investigations in these dif-
ferent disciplines have been pursued quite independently. One measure of
this is that one particular result (which we will describe) has been proved
independently on at least four different occasions within this 40-year span!

We turn now to the important issue of what the decision maker’s goal is.
Earlier we said it was to minimize the total loss. The problem is that the loss
will depend on the particular sequence of states of the world that transpire.
For example, consider the 0–1 prediction problem mentioned earlier. Here
is a naive prediction scheme: predict 1 every time. If the sequence that
obtained were all 1, then we would be in the pleasant position of having
the smallest possible loss, 0. Does this mean that this prediction scheme is
a good one? Clearly not. If the sequence being predicted had been all 0’s,
the scheme would definitely be useless. What is needed is a scheme that
generates low average losses against a variety of sequences of states of the
world. One natural way of operationalizing the robustness requirement is
to focus on

max
T∑
t=0

L�dt;Xt�:

Here the maximum is over all possible sequences of states of the world.
The goal is to find a scheme for selecting decisions that minimizes this
last quantity. This goal, while well defined, is not useful. Consider the 0–1
prediction problem again. For every deterministic prediction scheme there
is a sequence of 0’s and 1’s for which the scheme never makes a correct
prediction. So, the maximum over all sequences of the time-averaged loss
for every deterministic prediction scheme is 1.
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If one is not wedded to deterministic prediction schemes, there is an
obvious way out, and that is to randomize. Thus,

∑T
t=0 L�dt;Xt� becomes

a random variable. In this case, one natural definition of robustness is

maxE
[ T∑
t=0

L�dt;Xt�
]
;

where the expectation is with respect to the probabilities induced by the
randomized scheme. In this paper we restrict our attention to randomized
schemes only.

Unfortunately, the best that can be achieved by a randomized scheme
is an average loss of 1/2 per round. This is obtained when the decision
maker randomizes 50/50 on each round. Since finding a scheme that has
maxE�∑T

t=0 L�dt;Xt�� less than T/2 is impossible, an alternative has been
(see, for example, Cesa-Bianchi et al., 1993; Cover, 1991; Foster and Vohra,
1993) to measure the success of a decision scheme by comparison with other
schemes. Imagine that we have a family F of decision schemes already
available. Let S be a new scheme. One would view S as being attractive if
its total loss were “comparable” to the total loss of the best scheme in F ;
no matter what sequence of states of the world obtains.

The comparability idea judges a scheme on the basis of a notion of ex-
ternal validity; i.e., is it as good as some other scheme? In this paper we
introduce an alternative to this, which judges a scheme on the basis of its
internal coherence. We also establish a close connection between this no-
tion of internal coherence and one version of comparability, allowing us to
derive several known results in a unified way.

2. REGRET

Regret is what we feel when we realize that we would have been better off
had we done something else. A basic requirement of any scheme is that it
should avoid or at least reduce the regret that will be felt. Before we give an
explicit definition, we introduce some notation.1 Let D = �d1; d2; : : : ; dn�
be the set of possible decisions in each time period.2 Denote the loss in-
curred at time t from taking decision dj by Ljt . We assume throughout that
losses are bounded; in fact, to save on notation, assume that Ljt ≤ 1 for all
dj ∈ D and t ≥ 0. Notice that we suppress the dependence on the state of
the world that obtains at time t.

1There can be many ways to operationalize the notion of regret; we offer only one.
2The analysis can easily be extended to the case of different sets of decisions at each time

period at the cost of increased notation.
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Any scheme (deterministic or randomized) for selecting decisions can be
described in terms of the probability, wjt , of choosing decision j at time t.
Let wt denote the n-tuple of probabilities at time t. Remember, wt must
be derived using only data obtained up to time t − 1.

Consider now a scheme S for selecting decisions. Let �wt�t≥0 be the
probability weights implied by the scheme. Then, the expected loss from
using S, L�S�, over T periods will be

T∑
t=1

∑
dj∈D

w
j
tL

j
t :

Imagine we have applied the scheme S for T periods. Now, we look back
and review our performance. Had we done things differently, could we have
wound up with a smaller loss? Specifically, at every time t that the scheme S
said we should pick decision dj with probability wjt ; had we picked decision
di would we have done better? Had we done so, our expected loss would be

L�S� −
( T∑
t=1

w
j
tL

j
t −

T∑
t=1

w
j
tL

i
t

)
:

If the quantity

T∑
t=1

w
j
tL

j
t −

T∑
t=1

w
j
tL

i
t

were positive, then clearly we would have been better off. So we feel regret
at having made decision dj instead of decision di. For this reason we define
the regret incurred by S from using decision dj to be

R
j
T �S� =

∑
i∈D

max
{

0;
( T∑
t=1

w
j
t �Ljt − Lit�

)}
:

The regret from using S will be

RT �S� =
∑
j∈D

R
j
T �S�:

The scheme S will have the no internal regret property if its expected regret
is small, i.e.,

RT �S� = o�T �:
Notice that a no internal regret scheme has a (time) averaged regret that
goes to zero as T →∞, i.e., RT �S�/T → 0. The existence of a no internal
regret scheme was first established by Foster and Vohra (1998). The proof
we describe here is due to Hart and Mas–Collel (1996) and makes use of
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David Blackwell’s approachability theorem. For completeness we include a
statement and proof of the approachability theorem in an appendix to this
paper.

Actually we will prove something stronger. We show that the time average
of the realized regret will go to zero almost surely as T →∞. To motivate
the proof we consider the case �D� = 2 first.

2.1. The Case �D� = 2

Let I�j; t� be an indicator variable that is equal to 1 if decision dj was
chosen at time t. Given any two decisions di and dj , define the realized
pairwise regret of switching from dj to di to be

R
j→i
T �S� =

T∑
t=1

I�j; t�Ljt −
T∑
t=1

I�j; t�Lit:

Our goal is to show that there is a randomized scheme S such that
R
j→i
T �S�/T → 0 almost surely as T → ∞. Notice that the expected value

of Rj→iT �S� is
∑T
t=1w

j
t �Ljt −Lit�, so it clearly follows that there is a random-

ized scheme S such that maxj R
j
T �S� = o�T �. If this last statement is true,

it will follow that RT �S� = o�T �.
Since Ri→iT �S� is zero, if �D� = 2 we only have two nontrivial component

regrets, R1→0
T �S� and R0→1

T �S�. If we can choose the decisions in each round
in such a way as to force the time average of R1→0

T �S� and R0→1
T �S� to go

to zero, we are done.
To use the approachability theorem we need to define both a game and

a target set. In the game the decision maker has one strategy for each deci-
sion. The payoff from using strategy “0” at time t is the vector �L0

t −L1
t ; 0�;

while the vector payoff from using strategy “1” at time t is �0; L1
t − L0

t �.
Suppose the decision maker uses a scheme S that selects strategy “0” with
probability wt in round t. Then his or her realized time-averaged (vector)
payoff after T rounds will be(∑T

t=1wt�L0
t − L1

t �
T

;

∑T
t=1�1−wt��L1

t − L0
t �

T

)
;

which is just �R0→1
T �S�/T;R1→0

T �S�/T �. Given what we wish to prove, the
target set is simply the nonpositive orthant. Figure 1 shows a picture of
this situation. The line l is the line through the origin whose normal is
��R0→1

T �S�/T �+; �R1→0
T �S�/T �+�.

Blackwell’s approachability theorem tells us that if the decision maker
can find a strategy which forces the vector payoff (in expectation) to be on
the same side of the line l as the target set, she can force the long-term
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FIGURE 1

average of the payoffs to be arbitrarily close to the target set. If the average
of the payoffs is already in the target set, we are done.

We now show that it is possible to force the next vector payoff to lie on
the same side of line l as the target set. After T rounds the time-averaged
payoff is the vector �R0→1

T �S�/T;R1→0�S�/T �. Thus the equation of the line
l will be �R0→1

T �S�/T �+x+ �R1→0
T �S�/T �+y = 0.

If the decision maker chooses strategy 0 with probability p and strategy
1 with probability 1− p in round T + 1, the payoff (in expectation) will be
the vector (

p
[
L0
T+1 − L1

T+1

]
; �1− p�[L1

T+1 − L0
T+1

])
:

It suffices to choose p so that this point lies on the line l, i.e.,[
R0→1
T �S�/T ]+p[L0

T+1 −L1
T+1

]+ [R1→0
T �S�/T ]+�1− p�[L1

T+1 −L0
T+1

] = 0:

Notice—and this is the important point—that the terms involving T + 1
cancel, yielding

p
(
R1→0
T �S�)+ = �1− p�(R0→1

T �S�)+: (1)
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To verify that the value of p that solves this equation is between 0 and 1,
we solve the equation

p = �R0→1
T �S��+(

R1→0
T �S�)+ + (R0→1

T �S�)+ : (2)

Notice that the required p depends only on the regrets up to time T and
no farther.

2.2. General Case

In the general case, where �D� = n, there are a total of n�n− 1� nontrivial
pairwise regret terms. As before, we will identify a scheme S such that
R
i→j
T �S� = o�T � for all i and all j. Such a scheme will obviously have the

no internal regret property.
The proof mimics the �D� = 2 case. The decision maker has one strategy

for every decision. The payoff from playing strategy j in round T is an n2-
dimensional vector. The first n�j − 1� components are 0, components �j −
1�n+ r for 1 ≤ r ≤ n are equal to LjT −LrT ; and all remaining components
are 0. The target set is G = �x ∈ <n2 � �∀i�xi ≤ 0�.

Call the time average of the vector payoffs obtained so far a. Notice that
its components will be of the form �Rj→iT �S�/T �i; j . Let c be the point in G
closest to a. Clearly, ci = a−i . Thus the vector a− c is just a+i .

In the next round we want to choose a probability vector wT+1, so that
the expected vector payoff will lie on the plane l; which is perpendicular to
a− c. Thus, wT+1 must satisfy∑

i; j

wiT+1

(
LiT+1 − LjT+1

)(
R
i→j
T �S�

)+ = 0: (3)

Splitting it into two sums,∑
i; j

wiT+1L
i
T+1

(
R
i→j
T �S�

)+ −∑
i; j

wiT+1L
j
T+1

(
R
i→j
T �S�

)+ = 0: (4)

Changing the indices of the second sum,∑
i; j

wiT+1L
i
T+1

(
R
i→j
T �S�

)+ −∑
j; i

w
j
T+1L

i
T+1

(
R
j→i
T �S�

)+ = 0; (5)

we get ∑
i; j

LiT+1

(
wiT+1

(
R
i→j
T �S�

)+ −wjT+1

(
R
j→i
T �S�

)+) = 0: (6)

Since the LiT+1’s are arbitrary, we must have for each i that∑
j

wiT+1

(
R
i→j
T �S�

)+ −wjT+1

(
R
j→i
T �S�

)+ = 0: (7)
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To complete the argument it suffices to show that this system of equations
admits a nonnegative solution.

Let A be a matrix defined as

aij = Rj→iT �S� (8)

for all i 6= j; and

aii = −
∑
j 6=i
R
i→j
T �S�: (9)

Notice that the row sums of A are all zero. Equation (7) is equivalent to
Ax = 0. We need to show that the system Ax = 0 admits a nontrivial
nonnegative solution.3

Let A′ be the matrix obtained from A as

a′ij = aij/B;
where B = maxi; j �aij�. Notice that �a′ij� ≤ 1 and

∑
i a
′
ij = 0. Let P = A′ +

I. Then P will be a nonnegative row stochastic matrix. Hence there is a
nonnegative probability vector x such that Px = x (since we do not require
that x be unique, we do not need any restrictions on the matrix P). Since
P = A′ + I we deduce that

A′x+ Ix = x
⇒ A′x = 0

⇒ Ax = 0

The vector x is the required distribution. Further, it can easily be found by
Gaussian elimination.

With some additional effort one can extract the rate of convergence of
RT �S�. It is O�√T �; and this is the best possible. However, for special cases
it can be improved.

2.3. Calibrated Forecasts

Probability forecasting is the act of assigning probabilities to an uncertain
event. There are many criteria for judging the effectiveness of a probability
forecast. The one that we consider is called calibration. In this section we
will show how the existence of a no internal regret decision scheme implies
the existence of a close to calibrated probability forecast. This was first
established by Foster and Vohra (1998).

For simplicity, assume that we are forecasting a sequence of 0–1’s; i.e.,
there are just two states of the world. Let X be a sequence of 0–1’s whose

3The solution can be normalized to turn it into a probability vector.
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ith element is Xi. Fix a forecasting scheme F; and let fi be the probability
forecast of a 1 in period i generated by this scheme. Note that fi can be
any number between 0 and 1. Let nt�p;X;F� be the number of times up
to time t that the scheme forecasted a probability p of a 1. Let ρt�p;X;F�
be the fraction of those times that it actually rained. In other words,

nt�p;X;F� ≡
t∑
i=1

Ifi=p

ρt�p;X;F� ≡
t∑
i=1

Ifi=pXi

nt�p;X;F�
;

where I is the indicator function. The calibration score of F with respect
to the sequence X of 0–1’s after t periods is

Ct�F;X� =
∑
p

(
ρt�p;X;F� − p

)2 nt�p;X;F�
t

:

Ideally, one would like an F such that Ct�F;X� = 0 for all t and X; i.e.,
F is calibrated with respect to all sequences X. This is impossible,4 so, we
settle for something less: find a randomized F such that for any ε > 0 and
all X there is a t sufficiently large so that Ct�F;X� < ε almost surely (where
the “almost surely” is with respect to the probabilities induced by F). Here
we will establish something weaker.

We restrict F to choosing a forecast from the set �0; 1/k; 2/k; : : : ; �k−
1�/k; 1�. Let wjt be the probability that F selects the forecast j/k in period t.
Hence the expected number of times that F chooses j/k as a forecast up
to time t is

∑t
s=1w

j
s . Let

• ñt�i/k� ≡
∑t
s=1w

i
s and

• ρ̃t�i/k� ≡
∑t
s=1w

i
sIXs/ñt�i/k�.

Let

C̃t ≡
k∑
j=0

ñt�j/k�
t

(
ρ̃t

(
j

k

)
− j

k

)2

:

One can think of C̃t as something akin to an expected calibration score.5

We establish the existence of a forecasting scheme with the property that
C̃t → 0 as t →∞.

Consider the following loss function: Ljt = �Xt − j
k
�2. We claim that if

F is chosen to be a no internal regret decision scheme with respect to the

4Particularly if F is a deterministic scheme.
5In Foster and Vohra (1998) it is shown that Ct�F;X� − C̃t → 0 almost surely as t →∞.
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loss function just defined, then C̃t → 0 as t →∞. The idea is to show that
C̃t = O�Rt�F�/t�.

Let

at�i; j� =
∑
s

wis

(
Xs − ρ̃t

(
j

k

))2

:

A straightforward but tedious calculation establishes

at�i; i� − at�i; j� = ñt
(
i

k

)(
ρ̃t

(
i

k

)
− i

k

)2

− ñt
(
i

k

)(
ρ̃t

(
i

k

)
− j

k

)2

:

Rewriting this, we obtain

ñt

(
i

k

)(
ρ̃t

(
i

k

)
− i

k

)2

= at�i; i� − at�i; j� + ñt
(
i

k

)(
ρ̃t

(
i

k

)
− j

k

)2

:

Since this must be true for all j, it must be true for the j∗ that minimizes
ñt�i/k� �ρ̃t�i/k� − j/k�2. Notice that j∗ can be chosen so that j∗/k is within
1/�2k� of ρ̃t�j�. Hence

ñt

(
i

k

)(
ρ̃t

(
i

k

)
− i

k

)2

≤ at�i; i� − at�i; j∗� +
ñt�i/k�

4k2

≤ at�i; i� −min
j
at�i; j� +

ñt�i/k�
4k2 :

Thus

ñt

(
i

k

)(
ρ̃t

(
i

k

)
− i

k

)2

≤∑
j

max
{
at�i; i� − at�i; j�; 0

}+ ñt�i/k�
4k2 :

Summing both sides of the last inequality and noting that
∑
i ñt�i/k� = t;

we see that tC̃�t� ≤ Rt�F� + t/�4k2�.
Sergiu Hart (personal communication) has given a charming alternative

proof, based on the minimax theorem, of the existence of a close to cal-
ibrated forecast. Unfortunately, Hart’s proof does not lead to an efficient
algorithm for generating such a forecast. Fudenberg and Levine (1995)
also give a (different) proof based on the minimax theorem. Their proof is
longer than Harts’ but has the virtue of leading to an efficient algorithm
for finding a close-to-calibrated forecast.
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3. NO EXTERNAL REGRET

For any decision scheme S let LT �S� be the (expected) total loss from
using S up to time T .6 Let F be a collection of different decision schemes.
A decision scheme, S, is said to have no external regret with respect to F if

LT �S� ≤ min
P∈F

LT �P� + o�T �

for all sequences of states of the world. So, for large T , the time averaged
loss from using S is almost as good as the average loss of the best of the
schemes in F .7

Given any finite set F of decision schemes, we show how to construct
a decision scheme that has no external regret with respect to F . Consider
the case where F consists of just two schemes, A and B. Let LAt and LBt
be the loss incurred by using schemes A and B, respectively, in time t. Let
C be a scheme that follows A in time t with probability wt and scheme B
with probability 1 − wt . In effect, C is a decision scheme whose decision
set consists of just two options, do A or do B. Then

LT �C� =
T∑
t=1

[
wtL

A
t + �1−wt�LBt

]
:

Theorem 1. If C is a no internal regret scheme, then C has no external
regret with respect to �A;B�.

Proof. Without loss of generality, we may assume that LT �A� ≤ LT �B�.
The regret associated with C is

RT �C� = max
{ T∑
t=1

wt
(
LAt − LBt

)
; 0
}
+max

{ T∑
t=1

�1−wt�
(
LBt − LAt

)
; 0
}
:

Since RT �C� = o�T �, it follows that

max
{ T∑
t=1

wt
(
LAt − LBt

)
; 0
}
+max

{ T∑
t=1

�1−wt�
(
LBt − LAt

)
; 0
}
= o�T �:

Thus

max
{ T∑
t=1

�1−wt�
(
LBt − LAt

)
; 0
}
≤ o�T �:

6The expectation is with respect to the randomization induced by S.
7Some authors, Littlestone and Warmuth (1994) and Feder et al. (1992), have studied the

ratio LT �S�/minP∈F LT �P�. However, bounds on the ratio can be derived from bounds on the
difference LT �S� −minP∈F LT �P�.
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Since max�x; 0� ≥ x; we deduce that

T∑
t=1

�1−wt�
(
LBt − LAt

) ≤ o�T �:
Adding

∑T
t=1wtL

A
t to both sides of this last inequality, we obtain the re-

quired result.

Given that C is a no internal regret forecast, we have from Section 2.2
that

LT �C� −min
{
LT �A�; LT �B�

} = O(√T ):
This bound is the best possible (Cesa-Bianchi et al., 1993). However, for
particular loss functions or states of the world, it can be improved.

To extend the result to a set F of more than two decision schemes is easy.
Start with two schemes, A and B ∈ F ; and use the theorem to construct
a scheme Z0 that has no external regret with respect to the two of them.
Now, take a third scheme C in F and produce a scheme Z1 with no external
regret with respect to Z0 and C. Notice that Z1 is comparable to �A;B;C�.
Continuing in this way we obtain

Theorem 2. Given any finite set of decision schemes F , there exists a
(randomized) decision scheme S with no external regret with respect to F .

Interestingly, Theorem 2 has been proved many times in the last 40 years.
A review of the titles of some of the papers that contain proofs of Theorem
2 (or special cases) explains why:

• Controlled Random Walks

• On Pseudo-games

• A Randomized Rule for Selecting Forecasts

• Approximating the Bayes Risk in Repeated Plays

• Aggregating Strategies

• Universal Portfolios

The first proof we are aware of is due to James Hannan (1957), where it
arises in a game theoretic context.8

8We thank Aldo Rustichini for leading us to the paper by Hannan. Alas, it came to our
attention only after we had reinvented the wheel in Foster and Vohra (1993).
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3.1. An Application to Game Theory

Consider a two-player game which will be played repeatedly, where the
“loss” to the row player from playing strategy i when the column player
plays her strategy j is aij . Suppose that the row player knows the proportion
yj of times that the column player will play strategy j. Knowing this, the
smallest (average) loss that the row player can receive is

v�y� = min
i

∑
j

aijyj:

Hannan (1957) showed that asymptotically, the row player can achieve v�y�
without knowing y ahead of time, using randomization and the history of
past plays. Call this the Hannan theorem. Let us see how to derive it using
Theorem 2.9

Our set of decision schemes, F , will be the set of strategies that the row
player has. The ith scheme in F will be to choose the ith strategy in each
round. By Theorem 2 there is a scheme S such that

min
P∈F

LT �P� ≤ LT �S� ≤ min
P∈F

LT �P� + o�T �:

Dividing by T and letting T →∞; we conclude that

LT �S� →
minP∈F LT �P�

T
:

However, �minP∈F LT �P��/T is just v�y�, where y is the empirical average
of the column players plays.

Notice that Theorem 2 does not require that the column player have
a finite number of strategies or that the a′ij be nonrandom. Interestingly,
Theorem 2 can be derived from Hannan’s theorem itself. For a proof we
refer the reader to Freund and Schapire (1996). For this reason we will
sometimes refer to Theorem 2 as Hannan’s theorem.

It is also possible to derive Hannan’s theorem using the existence of
a close to calibrated forecast. The row player makes probability forecasts
of the column player playing each of her strategies and then plays a best
response. If the forecast is close to calibrated, row time-averaged payoffs
converge to v�y�. This proof requires that the row player know all of the
column player’s strategies.

Before continuing with our history of Theorem 2, we mention one inter-
esting consequence of it for zero-sum games. In this case aij is the loss to

9Hannan’s proof required that the row player know the entire game matrix ahead of time.
By relying on Theorem 2, we shall see that this is not necessary. It is enough for the player
to know the column of the matrix corresponding to the strategy played by column.
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the row player and the gain to the column player. Let v be the value of this
zero-sum game. By the easy part of the minimax theorem,

LT �S�
T
≥ v ≥ v�y�:

Since S has no external regret with respect to F ; it follows that

LT �S�
T
− v→ 0

as T →∞. The actual rate of convergence (first established by Hannan) is
1√
T
; and this is the best possible (see Cesa-Bianchi et al., 1993). Thus, any

algorithm for constructing a no-external-regret scheme is an algorithm for
finding the value of a zero-sum game, and so for solving a linear program.
For a detailed treatment see Freund and Schapire (1996).10

A short time after Hannan announced his result, David Blackwell
(1956a), showed how Hannan’s theorem could be obtained as a corollary
of his approachability theorem (Blackwell, 1956b). To use the theorem one
needs to define an auxiliary game with vector-valued payoffs and a target
set. If the row player chooses strategy i and the column player chooses
strategy j, the payoff is an �n+ 1�-vector with a 1 in the jth position, aij in
the �n+ 1�st position, and zeros everywhere else. Here n is the number of
strategies of the column player. The target set G is the set of vectors y in
<n+1 such that

1.
∑n
j=1 yj = 1.

2. yn+1 ≤
∑n
j=1 aijyj for all i.

3. yj ≥ 0 for 1 ≤ j ≤ n.

If y is the vector that represents the proportion of times the column player
has played each of his or her strategies, then the vector �y; v�y�� is in the
target set G. So, to prove Hannan’s theorem, it is sufficient to show that
this target set is approachable.

Independently but 9 years later in 1968, Banos (1968) also derived Han-
nan’s theorem. The proof given is quite complicated but proves it for the
case where the payoffs are random variables and the row player knows only
his or her own pure strategies. A decade after that, Megiddo (1980) also
proposed and proved Hannan’s theorem, this time 23 years after the orig-
inal. It is clear from the comments in that paper that Megiddo became
aware of the paper by Banos after his own paper was in press. Megiddo’s

10It is interesting to note that for non-zero-sum games, if players use a no-internal-regret
scheme, one gets convergence to the correlated equilibrium of the game. In the case of zero-
sum games, the sets of correlated equilibria and Nash equilibria coincide. The details may be
found in Foster and Vohra (1997) or Hart and Mas-Colell (1996).
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proof is simpler than Banos’ but is still quite elaborate when compared with
the arguments given here.

In 1994, the theorem was (re)discovered again by Fudenberg and Levine
(1999a). The proof given is different from the ones given by Hannan, Black-
well, Banos, and Megiddo. In their scheme strategies are played in propor-
tion to their payoffs with exponential weights. This, as we explain later, has
been the most popular method for proving Hannan’s theorem.11 In a sequel
to their 1994 paper, Fudenberg and Levine (1999b) investigate a general-
ization of Hannan’s theorem. Instead of asking if the player could do as
well as if she knew the frequency of outcomes in advance, we could divide
the samples into subsamples and ask if the player could do as well as if
she knew the frequencies of the subsamples and was told in advance which
subsample the observation was going to be drawn from. They give a posi-
tive result, using a variation of the regret idea introduced in the previous
section.

The most recent (re)discovery of Hannan’s theorem in a game theory
context we are aware of is the paper by Auer et al. (1995). This last paper
is of interest because it provides other applications of Theorem 2 as well as
some refinements. In particular, it extends Hannan’s theorem to the case
where the row player knows only the payoff from the strategy played in
each round, thus providing for an on-line version of the classical bandit
problem.12

3.2. An Application to Sequence Prediction

A problem that has received a great deal of attention in the computer
science literature is that of predicting a sequence of 0’s and 1’s with “few”
mistakes. The problem has stimulated a number of proofs of special cases
of Theorem 2. All have involved the use of an algorithm that chooses to
predict 0 or 1 in proportion to their payoffs with exponential weights. The
exponential-weighted algorithm just alluded to was introduced by Little-
stone and Warmuth (1989), DeSantis et al. (1992), Feder et al. (1992),
and Vovk (1990) at about the same time. Vovk (1990) shows how the
exponential-weighted algorithm can be used to prove Theorem 2 for any
bounded loss function (but the states of the world are either 0 or 1).

Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth
(Cesa-Bianchi et al., 1993) study the special case of the absolute loss

11We note that the important ingredients for a proof of Hannan’s theorem can also be
found in Easley and Rustichini (1995). That paper does not contain an explicit statement of
the theorem or proof.

12A similar result can be found in Foster and Vohra (1993).



22 foster and vohra

function,13 establishing the best possible rates of convergence under var-
ious partial information scenarios as a function of T and the number of
schemes in F . For example, the decision maker knows an upper bound on
the total loss of the best scheme in F or knows the length of the game, T
(see also Haussler et al. (1995)).

In the case where the state of the world in each period is not binary,
Littlestone and Warmuth (1989) and Kivinen and Warmuth (1993) show
that Theorem 2 holds, but only for a particular loss function. Within this
literature, Theorem 2 as we have stated it was obtained by Chung (1994)
and Freund and Schapire (1995).

We close this section with a pleasing implication of Theorem 2.14 In any
sequence of 0’s and 1’s let ut be the fraction of 1’s that have appeared
up to time t. Suppose you have been predicting the next element of the
sequence. Let ft be the expected fraction of incorrect predictions you have
made up to time t.

Theorem 3. For any sequence of 0’s and 1’s there is a way to predict the
next element in the sequence so that

ft → min�ut; 1− ut�
as t →∞.

Proof. Define the loss function Lt at time t to take the value 1 if
an incorrect prediction has been made and 0 otherwise. Let A be the
decision/prediction scheme that predicts a 1 at each time and let B be
the scheme that predicts a 0 every time. Clearly, Lt�A�/t = 1 − ut and
Lt�B�/t = ut . By Theorem 2 there is a scheme C such that

Lt�C� ≤ min
{
Lt�A�; Lt�B�

}+O�t�:
Divide through by t and the theorem is proved.

Thus, the fraction of incorrect predictions will never exceed one-half and
could be lower if there were a bias in the sequence toward 0’s or 1’s.

3.3. Statistics

Within statistics Foster (1991) proves a version of Theorem 2 for the
case of a quadratic loss function and two possible states of the world. A
paper by Foster and Vohra (1993) contains Theorem 2 in the form stated

13The loss at time t is �pt −XT �, where the pt is the prediction at time t and Xt = 0; 1 is
the state of the world.

14We believe this was first observed by David Blackwell.
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here. The proof is motivated by statistical considerations which we outline
here.

One can view the average losses accumulated thus far by the two schemes
A and B as sample means. Presumably the sample means should tell one
something about the true mean. So the question becomes this: when is
the difference in sample means sufficiently large for us to conclude that
scheme A (or B) should be the one to follow on the next round? Usually
such a question is answered by examining how many standard deviations
one sample mean is from the other. In our case, we can make no appeal
to the central limit theorem to posit a distribution and so compute a stan-
dard deviation. Even so, let us suppose that the losses incurred by each
scheme on each round are independent random variables. Since the losses
are bounded above by 1, we would expect the difference in the average loss
of the two schemes after T rounds to be O�1/T � and the standard deviation
of that difference to be O�1/√T �.

If the difference in the average losses of the two schemes were less than
O�1/√T �; we would conclude that there was no difference between the
two schemes and so randomly select which scheme to follow on the next
round.

If the difference in the average losses of the two schemes exceeded
O�1/√T �, we would conclude that one scheme was superior to the other
and use it on the next round.

This is essentially the scheme proposed by Foster and Vohra (1998). In
the case where the difference in the average losses of the two schemes is
less than O�1/√T �, one randomizes over the two schemes with probability
�1/2− ε; 1/2+ ε�; where ε is a small number that depends on the average
difference of the accumulated losses thus far.

3.4. An Application to Finance

In this section we show how Theorem 2 can be used to obtain a result first
derived by Cover (1991) by other means. Along the way we will describe
a trick for generalizing Theorem 2, under certain conditions, to the case
where F consists of a continuum of decision schemes.

Imagine a financial world consisting of just two stocks, A and B. Let
At and Bt be the value of stocks A and B, respectively, at time t. We
assume that At and Bt are bounded. To avoid extra notation suppose that
A0 = B0 = 1 and that our initial wealth is 1 as well. The return on stock A
at time t will be At/At−1. So the growth rate at time t of stock A will be
ln�At/At−1�. Since

At =
t∏
r=1

Ar

Ar−1
;
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it follows that �lnAt�/t will be the average growth rate of stock A over t
periods.15 We will use Theorem 2 (with inequalities reversed to account for
gains rather than losses) with F consisting of the following two schemes:
buy and hold stock A only and buy and hold stock B. Interpret the prob-
ability of choosing each of these schemes as the proportion of our current
wealth that should be invested in each stock. In particular, if wt is the
“probability” of picking stock A at time t, the growth rate at time t will
be wt ln�At/At−1� + �1 − wt� ln�Bt/Bt−1�. Given this, we can construct a
changing portfolio of the two stocks, C, say, whose value at time t, Ct;
satisfies

lnCt

t
≥ max

{
lnAt

t
;

lnBt
t

}
−O

(
1√
t

)
:

In effect, the average growth rate of C is asymptotically equal to the better
of the growth rates of A and B.16 It is not hard to see that this result holds
for any finite number of stocks.

The previous result shows only that we can, without advance knowledge
of the future, match the average growth rate of the best stock. Could we,
without being clairvoyant, match the growth rate of the best portfolio of the
two stocks?17 The answer is a qualified yes. We can match the growth rate
of the best portfolio from the class of constant portfolios. Such portfolios
maintain a constant proportion of their wealth in each stock. For example,
in each period maintain one-third of the value of the portfolio in A and
the remainder in B. Such a portfolio needs to be adjusted from one period
to the next to maintain this fraction.

As there are as many constant portfolios as numbers in the interval �0; 1�,
a direct application of Theorem 2 is not possible. The trick is to pick a
finite collection of constant portfolios that “cover” the set of all constant
portfolios. If the collection is large enough, one can guarantee that one of
those portfolios has a growth rate close to the average growth rate of the
best constant portfolio.

Each constant portfolio can be represented by a single number in the
interval �0; 1�. That number is the fraction of the portfolio’s wealth invested
in stock A. Let Vt�x� be the value of the constant portfolio x at time t.
Pick an integer k (exact value to be specified later), and let F be the
set of constant portfolios �1/k; 2/k; : : : ; �k− 1�/k�. Applying Theorem 2,
we deduce the existence of investment scheme C with value Ct at time t

15In finance this is called the internal rate of return.
16In this special case, the 1/

√
t term can be improved to 1/t.

17The portfolio is assumed to have the same same starting wealth as we do.
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such that
lnCt
t
≥ max

x∈F
ln Vt�x� −

(
1√
t

)
:

Let z be the constant portfolio in F with the largest value and let y be the
constant portfolio with the largest value overall, i.e.,

Vt�y� = max
x∈�0; 1�

Vt�x�:

We show that the difference between �ln Vt�z��/t and �ln Vt�y��/t is small.
For any x ∈ �0; 1�,

Vt�x� =
t∏
j=0

[
xAj + �1− x�Bj

] = t∏
j=0

[
Bj + x�Aj − Bj�

]
:

Hence,

ln Vt�x� =
t∑
j=0

ln
(
Bj + x�Aj − Bj�

)
:

Choose r
k

closest to y. Then �y − r
k
� ≤ 1

k
. Now,

ln Vt�y� − ln Vt�z� ≤ ln Vt�y� − ln Vt�r/k�:
The right-hand side of this last inequality is just

t∑
j=0

[
ln�Bj + y�Aj − Bj�� − ln�Bj + �r/k��Aj − Bj�

]
:

Each term of the sum is

ln
Bj + y�Aj − Bj�

Bj + �r/k��Aj − Bj�
= ln

1+ y�Aj − Bj�/Bj
1+ �r/k��Aj − Bj�/Bj

:

Suppose Aj − Bj ≥ 0, the argument is similar for the converse. From the
choice of r, y ≤ r+1

k
. So

1+ y�Aj − Bj�
Bj

≤ 1+ �r + 1��Aj − Bj�
kBj

:

Hence

ln
1+ y�Aj − Bj�/Bj

1+ �r/k��Aj − Bj�/Bj
≤ ln

(
1+O�1/k�) ≤ O�1/k�:

Therefore

ln Vt�y� − ln Vt�z� ≤
t∑
j=0

[
ln
(
Bj + y�Aj − Bj�

)− ln
(
Bj +

r�Aj − Bj�
k

)]
≤ O�t/k�:
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So, �ln Vt�y��/t − �ln Vt�z��/t ≤ O�1/k�. Thus, given any ε > 0; we can
choose k and t sufficiently large so that

lnCt
t
≥ ln Vt�y�

t
− ε:

Again this argument is easily generalized to the case of more than two
stocks.18

The main idea used in extending Theorem 2 to a continuum of schemes
is that the loss function be “smooth.” Suppose we can associate with each
scheme F a point x in a compact set with metric ρ, say. Let Lt�x� be the
loss from using scheme x at time t. If �Lt�x� − Lt�y�� ≤ O�ρ�x; y�� for all
points x and y, then, by covering F with a sufficiently fine grid of points,
we can mimic the argument above to show that Theorem 2 holds.

3.5. The Exponential Weighted Algorithm

Many of the proofs of Theorem 2 have involved the use of an algorithm
that selects a decision in proportion to its loss with exponential weights. In
this section we suggest why this is a natural way way to prove Theorem 2.

Return again to the world of two stocks. Theorem 2 implied the existence
of a portfolio C whose value at time t satisfied

lnCt
t
≥ max

{
lnAt

t
;

lnBt
t

}
−O

(
1√
t

)
:

The portfolio that does this is the one that divides the current wealth be-
tween the two stocks in proportion to the values of the individual stocks.
Thus at time t, a fraction

wt =
At−1

At−1 + Bt−1

of current wealth is invested in stock A. To see why this works, consider
what happens at t = 0. Since A0 = B0 = 1 and initial wealth is 1, this
portfolio invests $1/2 in A and $1/2 in B. At time t = 1 this portfolio has
value �A1 + B1�/2. The portfolio now invests

A1

A1 + B1

(
A1 + B1

2

)
= A1

2

in stock A and the remainder, B1/2, in stock B. So, at time t = 2, the value
of the portfolio will be �A2 + B2�/2. Continuing in this fashion, it is easy
to see that

Ct =
At + Bt

2
:

18The dependence on k can be removed using a standard argument.
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Now, from the properties of the logarithm function, we deduce that

lnCt = ln
(
At + Bt

2

)
≥ max

{
lnAt; lnBt

}− ln 2:

Dividing by t; we obtain the required result.19

Now let us consider the more general setting. We have two schemes, A
and B. The gains at time t from using schemes A and B are GA

t and GB
t ,

respectively.20 Assume that GA
0 = 0 = GB

0 and all gains are bounded above
by 1. The goal is to construct a scheme C such that

T∑
t=0

GC
t ≥ max

{
T∑
t=0

GA
t ;

T∑
t=0

GB
t

}
− o�T �:

To do this we associate with scheme A a stock A′ whose value A′t at time
t is

∏T
t=0 x

GA
t (similarly with scheme B). The number x > 1 will be chosen

later. The advantage of this construction is that

lnA′T = ln x
T∑
t=0

GA
t

and

lnB′T = ln x
T∑
t=0

GB
t :

Using the previous argument, we construct a portfolio, C ′, that invests a
fraction

wT =
x
∑T−1
t=0 G

A
t

x
∑T−1
t=0 G

A
t + x∑T−1

t=0 G
B
t

of the wealth at time T in stock A′. Hence

lnC ′T ≥ ln xmax

{
T∑
t=0

GA
t ;

T∑
t=0

GB
t

}
− o�T �:

Let C be the scheme that chooses scheme A at time t with probability wt .
The trick now is to use what we know about lnC ′t to prove that C has no
external regret with respect to A and B.

19Notice that we get the 1/t term rather than 1/
√
t.

20We focus on gains rather than losses. The reason will become clearer later.
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Let at =
∑t
j=1G

A
j and bt =

∑t
j=1G

B
j . Then

wt =
xat−1

xat−1 + xat−1
;

xat = xat−1xG
A
t ≤ xat−1

(
1+ �x− 1�GA

t

)
and

xbt = xbt−1xG
B
t ≤ xbt−1

(
1+ �x− 1�GB

t

)
:

Hence

xat + xbt ≤ (xat−1 + xbt−1
)[

1+ �x− 1��wtGA
t + �1−wt�GB

t �
]
:

Using the fact that 1+ y ≤ ey; we deduce that

xat + xbt ≤ (xat−1 + xbt−1
)
e�x−1��wtGA

t +�1−wt�GB
t �:

Using this last inequality recursively, we obtain

xat + xbt ≤ (xa0 + xb0
) t∏
j=1

e�x−1��wjGA
j +�1−wj�GB

j �:

Since a0 = 0 = b0; we get

xat + xbt ≤ 2
t∏
j=1

e�x−1��wjGA
j +�1−wj�GB

j �:

Taking logs and noting that

C ′t =
xat + xbt

2
;

we get

�x− 1�
t∑
j=1

(
wjG

A
j + �1−wj�GB

j

) ≥ lnC ′t :

Using what we know about C ′t ; we derive
T∑
j=1

(
wjG

A
j + �1−wj�GB

j

) ≥ ln x
x− 1

max
{ T∑
t=0

GA
t ;

T∑
t=0

GB
t

}
− o�T �:

The left-hand side of the above is the expected gain from using scheme C
up to time T . If we choose x = 1+ 1√

T
and use the fact that the maximum

gain in any period is 1, we conclude that
t∑
j=1

(
wjG

A
j + �1−wj�GB

j

) ≥ max
{ T∑
t=0

GA
t ;

T∑
t=0

GB
t

}
− o�T �:

There is one drawback to the exponential-weighted majority algorithm.
It relies on a parameter, x, that depends on T . Thus, one must know ahead
of time how many periods the decision problem must run.
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APPENDIX: APPROACHABILITY THEOREM

Row (R) and Column (C) repeatedly meet to play an m× n matrix game.
If R chooses her strategy i and C chooses his strategy j, the payoff is a
vector vij in some compact space.21 Let it and jt be the strategies chosen
by R and C, respectively, in round t. Both R and C are concerned with the
long-term average of the payoffs:

AT =
T∑
t=1

vit jt /T:

In the space in which the vector payoffs reside there is a convex set G,
called the target set. R’s goal is to play the game so as to force AT , no matter
what the starting point, to approach G arbitrarily closely almost surely, i.e.,
d�AT;G� → 0 almost surely as T →∞. If R can succeed at approaching
G, the set G is said to be approachable.

In the case when G is a convex set, Blackwell (1956) gave a necessary
and sufficient condition for a convex target set to be approachable. Before
giving a formal statement and proof of the result, we describe the intuition
behind it. Consider first the simpler case when the target set G is a half-
space, say �x: a • x ≤ 0�. Suppose R has a mixed strategy over her rows, λ,
so that no matter what C does, the outcome in expectation is a vector in
the half-space or on the defining hyperplane. That is,

a •
m∑
i=1

λivij ≤ 0

for all j = 1; : : : ; n. Notice that if R does not have such a strategy, then
the half-space is clearly not approachable. So this requirement is necessary
for approachability. Now we outline why it is sufficient.

Suppose R plays this mixed strategy λ in every round. Then, in each
round, the outcome vit jt is a random vector with the property that E�a •
vit jt � ≤ 0. Since

AT =
T∑
t=1

vit jt /T;

it follows that

a •AT =
T∑
t=1

�a • vit jt �/T:

21More generally, the payoff can be a vector drawn from a distribution that depends on i
and j. The proof described here easily extends to this case.
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Thus, a •AT is the average of a collection of random variables, each of
which is nonpositive in expectation. One is tempted to now invoke the law
of large numbers to conclude that a •AT must be negative almost surely.
The catch is that the variables a • vit jt may not be independent of each
other. They are determined not just by R’s choices but by C’s as well. And
C may be playing some elaborate strategy that depends on the outcome
of previous rounds of the game. However, by using the appropriate law of
large numbers result that accounts for dependencies, this difficulty can be
overcome. Thus approachability of a half-space reduces to deciding whether
a collection of linear inequalities is satisfied.

Now suppose the target set is not necessarily a half-space. Suppose AT 6∈
G to be the current average payoff and g the point in G closest to AT . Let
l be the plane perpendicular to the line joining AT and g that touches G.
Such a plane can be found by virtue of the separating hyperplane theorem.
Suppose that C has a strategy (possibly mixed) such that no matter what
pure strategy R plays, the outcome is a vector v on the same side of l as AT .
That is, the half-space defined by l containing G is not approachable. In this
case G is not approachable. Thus, a necessary condition for approachability
is that each tangent hyperplane of G is approachable. Now we outline why
this is sufficient. To see why such a conclusion is plausible, assume that T ,
the number of rounds played so far, is very large. Let v be the payoff on
the “right” side of l that R can force in round T + 1. Then, the average
payoff becomes T

T+1AT + v/�T + 1�. Since v is on the other side of l from
AT , it is not hard to see that the new average, T

T+1AT + v/�T + 1�; is a
little closer to G than AT was. Notice that the compactness requirement is
used here to guarantee that for any v, there is a T sufficiently large so that
v/�T + 1� will be small enough.

Theorem 4. A convex set G is approachable if and only if every tangent
hyperplane of G is approachable.

Blackwell’s theorem has been generalized in two ways that are useful.
First, in Vielle (1992) a result for nonconvex target sets is established by
weakening appropriately the notion of approachability. In (Lehrer, 1997),
Blackwell’s theorem is extended to the case of infinite-dimensional spaces.
We do not consider these generalizations here.

4.1. Proof of Blackwell’s Approachability Theorem

Suppose, then, that R can force the outcome of the next round of play
to be, in expectation, on the same side of l as G. We will show that the set
G is approachable. Let D be the largest distance between any two points
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in the set of possible payoffs.22 Let d�At;G� be the distance from the
current average At to the nearest point in G. Our goal is to show that
d�AT;G� goes to zero almost surely as T →∞. We do this by estimating
P�d�AT;G� ≥ δ� from above.

Let MT = T 2d�AT;G�2 − 2TD2: We prove two things about MT : first,
that it is a super-martingale, i.e., ET �MT+1� ≤ MT ; second, that �MT+1 −
MT � ≤ �6T + 3�D2. From these two facts we will show that d�AT;G� con-
verges almost surely to zero.

Lemma 1. MT is a super-martingale.

Proof. Let cT be the closest point to AT in the set G. Then

d�AT+1;G� ≤ d�AT+1; cT �:
By our assumption that R has a strategy wi to follow, we know that for
all j, (∑

i

wT+1
i vi; jT+1

− cT
)′
�AT − cT � ≤ 0:

Let aT+1 =
∑
i wivi; j . Thus,

d
(
AT+1; cT

)2 = (AT+1 − cT
)2

=
(

T

T + 1
AT +

1
T
aT+1 − cT

)2

=
(

T

T + 1
AT −

T

T + 1
cT

)2

+ 2
(

T

T + 1
AT −

T

T + 1
cT

)′
×
(

1
T
�aT+1 − cT � +

(
1
T
�aT+1 − cT

))2

≤
(

T

T + 1

)2

d�AT; cT � +
(

1
T
�aT+1 − cT �

)2

≤
(

T

T + 1

)2

d�AT;G� +
D2

T 2 :

Thus,

�T + 1�2d�AT+1;G�2 ≤ T 2d�AT;G�2 +
(
T + 1
T

)2

D2:

22This is finite by compactness.
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Bounding T+1
T

by the crude bound of 2, we get

�T + 1�2d�AT+1;G�2 ≤ T 2d�AT;G�2 + 4D2:

Writing this in terms of MT; we get

ET �MT+1� = ET
(�T + 1�2d�LT+1;G�2 − 4�T + 1�D2)

≤ ET (T 2d�LT ;G�2 + 4D2 − 4�T + 1�D2)
= ET (T 2d�LT ;G�2 − 4TD2)
= ET �MT �
=MT :

Lemma 2. �MT+1 −MT � ≤ �6T + 3�D2.

Proof. Note that �AT+1 −AT � ≤ D/T . By convexity the closest point in
G to AT+1 is no more than distance D/T from the closest point in G to
AT , i.e., �cT+1 − cT � ≤ D/T . By using the triangle inequality twice we see
that �d�AT+1;G� − d�AT;G�� ≤ 2D/T . Hence,

MT+1 −MT = �2T + 1�d�AT+1;G�2 + T 2
(
d�AT+1;G� − d�AT;G�

)
× (d�AT+1;G� + d�AT;G�

)− 2D2:

Thus, ∣∣MT+1 −MT

∣∣ ≤ �2T + 1�D2 + 4T 2D2/T + 2D2 = �6T + 3�D2:

Lemma 3. d�At;G� → 0 almost surely as T →∞.

Proof. Let St =MT/�6T + 3�D2 =∑T
t=1Xt; where each

Xt =
Mt −Mt−1

�6T + 3�D2

has an expectation less than zero and �Xt � ≤ 6t+3
6T+3 ≤ 1. We now want to

show that P�MT ≥ εT � goes exponentially fast to zero.
First note that

ey ≤ 1+ y + y2

if y ≤ 1. So,

Et−1�eαXt � ≤ 1+ αEt−1�Xt� + α2Et−1��Xt�2�
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if α ≤ 1. Plugging in what we know about Xt ,

Et−1�eαXt � ≤ 1+ α2:

Now,

P�ST ≥ εT � = P
(
eαST ≥ eαεT )

≤ E�e
αST �

eαεT

= E�
∏T
t=1 e

αXt �
eαεT

=
∏T
t=1 E

t−1�eαXt �
eαεT

≤
∏T
t=1�1+ α2�
eαεT

≤ �1+ α
2�T

eαεT

≤ e
α2T

eαεT

= eα�α−ε�T :
If we take α = ε/2, then

P
(
MT ≥ εT �6T + 3�D2) = P�ST ≥ εT � ≤ e−ε2T/2:

Now substituting in the definition of MT; we get

P
[
T 2d�At;G�2 − 2TD2 ≥ εT �6T + 3�D2] ≤ e−ε2T/2;

which solves to

P
[
d�At;G�2 ≥ 2D2/T + ε�6+ 3/T �D2] ≤ e−ε2T/2:

For sufficiently large T , 2D2/T + ε�6 + 3/T �D2 < 7εD2; then taking ε =
δ2/�7D2�; we get

P
(
d�At;G�2 ≥ δ2) ≤ e−δ4T/98D4

;

so

P
(
d�At;G� ≥ δ

) ≤ e−δ4T/98D4
:

Thus, the probability of d�AT;G� being bigger than δ goes to zero expo-
nentially fast.
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