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This paper studies myopic Bayesian learning processes for finite-player, finite- 
strategy normal form games. Initially, each player is presumed to know his own 
payoff function but not the payoff functions of the other players. Assuming that 
the common prior distribution of payoff functions satisfies independence across 
players, it is proved that the conditional distributions on strategies converge to a 
set of Nash equilibria with probability one. Under a further assumption that the 
prior distributions are sufficiently uniform, convergence to a set of Nash equilibria 
is proved for every profile of payoff functions, that is, every normal form game. 
Q 1991 Academic Press, Inc. 

1. INTRODUCTION 

In a Nash equilibrium of a normal form game, each player must cor- 
rectly anticipate the strategies played by the others. In the case of com- 
plete information, each player can deduce the others’ strategies by com- 
puting the equilibrium, provided that some selection convention is 
adopted when there are multiple equilibria. However, in most strategic 
situations of economic interest, individual payoffs are private informa- 
tion, so deductive reasoning cannot produce the knowledge of equilibrium 
strategies. This leads to the question of whether players can learn the 
equilibrium from experience, that is, from repeated plays of the game. 

There are considerable literatures on iterative learning procedures in 
individual decision models (e.g., Berry and Fristedt, 1985; Easely and 
Kiefer, 1986; McLennan, 1987, and references therein) and rational ex- 
pectations equilibrium models (e.g., Blume et ul., 1982); Feldman, 1987; 
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Marcet and Sargent, 1989, and references therein). By comparison, very 
little is known about learning in games, although recent papers by Fuden- 
berg and Kreps (1988), Kalai and Lehrer (1990), and Milgrom and Roberts 
(1989) indicate increasing interest in this subject. Fudenberg and Kreps 
study learning processes for iterated extensive form games in which play- 
ers use a learning process somewhat similar to fictitious play (e.g., Robin- 
son, 1951) except that players occasionally experiment by choosing strat- 
egies at random. They show that if the learning process converges, the 
limit must be a Nash equilibrium of the one-shot extensive form game. 
Milgrom and Roberts show that for iterated normal form games a large 
class of strategy adjustment processes result in strategy sequences which 
are eventually contained in the set of serially undominated strategies. The 
Milgrom and Roberts result applies to the Cournot response process, 
fictitious play, and the nonexperimental strategies generated by an inter- 
esting variation of a Fudenberg-Kreps process. Kalai and Lehrer (1990) 
study two-player repeated games in which the players use Bayesian infer- 
ence to learn each other’s strategies. They show that if each player’s prior 
distribution gives positive probability to the true strategy of the other 
player, then the two strategies converge to a Nash equilibrium of the 
repeated game. 

The present paper studies a class of Bayesian learning processes for 
iterated normal form games with a finite number of players and a finite 
number of pure strategies. The main result is that if the common prior 
beliefs satisfy a certain uniformity condition then for every normal form 
game, the learning process converges to a subset of the set of one-shot 
Nash equilibria. As far as I am aware, this is the first general convergence 
result for normal form games. 

We assume that each player knows his own payoff function but not the 
payoff functions of the other players. This uncertainty is summarized by a 
common prior distribution over payoff functions which satisfies indepen- 
dence across players. At the initial stage, strategies are selected according 
to a Bayesian Nash equilibrium determined by the prior distribution over 
payoff functions. That is, each possible payoff function nP for player p is 
associated with a strategy s,. This association, together with the prior 
distribution pP over rP, determines a probability distribution over sP . In a 
Bayesian Nash equilibrium, the strategy sP associated with rP maximizes 
the expected payoff determined by rrP and the anticipated probability 
distribution over sq for each 9 # p. After an initial strategy sy is observed, 
player p knows that 7rq lies in the set of payoff functions associated with 
sq , and updates the prior pg accordingly. The updated beliefs determine a 
new Bayesian Nash equilibrium, and so on. At each step, players choose 
their strategies myopically, seeking to maximize their current expected 
payoff without regard to future iterations. The resulting stochastic pro- 
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cess of strategy n-tuples is termed a Bayesian strategy process (BSP). In 
particular, a BSP describes a joint probability distribution of games (7~~)~ 
and infinite sequences of strategy n-tuples sI , sz , . . . . The focus of this 
paper is the relation between the Nash equilibria of the game (T,,)~ and the 
sequence of probability distributions over strategies in period t + I condi- 
tional on the observed histories sI , . . . , s,. These conditional probabili- 
ties represent each player p’s beliefs about the strategies to be chosen in 
period t + 1 by the other players, so, together with rr,,, they determine 
player p’s strategy in period t + I. Thus player p’s strategy in period t + 1 
is chosen to maximize the expectation of rp against the conditional proba- 
bility distribution over other players’ strategies. Hence the desired result 
is the convergence of the conditional probability distributions to the set of 
Nash equilibria of the game (Z-J,, . 

This paper provides two such convergence theorems. Theorem 3.2, 
below, asserts that convergence occurs with probability one under any 
Bayesian strategy process. However, this leaves open the possibility that 
convergence fails to occur for some games in a set of prior probability 
zero. Thus Theorem 3.2 does not justify the interpretation of a BSP as a 
learning process for general normal form games. General convergence 
requires a further assumption on the prior beliefs about payoff functions. 
Since the set of strategy n-tuples is finite, payoff functions lie in a finite- 
dimensional Euclidean space, and we can rescale payoff functions to he in 
the unit ball without loss of generality. Since the unit ball is compact, the 
uniform distribution, that is, normalized Lebesgue measure, is well de- 
fined. Theorem 3.8, more transparently stated as Corollary 3.10, states 
that if the prior beliefs are sufficiently uniform then convergence occurs 
for every game (v&. 

Bayesian strategy processes are defined formally in Section 2 below. 
Section 3 is devoted to the convergence results, and some concluding 
remarks are given in Section 4. Example 2.7 in Section 2 describes a BSP 
for the two-player, two-strategy case with uniform priors. This example 
shows that for certain two-by-two games with three Nash equilibria, a 
BSP can generate three subsequences of conditional probabilities con- 
verging, respectively, to each of the three Nash equilibria. Thus Bayesian 
learning does not appear to resolve the multiplicity of Nash equilibria in 
normal form games. This example also serves to emphasize the distinc- 
tion between the learning mechanism represented by a BSP and mecha- 
nisms, such as the tracing procedure (Harsanyi, 1975), which players can 
use to select a particular Nash equilibrium strategy if all players know all 
of the payoff functions (nJ,,. A BSP has the advantage that players are 
not required to know each others’ payoff functions, and the disadvantage 
that multiple Nash equilibria can result in multiple cluster points of the 
expectations sequence. 
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2. BAYESIAN STRATEGY PROCESSES 

2.1. DEFINITIONS. There are II players, II 2 2, indexed by the sub- 
script p. For each 1 I p 5 n, let S, be a finite set, and let S = II&lS,. For 
each p, let S-, = fly+ S,, with generic element s-, = (s, , . , . , speI, 
Sp+lr . . . , s,). Each player p is characterized by a payoff function 7~~: 
S -+ R. The space of possible payoff functions for each player is the unit 
ball in RS, that is, B = {QT E RS : (CsESrr(~)2)‘i2 d I}. Given the strategy sets 
S,, a normal form game is completely specified by an n-tuple of payoff 
functions (n,,), E B”, so let G = B” denote the space of all games, with 
generic element (5~~)~. 

A probability distribution CT on S is a product distribution if u = (r, X 
.*.xu ,I 3 where each v,, is the marginal distribution on S,>. That is, 
a(s) = u,(s,) . . . u,~(s,,) for each s E S. A Naslz equilibrium for a game 
(nJp E G is a product distribution c* on S such that for each p. cz 
maximizes x ,,,, ~p(s,~)~.,~,~~,~(.~,, , s-,JaT,&) over the set of probability 
measures (T,, on S, , where rJ.,(s,, , S-J = ‘ir,(.s, , . . . , s,,~ I , s,’ , sI,+ I , . . . , 
.sJ, and cr?,, is the distribution llyi.,,a$ on S -,,. For each (7~~~)~~ E G, let 
N((n,,),,) denote the set of Nash equilibria. 

2.2. Remarks. It is clear that the normalization of payoff functions to 
the unit ball in RS involves no loss of generality. Payoff functions could be 
normalized further to the unit sphere, but the convexity of the unit ball is 
more convenient for the proof of Theorem 3.8 below. 

In order to define the process which generates successive strategies and 
expectations, we will first introduce some notation for conditional proba- 
bilities. Fortunately, the usual measure theoretic subtleties involved with 
conditional probability are avoided here because of the finiteness of the 
strategy sets. Thus, any finite sequence of strategy n-tuples either has 
positive probability or lies outside the support of the relevant distribution. 

2.3. DEFINITIONS. Suppose that X and Y are metric spaces and Z is 
the product space, Z = X x Y. Let cp be a Bore1 probability measure on Z. 
The support of cp, written “supp cp, ” is defined to be the smallest closed 
subset C C Z with p(C) = 1. The support of the marginal probability 
distribution on X is the smallest closed subset C C X such that 
cp(C x Y) = 1. If x E X, the statement “x E supp cp” will be understood to 
mean that x is in the support of the marginal distribution on X. If E is a 
Bore1 subset of X, cp(E x Y) will often be written simply p(E), and if x E 
X, q(x) denotes cp({x}), that is, cp({x} x Y). 

For each I 5 t < cc, let S’ = I&, S, with generic element s’ = 
(Sir . . . , s,), and let S” = II,“=, S. We topologize each S’ and S” as 
products of the discrete space S. Let G have the Euclidean topology, and 
let cp be a Bore1 probability measure on G x S”. For each p, I, each s’ E 
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supp cp, and each s, E S,, let ‘pp(spls’) be the probability that sp,+, = sp 
conditional on s’, that is, ‘pp(spls’) = cp(s’, s,)lcp(s’). For each s-,, E S-, , let 
cp-,(s-,ls’) be the probability that s-~,+~ = sep conditional on s’, that is, 
~p-&~~s’) = cp(s’, s-J(p(s’). If t = 0, we adopt the convention that 
(s’, SJ = sp, (s’, s-& = smp, and cpp(sp~s’) (resp. ~-,,(s~~~s’)) represents the 
unconditional probability that spl = s,, (resp. smpl = s-J. Finally, for each 
t 2 1, and each s’ E supp cp, &Is’) denotes the probability that s,+, = s 
conditional on s’, with the analogous convention for t = 0. 

2.4. Bayesian strategy processes. For each p, let pp be a Bore1 proba- 
bility distribution on B, and let p denote the product measure, p = pl x 
. . . X p,, on G. A Bore1 probability measure cp on G X S” is a Bayesian 
strategy process for p if 

(i) the marginal distribution on G agrees with I-L; 
(ii) for each p, each t 2 0, and each (7rp; s’, sp) E supp cp, sp maxi- 

mizes x,-,mJ*, s~p)(p-p(s-p~sf) on S,; and 
(iii) for each s’ E supp cp, cp(-Is’) is a product distribution, that is, 

qJ(-Is’) = cpl(.lS’) x . . . x (pp(‘lS’) x . * . x cp,(-Is’). 

2.5 Remarks. The essential property of a BSP is the maximization 
condition 2.4 (ii), which states that in period t + 1, sp is chosen to maxi- 
mize player p’s expected payoff conditioned on the observed strategy n- 
tuples sl , . . . , sl. Condition 2.4 (ii) does not completely rule out corre- 
lated strategies because of the possibility that, if different players each 
have several maximal strategies, they could correlate their choices among 
these strategies and still satisfy 2.4 (ii). Condition 2.4 (iii) rules out this 
possibility by requiring the strategies of different players to be condition- 
ally independent each period. Condition 2.4 (iii) does not quite ensure the 
conditional independence of s, and 7~~ for 4 # p, but we will not need a 
stronger independence condition. We will observe in Section 3.7, below, 
that if each pp is absolutely continuous with respect to Lebesgue measure 
on B, so that multiple maxima occur only for a null set of payoff functions, 
then 2.4 (iii) is implied by 2.4 (i) and (ii). 

Although the successive updating of the prior probability distribution k 
is not explicitly specified in the above definition, it can be used to con- 
struct a BSP as a sequence of Bayesian Nash equilibria. Given CL, with the 
players’ payoff functions interpreted as their characteristics, the assump- 
tionthatp=pI x .*a x p,, immediately implies the hypothesis of the 
Existence Theorem of Milgrom and Weber (1985, p. 626). Hence, for each 
p, there is a Bore1 measurable functionf,: B x S, -+ R such that for each 
np E B,fp(~p, *) is a probability distribution on S, which maximizes 

c vp(sp) I,,@ [ 2 ‘TTpbp > s-P)f-P(~-P 3 s-p$4--p 

.‘P .y ,’ 
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on the set of all proability distributions cr,, on S,, where&Jr-,, s-& = 
fI,,,f,(7r,, sq) and pep = IIqf+, . Then p and the functions& determine a 
distribution cpt , on G x S, so for each s E supp cp’ , we have a conditional 
distribution p’(s) on G. By the construction of (o’, p’(s) = pi(s) X * . * x 
p:(s), so the hypothesis of the Milgrom and Weber Existence Theorem is 
again satisfied. Hence, there is a Bayesian Nash equilibrium for the up- 
dated prior distribution p’(s), for every s E supp cp’. Proceeding itera- 
tively in this fashion, we can obtain for every t < m a distribution ‘p’ on 
G x S’ which satifies conditions 2.4 (i)-(iii) by construction. By the 
Kolmogoroff Extension Theorem, these distributions define a distribution 
(o on G x S” which is a BSP for p. Thus, we can state the following 
proposition as a direct implication of the Milgrom and Weber Existence 
Theorem. I 

2.6. PROPOSITION. For each p, let p,, be a Bore1 probability distribu- 
tion on B, and let p = pLl x * . . X p,, . Then there exists a BSP for p. 

2.7. EXAMPLE. The most transparent example is the 2 x 2 case with 
uniform priors. Let player 1 be the row player, let player 2 be the column 
player, and let St = {T, B}, & = {L, R}. Then each player p’s payoff 
function is a 2 x 2 matrix with the entries nJT, L), 7~p(T, R), nJB, L), 
n,(B, R). However, it will be convenient to employ the following normal- 
ization which reduces each player p’s space of possible payoff functions 
to the unit circle in R*. To motivate this normalization, suppose that 
player 1 anticipates that player 2 will play L with probability cp#). Then 
player l’s optimal strategy is T, B, or both, as the quantity 

‘P~VJ[~IU-, L) - n,(B, L)l + (1 - +4L))[m(T, R) - q(B, R)] 

is positive, negative, or zero, respectively. Therefore we can subtract the 
second row of player l’s payoff matrix from each row, so that the top row 
is now (r,(T, L) - m,(B, L), r,(T, R) - q(B, R)) and the bottom row is (0, 
0). Applying the same normalization to the columns of player 2’s payoff 
matrix reduces the payoff bimatrix to the form 

L R 

T a, (Y b, 0 
B 0, p 0, 0 

’ Strictly speaking, Milgrom and Weber (1985) define equilibrium in terms ofjoint distribu- 
tions on B x S,, and our functionsf, are the associated conditional distributions on S,, given 
TV. A more recent and more general existence theorem due to Balder (1987) is stated in 
terms of the conditional distributions. 
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If we ignore the measure zero possibility that a = b = 0, that is, rrt(T, L) = 
r,(B, L) and rr,(T, R) = r,(B, R), then we can further normalize (a, b) to 
the unit circle without affecting player l’s response to any mixed strategy 
played by player 2. Thus we can assume that u’ + b2 = 1, and for player 2, 
that CY* + p* = I. Under this normalization, each player’s payoff function 
is a point on the unit circle, and each 2 x 2 game is a point on the 
torus (we will continue to exclude the degenerate cases u = b = 0 and CY = 
p = 0). 

One immediate benefit of this normalization is a simple graphical repre- 
sentation of the Nash equilibrium correspondence for 2 x 2 games. Figure 
1 pictures the Nash equilibrium correspondence when points on the unit 
circle are measured in radians, with (1, 0) = 0 = 27~ and (0, I) = 7ri2. 
Thus, the game (-7r/4, -7r/4) in the lower left corner of Fig. I is the 
bimatrix game 

L R 

T w?, r/v? -l/v?!, 0 
B 0, -1lti 0, 0 

Since -7r/4 = 77r/4, the two sides of the figure are identified, and the top 
and bottom of the figure are identified, so Fig. 1 is the usual square 
depiction of the torus (e.g., Guillemin and Pollak, 1974, Fig. l-10, p. 17). 
In the white areas, the Nash equilibrium is a unique pure strategy equilib- 
rium, so each white area is labeled with the respective equilibrium pure 
strategies. The gray areas are intersections of white areas. Therefore, 
each game in the gray sqaure [r/2, ~1 x [r/2, QT], in the center of Fig. I, 
for example, has the two pure strategy equilibria (T, R) and (B, L). Games 
in the interior, (7r/2, 7~) x (n/2, 7~), also have a single mixed strategy 
equilibrium. These games behave as “battle-of-the-sexes” games. Note 
that because of the identifications along the sides and the top and bottom 
of Fig. 1, the four small gray squares in the corners adjoin the form the 
square [3rr/2, 01 x [3~/2, O] on the torus. Each game in the interior of a 
black area has a mixed strategy equilibrium as its unique Nash equilib- 
rium. The games on the boundaries of regions are “singular games” 
which typically have a continuum of Nash equilibria. 

The first element of a Bayesian strategy process is a prior probability 
distribution over each player’s space of possible payoff functions, in this 
case, over the unit circle for each player. A natural choice is the uniform 
distribution for each player. For this prior distribution, we will study a 
Bayesian strategy process along the two-period history ((T, R), (B, L)). 
More precisely, we will compute the first-period expectations cp(.) and 
second-period expectations cp(*IT, L), which are uniquely determined, and 
show that there are three possible choices for the third-period expecta- 
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B,R T,R B, R 

T, L B,L T,L 

Ro\v Player 

FIGURE I 

tions cp(.I(T, L), (B, R)). First, let ‘p2 denote the initial probability distribu- 
tion on S2 = {L, R} facing player 1. That is, cpz(L) is the probability that 
player 2 will play L in the first period. Then player 1 will play Tin period I 
if player l’s payoff function, represented by (a, b), satisfies ap2(L) + 
b(l - cp~(L)) > 0. That is, the set of player 1 “types” that play Tin period 
1 is the set 5, = {(a, b):ucp,(L) + 6(1 - q,(L)) > O}. The set {(a, h): 
u&L) + 6(1 - &L)) = 0} has prior probability zero and thus can be 
ignored. Hence, for any expectation (p2(L), the probability that player I 
will play T, which is simply the prior probability of the set CY,, equals f. 
Since this reasoning applies to both players symmetrically, the unique 
first-period Bayesian Nash equilibria are p,(T) = cp,(B) = 4 and q(L) = 
cp~(R) = $. Figure 2 illustrates this reasoning for player I. The circle is the 
space of payoff functions for player I, and the unit simplex represents the 
possible first-period expectations ((p2(L). q(R)). The semicircle above the 
line perpendicular to the expectation vector is the set 3, of player I 
“types” that play T in period I. 

NOW suppose that the strategies (T, R) are played in period 1. This 
reveals that player l’s payoff function lies on the upper semicircle de- 
picted in Fig. 3, and that player 2’s payoff function lies on the lower 
semicircle depicted in Fig. 4. To solve for the Bayesian Nash equilibrium 
conditional expectations cp(-j(T, R)), let x = p,(TI(T, R)), the probability 
that player 1 plays T in period 2, and let y = (p2(LI(T, R)). Given y, x is 
simply ~l.r({(a, 6) E 91: uy + b(1 - y) > O})IpcLI(9r), where pr denotes the 
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FIGURE 2 

uniform distribution on the unit circle. Thus x is simply the relative arc 
length given by the formula 

where O(y) is the angle between the expectations vectors ($, t) and (y, 1 - 
y), measured in radians. This is depicted in Fig. 3. Figure 4 is the analo- 

FIGURE 3 
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FIGURE 4 

gous diagram for player 2, and the analogous formula for y as a function of 
x is 

1 - y = (7r - /0(x)l)lr. (2) 

Equations (1) and (2) have a unique solution: 

X* = 0.82, y* = 0.18, (3) 

so the unique second-period Bayesian Nash equilibrium expectations are 
cpdTI(T, RI) = x* and (pALI(T, RN = Y*. 

Now suppose that the strategies (B, L) are played in period 2. This 
reveals that player l’s payoff function lies in the arc between the line 
perpendicular to the expectation vector (t, 4) and the line perpendicular to 
the expectation vector (y*, 1 - y*), and the analogous inference can be 
drawn concerning player 2. Algebraically, (a, b) and (a, p) have been 
revealed to satisfy 

(Qa + (&b > 0, 

y*a + (1 - y*)b < 0; 

w + ti)p < 0; 
(4) 

x*a + (1 - X*)p > 0. 
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Since y* < B and x* > 4, (4) implies 

a > 0, b< 0; a > 0, p < 0. (5) 

If follows from (5), or from Fig. 1, that (T, L) and (B, R) are pure strategy 
Nash equilibria for every game (7~~~ 7~2) such that ((7~i, ~TZ), (T, R), (B, L)) 
E supp cp. It also follows that there is a mixed strategy Nash equilibrium, 
but the equlibrium mixed strategies are not yet revealed. 

Therefore, in period 3, there are three possible Bayesian Nash equilib- 
rium expectations: 

~lUI(~~ RI, (B, L)) = (pdLI(T, lo, (B, L)) = 1; 

Plul(~7 m, (B, L)) = ~2u#-, lo, (B, L)) = 0; (6) 

dTI(T, RI, (B, L)) = 0.61, (pdLl(T, RI, (B, ~5)) I- 0.39. 

The first two are “pure strategy” Bayesian Nash equilibria which corre- 
spond to the pure strategy Nash equilibria and reveal no further informa- 
tion about each player’s payoff function. The third is a “quasi-mixed” 
Bayesian Nash equilibrium which further partitions the two arcs revealed 
by the history ((T, R), (B, L)). This multiplicity of Bayesian Nash equilib- 
ria continues for all future periods. If the “quasi-mixed” equilibrium is 
selected infinitely often, it will converge to the mixed strategy Nash equi- 
librium determined by the true payoff functions (a, b), (a, p). 

Figure 5 depicts the possible limits of expectations for any Bayesian 
strategy process with uniform priors. The white, black, and gray regions 
have the same interpretation as in Fig. 1. Where the Nash equilibrium is 
unique, it is also the unique limit of any Bayesian Nash equilibrium expec- 
tations sequence. Where there are multiple Nash equilibria, a comparison 
of Figs. 1 and 5 indicates that for some games the expectations limit is 
unique, and for some games there can be multiple cluster points. The 
games discussed above, for which (T, R) and (B, L) are played in periods 1 
and 2, respectively, constitute the large gray square =[-~14, -v/15] x 

[477r/30, 77r/4]. The contiguous smaller gray square is associated with the 
history (V, RI, CT, R), (B, L), . . .), and so on, with each succesively 
smaller square associated with an additional play of (T, R) followed by a 
switch to (B, L). As the picture suggests, the gray squares decrease expo- 
nentially to the point (0, 3rr/2). More generally, all four cascades of gray 
squares correspond to successively longer runs of a given strategy pair 
followed by a simultaneous switch to the opposite strategies by both 
players. 

2.8. Strategic issues. The above example also illustrates the assump- 
tion of myopic behavior. Each period, each player chooses s,, to maximize 
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B,R T,R B, R 

T, L B,L T,L 

-a/4 
Row Player 

FIGURE 5 

7T/4 

the current expected payoff given the current Bayesian Nash equilibrium 
expectations. The choice of s,, subsequently reveals information about 
player p’s payoff function to the other players, leading to next periods’ 
Bayesian Nash equilibrium, and so on. In some cases it is possible for 
player p to choose sP in a more sophisticated fashion so as to manipulate 
the expectations of the other players. The assumption of myopic behavior 
precludes any consideration of the strategic aspects of information revela- 
tion. Of course, loosely speaking, the potential gains from more sophisti- 
cated strategy choices diminish as the number of players increases. In the 
ideal case in which each player in the above model represents a contin- 
uum of players of the same type, individual players have no incentive to 
deviate from myopic behavior. This assumption is used by Feldman 
(1987) in proving the convergence of a myopic Bayesian learning process 
for firms in a market equilibrium model (see also Townsend, 1978). 

If, in the small numbers case, players anticipate future iterations when 
they select current strategies, repeated game equilibria other than the 
one-shot Nash equilibria may be more appropriate limits of learning pro- 
cesses. We have not attempted to extend the above model to the more 
general problem of learning repeated game equilibria, but some positive 
results have been obtained recently by Kalai and Lehrer (1990) for Bay- 
esian learning in two-person games. 
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3. CONVERGENCETO NASH EQUILIBRIUM 

This section contains two results on the convergence of the conditional 
expectations a(*(#) to Nash equilibrium. Example 2.7 indicates that the 
sequence cp(*js’) for a given game (7rJp may have multiple cluster points. 
However, Theorem 3.2, below, asserts that with cp-probability one, every 
cluster point is a Nash equilibrium. The intuition behind Theorem 3.2 is 
fairly straightforward. Let ((TJ,, , 9) E supp cp and suppose that some 
product distribution CF is a cluster point of the sequence cp(.ls’). The only 
way u can fail to be a Nash equilibrium for (r&, is if, for some p, there is 
some strategy s; which does not maximize the expectation of v,, against 
u-,, , but o&p) > 0. However, since cp(=ls’) is near o infinitely often, there 
are infinitely many periods t such that cp(*Js’) is near o mp, and sp,+i = s,; 
with probability o&;Js’), which is near crJsp) > 0. A player p with the 
payoff function rrp would never play s,, - in these circumstances, so the 
likelihood that 7rp is associated with sf is reduced by a fraction near o,,(sJ 
in each such period t. Thus the probability of disequilibrium situations can 
be driven to zero. 

3.1. DEFINITIONS. If I > T, s’ E S’, and sT E ST, we will write s’ > sT if 
s7 consists of the first r terms of s’, that is s: = s:, for all u I r. A sequence 
{s’k}~=i is said to be increasing if th -+ ~0, and for each k, tk+ I > th and s’k+i 
> 9.Q. If some sm E S” has been quantified, we will sometimes refer to s’ 
without explicitly writing s’ < sD, where there is no risk of confusion. 

Given probability distributions (T and (T’ on S, define 11~ - (~‘11 = 
max{lu(s) - o’(s)1 : s E S}. Given u and a set A of probability distributions 
on S, define [Iu-- AlI = inf{llo - o’lj :u’ E A}. 

3.2. THEOREM. Let (o be a BSP. Then (p{((mJp, .F) : lim,+, J(cp(.ls’) - 
NCqJp)ll = 01 = 1. 

Proof. Let D = {((r,), , sffi) E supp cp : II~(.ls’) - N((7rJ,)(l 4 O}. We 
will show that D is a countable union of sets of probability zero. Let 
((T&l ? sm) E D. Since the set of probability measures on S is compact 
there is an increasing sequence {s’~}~=, , with s’h < sZ for each k and 
q(.ls’n) + u* for some u* @ N((rr,),). Since (o is a BSP, 2.4 (iii) implies 
that V* = l&,up*, where ui is the marginal distribution of u* on S, , for 
eachp. Since u* $Z N((?r,,),), there is some 4, some s,’ , s, E S,, and some 
E > 0 such that 

and 

(p&p) > E; (7) 

F h-&qf 7 S-J - 7rq(si, s-q)]p-q(S-,IS’k) > E, (8) 
Y 

for all k sufficiently large. 
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Accordingly, fix si, s; E S,, let 0 < E < 1, and let u” be a product 
distribution on S with ui(s;) > E. Let 6 > 0 such that for any product 
distribution (T on S which satisfies 11 u - u”ll < 6, we have U&S;) > E. Let 
U(a”, 6) = {o : c is a product distribution and Ilo - (~~11 < S}. Let P,,(aO, 6) 
= {7rq E B: ~s-,[7r,(s~, s-J - n&i, s-,)]u-J-J > 0 for every (+ E 
N(aO, 6)). Finally, define Do = {((T,,)~, 5) E supp cp : rrq E P,((rO, 6) and 
cp(.ls’) E U(rrO, 6) for infinitely many t}. It is apparent from (7) and (8) that 
D is the union of sets Do over all 1 5 9 5 n, all si, s; E S,, countably 
many values of E and 6, and a countable dense subset of product distribu- 
tions o” on S. Thus it suffices to prove that (~(00) = 0. 

For each sr E supp (o and each t 2 1, let c,(C) = #{T % t : cp(.ls’) E 
U(a”, 6)). Then Do = {((7r,Jp, s=) E supp cp: 7~~ E P,(vO, 6) and c,(sa) -+ 
M}. For each t 2 1 and each integer k r 1, let 

0: = {((TV&, s”‘) E supp cp : rrq E P,(cTO, 6) and cI(ss) = k for some t}. 

Then Dz+, C 0: for each k, and Do = n,Di. We will obtain an upper 
bound on p(Df). Since cp is a BSP, property 2.4 (ii) implies that if ((n,,&, 
sffi) E supp (o with gq E P,(c”, 6) and cp(.ls’) E U(a”, 6) then ++I # s; . 
However, if cp(*ls’) E U(riO, 6) then (o&s;(s’) > E. Therefore cp{((nJ,, s’) E 
supp (a: 7~~ E P,(o”, s) and cp(.(s’) E U(a”, S)} < (1 - E)(P{((~J~, s’) E 
supp cp : $0(./s’) E U((T O, 6)) d (I - E). Proceeding iteratively, we obtain 
cp(Df) < (1 - E)~. Hence (~(0~) = 0. n 

3.3. Remarks. Theorem 3.2 states that convergence to Nash equilib- 
rium fails only on a set of cp-probability zero. However, the theorem 
allows the possibility that for some games (TJ,, E supp p and some 
histories s” with ((nJp, sz) E supp cp, there is a subsequence of expecta- 
tions (D(*[s’~) which is bounded away from N((rJ,J. Example 3.11, below, 
explicitly demonstrates this possibility. Thus Theorem 3.2 ensures con- 
vergence only to the extent that the prior distribution Al. is interpreted 
literally as the distribution from which the game is drawn. If p is misspeci- 
fied, the “true” probability of nonconvergence may be positive. In any 
case, a much stronger convergence result is needed to justify the interpre- 
tation of Bayesian strategy processes as learning processes for general 
normal form games. 

A general convergence result is stated in Theorem 3.8, below, under the 
assumption that each pp is very similar to the uniform distribution on B. 
This property is defined formally below. 

3.4. DEFINITIONS, Let m denote Lebesgue measure on B. For 1 5 p I 
n, the notation pp e m states that pp is absolutely continuous with respect 
to Lebesgue measure. For each p, we will write pp - m if there is some 
number (Y > 0 such that for every Bore1 set E C B, am(E) 2 pp(E) 2 
m(E)la. 
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3.5. Remarks. If pp - m, then pp and m are mutually absolutely 
continuous. Moreover, if g, is a density function for pup with respect to m, 
then for some (Y > 0, (Y > g,,(7~p) > I/CX for almost every mp E B. We will 
discuss the role of this property in Section 3.7, below. 

The proof of Theorem 3.8 will use a characterization of Bayesian strat- 
egy processes which relies only on the absolute continuity of each p,, with 
respect to Lebesgue measure on B. Recall that in period t + 1, given an 
observed history 9, playerp faces the distribution ‘p-J.ls’) over his oppo- 
nents’ strategies. Except for a set of payoff functions rp having Lebesgue 
measure zero, playerp has a unique maximal response to (p-J./s’). There- 
fore, if pp < m for each p, one can express the probability of each history 
s’ as the p-measure of games (r&, such that, for each T < t, each .sprfl 
uniquely maximizes the expectation of 7rp against ~T-~(./.Y~). In particular, 
mixed strategies can be ignored. This characterization is stated in the 
following proposition. 

3.6. PROPOSITION. Suppose that t+ e m for each p and that cp is 
a BSP for p. Let s’ E supp cp with t 2 I, and for each p, dejne C,(s’) = 
{TV E B : for each r < t, s;,, , maximizes Cs-prJ*, s-p)(p-p(s-plsT) on S,, 
where s7 < s’}, and dejine C$st) = {rD E B:for each T < t, sL7+1 is the 
unique maximizer of c,,-,,n,,(-, s~,,)~p-,,(s-,,~s~), where sT < s’}. Then, for 
each p, 

(i) C,(s’) is a compact convex set, and Ci(s’) is a convex set which 
is open relative to B; 

(ii) j+(Cp(sl)\C~(sl)) = m(C,(s’)\Cz(s’)) = 0; 

(iii) {rD E B: (7~p, sf) E supp cp} C C,(s’); and 
(iv) ds’) = p~(Cds’)) X . . . X ~,(c,(s’)). 

Proof. Assertion (i) follows immediately from the definitions of C,,(sl) 
and CE(s’). To prove (ii), note that rn({mp E B: for some r < t and some 
s, # sI, E S,, Xs;p[~&, , s-,,) - ~TJs~, S-J] cp-&lsT) = O}) = 0, because 
this event is a fimte union of linear subspaces of B. Then (ii) follows from 
the assumption that pLp + m. Assertion (iii) follows iteratively from the 
property 2.4 (ii) of the BSP cp. To prove (iv), note that (iii) implies that for 
each 1 5 p 5 n, 

c;w f-l {“p : (rp 7 s “) E supp (o} = 0 

for every s” such that s$# s;~ for some T 5 t. Since the marginal distribu- 
tion of cp on G agrees with p, this implies that fI~=,~,,(Cj(s’)) 5 cp(s’). 
Since (iii) also implies that cp(s’) 5 fl~=r~,,(C,(s’)), (iv) now follows from 
(ii). H 

3.7. Remarks. The proof of Proposition 3.6 does not use the indepen- 
dence property, 2.4 (iii), of Bayesian strategy processes. Since 2.4 (iii) is a 
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direct implication of 3.6 (iv), it is apparent that if pp + m for each p, then 
2.4 (iii) follows from 2.4 (i) and (ii). Moreover, 3.6 (iv) implies that, condi- 
tional on each s’ E supp cp, the variables (mp, +‘+,) and (7rTTq, So’+,) are 
independent for p # q. Thus 3.6 (iv) is a slightly stronger independence 
condition than 2.4 (iii). 

Each set C,(s’) is the intersection of B and finitely many closed half- 
spaces: one half-space for each revealed preference for sPT+ , over sp given 
‘p-p(.l~T), for each T < t. If we define C,(s’, sp) = {TV E C,(s’): s, is 
expected payoff maximizing against ‘p-J*[s’)}, then 3.6 (iv) implies that 
(Pp(spls’) = Pp(Cp( s’, ~~))l~~(C’~(s’)). As n’, varies over the set C&j), the 
expected utility differences 

for various strategies s,’ , s; E S, , are related to the relative diameters of 
the sets CJs’, sJ. If p’, - m for each p, the relative diameters are related 
to the relative p,-probabilities, and thus to the conditional probabilities 
(dp(s#). The proof of Theorem 3.8 uses this relation to show that if m’, E 
C&j) for all t and s; is an asymptotically inferior strategy for v’, against 
cp-,(*I.#), then (pp(splsf) -+ 0. 

3.8. THEOREM. Suppose that pp - m for each p, and let p be a BSP 
for (u. Then for every ((7r’Jp, sz) E supp cp, lim,+&(*ls’) - ~((7r,),)ll = 0. 

Proof. Let ((mJp, sz) E supp ~7. Since the set of probability distribu- 
tion on S is compact, it suffices to show that every cluster point of the 
sequence {cp(*js’)}Er lies in N((7r’,),). Let (+ be a cluster point, so that there 
is an increasing sequence {s’x};,, with ~‘k < sr for each k and cp(*ls’k) + U. 
Since (o is a BSP, 2.4 (iii) implies that cr is a product distribution. Fix q, 
and for each k, define 

dk = max 1 c 7rTTy(sy, s-,)cp-,(s-,ls’k) : sy E S, 
s ” I 

-min i C 7~&, s-y)(p~y(s~yls’~) : (T&J > 0 . I (9) 
s y 

To prove that uy is a Nash equilibrium mixed strategy for player q with 
payoff function 7ry, it suffices to show that d/, + 0. Therefore, we can 
assume that dk > 0 for all k. Proposition 3.6 (iii) implies that the maximum 
on the right-hand side of (9) is achieved at sy = s$;!, . Taking a subse- 
quence if necessary, we can assume that this is the same strategy, say si, 
for all k. We can also assume that the minimum is achieved at the same 
strategy, say s; , for all k. To further condense notation, for each k and 
each sey E S&, define x’&) = cp+(s+‘~). Then 
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dk = c h@,f, S-q) - Try& s-,)]x&,), SL” (10) 
and sq+ = s$;i, for all k. For each k, define the linear function & : RS -+ R 
by 

s&-J = 2 [n-&J ) S-J - ?T&, s-,)]x&,). (I I) 
\ -0 

In particular, &(ry) = dk. For each k, define 

A: = {?i-; E c,(S’k) : &(&,) > o}; (12) 

A: = {T:, E C,(s’k) : ti,(,$ = o}; (13) 

and 

Ak = {?T; E C,(S’k): &(.rr;) < o}; (14) 

It follows from Proposition 3.6 (ii) and (iv) that (p&&s’~) = CL&~; E 
c&s’) : s; is the unique maximizer of ~:s-qz-~(‘, s-,)Xk(s~,)}/~,(C,(slk)), so 
(14) and (11) imply 

Therefore 1 - cp&&r’k) Z- ~y(A~)l&C,(s’k)) and 

(1 - (p,(s,ls’k))/(p,(s,ls’k) 2 P&G~,(AII)~ (16) 

Since ‘p&;ls ) ‘k + (T&J) > 0, we can assume that the denominators in 
(16) are positive for all k. For each k, define 

(17) 

so S, < 0. Also, define 

K: = {hml, + (1 - h)n, : 0 I A < 1 and 7~:, E A!}; (18) 

and 

Kk = {A,: + (1 - A)rCTy: 0 5 A 5 1 + (lSij/dL) and ni E A:}. (19) 

Then by the definitions (12), (13), and (18), K; c AZ . Also, for any ri E 
Ai, Mm;) < 0, so, using (17), yr, + (1 - -y>r,!, E A: for some 0 < y 5 16$ 
(Is,J - dk), which implies that rr; E Kl,. Hence A; c KL\K:, so 



BAYESIAN LEARNING 77 

Let 1 = #S, let m” denote Lebesgue measure on the (I - I)-dimensional 
linear subspace {T; E RS : &(T$ = 0}, and let ak = max{&(T$ : 11~;11 = l}. 
Then we have the following volume measurements: 

m(&$) = dkmO(Af)lf ak; (21) 

and 

m(&) = [(dx + IG;J)‘ld:-‘lm”(A!)lI ak, (22) 

SO 

m(K:)h(&%:) = d:l[(dk + I&l) - d:]. (23) 

We now show that & + 0. For each k, S: = s$:J,, so Proposition 3.6 
(iii) implies that c,(s’k+r) C Al U A!. Hence 

S,, 2 min{&+t(?ri) : 7rt E I3 and &(nh) 2 O}. (24) 

Since xk(‘) * Um4, it follows from the definition of Sk, (1 l), that 
max{16k+I(mh) - i!&(‘rrh)l: QT~ E B} + 0. Then (24) implies that SC -+ 0. 

Since py - m, by (23) and Definition 3.4, there is some CY > 0 such that 

,.&,(K;)/&(&\K:) 2 d:/[(dk + Is,l)’ - d:]a? (25) 

It follows from (16), (20), and (25) that 

(1 - a,(s;))/a,(s;) 2 lim sup d:/[(dk + f&l)’ - d&x2. 
k--x (26) 

Since Sk + 0, (26) implies that dk -+ 0. Since pP - m for all p, the above 
argument shows that c is a Nash equilibrium for (‘TTJ~. n 

3.9. Remarks. If pLp - m for each p, then supp p = G, so every normal 
form game has Nash equilibria which are achieved as cluster points of 
q(*ls’). The following corollary is an equivalent statement of the theorem 
which emphasizes this implication. 

3.10. COROLLARY. Suppose that t..~, - m for each p, and let cp be a 
BSPfor p. For each (T,), E G, dejine L((nJ,, , cp) to be the set of probabil- 
ity distributions u on S such that there is an increasing sequence {sfk}~=, 
satisfying 
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(i) ((r&,, s’x.) E supp cp for all k; and 
(ii) limk+,, cp(*ls’k) = ff. 

Then for every (.n& E G, L((7rp),, cp) is a nonempty subset ofN((~,),). 

3.11. EXAMPLE. The assumption that pLp - m for each p, or some 
very similar assumption, seems essential to the above result. This section 
provides an example showing that in the absence of such an assumption, 
there can be points ((v,,&, s-) E supp cp with subsequences of expecta- 
tions {~(*I.+~)}%’ converging to some o @ N((5-J,). 

The example will involve two players and three pure strategies for each 
player. We first specify a probability distribution, p” on the unit square [0, 
I] x [O, 11, which will be used to define pl. Points in the unit square will 
be denoted (x, y). The essential properties of p” are that 

/.L”(x I 3) = .tj, /.~‘(y 4 $ - fix > $) = .6; (27) 

and for each integer r > 2, 

p”(x 5 I - (Y + I))+ > I - c’, y > (B) - c’) = .6; (28) 

and 

p”(y 5 (f) - (r + I)-‘lx > I - (r + 1))‘, y > (&) - F’) = .6. (29) 

Also, p” is absolutely continuous with respect to Lebesgue measure, and 
the density function,f, is strictly positive on (0, 1) x (0, I), so that supp p” 
= [0, l] x [0, I]. Such a p” can be constructed iteratively, making the 
density function constant at the appropriate positive level on rectangles of 
the form (1 - r-‘, 1 - (v + I)-‘] x ((4) - Y-I, 11, and (1 - (Y + l))‘, I] x 
((4) - r-‘, (4) - (r + l))‘]. Then the density functionfis bounded above, 
but for any (4) 5 y 5 1, f(.r,,, y) +Oasx,,+ 1,sofdoesnothavea 
positive lower bound. 

Now let S, = S2 = {a, b, c}. The specification of ,ul and ,u~ will be 
simplified by departing from the unit ball normalization of payoff func- 
tions. Let p2 be the point mass at $j defined by 

0 if sl # .s?; 

?T:(S’, s2) = % ifs’ = s2 = a or s’ = s2 = 6; and (30) 

I ifs’ = s2 = c. 

The distribution pl is defined by the properties that, with probability one, 
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0 ifs, # s2; and 
~I(SI 7 s2) = (31) 

1 ifs, = s2 = c; 

and the joint distribution on (~,(a, a), zr,(b, b)) is given by PO. Thus, each 
(7~,, nTT2) E supp p defines a “battle-of-the-sexes” game with three pure 
strategies. 

There is a multiplicity of Bayesian strategy processes for CL, and we will 
exploit this multiplicity in the following construction of cp. In odd num- 
bered periods cp,(*ls’) will be a mixture of strategies a and c, and in even 
numbered periods cp,(.(s’) will be a mixture of h and c. More specifically, 
in period 1, let 

cp,(s, = a) = .4, cp,(s, = c) = .6, ‘p2(s2 = a) = .6, (p&2 = c) = .4. (32) 

Then (27) and (30) ensure that (32) is consistent with first-period Bayesian 
Nash equilibrium. We will be concerned with the strategy sequence gen- 
erated by the game (my, &) E supp p defined by ~:‘(a, m) = I and n’l(h, h) 
= I (or (x, y) = (I, I) in the definition of PO, above). For this TTT:), we have, 
in the first period, sI, = u, which reveals to player 2 that ~,(a, a) > f. 
Since p2 is a point mass at rrp, player 1 has nothing more to learn from 
observing s2 in any period. In period 2, let 

cp,(Sl = bls,, = a) = .4, cpds, = cls,, = a) = .6, 

cpz(s2 = bls,, = a) = q, (p2(s, = cls,, = a) = 3. (33) 

Then (27) and (30) ensure that (33) is consistent with second-period Bay- 
esian equilibrium. Since rrz(b, b) = 1, we have s12 = b. In general, let s’ be 
any history satisfying s17 = a if r is odd and slT = b if r is even, for each r 5 
t. If t is even, let r = 2 + (t/2), and let 

p,(s, = uls’) = .4, cp,(s, = (‘Is’) = .6 

‘p2(s2 = uls’) = (r + 1)/(2r + l), ‘p& = c/s’) = rl(2r + 1). (34) 

If t is odd, let r = 2 + (t - 1)/2, and let 

cp,(s, = bid) = .4, cp,(s, = cIs’) = .6 

(pz(s2 = bls’) = (2r + 2)/(3r + I), (b& = c/s’) = (r - 1)/(3r + 1). 

(35) 

Then (30), together with (28) (resp. (29)), ensures that (34) (resp. (35)) is 
consistent with Bayesian Nash equilibrium. Also, since ~!(a, a) = 1 and 
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7$(b, b) = 1, (34) implies that So,+, = a when t is even, and (35) implies 
that Q+I = b when t is odd. 

Finally, for each positive integer k, let tk = 2k - 1. Then for each k, 
((r?, & ~‘k) E supp cp, and ~(.]s’~) + v = uI x u?, where 

u,(s, = b) = .4, cp,(s, = c) = .6, 

u2(s2 = b) = 3, ‘pz(s* = c) = i. 

However, since my(b, b) = QT~(C, c) = 1 and ry(b, c) = ~T?(c, b) = 0, c1 is 
not a Nash equilibrium mixed strategy for player 1. 

The fact that p” is absolutely continuous with respect to Lebesgue 
measure on [0, I] x [O, I] suggests that a more elaborate version of this 
example may be possible with pp e m for each p. It appears that the 
relation between relative volumes and probabilities, which yields the in- 
equality (25) in the proof of Theorem 3.8, may be essential for the general 
convergence result. 

4. CONCLUSION 

The main result of this paper is stated as Corollary 3.10, above. Given 
any fixed finite set of players and pure strategies, if the prior probability 
distribution over payoff functions is sufficiently uniform, then a Bayesian 
strategy process is a learning process which achieves Nash equilibria for 
every normal form game. In particular, a single BSP cp completely speci- 
fies a learning process for all normal form games with the given player and 
strategy sets. 

Perhaps the most troubling feature of Bayesian strategy processes is the 
amount of required coordination among the players. A common prior 
distribution p must be agreed upon, and selections among multiple Bay- 
esian Nash equilibria must be agreed upon at each stage of process. All of 
these choices are built into the single object cp, so they are independent of 
particular realizations of the game (nJp. In this sense, the coordination 
embodied in (a is similar to the requirement in macroeconomic learning 
models, for example, that all agents use a particular econometric proce- 
dure (e.g., Marcet and Sargent, 1989). However, the amount of coordina- 
tion embodied in cp is intuitively much greater. It would be interesting to 
formulate a measure of such coordination and to determine the minimal 
coordination required for general convergence. 
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