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Abstract

We consider on-line predictions when the inputs to the learner
are predictions of a pool of experts. The learning criterion is the
difference between the loss of the algorithm and the loss of the best
expert, as measured by a loss function, over a worst case sequence
of trials. Vovk has previously proven very general results for the
case where the outcomes to be predicted are binary. The prediction
method is based on representing each expert by a weight that de-
creases exponentially as a function of the total loss incurred by the
expert. We simplify the proofs by making some mild assumptions
about the loss function. Using derivative arguments we can then
show that for many loss functions this method gives the same upper
bounds also in the case where the outcomes are continuous-valued.
For the square and logarithmic losses we can use the same prediction
algorithm as with binary outcomes. For the absolute loss we need a
special algorithm.

1 Introduction

We consider the following on-line prediction model. In each trial the algo-
rithm makes a prediction after receiving an N-component instance. Each
component may be seen as a suggested prediction from an expert. At the
end of the trial the algorithm receives an outcome and the discrepancy of
the algorithm’s prediction and the outcome is measured with a loss func-
tion. Following a model introduced by Littlestone [1] we seek to obtain
total loss bounds that hold for an arbitrary sequence of instances and out-
comes. Of course such bounds have to depend in some way on the difficulty
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of the sequence itself. As done in [2, 3, 4] we measure this difficulty as the
total loss of the best component/expert on the sequence. In particular, as
in [4] we are interested in minimizing the additional loss of the algorithm
over the total loss of the best expert.

Most of the previous research has focused on the case when the out-
comes are binary. The algorithm WMC of [2] for the absolute loss is an
exception to this. Here we address the case when the outcome is continu-
ous. For the case of binary outcomes, Vovk [3] introduced an algorithm that
generalizes the Weighted Majority Algorithm of [2]. In Vovk’s algorithm
each expert Fj; is represented by a weight of the form wue_”L’, where wy ;
is E;’s initial weight, L; is the total loss of E; incurred in previous trials
and n > 0 is a learning rate, which can be tuned to obtain optimal perfor-
mance. Even though better weighting schemes have recently been devised
[5] for the special case when the predictions of the experts, the prediction
of the combining algorithm and the outcomes of the trials are all binary
and the loss function simply counts the number of wrong predictions, the
exponential weighting scheme is appealing because of its general applica-
bility to all loss functions. This general applicability is further exemplified
by the results of this paper.

We first introduce some mild monotonicity and continuity assumptions
that let us simplify the very general framework considered by Vovk. We
give simple proofs for the binary outcome case of the bounds previously
obtained for the square loss, the relative entropy loss, and the absolute
loss. In our simplified framework we can then use a derivative argument
to show that for the square loss and the relative entropy loss, the bounds
proven for the binary case also hold for the continuous case. Surprisingly,
the algorithm remains unchanged for the square and the relative entropy
loss. For the absolute loss, which is not differentiable, we present a special
algorithm called the Vee Algorithm. Even though the algorithm needs to
be more sophisticated to handle continuous outcomes, we can prove the
same worst case bound on the absolute loss of the Vee Algorithm that
was previously obtained for the case of binary outputs [3]. The bound is
slightly better than the one proven for WMC [2] for the case of continuous
outcomes, and essentially matches the lower bounds of [4].

By method similar to those of [2], it is easy to get adversary lower
bounds that show the bounds for the square and relative entropy loss to
be within a constant factor of optimal. These lower bounds need to be
strengthened to show that our bounds are tight as was already done for
the absolute loss in [4] using probabilistic methods.
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2 Basic notions

In the model we consider, learning proceeds as a sequence of trials. At
trial ¢, the learner is presented with an input, which we assume to be
an N-dimensional real vector x; = (#41,...,2 ). The input component
z;; can be considered the prediction of the ith expert from a pool of N
experts. Our analysis will be based on showing that over any sequence of
trials, certain learning algorithms predict almost as well as any one of the
N experts.

The learner’s prediction y; at trial ¢t is based on the input and the
internal state of the learner before the trial. We assume the internal state to
be an N-dimensional real vector w; = (wy 1, ..., ws n) and the prediction gy
to be a real number. The learner’s initial state is wi. Let P be the learner’s
prediction function, i.e., g = P(wy,x;). After making its prediction, the
learner receives an outcome y;, which is a real number. It then updates
its internal state to wyyi. Let the update function be U, i.e., wip1 =
U(wy, Xy, Yt), OF Wy ; = Ui(We, x¢, y) for all 4.

We shall also need the scaled version v; of the learner’s internal state.
Thus, let Wy =", wy; and vy = (v4,1, ..., v, n) Where vy ; = wy i /W;.

The performance of the learner at trial ¢ is measured by L(y, §:), where
L is a loss function with the range [0, +00). The square loss Lyq defined by
Leq(y,9) = (y—9)* is a typical loss function. Other possibilities include the
absolute loss Laps(y,9) = |y — 9| and, for y, g € [0, 1], the relative entropy
loss Lent(y,9) = yln% +(1-y)ln t—z (As usual, we define 0Iln0 = 0.)
For binary outcomes y € { 0,1}, the relative entropy loss simplifies to the
logarithmic loss: Lent(0,9) = —In(1 — §) and Lent(1, ) = —In(y).

3 Framework for analysis

We define for the state vectors a function B, which will act as a loss bound.
When after the update following the tth trial, the learner’s state vector

becomes wyy1, the total loss of the learner at the trials 1,...,¢ is allowed
to be at most B(wyy1). The function will be defined in such a way that
B(wy;) is nonnegative for all allowed states w;, and B(w;) = 0 for the
initial state wy. Thus, define

A(wt,xt,yt):B(U(wt,xt,yt))—B(wt) . (31)

If we can then prove for every trial ¢ that

Ly, 91) < A(Wi, X4, 1) (3.2)

we obtain the desired bound

DLy §) < A(we,x,y:) = B(werr) — B(wy) = B(wey)
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for the total loss made by the algorithm at the trials 1,...,¢.

Two problems now arise. First, how do we choose the update function
U and the loss bound function B in order to make the loss bound B(wgy1)
interesting; and second, after choosing the update and loss bound functions,
how do we choose the prediction g; in such a way that (3.2) holds. We first
consider the second problem on a general level. This gives us conditions
that must be fulfilled by U and B in order to make the condition (3.2)
satisfiable by a good choice of y;.

We first consider the special case of binary outcomes y; € {0, 1}, stud-
ied already by Vovk [3]. The predictions y; of the algorithm, as well as
the predictions z;; of the experts, are allowed to be real numbers from
the interval [0,1]. We later see that the results we obtain also hold for
continuous-valued outcomes y; € [0, 1] if the loss function L satisfies cer-
tain assumptions. Scaling arguments allow us to generalize the results for
more general ranges.

Consider fixed w; and x;, and write

Ag = A(wy, x¢,0) and Ay = A(wy,xq,1) .

Further, for g € [0, 1], let Lo(y) = L(0, 9) and L1(y) = L(1, §). We assume
that Ag and A; are nonnegative, Ly and Lp are continuous, and Lg(0) =
L1(1) = 0. Now condition (3.2) for binary outcomes reduces to

Lo(@t) S Ao and Ll(gt) S Al . (33)

To obtain explicit bounds for g; from (3.3), we need to have some notion
of an inverse for Ly and L;. Assume that Ly is strictly increasing and L,
is strictly decreasing in [0, 1], which is the typical case. We also assume
that both Lo and L; are decreasing in (—o0, 0] and increasing in [1, +00),
so we do not lose generality by assuming the predictions g; to be always in
[0,1]. Then L has a strictly increasing inverse Ly ': [0, Lo(1)] — [0, 1], and
Ly has a strictly decreasing inverse Ly ':[0, L1(0)] — [0,1]. Consider for
the moment the case that Ay and A; are in such ranges where the inverse

values Lal(Ao) and Ll_l(Al) are defined. Then (3.3) becomes
LTHAL) < g < Ly (Do) (3.4)

A prediction g that satisfies (3.4) can be found if and only if
LTH(A1) < Ly (Ao) - (3.5)

If (3.5) holds, the prediction g can be chosen to be an arbitrary num-
ber between the bounds L7*(A;) and L;'(Ag). For instance their mean
(LTY(AL) + L3 (Ag))/2 is a valid choice for ;.

For instance, if L is the square loss Lsq, we have Ly'(2) = /z and
L7Y(z) =1—/z for 0 < z < 1, so for values Ay and A; in the range [0, 1],
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(3.5) becomes
VAs+ VAL >

For the relative entropy loss Le,: we have Lgl(z) =1—e"% and Ll_l(z) =
e~ %, so we get
eTho f e

For the absolute loss L,ps we have Lal(z) = z and Ll_l(z) =1-—2,s0 we
need to have
Ag+A; >1.

Consider now the possibility that the value Ag or A; is outside of the
range of Lg or Ly, respectively. If, for instance, Ag is larger than Lg(1), then
the condition Lg(g;) < Ap in (3.3) holds for all ;. Thus, the equivalence
between (3.3) and (3.4) will be maintained for all nonnegative Ag if the
inverse Lgl is extended in such a way that the condition y; < Lal(Ao)
holds for all g; € [0, 1]. Hence, we say that Lal is a generalized inverse of Ly
if Ly'(Lo(9)) = g for all § € [0,1] and Ly *(Ag) > 1 whenever Ag > Lg(1).
Similarly, LT' is a generalized inverse of Ly if LT'(L1(9)) = g for all
y€[0,1]and L7*(A;) < 0 whenever A; > L;(0). It is easy to see that the
expressions given above for Lgl and L1_1 for the square, relative entropy,
and absolute losses define valid generalized inverses in the whole domain
[0, 4+00). Our definitions of generalized inverses let us show equivalence

between (3.4) and (3.3) for all values of Ag and A;.

Lemma 1. Assume that L is a loss function such that Lo(0) = L1(1) =0,
Lg is continuous and stricily increasing in [0, 1], and Ly is continuous and
strictly decreasing in [0,1]. For any generalized inverses Lgl and Ll_l, the

conditions (3.4) and (3.3) are equivalent for all , € [0, 1].

We now turn to defining update functions and loss bounds for which the
condition (3.5) holds. The state vector w; is considered as giving to each
experts ¢ a weight w; ; that reflect the credibility enjoyed by the expert just
before trial ¢. We use the update scheme introduced by Vovk [3]. Thus, we
let wiy1 = U(Wy,X¢, y;) where the update function U is defined by

Ui(Wt;Xt,yt) — wt,ie_nL(yt’xt’l) (36)

for some positive constant 1, which we call the learning rate. The larger
the learning rate, the faster the weights of experts decrease. Initially we
could make all the weights equal by setting wq; = 1/N, but also other
settings are possible.
Recall that Wy = >, wy; is the total weight before trial ¢. Following
Vovk, choose the loss bound B to be
Wy

B(w;) = —canl (3.7)
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where c is another positive constant, called the loss coefficient. As the total
weight is Wi before the first trial and can then only decrease as a result
of losses incurred by the experts, the value B(w;) is always nonnegative.
The smaller the value of ¢, the better our loss bounds will be, and the more

difficult it will be to find g; such that (3.2) holds.

For the function A given in (3.1) we now get

. . —nL(yt,m,,)
A(wy,x¢,y1) = —cln WV;? = —CEZ wt’lewt
N
= —Ch’lZ'Utyie_nL(yhxfﬂ) (38)
i=1

where vy ; = wy;/Wy is the normalized ith weight. Then A(wy,xy,y:) is
always nonnegative, and strictly positive unless the predictions z;; of all
the experts coincide with the outcome y;. We get explicit formulas for Ay
and A; by substituting onto the right-hand side of (3.8) a particular loss
function and the values y; = 0 and y; = 1.

Our interest in defining A according to Vovk’s work comes from the
following result [3], which is the basis for all the loss bounds we obtain.

Theorem 2. Fort = 1,...,£, let x; be an arbitrary instance vector and
y: an arbitrary outcome. Let A be as in (3.8). If the predictions §; satisfy
(3.2) and the updates satisfy (3.6) for allt, then the total loss satisfies

¢ ¢
N Wi 4
> Lyt %) < —cln Wil +end Ly, wei) (3.9)

t=1 t=1

for all 1.

We say that the loss function L is (¢, n)-realizable if for all w; and x;
it is possible to choose g such that (3.2) holds for all binary outcomes
v € {0,1}. We later see that this is often sufficient to make (3.2) hold
even when the y; are chosen in the continuous interval [0,1]. Ideally, we
would like to have ¢ = 1/7, in which case the loss of our algorithm exceeds
the loss of the best expert only by an additive term. For instance, if we
choose the initial weights w; ; to be equal, this term becomes c¢Iln N. Thus,
in order to optimally tune the learning rate n, we would like to know the
smallest ¢ such that the loss function is (¢, 1/c¢)-realizable, and then use
n = 1/c. As we shall soon see, this leads to choosing n = 2 for the square
loss [3] and = 1 for the relative entropy loss [6]. However, the absolute
loss is not (¢, 1/c¢)-realizable for any ¢, and more complicated tuning is

needed [4].
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4 Generic prediction algorithm

We now state our generic algorithm that is based on the condition (3.2)
for the predictions ¢ and the expression (3.8) for A. We assume that the
experts’ predictions ;; are in [0, 1]. We first give the loss bounds only for
the special of binary outcomes y; € {0,1}. It later turns out that for the
square and relative entropy losses, the same bound hold for continuous-
valued outcomes y; € [0,1]. Later we also see how the results generalize
for larger ranges.

Algorithm 3. (The Generic Algorithm) Let L be a loss function. The

algorithm maintains weights w;; and vy; for i = 1,..., N, and works as
follows.
Assumptions: For ¢t = 1,... £ the algorithm receives an input vector

x; that consists of N components z;; € [0,1]. After making its tth
prediction g; € [0, 1], the algorithm receives an outcome y; € [0, 1].

Parameters: a positive learning rate n and a positive loss coefficient ¢
such that L is (¢, n)-realizable.

Initialization: Set the weights to some initial values wy;, and let vy ; =
W/ Yo Wi

Prediction: On receiving the tth input x;, predict with any value g; that
satisfies the condition

LT A(We, x4, 1)) < 9 < Ly H(A(wy, %4, 0)) (4.1)

where

N
—nL(y:,@4,:
A(wt,xt,yt):—clng vy e oz

i=1
Update: After receiving the tth outcome yy, let

— —-nL x
Wig1,s = wy e THWHL)

and viq1; = Weg14/ D Wepr s fori=1,..., N.

By Lemma 1, the prediction ¢ of the Generic Algorithm satisfies (3.2)
if the outcomes are binary. Hence, the bound (3.9) applies in this special
case. In Section 5 we show that for the square and relative entropy loss,
the Generic Algorithm applies the bound (3.9) even for continuous-valued
outcomes y; € [0,1]. For absolute loss, we give in Section 6 a special
algorithm for coping with continuous-valued outcomes.
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Example 4. Consider the square loss. Vovk [3] has shown that the square
loss is (1/2,2)-realizable. In the full paper, we give for this a simplified
proof, which also shows that the square loss is not (¢, 1/c¢)-realizable for
¢ < 1/2. The condition (4.1) now becomes

1/2 1/2
] ( In Zf\;l 'Utyie—z(l—xm)z) <4 < ( In Ef\;1 .Um.e—zxf),)
R <gp < |-

2 2

By numerically substituting random values for v; and x; we see that the
seemingly natural choice y; = El vy,;%4,; usually does not satisfy this con-
dition. O

Example 5. Consider the relative entropy loss, and choose ¢ = n = 1.
Applying Theorem 2 then gives the bound shown in [6] and [3]. After simple
manipulations we get A(wy,x¢,0) = —In(1 — p) and A(wy¢, x4, 1) = —Inp,
where p = >~ vy ;4. Hence, Ly (A(we, x4,0)) = LTH(A(we, x4, 1)) = p,
and g; = p is the only prediction for which (4.1) holds with this choice of
¢ and 7. a

Example 6. For all > 0, the absolute loss is known to be (¢, n)-realizable
when ¢ = (21n 1-}-%)_1 [3]. Choosing a value 5 that makes the loss bound
given by (3.9) as low as possible is discussed in [4]. Here we just cite the
most basic result. Assume that there is a known upper bound K for the
total loss of the best expert, i.e., it is known that Ele |yt — 24| < K holds
for some 7. If all the initial weights w; ; are chosen to be equal, and 75 is

taken to be —In g(K/In N) where g(z) = 1—2(v/1+ z—1)/z, the Generic
Algorithm for absolute loss satisfies

I3

log, N
v — 3| <K+ KlnN-f-% .
t=1

5 Continuous-valued outcomes

We now show that under certain assumptions, the Generic Algorithm also
works for continuous-valued outcomes y; € [0, 1]. These assumptions hold
for the square and relative entropy loss, but not for the absolute loss, which
will be considered in Section 6. We also consider the more general situation
where the values z; and y; are not in the range [0, 1].

Lemma 7. Assume that for all y,a,b € [0,1], the function G defined by
G(y,a,b) = L(y,a)/c — nL(y, b) satisfies

%Gy, a,b) G (y, a,b)\’
o), (9600’5 51
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If (3.2) holds for binary outcomes y, € {0, 1}, then it holds for all outcomes
Yt S [07 1]

Proof sketch. We write (3.2) as exp((L(y:, 9:) — A(we,x¢, 1)) /¢) < L.
Inequality (5.1) implies that the second derivative of the left-hand side
with respect to y; is nonnegative, so the worst case is at y, € {0,1}. O

Example 8. For the square loss, as the second derivative of Lgq is constant,
the second derivative of the function G of Lemma 7 is 0 whenever ¢ = 1/,
and hence (5.1) trivially holds.

Consider now the more general case that at trial ¢, the experts’ pre-
dictions z; and the outcome y; are in a known range [s;,s; + r¢]. Let
;13;72- = (x4,;—s1)/rs and y; = (ys — 1)/ 71, and let g be the prediction of the
Generic Algorithm when it is given these scaled inputs ;13;72- and outcomes
y;- Then Theorem 2 applies to this scaled sequence of trials. For an algo-
rithm that predicts with g, = s; + r4y; we then have, if we choose n = 2
and the initial weights to be equal,

CET3 I (2 I

i=1

for all i. We can consider (5.2) as giving a loss bound similar to (3.9), but
with a loss function that changes dynamically as the ranges of z;; and y;
vary. Note that achieving this bound requires that s; and r; are known
before the prediction y; is to be made. This is the case, for instance, if the
outcome y; is assumed to be within the range defined by the smallest and
largest expert prediction at trial £. Another special case is that before the
first trial, we know that z; ; and y; will always be in some range [S, S + R].
We can then take r; = R for all ¢, and (5.2) is equivalent with

£ 2
;(yt_yt Z ltzz RIQHN .

i=1

[

In the full paper we show that if the range of y; is not bounded, loss bounds
of the above form cannot be attained. ad

Example 9. Consider the relative entropy loss. We have 9 Lent (y, 2)/0y =
Iny—In(1—y)—Inz+In(1-z), so the second derivative 8% Lent(y, 2)/0y* =
1/y+ 1/(1 — y) does not depend on z. Hence, if ¢ = 1/, the second
derivative of the function G of Lemma 7 is 0, and (5.1) holds. O

Since the absolute loss L,ps does not even have a first derivative ev-
erywhere, the technique of Lemma 7 does not give any results for this loss
function. In the next section we devise a new algorithm particularly for
this problem.
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6 The Vee Algorithm

The Vee Algorithm works for the absolute loss when the outcome is con-
tinuous. In choosing the prediction it is now necessary to explicitly also
consider other outcomes than just y = 0 and y = 1.

Algorithm 10. (The Vee Algorithm) As Algorithm 3, except that we
have fixed the loss function to be the absolute loss, the loss coefficient to

be ¢ = (2ln —== 1+e —2—)"1, and predicting is done as follows:

Prediction: On receiving the tth input x4, let Y = {0,1,241,..., 25 }
Predict with any value y; that satisfies the condition

max{y— A(wy, X, y) } <9 <min{y+ A(wy,x,9) ), (6.1)
yeYy yeY

where

In(¥ic, veie 0770
21 '

A(wtaxl‘:y) = - n—2
1+e n

We see in Lemma 11 that there always is a prediction g; that satisfies
(6.1) and that (6.1) implies |y — 9| < A(w¢, x¢,y) for all y € [0, 1]. Hence,
Theorem 2 now gives for continuous outcomes y; € [0, 1] the bound

£ w1z
R L D D [T
D lwe— el < T (6:2)
— 2In —==

1+e n

that was previously obtained for binary outcomes y; € {0,1}. Note that if
(6.2) holds for y; € [0, 1], it actually holds for all y;, provided we still have
z;; € [0,1]. This is because moving y; outside the range of the experts’
predictions increases every |y+ — 4| as much as it increases |y, — 3|, and
the coefficient n/(21n 1+€ —-— ) that appears in front of |y, — ;| in (6.2)
is greater than 1. Again, the parameter 7 can be tuned as mentioned in
Example 6, and the scaling method of Example 8 can be used if the values
z;; are not in the range [0, 1].

For the absolute loss, (3.2) has a simple geometric interpretation. Fig-
ure 1 gives an example of the graphs of the left-hand side |y — y| and the
right-hand side A(w,x,y) as functions of y. The left-hand side of the in-
equality is given by a vee-curve with its tip at (¢,0); in Figure 1, we have
y = 0.58. For A(w,x,y) we have used x = (0.33,0.83,0.97,0.52), and we
see that the curve has a nondifferentiable tips at each value y = z;. If we
were to move the tip of the vee to the left of 0.51, the right arm of the vee
would intersect the A-curve, around the value y = 0.97. Hence, the value
of the maximum on the left-hand side of (6.1) is roughly 0.51. Similarly,
the minimum on the right-hand side is about 0.63, since moving the tip
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0.2 0’2 076 0’8 1

Figure 1. Example graphs of the functions A (above) and L.ps (below).

of the vee over this value would make its left arm intersect the A-curve
around y = 0.33.

For the case of binary outcomes, the loss bound (6.2) was previously
shown for a whole family of algorithms defined by a number of different
prediction and update functions. In the continuous case we seem to have
less freedom. For example the linearized version of update (3.6) given in
[4] does not work any more in the continuous case. The Algorithm WMC
of [2] does work for the continuous case. However, its worst case bounds
have in the denominator 1 — e~" instead of 21In and hence they are
slightly worse than the bounds given here.

We now show that a prediction that satisfies (6.1) always exists and
satisfies the conditions of Theorem 2.

_2
14+e—7m>

Lemma 11. Let w; € [0,1]Y and x; € [0,1], and let n > 0. Then
prediction §; that satisfies (6.1) exists. Further, (6.1) implies |y — @] <
A(wy, x3,y) for all y € [0, 1].

Proof sketch. We prove the existence of g; by showing that
y_A(Wtaxtay) SZ-{-A(Wt,Xt,Z) (63)
holds for all y and z. Define

N N
g(v,x,y,2) = Y vvjexp (=nly — il + ]z — zj)

i=1j=1
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+(y—2)2In(2/(1+€77))) . (6.4)

Then (6.3) is equivalent to g(v¢,x¢,y,2) < 1. The second derivative
0?g(v,x,y,2)/0z? is defined and positive if z; € {0,y,z,1}. Thus it suf-
fices to show g(v,x,y,2z) < 1 for N = 4 and x = x4, = (0,y,2,1). In
this restricted case the second derivative 8%g(v,xq4,y, 2)/02? is positive if
z ¢ {0,y,1}. Furthermore, (6.3) trivially holds if z > y. Thus it suffices
to show (6.3) for z = 0, y > 0 and x = x; = (0,y,0, 1). Finally, since the
second derivative 92g(v,x;,y,0)/0y? is positive, we are left with the case
z=0,y=1and x € {0,1 }N. In this case, the original inequality (6.3)
can be rewritten as

— e—n _ -7 -7
In((1 —r)e 7 + r)2+ In(l —r+re ") <hn 1 +26

where 7 = ), v;z;. This holds for all 0 < r <1 because the function In is
concave.

A similar argument based on second derivatives shows that for y € [0, 1],
the value y—A(wy, x;, y) obtains its maximum and the value y+A(wy, x4, y)
its minimum when y € {0,1, 241, ..., 2 N5 }. O
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