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PREDICTION, OPTIMIZATION, AND LEARNING 
IN REPEATED GAMES 

BY JOHN H. NACHBAR1 

Consider a two-player discounted repeated game in which each player optimizes with 
respect to a prior belief about his opponent's repeated game strategy. One would like to 
argue that if beliefs are cautious, then each player's best response will be in the support, 
loosely speaking, of his opponent's belief and that, therefore, players will learn as the 
game unfolds to predict the continuation path of play. If this conjecture were true, a 
convergence result due to Kalai and Lehrer would imply that the continuation path of the 
repeated game would asymptotically resemble that of a Nash equilibrium. One would thus 
have constructed a theory in which Nash equilibrium behavior is a necessary long-run 
consequence of optimization by cautious players. This paper points out an obstacle to 
such a theory. Loosely put, in many repeated games, if players optimize with respect to 
beliefs that satisfy a diversity condition termed neutrality, then each player will choose a 
strategy that his opponent was certain would not be played. 

KEYWORDS: Repeated games, rational learning, Bayesian learning. 

1. INTRODUCTION 

1.1. Overview 

A STANDARD MOTIVATION FOR GAME THEORY'S emphasis on Nash equilibrium is 
the conjecture that players will learn to play an equilibrium if they interact 
repeatedly. This paper focuses on a particular model of learning by optimizing 
players. In the model considered, two players engage in an infinitely repeated 
discounted game of complete information. Each chooses a repeated game 
strategy that is a best response to his prior belief as to his opponent's repeated 
game strategy. Rather than assume that prior beliefs are in equilibrium, one 
would like to argue that if beliefs are cautious then each player will choose a 
strategy that is in the support, loosely speaking, of his opponent's belief and 
that, therefore, players will learn as the game unfolds to predict the continua- 
tion path of play. If this conjecture were true, a convergence result due to Kalai 
and Lehrer (1993a), hereafter KL, would then imply that the continuation path 
of the repeated game would asymptotically resemble that of a Nash equilibrium. 
One would thus have constructed a theory in which Nash equilibrium behavior 
is a necessary long-run consequence of optimization by cautious players. 

1 This work originated in a conversation with Jeroen Swinkels while I was a visitor at The Center 
for Mathematical Studies in Economics and Management Science, Northwestern University. The 
paper has benefited from the comments and suggestions of a number of others, including Richard 
Boylan, Drew Fudenberg, Ehud Lehrer, David Levine, Bart Lipman, Wilhelm Neuefeind, Yaw 
Nyarko, Bruce Petersen, Suzanne Yee, Bill Zame, a co-editor, and two anonymous referees. The 
usual caveat applies. I would like to acknowledge financial support from the Center for Political 
Economy at Washington University. 
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This paper points out an obstacle to such a theory. The source of difficulty is 
that, in many repeated games, for any given strategy to be optimal, the player 
must believe that certain opposing strategies are so unlikely that the player 
could not learn to predict the path of play should one of those strategies, for 
whatever reason, actually be selected. This poses no problem for the existence of 
Nash equilibrium but it makes it difficult, in the context of learning models, to 
reconcile optimization with the intuitive notion of cautious belief. Loosely put, 
the paper's central result is that, in many repeated games, if players optimize 
with respect to beliefs that satisfy a diversity condition termed neutrality, then 
each player will choose a strategy that his opponent was certain would not be 
played. 

Subsection 1.2 offers a detailed, although still informal, discussion of the 
paper's motivation, results, and underlying logic. Subsection 1.3 develops a 
concrete example. Subsection 1.4 comments on some related literature, KL in 
particular. While the results of this paper do not contradict KL, the results do 
suggest that the interpretation of KL and related papers requires care. The 
formal exposition begins with Section 2, which covers basic definitions, and 
concludes with Section 3, which contains the paper's results. 

1.2. An Informal Exposition 

1.2.1. Prediction 

Recall that in a repeated game, a (behavior) strategy is a function from the set 
of finite histories of the repeated game to the set of probability distributions 
over actions in the stage game (the game being repeated). Thus, given a t-period 
history h, a strategy o- tells player i to play ov(h) in period t + 1, where o-(h) 
may be either a pure stage game action or a mixture over actions.2 A player's 
prior belief is a probability distribution over his opponent's strategies. 

A strategy implicitly encodes how a player will behave as he learns from his 
opponent's past actions. Likewise, a belief records how the player thinks his 
opponent will behave as he (the opponent) learns. This paper will focus on 
players who learn via Bayesian updating of their prior beliefs. The assumption of 
Bayesian learning is satisfied automatically if players optimize. More precisely, if 
a player adheres to a strategy that is a best response to his belief then, after any 
t-period history (other than one ruled out by the player's belief or by his own 
strategy), the player's strategy in the continuation repeated game starting in 
period t + 1 will be a best response to his date t + 1 posterior belief, derived via 
Bayes's rule, over opposing continuation strategies. 

A player's belief as to his opponent's strategy, together with knowledge of his 
own strategy, induces a probability distribution over paths of play. A player will 

2In this paper, the term "action" will always refer to the stage game while the term "strategy" 
will always refer to the repeated game. 
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be said to leam to predict the continuation path of play if, as the game proceeds, 
the distribution over continuation paths induced by the player's posterior belief 
grows close to the distribution induced by the actual strategy profile. Here, as 
elsewhere, the reader is referred to the formal sections of this paper for a 
precise definition. Note that if players randomize in the continuation game, the 
actual distribution over continuation paths will be nondegenerate; prediction 
means that players learn this distribution, not which deterministic path will 
ultimately be realized. 

One might think that players will learn to predict the continuation path of 
play if each player's prior belief is cautious in the sense of satisfying some form 
of full support assumption. But the set of possible strategies is so large that, 
provided the opposing player has at least two actions in the underlying stage 
game, there is no belief that would enable a player to learn to predict the 
continuation path of play for every possible opposing strategy.3 This observation 
may seem counterintuitive since, first, a best response always exists in a 
discounted repeated game and, second, a best response has the property, noted 
above, that it is consistent with Bayesian learning. The explanation is that 
learning in the sense of updating one's prior need not imply that a player is 
acquiring the ability to make accurate forecasts. Explicit examples where players 
learn but fail to predict can be found in Blume and Easley (1995). 

One response to this difficulty would be to abandon prediction as too 
burdensome a requirement for learning models. I will have somewhat more to 
say about this in Subsection 1.4, in the context of the learning model known as 
fictitious play, but this paper primarily considers an alternate point of view, one 
implicit in KL, that prediction cannot be lightly abandoned, that prediction may 
even be part of what one means by rational learning. If one subscribes to this 
viewpoint, then one must explain why the actual path of play happens to be 
included in the proper subset of paths that players can learn to predict. 
Moreover, since the ultimate goal is to explain equilibration in terms of 

3 Informally, the intuition is that, whereas there are only countably many finite histories to serve 
as data for a player's learning, there are uncountably many continuation strategies. More formally, 
note that if a player can learn to predict the continuation path of play then, in particular, the player 
can learn to predict (the distribution over) play in the next period. Let a one-period-ahead prediction 
rule be a function that, for each history, chooses a probability distribution over the opponent's stage 
game actions. The probability distribution is the rule's prediction for the opponent's action in the 
next period. For any one-period-ahead prediction rule, whether or not derived via Bayesian 
updating, there exists an opposing strategy that does "the opposite." For example, suppose that in 
the stage game the opponent has two actions, Left and Right. For those repeated game histories in 
which the prediction rule forecasts "Left with probability p < 1/2" in the next period, let the 
strategy choose "Left with probability 1." Conversely, for those histories in which the prediction rule 
forecasts "Left with probability p > 1/2" in the next period, let the strategy choose "Right with 
probability 1." This strategy is well-formed (in particular, it is a function from the set of finite 
histories of the repeated game to the set of probability distributions over stage game actions) and 
against this strategy the prediction rule always gets the probability wrong by at least 1/2. Since the 
prediction rule was arbitrary, it follows that there is no one-period-ahead prediction rule that is 
asymptotically accurate against all strategies. 
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repeated interaction, one wants to explain prediction without imposing equilib- 
rium-like restrictions on prior beliefs.4 

1.2.2. Conventional Strategies 

The approach proposed here is to suppose that, associated with each player, 
there is a subset of repeated game strategies. For want of a better term, I will 
refer to such strategies as conventional. I will offer some possible examples 
below. Players are assumed to have a slight (e.g., lexicographic) preference for 
conventional strategies. Thus, a player will choose a conventional strategy if 
there is one that is a best response (in the standard sense of maximizing the 
expected present value of the player's stage game payoffs). If no conventional 
strategy is a best response, a player will optimize by choosing a nonconventional 
best response. For the moment, I put aside the possibility that players might be 
constrained to play conventional strategies. 

Suppose that the following properties hold whenever each player's belief is, in 
some appropriate sense, cautious. 

-1. Conventional Prediction. For any profile of conventional strategies, each 
player, via Bayesian updating of his prior belief, learns to predict the continua- 
tion path of play.5 

2. Conventional Optimization. For each player there is a conventional strategy 
that is a best response. 

Then, if beliefs are cautious, Conventional Optimization and the maintained 
interpretation of conventionality imply that each player, in choosing a best 
response, will choose a conventionLal strategy. Since both players play a conven- 
tional strategy, Conventional Prediction implies that each plAyer will learn to 
predict the continuation path of play. Thus players both optimize and learn to 
predict the path of play and hence the KL convergence theorem implies that the 
path of play will asymptotically resemble that of a Nash equilibrium. 

While Conventional Prediction and Conventional Optimization hold trivially 
if the product set of conventional strategies consists of a single repeated game 
Nash equilibrium profile, such a conventional set assumes away the problem of 
equilibration. To satisfy the objective of not imposing equilibrium-like restric- 
tions on prior beliefs, one wants beliefs to be cautious not only in the sense that 
beliefs satisfy some form of full support condition with respect to the conven- 

4 This is in contrast to the literature on learning within (Bayesian) equilibrium; see Jordan (1991). 
In that literature, unlike here, players have incomplete information about each other's payoffs, 
which makes learning nontrivial even when equilibrium is assumed. 

S Thus, each player learns to predict the path of play regardless of which strategy he selects. 
Weakening the definition of Conventional Prediction would require constructing a model in which 
both a player's strategy choice and the set of paths of play that he can predict are determined jointly. 
There is a danger in such a model of inadvertently assuming away the problem of equilibration. In 
any event, KL attempts to finesse constructing such a model and I will attempt to do so as well. 
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tional strategies but also in the sense that the conventional strategy sets are 
themselves neutral with respect to equilibration. 

In this paper, neutrality will mean that the map, call it I, that assigns product 
sets of conventional strategies to games satisfies the following properties (the 
formal definition is in Section 3.1). 

1. ! depends only on the stage game's strategic form. In particular, ! ignores 
both stage game payoffs and the discount factor. As I will discuss below, this 
does not imply that player beliefs ignore payoff information. One might argue 
that I should take into account payoff information at least in order to rule out 
nonrationalizable strategies. Doing so would somewhat restrict the scope of the 
paper's main Theorem without fundamentally changing the analysis. In many of 
the repeated games considered below, including all of the games based on 2 X 2 
stage games, all strategies are rationalizable. 

2. 1 is symmetric. In particular, I satisfies player symmetry and action 
symmetry. 

(a) Player symmetry specifies that if both players have the same action set in 
the stage game then if some strategy o- is conventional for player 1, the strategy 
o-' that is equivalent to o- from player 2's perspective must be conventional for 
player 2. In conjunction with property 3(b) of neutrality (see below), player 
symmetry implies that if players have the same action set, their conventional sets 
will, in fact, be identical; see the Claim established in the Proof of Proposition 2. 

(b) Action symmetry implies that if two possible action sets for player i have 
the same cardinality then, holding the opponent's action set fixed, the associated 
conventional sets for player i are identical up to a renaming of his stage game 
actions. 

3. 1 is invariant to simple changes in strategy. If a strategy o- is conventional 
for player i, then so is any strategy o-' that is identical to 0r except that: 

(a) o-' in effect translates o-'s action choices according to some function on 
the set of player i's actions, or 

(b) o-' in effect translates input histories according to some bijection on the 
set of action profiles. 

Such strategy changes are simple in the sense that if o- can be represented as 
a finite computer program, then a program for o-' can be constructed merely by 
adding a few lines of additional code to translate action choices, input histories, 
or both.6 If invariance is violated, then a player whose forecasts are persistently 
wrong may never notice that his opponent's behavior is consistent with a simple 
variation on one of the strategies that the player could learn to predict. This sort 
of thick-headedness runs counter to what one informally means by a player 
being cautious. 

6Similarly, if a can be represented by a finite automaton, as in Kalai and Stanford (1988), then 
an automaton for o,f' can be constructed by straightforward changes to the output function and the 
transition rules, leaving the set of automaton states unchanged. 
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4. l is consistent. Consider any pair of stage game action sets, (A1, A2) and 
(A'1, A' ), Ai cA'1, where A1 is the action set of player i. Consistency requires 
the following. 

(a) Suppose that strategy o- is conventional for player i when the action sets 
are (A1, A2). Then o- extends to a strategy o-' that is conventional when the 
action sets are (A'1, A'2) 

(b) Conversely, suppose that strategy o-' is conventional for player i when the 
action sets are (A'1, A'2) and suppose further that o-' restricts to a well-formed 
strategy o- when the action sets are (A1, A2). Then o- is conventional for 
(A1, A2). 

5. ' permits pure strategies. More accurately, for each conventional nonpure 
strategy, there should be at least one pure strategy in its support that is likewise 
conventional.7 If a conventional strategy is fully random (that is, after any 
history, it assigns positive probability to each of the available stage game 
actions), this property means only that some pure strategy is conventional. One 
motivation for this is that a randomizing strategy o- for player i is inherently 
more complicated than some of the pure strategies in its support. Explicitly, 
given o-, choose some (arbitrary) ranking for player i's stage game actions and 
consider the pure strategy s that, after any history h, chooses the highest ranked 
action to which o-(h) gives positive probability. For example, if player i has only 
two actions, Left and Right (ranked in that order), s chooses Left after any 
history such that o- randomizes. For any standard notion of complexity, o- is 
more complicated than s. Indeed, o- uses s as a kind of pattern and adds to s 
the additional complication of randomization after certain histories. If one views 
a conventional strategy set as being built up from less to more complicated 
strategies then, for any conventional randomizing strategy like o-, some pure 
strategy like s should be conventional as well.8 

A product set of conventional strategies is neutral if there is neutral map ' 
such that the product set is in the image of W. 

Neutrality is a property of the conventional sets rather than directly of beliefs. 
For example, as already noted, the fact that W ignores payoffs does not imply 
that each player's belief ignores payoffs. Similarly, players may have the same 
conventional set without their beliefs being identical. In fact, I require nothing 
of beliefs other than that players be able to learn to predict the path of play 
when the strategy profile is conventional. This property can be satisfied even if 
beliefs are in many respects quite arbitrary. For example, if the set of conven- 
tional strategies is at most countable, then it follows from results in KL that 
Conventional Prediction will hold provided only that each player's belief assigns 

7A pure strategy s will be said to be in the support of a strategy a if, after any history, the action 
chosen by s is also chosen with positive probability by a. 

8One might object that, while players might not deliberately favor randomization, it may be 
impossible to execute pure strategies because of "trembling." Thus, all conventional strategies 
should be random. As will be discussed in Section 3, see in particular Remark 3 and Remark 8, 
allowing for slight trembling does not materially affect the argument. 
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positive probability to each of his opponent's conventional strategies, regardless 
of exactly how probability is assigned. 

The prototypical examples of neutral, conventional sets are those consisting of 
strategies that satisfy some standard bound on complexity. Examples of such sets 
include the strategies that are memoryless (for example, strategies of the form, 
"in each period, play Left with probability p, Right with probability 1 -p, 
regardless of the history of date"), the strategies that remember only at most the 
last r periods, and the strategies that can be represented as a finite flow chart or 
program. It bears repeating that taking the conventional set to consist of the 
strategies that satisfy some complexity bound does not imply that players are 
constrained to such strategies or that players are in any customary sense 
boundedly rational. Rather, the implication is merely that players have a slight 
preference for strategies that are simple. 

This paper takes the point of view that, while one might ask a learning theory 
based on optimization and caution to be robust to deviation from neutrality, the 
theory should not require such deviation. For example, it would be disturbing if 
the theory required either player to view particular opposing strategies as 
nonconventional even though those strategies were computationally simple 
variants of conventional strategies. To the extent that the theory requires a 
deviation from neutrality, the theory requires some degree of equilibration prior 
to the start of repeated play. 

1.2.3. The Main Result 

The central result of this paper is the following Theorem, stated informally 
here. 

In discounted repeated games based on stage games in which neither player 
has a weakly dominant action, if players are sufficiently impatient then for any 
neutral conventional set there is no belief for either player such that Conven- 
tional Prediction and Conventional Optimization both hold. Moreover, for many 
of these games, including repeated Matching Pennies, Rock/Scissors/Paper, 
and Battle of the Sexes, the same conclusion holds for any level of player 
patience. 

As will be discussed in Remark 3 in Section 3.3, the Theorem is robust to 
small deviations from neutrality. 

The Theorem states that, unless one is willing to violate neutrality, it is 
impossible in many games to formulate a model of learning that is closed in the 
sense that Conventional Optimization and Conventional Prediction both hold 
simultaneously. In particular, if the conventional set is neutral and if Conven- 
tional Prediction holds, then each player, in the course of optimizing, will choose 
a strategy that is not conventional. Player beliefs in such a model are naive: 
each player believes that the other plays a conventional strategy even though, in 
fact, neither plays a conventional strategy. Section 1.3 develops a simple learning 
model that exhibits this sort of naivete in a stark fashion. A somewhat more 
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sophisticated example is provided by the learning model known as fictitious play, 
discussed in Section 1.4.2. In both examples, naivete can lead to a failure of 
convergence, in any reasonable sense, to even approximate Nash equilibrium 
behavior. What this naivete means in general for convergence to Nash equilib- 
rium behavior is not known. 

The argument underlying the Theorem runs as follows. For games of the sort 
described, for any pure strategy s for player 1, there are strategies s' for player 
2 such that, under any such profile (s, s'), player 1 gets a low payoff in every 
period. For example, in repeated Matching Pennies, if s' is a best response to s, 
then under the profile (s, s'), player 1 gets a payoff of -1 in each period, 
whereas his minmax payoff is 0 per period. It follows that if s is a best response 
to player l's belief, then it must be that player 1 is convinced that player 2 will 
not choose s', so convinced that, if player 1 chooses s, he cannot, via Bayesian 
updating of his prior, learn to predict the continuation path of play should 
player 2, for whatever reason, choose s'. The problem that arises is that if s is 
conventional for player 1, then neutrality implies that at least one of the s'-type 
strategies will be conventional for player 2. Hence, either Conventional Predic- 
tion or Conventional Optimization must fail. 

It might seem that this argument depends in an essential way on the fact that 
s was taken to be pure. After all, a player can often avoid doing poorly (in 
particular, earning less than his minmax payoff) by randomizing. But not doing 
poorly is not the same thing as optimizing. In fact, the Theorem extends to 
include conventional strategy sets that contain randomizing strategies. To see 
this, note that if a nonpure strategy is a best response to some belief, then so is 
every pure strategy in its support.9 Suppose that Conventional Prediction holds. 
Since I have assumed that, for any conventional nonpure strategy, some pure 
strategy in its support is also conventional, and since, by the above argument, no 
conventional pure strategy is optimal, it follows that no conventional nonpure 
strategy can be optimal either.10 

To make the Theorem somewhat more concrete, consider any product con- 
ventional set consisting of strategies that satisfy a bound on complexity. Stan- 
dard complexity bounds yield neutral conventional sets that are at most count- 
able. As noted in the discussion of neutrality, it follows that for any such 
conventional set there are beliefs for which Conventional Prediction holds." To 
be optimal with respect to such beliefs, a strategy must be flexible enough to 
make use of the player's predictive ability. Such a strategy will necessarily be 
complicated. In fact, the Theorem implies that a player's best response will 

9This fact, while standard for finite games, is less obvious for discounted infinitely repeated 
games. The Appendix provides a proof. 

10It is natural to ask whether this negative result could be overturned if one allowed players to 
have a strict preference for randomization in some circumstances. This question will not be pursued 
here since it necessarily requires departing from standard subjective expected utility theory. 

It is important to understand that prediction, not countability, is the central issue. The same 
argument would carry over to a complexity bound that yields an uncountable set provided Conven- 
tional Prediction continued to hold. 
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violate the complexity bound defining conventionality.12 Any attempt to obtain 
Conventional Optimization by adding more complicated strategies into the 
conventional set is fruitless as long as neutrality is preserved: adding more 
complicated strategies just makes the best response that much more compli- 
cated. The only way to obtain Conventional Optimization is to add in so many 
strategies that Conventional Prediction is lost. In particular, if one takes the 
conventional set to be the set of all strategies (which is uncountable), Conven- 
tional Optimization holds, but, as argued above, Conventional Prediction fails. 

1.2.4. Extensions: Constrained and Boundedly Rational Players 

Although the primary focus of this paper is on players who are rational, in 
particular, on players who have unlimited ability to optimize, it is natural to ask 
whether the analysis would change fundamentally if players were constrained in 
some way. 

Suppose first that each player's computational ability is unrestricted but that 
the rules of the repeated game are modified to require each player to choose a 
conventional strategy. For example, the conventional set might consist of the 
strategies that can be encoded as a finite list of instructions (a program) and the 
rules of the game might require players to submit their strategies in this form to 
a referee, who then executes the strategies on behalf of the players. 

Given that players are constrained, the Theorem implies that players will be 
unable to optimize (assuming that the conventional set is neutral and that 
Conventional Prediction holds). This is not necessarily a disaster, since one 
might still hope to find conventional strategies that are approximate best 
responses. In order to apply convergence results along the lines of those in KL, 
the appropriate version of approximate optimization is what will be called 
uniform e optimization: a strategy is e optimal if it is e optimal ex ante and if, 
moreover, it induces an e optimal continuation strategy in every continuation 
game (more precisely, in every continuation game that the player believes can be 
reached with positive probability). 

If the conventional set consists only of pure strategies, then the argument 
sketched above extends immediately to uniform e optimization. Therefore, for 
any neutral conventional set, if Conventional Prediction holds, then Conven- 
tional Uniform e Optimization fails for e sufficiently small. This need not 
prevent a player from choosing a strategy that is only ex ante e optimal. But, as 
illustrated in Section 1.3, ex ante e optimization per se may not be enough to 
guarantee convergence to approximate Nash equilibrium play. 

12A potential source of confusion is that it is well known that many of the possible bounds on 
complexity generate conventional sets with the property that, for any conventional strategy, there is 
a conventional best response. There is no contradiction with the Theorem because this sort of 
closure looks only at beliefs that are degenerate in the sense of assigning all mass to a single 
strategy. A belief for which Conventional Prediction holds for a neutral conventional set is 
intrinsically nondegenerate. 
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If, on the other hand, the conventional set contains nonpure strategies, then 
the argument sketched above does not extend. Section 3.4.1 will show that, 
nevertheless, the first part of the Theorem, in which players are impatient, does 
extend for the benchmark case in which the conventional set consists of the 
strategies that can be represented as a finite program, even if the program has 
access to randomizers (coin tossers). 

Finally, Section 3.4.2 contains some remarks about players who are boundedly 
rational, that is, players for whom deliberation is costly. 

1.3. An Example 

Consider the game Matching Pennies, given by: 

H T 

H 1, -1 -1,1 

T -1,1 1,9- 1 

For any discount factor, the unique Nash equilibrium strategy profile for 
repeated Matching Pennies calls for both players to randomize 50:50 in every 
period, following any history. 

Suppose that the conventional set, X for either player, consists of three 
strategies: randomize 50:50, "H always," denoted H, and "T always," denoted 
T. Thus, X = (50: 50, H, T}. Note that X x X is neutral. 

Assume that each player's belief assigns probability one to the set X and 
positive probability to each of the three elements of X. I do not require that 
player beliefs be equal. It follows from results in KL that, for any such beliefs, 
Conventional Prediction holds. Thus, for example, if Player 2 plays H, Player 1 
will observe a long initial string of H's, hence Player l's posterior will gradually 
favor the possibility that Player 2 is playing H, and so Player 1 will come to 
predict that Player 2 will continue to play H in subsequent periods. 

Now consider Conventional Optimization. Behavior under a best response 
must respond to the information learned over the course of the repeated game. 
In particular, if Player 1 learns to predict H, then Player 1 should start playing 
H in every period, while if Player 1 leams to predict T, he should start playing T 
in every period. None of the three strategies in X have this sort of flexibility. As 
a consequence, Conventional Optimization fails: none of the conventional 
strategies is a best response to any belief that gives weight to every strategy in 
X. If players optimize, players must, therefore, choose nonconventional strate- 
gies. This model thus exhibits the sort of naivete discussed in Section 1.2.3. 

In this example, the players' naivete can lead to asymptotic behavior that is 
far from that of a Nash equilibrium. In particular, note that one optimal strategy 
for player 1, arguably the most obvious one, is to play H or T in the first period 
(the choice will depend on player l's prior belief) and then to switch perma- 
nently to H always if player 2 played H in the first period, or to T always if 
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player 2 played T in the first period. A similar (but mirror image) strategy is 
optimal for player 2. If the players adopt such pure strategies, then from period 
2 onward the continuation path will be either ((H, H), (H, H), .. . ), 
((H, T), (H, T), ... ), ((T, H), (T, H), ... ), or ((T, T), (T, T), ... ), depending on 
what happens in the first period (which in tum depends on player beliefs). None 
of these paths resembles a likely realization of the (random) Nash equilibrium 
path of play." 

Suppose instead that, as was discussed in Section 1.2.4, players are constrained 
to choose from among the three strategies in L. For e low, none of the 
conventional strategies is uniformly e optimal, again because none of the 
conventional strategies exploits the fact that the player leams to predict the 
path of play. If each player chooses a strategy that is merely ex ante e optimal, 
rather than uniformly e optimal, then each player will strictly prefer either H or 
T to 50:50, depending on his prior belief, unless his prior happens to put 
exactly equal weight on H or T. In the latter case, the player will be indifferent 
between all three strategies. But, if both players select pure strategies, then the 
path of play will be one of the four discussed in the previous paragraph, none of 
which resembles a likely realization of the Nash equilibrium path of play. 

As this paper's Theorem indicates, the naivete illustrated above is not limited 
to Matching Pennies and in particular does not depend on the fact that 
Matching Pennies has no pure strategy equilibrium. Consider, for example, 
perturbing the stage game to the following: 

H T 

H 1| 1, 1 | - 1,- 

T H -1 1| 1 

Once again, assume that each player's belief assigns probability one to the set 
= {50: 50, H, T} and positive probability to each of the three elements of X. 

Then no element of X is a best response. If each player does indeed optimize, 
either fully or with respect to the constraint that his strategy be in X, then the 
possible continuation paths from period 2 onward include ((H, T), (H, T), ...) 
and ((T, H), (T, H), ... ), neither of which is an equilibrium path.14 

The conventional set X = {50: 50, H, T} used in the above examples is, of 
course, extremely limited. Section 1.4.2 briefly discusses the behavior of fictitious 
play, a more satisfactory learning model in which X is taken to be the set of all 
memoryless strategies. 

13 With probability 1, a realization of the equilibrium path of play will have the property that each 
of the four possible action profiles (H, H), (H, T), (T, H) and (T, T), appears with a population 
frequency of 1/4. 

14 In a coordination game such as this, one might expect the players to break out of repeated 
miscoordination by finding some direct means of communication. While direct communication might 
be descriptively realistic, appealing to such communication would violate the objective of trying to 
explain equilibration solely through repeated play. 
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1.4. Remarks on the Literature 

1.4.1. On Kalai and Lehrer (1993a) 

KL, together with its companion paper, Kalai and Lehrer (1993b), does two 
things. First, KL provides a condition on beliefs that is sufficient to ensure that a 
player learns to predict the path of play. The KL condition is in the spirit of (but 
is weaker than) assuming that each player puts positive prior probability on the 
actual strategy chosen by his opponent.15 Second, KL establishes that if players 
optimize and learn to predict the path of play, then the path of play asymptoti- 
cally resembles that of a Nash equilibrium.16 

While the KL sufficient condition for prediction is strong (from the discussion 
in Section 1.2.1, any such condition must be strong), it has the attractive feature 
that it imposes essentially no restriction on the player's belief over strategies 
other than his opponent's actual strategy. It would thus seem that a construction 
along the lines proposed above, in which the KL sufficient condition is satisfied 
by means of a full support assumption with respect to some set of conventional 
strategies, ought to work. That this construction fails stems from the fact that 
the joint requirement of prediction and optimization is far more burdensome 
than the requirement of prediction alone. This complicates the interpretation of 
KL and also of related papers such as Kalai and Lehrer (1995). 

By way of examyple, consider again the case of Matching Pennies with the 
conventional set X = {50: 50, H, T}. One would like to argue that the path of 
play will converge to that of the unique Nash equilibrium. The only conventional 
strategy profile for which this occurs is the one in which both players choose 
50:50. Suppose then that both choose 50:50. The KL sufficient condition is 
satisfied provided only that each player assigns positive probability to the other 
choosing 50:50. But 50:50 will not be optimal for a player unless the player 
assigns zero, not just low, probability to both H and T.17 In this example, 50:50 

15 The KL prediction result generalizes an earlier theorem of Blackwell and Dubins (1962). For 
sufficient conditions that are weaker than the KL condition, see Lehrer and Smorodinsky (1994) and 
Sandroni (1995). 

16 The KL convergence result is intuitive but, for discount factors sufficiently close to 1, it is not 
immediate. Even if players accurately predict the continuation path of play, they can hold erroneous 
beliefs about what would happen at information sets off the path of play. KL, see also Kalai and 
Lehrer (1993b), verifies that an equilibrium with approximately the same path of play can be 
constructed by altering strategies so as to conform with beliefs at unreached information sets. When 
there are more than two players, there are additional complications. See also Fudenberg and Levine 
(1993). In the weak (pointwise convergence) topology, convergence is to the path of a true Nash 
equilibrium. In the strong (uniform convergence) topology, KL shows convergence only to the path 
of an e-Nash equilibrium. See also Sandroni (1995). 

17As discussed in Section 1.3, if player 1 assigns positive probability to every strategy in 
= (50: 50, H, T) then no conventional strategy is optimal. If player 1 assigns probability p E (0, 1) 

to 50:50 and probability 1 -p to H, then player l's best response is H, not 50:50. Similarly if 
player 1 assigns probability p to 50: 50 and probability 1 -p to T, then player l's best response is T, 
not 50:50. 



LEARNING IN REPEATED GAMES 287 

can be optimal for both players only if beliefs are actually in equilibrium at the 
start of repeated play. 

1.4.2. Fictitious Play and (Semi-) Rational Learning 

For simplicity, I focus initially on stage games with two actions for each 
player. 

The classical fictitious play model of Brown (1951) can be shown to be 
equivalent to a model in which each player optimizes with respect to the belief 
that this opponent is playing a memoryless strategy, that is, a strategy of the 
form "in any period, go Left with probability p, Right with probability 1 -p, 
regardless of history," with p, which is constant across all periods, drawn from a 
beta distribution. See, for example, Fudenberg and Levine (1996). The set of 
memoryless behavior strategies, viewed as the conventional set, is neutral. One 
can show that Conventional Prediction holds (even though beliefs in this case 
violate the KL sufficient condition). Hence Conventional Optimization must fail. 
Thus, while players under fictitious play are rational in the sense that each 
chooses a best response to his belief, the beliefs themselves are naive: each 
player believes that his opponent adopts a memoryless strategy even though 
each, in fact, adopts a strategy that is history dependent. 

Despite this naivete, there are many examples in which players under ficti- 
tious play do learn to predict the continuation path of play and hence play does 
converge to that of a Nash equilibrium. Moreover, even when prediction fails, 
play may still exhibit Nash equilibrium-like behavior. Consider, for example, 
Matching Pennies. Under fictitious play, each player in Matching Pennies leams 
to believe that his opponent is randomizing 50:50 even though the actual path 
of play is typically nonstochastic. Thus players do not leam to predict the actual 
path of play and the actual path does not converge, in the sense used here and 
in KL, to the stochastic path generated by the unique Nash equilibrium of 
repeated Matching Pennies. Nevertheless, both the empirical marginal and the 
empirical joint frequency distributions of play converge to that of the Nash 
equilibrium of Matching Pennies. Thus, behavior under fictitious play is consis- 
tent with many (although not all) of the observable consequences of players 
leaming to play the Nash equilibrium of Matching Pennies. 

Unfortunately, fictitious play is not always so well behaved. In 2 x 2 stage 
games, while empirical marginal frequency distributions of play always converge 
to a Nash equilibrium of the stage game, the empirical joint frequency distribu- 
tion may be inconsistent with Nash equilibrium. This point has been emphasized 
by Fudenberg and Kreps (1993), Jordan (1993), and Young (1993). Moreover, 
there are robust examples of stage games with more than two actions, or more 
than two players, in which even the empirical marginal frequency distributions 
fail to converge, a point originally made by Shapley (1962); see also Jordan 
(1993). What is perhaps more disturbing is that, in the examples in which 
convergence fails, the path of play cycles in ways that are obvious to the outside 
analyst but that the players themselves fail to detect. 
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These problems with asymptotic behavior under fictitious play stem from the 
fact that player beliefs are naive. While the message of this paper is that some 
degree of naivete may be unavoidable, one might still hope to construct theories 
of (semi-) rational learning in which players are more sophisticated than in 
fictitious play. For recent work along these general lines, see Fudenberg and 
Levine (1995b), Fudenberg and Levine (1995a), Fudenberg and Levine (1996), 
Aoyagi (1994), and Sonsino (1995). A feature of much of this literature is that 
players are modeled as using strategies that are intuitively sensible without 
necessarily being best responses to well-formed prior beliefs. Justifying these 
strategies as optimal or near optimal may require enriching the repeated game 
model or deviating from standard decision theory, or both. 

1.4.3. Problems with Rationality 

Binmore, in Binmore (1987) and elsewhere, has warned that the concept of 
rationality in game theoxy may be vulnerable to problems akin to the unsolvabil- 
ity of the Halting Problem; see also Anderlini (1990). 

Following Binmore, view a player in a one-shot game as choosing a decision 
procedure, a function that, taking as input a description of the opponent's 
decision procedure, chooses as output an action of the game. This formalism is 
an attempt to capture the idea that a player, in choosing his action, predicts his 
opponent's action by thinking through the game from his opponent's perspec- 
tive. Since a player is assumed to know his opponent's decision procedure, the 
player can predict his opponent's action. The goal is to construct a decision 
procedure that, for any opposing decision procedure, chooses an action that is a 
best response to the action chosen by the opponent's decision procedure. 

It is not hard to see that no decision procedure is optimal for Matching 
Pennies.18 Perhaps more surprisingly, there may be no optimal decision proce- 
dure even in games with equilibria in pure actions. The basic difficulty is that 
there are so many possible opposing decision procedures that there may be no 
decision procedure that optimizes with respect to them all. Canning (1992) 
shows that, for a large set of games with equilibria in pure actions, one can close 
the decision problem by limiting players to domains (subsets) of decision 
procedures. Here "close the decision problem" means that a player finds it 
optimal to choose a decision procedure within the domain whenever his oppo- 
nent's decision procedure is likewise within the domain. As Canning (1992) 
emphasizes, the domains, while nontrivial, necessarily embody rules of equilib- 
rium selection. In games with multiple equilibria, different rules of equilibrium 
selection give rise to different domains. 

18 If players are constrained to play pure actions, the case originally considered in the literature, 
then the existence of an optimal decision procedure would imply the existence of a pure action Nash 
equilibrium, which is false. An argument similar to the one given in footnote 3 establishes that no 
decision procedure can be optimal even if players can randomize. 
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The overlap between this paper and the literature just sketched would appear 
to be small. In this paper, neither player knows the other's decision procedure 
(indeed, a player's decision procedure for choosing a strategy is not even 
explicitly modeled), and neither player knows the other's repeated game strat- 
egy. Each player merely has a belief as to his opponent's strategy and one would 
like to permit each player's belief to be inaccurate in the sense of assigning 
considerable probability mass to strategies other than the one his opponent is 
actually playing. But while neither player in the present model may have 
accurate knowledge of his opponent ex ante, the insistence on prediction means 
that players will have increasingly accurate knowledge as the game proceeds. If 
the conventional set is neutral, asking for a conventional strategy that is optimal 
when Conventional Prediction holds is akin to asking in Binmore's model for a 
decision procedure that is optimal against all (or at least a large set of) opposing 
decision procedures. Conversely, the domain restrictions discussed in Canning 
(1992) are suggestive of the deviations from neutrality that would have to obtain 
if Conventional Prediction and Conventional Optimization were to hold simulta- 
neously. 

2. SOME BACKGROUND ON REPEATED GAMES 

2.1. Basic Definitions 

Consider a 2-player game G = (A1, A2, u1, u2), the stage game, consisting of, 
for each player i, a finite action set Ai and a payoff function ui: A1 x A2 -S R. 

The stage game is repeated infinitely often. After each period, each player is 
informed of the action profile (al, a2) EA1 xA2 realized in that period. The set 
of histories of length T, AT, is the T-fold Cartesian product of A1 XA2. A 

contains the single abstract element h?, the null history. The set of all finite 
histories is X= U T 2 oTe I will sometimes write ZA1, A2) to emphasize the 
dependence of t on (A1, A2). An infinite history, that is, an infinite sequence of 
action profiles, is called a path of play. The set of paths of play is denoted by Z. 
The projection of a path of play z E.2' onto its period t coordinate is denoted 
z,. The projection of z onto its first t coordinates, that is, the t-period initial 
segment of z, is denoted i(z, t); note that i(z, t) Er'. 

A (behavior) strategy for player i is a function o-: r*- A(Ai), where A(Ai) is 
the set of probability mixtures over Ai. I will sometimes write vi to emphasize 
that the strategy is associated with player i. Let Xi be the set of behavior 
strategies of player i. I will sometimes write Xi(A1, A2) to emphasize the 
dependence of Xi on (A1, A2). A pure strategy for player i is simply a behavior 
strategy that takes values only on the vertices of A(Ai). Let Si c Xi be the set of 
pure strategies for Player i. 

Strategy ay * E Xi will be said to share the support of strategy a- E X iff, for any 
history, h, if a*(h) assigns positive probability to action a E Ai, then so does 
ao(h). In the case of a pure strategy, a* =s, I will say that s is in the support 
of a. 
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X1 X X2 denotes the set of behavior strategy profiles in the repeated game. For 
each t, a behavior strategy profile (o-r, o-2) induces a probability distribution over 
cylinders C(h), where h is a t-period history and C(h) is the set of paths of play 
for which the t-period initial segment equals h. These distributions can in turn 
be extended in a natural way to a distribution , ?2) over (Z,J), where -9 is 
the smallest a-algebra containing all the subsets formed by the cylinders; Kalai 
and Lehrer (1993a) discuss this construction in somewhat more detail. 

Fix a discount factor 8 E [0,1). The payoff to player i in the repeated game is 
then given by VK: Xl x X2 - R 

V7(r, o 2) = E tUi(Zt)) 

where E,,( , denotes expectation with respect to the induced probability 
A(al, 02), 

2.2. Beliefs 

Player l's ex ante subjective belief over player 2's behavior strategies is a 
probability distribution over X2. By Kuhn's Theorem (for the repeated game 
version, see Aumann (1964)), any such distribution is equivalent (in terms of the 
induced distribution over paths of play) to a behavior strategy, and vice versa. 
Thus, following a notational trick introduced in KL, player l's belief about 
player 2 can be represented as a behavior strategy a2 E X2; similarly for player 
2's belief about Player 1. The profile of beliefs for both players is then (o2, Co2). 

(o,, a2l) is the profile consisting of player l's behavior strategy and his belief 
as to player 2's behavior strategy. The histories that player 1 believes are 
possible are histories h such that i.( ) ?7,)(C(h)) > 0. Similar definitions hold for 
player 2. 

Suppose that X2 C:X2 is at most countable (finite or infinite, although my 
notation will be for the infinite case). Let 21 229 023... ' *ff2nw ... be an 
enumeration of X2. Say that belief a2l gives weight to all of X2 if there is a 
strategy O 203X2 and a sequence ao, al,... .. of real numbers, with 
ao ? 0, an > 0 for all n > 1, and E= 0an = 1, such that 

00 

0T21 = aoo-20 + E ano-2n. 
n=1 

Neither Oa20 nor the sequence an need be unique. A similar definition holds for 
player 2. The belief profile (o2l, ol2) gives weight to all of X1 x X2 if o21 gives 
weight to all Of X2 and cr2 gives weight to all of X1. 

2.3. Continuation Games 

A t-period history h defines a continuation game, the subgame beginning at 
period t + 1. Payoffs for the continuation game starting at date t + 1 are taken 
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to be discounted to date t + 1, rather than back to date 1. In the continuation 
game following h, a strategy o-i induces a continuation strategy oih via 

oih(hW) = oi(h -h') 

for any history h', where h -h' denotes the concatenation of h and h'. 
With this notation, a player's posterior belief about his opponent's continua- 

tion strategy has a simple representation. If ,u(ty , )(C(h)) > 0 then, in the 
continuation game following h, player l's posterior belief, calculated in standard 
Bayesian fashion, is o2'h; similarly for player 2. 

Recalling that i(z, t) is the history giving the actions chosen in the first t 
periods of the path of play z, we may write 0i.(z t), 9 (zt), and O2(z t). 

2.4. Prediction 

Informally, if the chosen strategy profile is pure, a player will be said to learn 
to predict the continuation path of play if, for any number of periods 1, no 
matter how large, and any degree of precision q, no matter how small, there is a 
time t far enough in the future such that, at any time after t, a player predicts 
every continuation history of length 1 or less with an error of no more than q. 
The definition below, in addition to providing a formal statement, extends this 
idea to cases where one or both players randomize. 

The following definition, taken from KL, provides a measure of closeness 
between two strategy profiles (and hence between the probability distributions 
over paths of play induced by those profiles). 

DEFINITON 1: Given strategy profiles (01, 0o2) and (o->, o2*), a real number 
11> 0, and an integer 1 > 0, (o-l, o2) plays (ii, I)-like ( o-, o-2*) iff 

I /(31,2)(C(h)) - A(1 0,*)(C(h))I < q 

for every history h of length 1 or less. 

DEFINMION 2: Let (0i, o02) be the strategy profile chosen by the players and 
let o2- be player l's belief. Player 1 learns to predict the continuation path of play 
iff the following conditions hold: 

1. /(Lf1 2)(C(h)) > 0 =* A( 1 2)(C(h)) > 0 for any finite history h. 
2. For any real number 1 > 0, any integer 1 > 0, and A(0'1 02) almost any path 

of play z, there is a time t(rq, 1, z) such that if t > t(r, 1, z), then (or11f(z,), U2f(z,, t)) 

plays (q, 1)-like (orlw (z,), U21w(z,t)). If (o-1, o2) is pure, then I will write t(q, 1) 
instead of t(rq, 1, z). 

The definition for player 2 is similar. 

REMARK 1: This is weak learning, weak in the sense that the player is 
required to make an accurate prediction only about finite continuation histories, 
not about the infinite tail of the game. 
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REMARK 2: KL shows that if, instead of (1) in Definition 2, (0r1, c2) and 
(o-l, o-2) satisfy the stronger requirement , u2)(E) > 0 =* A(r21 )(E) > 0 for 
all measurable sets of paths E, then part 2 in Definition 2 will be satisfied 
automatically, and indeed player 1 will be able to make accurate predictions 
even about the tail of the game. If this strengthened version of part 1 holds, 
then /L( (r2) is said to be absolutely continuous with respect to ,u(Oyl,i); this is 
the KL sufficient condition to which I alluded in Section 1.4.1. 

An observation exploited below is that a sufficient (but not necessary) condi- 
tion for absolute continuity is that player l's belief satisfies what KL calls grain 
of truth: r2l satisfies grain of truth iff o2- = ao2 + (1 - a)o-2, where o02 is player 
2's true behavior strategy, o2- is some other behavior strategy for player 2 
(which, by Kuhn's Theorem, one may reinterpret as a probability distribution 
over behavior strategies), and a E [0,1). In the terminology introduced above, 
I-2j satisfies grain of truth iff o-2j gives weight to {o02). 

2.5. Optimization 

As usual, 01 E X1 is an (ex ante) best response to belief or2 E X2 iff for any 
e E1 V(o-1, o-) 2 V( I-, o-). For learning models along the lines considered 

here, one wishes 01 to be not only ex ante optimal but also dynamically optimal 
in the following sense: for any h such that Au(<, U,2,)(C(h)) > 0 (any h that the 
player believes will occur with positive probability), one wishes the continuation 
strategy ulh to be a best response to the continuation belief co2h. If o-l satisfies 
this dynamic optimization condition, then write 01 E BR(of,21). For 8 > 0, 01 E 

BR1(o-21) if 01 is an ex ante best response to o21. If 8 = 0, BRI(o-21) will (except 
in trivial cases) be a proper subset of the set of ex ante best responses to u-2. 
Henceforth, the term "best response" for player 1 will be understood to refer to 
an element of BR1(o-2). It is standard that, for any 8 E [0,1), BR1(cr2j) #0. 
Similar definitions hold for player 2. 

The following technical lemma extends to discounted repeated games a result 
that is well known for finite games. As there does not appear to be a proof 
readily available in the literature, one is provided in the Appendix. 

LEMMA S: If ol e BR1(o21) and ol e X1 shares the support of O'J, then 
a* E BR1( ro2); similarly for Player 2. 

I will also be interested in approximate best responses. Recall that 0i, is an 
(ex ante) e-best response to o2- iff, for any o-r, V(or1, o-2) + e 2 V(o-r, o21). Even 
when 8> 0, ex ante optimization is too weak an optimization standard for 
learning models of the sort considered here. First, ex ante e optimization 
imposes no restriction on behavior far out in the repeated game. Second, ex ante 
e optimization may impose little or no restriction on behavior along the actual 
path of play, as opposed to the paths the player believed most likely to occur, 
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even in the near or medium term. I address these problems by strengthening the 
ex ante e optimization to what will be called uniform e optimization.19 

DEFINITION 3: ai eX1 is a uniform e-best response to a21 E 2 written 
al E BRf(o2l), iff, for every history h for which ta7 i2)(C(h)) > 0, oh is an 
e-best response to a2lh. Similarly for BR-(Cr2). 

3. THE CONFLICT BETWEEN PREDICTION AND OPTIMIZATION 

3.1. Conventionality and Neutrality 

Let X1 c X1 denote the set of Player l's strategies that are, for want of a 
better term, conventional. For motivation, see Section 1.2.2. Similarly, the 
conventional strategies for Player 2 are X2 C X2. The joint conventional set is 
X1 X X2. Restrict attention to conventional sets that are not empty: Xi 0. 

As discussed in Section 1.2.2, I wish to confine attention to joint conventional 
sets that are neutral. The definition of neutrality, given below, will be in terms of 
a function ' that assigns joint conventional sets to repeated games. To 
formalize the domain of I, begin by fixing a set A of finite action sets. I 
interpret A as the universe of possible action sets. For any set K, let #K denote 
the cardinality of K. Assume that 0 OA (a player always has at least one action 
in any game) and that, for any action sets A, A' I A, if #A < #A' then there is 
an A* EA such that #A* = #A and A* cA'. Take A to be the same for both 
players. Let G be the set of possible finite games using action sets drawn from 
A and let X be the associated power set of the set of possible repeated game 
strategies. 

Let 'i: G x [0,1) -- X satisfy Wi(G, 8) c Xi(A1, A2), where (A1, A2) are the 
action sets of G. I interpret Wi(G, 8) as the conventional set for player i in the 
repeated game with stage game G and discount factor 8. Assume Wi(G, 8) # 0. 
Let I!: G x [0,1) - xX be defined by W(G, 8) = W1(G, 8) x W2(G, 8). 

The following constructions will be used in the formal definition of neutrality. 
First, for each i, let Ai, A'i eA be action sets with #Ai = #A'. I permit 

Ai =A' as one possibility. Let X=ZA1, A), t' =(AA, A'2), X1 = Xi(A, A), 
and Xi' = Xi(A'2, A'2). For each i, let gi: Ai -A'i be any bijection. The bijections 
gi induce bijections, gi: A(A ) -- A(Ai)', f: X'-- , and yi: Xi - li', defined as 
follows. gi is defined by the property that, for any aci E A(Ai), for any ai EA i, 
gi( ai) assigns the same probability to gi(ai) that ai does to ai. I is defined by 
the property that, for any T, for any h EXT, tb(h) E(= PT and, for any t < T, if 
the t coordinate of h is (al, a2), then the t coordinate of t(h) is (g1(a1), g2(a2)). 

19 Lehrer and Sorin (1994) introduces the concept of s-consistent equilibrium, based on the same 
idea. 
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(In the special case of the null history, (h0) = h.) yi is defined by, for any 
rEE Xi, for any h' s ', 

'y(cr)(h') = gi(of(Q-l(h'))). 

Informally, yi(cr) is the strategy in Xi' that is equivalent to Cre Xi once one 
translates A(A ) into A(A') and " into k'. 

Next, if A =A' for each i, then I will also consider, in addition to bijections 
gi, functions g!: Ai -* Ai, possibly not 1-1, and associated functions 
g: A(A ) - A(A ) and yif: Xi - Xi. gi? is defined by the property that, for any 
ai E A(A ), for any at* eA1, the probability assigned by g?(a1) to at equals the 
sum of the probabilities assigned by ai to all ai e g?-1 (a*). yi? is defined by, 
for any cr E Xi, for any h Es, 

yfNu)(h) = g?(o(h)). 

Informally, yi`(o-) is identical to a except that, whenever oa chooses a1, yif(o-) 
chooses g ?(ad). 

Finally, consider any A (A. Let {: A xA -+A xA be a bijection on the set 
of action profiles. Let *=K(A, A) and let X = X1(A, A) = X2(A, A). Then g 
induces bijections t ;: Z '* and y : X -- X, defined as follows. ) t is defined 
by the property that, for any T, for any h EApT, b {(h) (foT and, for any t < T, if 
the t coordinate of h is (a, a'), then the t coordinate of t ;(h) is {(a, a'). (In the 
special case of the null history, b '(h0) = h?.) y is defined by the property that, 
for each ore X, for each h' es, 

Syc(cr)(h') = c:r(b C-'(h')). 

Informally, yc(cr) is identical to ar except that, upon receiving the history h' as 
input, y (o-) first translates h' into b C(h'). 

DEFINMIION 4: !: G x [0,1) -+ X X is neutral iff the following properties 
are satisfied. 

1. 3 depends on (G, 8) only through the strategic form of G. Explicitly, 
consider any two stage games, G =(A1, A2,u1, u2) and G' = (A1,A2, u, u2), 
with the same action sets. Then '(G,8)= '(G',8') for any 8,8'e[0,1). 
Abusing notation, write 3: A xA - Xx X in place of 3: G X [0,1) XX X. 
Similarly for the coordinate functions 3P. 

2. ! is symmetric. Explicitly, the following properties hold. 
(a) Player symmetry. Consider any A eA and define {: A xA -A xA by 

{(a, a') =(a', a). Then, for any a e !1(A, A), yc(or)e E!'2(A, A). Similarly, for 
any o-e E!'2(A, A), y (of) E 31(A, A). 

(b) Action symmetry. For any A1, A'1, A2, A'2 EA with #Ai = #A'i for each i, 
for any bijections gi: Ai -A', for any oa E 3!i(A1, A2), y() E A 

3. 3 is invariant to simple changes in strategy. Explicitly, the following proper- 
ties hold. 

(a) For any A1,A2 eA, for any functions g P: Ai--Ai, for any arE 

Wi(Aj, A2), yi?Nf) E 1i(A1, A2) 
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(b) For any A eA, for any bijection {: A xA -+A xA, for any oce 
Wi(A, A), y'(or) E 'i(A, A). 

4. 1 is consistent. Explicitly, for any A1, A2, A'1, A'2 eA, Ai cA'i for each i, 
the following properties hold. 

(a) For any o e 1i(A, A), there is a cr' e Ii(A', A'2) such that o-(h)= 
o- '(h) for every h e(AA, A2) 

(b) For any cr' e Wi(A'1, A'2), if o '(h) e A(A ) for every h e(A1, A), then 
there is a o- c Wi(A1, A2) such that o-(h) = o- '(h) for every h ec(AA, A2). 

5. 1 permits pure strategies. Explicitly, for any A1, A2 eA, if o cP i(A1, A2), 
then there is a pure strategy s in the support of o such that s E Wi(AI, A2). 

A joint conventional set .1 X 22 will be called neutral if there is a neutral 
map ! such that XI x X2 is in the image of W. 

For the interpretation of, and motivation for, these properties, see Section 
1.2.2. 

3.2. Conventional Prediction and Conventional Optimization 

DEFINITION 5: Conventional Prediction holds for player 1 with belief cr21 iff, 
for any (_-1, u2) E X1 X X2, player 1 learns to predict the continuation path of 
play; similarly for player 2. 

DEFINITION 6: Conventional Optimization holds for player 1 with belief o'21 iff 

BRI(o,21) n 11 * 0; 

similarly for player 2. 

DEFINITION 7: Given e > 0, Conventional Uniform e Optimization holds for 
player 1 with belief 0c21 iff 

BR (or21) nf1 #0; 

similarly for player 2. 

These properties were discussed in Section 1.2.2 and Section 1.2.4. 

3.3. Main Results 

Consider any action a1 EA1 and define 

a2(al) = argmax max u1(a',a2) - u1(al, a2)1 
a2eA2 al eA1 

If the right-hand side is not single-valued, arbitrarily pick one of the values to be 
a2(a1). aI(a2) is defined similarly. Loosely, when player 2 chooses action d2(al), 
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player 1 has maximal incentives not to play a1. a2(a1) does not necessarily 
minimize player l's payoff from a1. That is, it is not necessarily true that 
42(al) = argmin,2 E A2U1(al, a2) = argmax 2E A2[- ul(al, a2)] 

DEFINInON 8: Given any pure strategy s e S1, let S2(s) denote the set of 
pure strategies for player 2 such that, for any s2 E S2(s2), if history h is along the 
path of play generated by (s1, s2) (i.e. if L(SI,S2)(C(h)) = 1), then 

s2(h) = d2(sl(h)). 

The definition of S1(s2) is similar. 

Thus, viewed myopically (in terms of period-by-period optimization), s, 
chooses the wrong action in each period against any pure strategy s2 E S2(s1). 

Let m1 be player l's minmax value in the stage game: 

Ml = mmn max [E(al, a2) U,(,, 
a2EA(A2) a1eA(Al) 1(a1, a), 

where E(a, a2)ul(al,a) is player l's expected payoff from the mixed action 
profile (a1, a2). m2 for player 2 is defined similarly. I will sometimes make the 
following assumption. 

AsSUMPTION M: For player 1, 

max ul(al, a2(a,)) <iml; 
a1eA 1 

similarly for player 2. 

This assumption is satisfied in Matching Pennies, Rock/Scissors/Paper, Bat- 
tle of the Sexes, and various coordination games. 

A strategy cannot be optimal if a player can learn to predict that its 
continuation will be suboptimal in some continuation game. As an application of 
this principle, the next proposition records that, provided there are no weakly 
dominant actions in the stage game, a pure strategy s1 cannot be optimal if 
player 1 can learn to predict the path of play generated by (S1, S2) for any 

E S2. The hurdle to a result of this sort is that, even if the player learns to 
predict the path of play, it can be difficult for a player to learn that he is 
suboptimizing with respect to his opponent's strategy. For example, a player 
might think that the low payoffs he (correctly) projects for the near future are 
simply the price to be paid for the high payoffs he (erroneously) projects for the 
more distant future. The first part of the proposition assumes away this sort of 
problem by taking players to be effectively myopic. The second part of the 
proposition allows players to have any level of patience, but imposes Assumption 
M. The proof is in the Appendix. 
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PROPOSITION 1: Suppose that no action for player 1 is weakly dominant in the 
stage game G. 

1. There is an -E > 0 and a 8 E (0,1] such that, for any pure strategy SI E S, and 
any 52 E S2(S1) if player l's belief o2- allows player 1 to learn to predict the 
continuation path of play generated by (S1, S2), then s, is not a uniform e-best 
response to o(2- for any E E [0, -E) and any 8 E [0, 8). 

2. If, moreover, Assumption M holds, then there is an -E > 0 such that, for any 
pure strategy s, E S, and any 52 E S2(S1), if player l's belief o2I allows player 1 to 
learn to predict the continuation path of play generated by (S1 I2), then s, is not a 
uniform e-best response to o(21 for any E E [0, -E) and any 8 E [0, 1). 

Similar results hold for player 2. 

The next step in the argument is to make the following observation, the proof 
of which is in the Appendix. 

PROPOSITION 2: Suppose that X1 x X2 is neutral. For any pure strategy s5 E 1, 
there is a pure strategy 52 E 12 such that, for any history h (not just histories along 
the path of play), 

s2(h) = 62(s,(h)). 

In particular, X2 n S2(S1) # 0. A similar result holds for player 2. 

I am now in a position to state and prove the paper's main result. 

THEOREM: Let G be a stage game in which neither player has a weakly dominant 
action. 

1. There is a 8 E (0,1] such that, for any 8 E [0, 8), for any neutral joint 
conventional set X1 x X2, there is no belief o21 such that both Conventional 
Prediction and Conventional Optimization hold simultaneously for player 1. 

2. If, moreover, Assumption M holds then, for any 8 E [0,1), for any neutral 
joint conventional set X1 x 12, there is no belief o2- such that both Conventional 
Prediction and Conventional Optimization hold simultaneously for player 1. 

Similar results hold for player 2. 

PROOF: For the proof of statement 1, choose 8 as in Proposition 1. Suppose 
that player 1 has beliefs 72I and that, for these beliefs, Conventional Prediction 
holds for player 1. Consider any o- E X1. By Property 5 of neutrality (I permits 
pure strategies), there is a pure strategy s1 E -X with s, in the support of 0i. By 
Proposition 2, there is an S2- 2nS2(S1). By Proposition 1, s, C BRI(o-2'). 
(Indeed, s, * BR-(of21) for e sufficiently small.) By Lemma S, o-l ? BR1(o-2). 
Since o1 and 0i were arbitrary, it follows by contraposition that Conventional 
Optimization is violated for player 1. The proof of statement 2 is almost 
identical. Q.E.D. 
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For the interpretation of this result, see the Introduction, Section 1.2.3 in 
particular. 

REMARK 3: The Theorem is robust to small deviations from neutrality. More 
explicitly, because the proof of Proposition 1 relies on strict inequalities, one can 
show that Proposition 1 extends to situations in which player 1 chooses a 
(nonpure) strategy o-l in a small open neighborhood of some pure strategy s1 
and player 2 chooses a (nonpure) strategy o02 in a small open neighborhood of 
the strategy s2 E X2(S1) where S2 iS defined by s2(h) = d2(s1(h)) for any h. Here, 
"open" means in the sup norm (uniform convergence) topology.20 Using the 
extended version of Proposition 1, one can then establish that the conclusion of 
the Theorem continues to hold even if the conclusion of Proposition 2 holds 
only approximately. 

In particular, the Theorem is robust to relaxing Property 5 of neutrality to 
allow for the possibility that conventional strategies necessarily tremble. A 
trembled version of a pure strategy s, is a strategy 0l such that, after any 
history h, o-1(h) chooses s1(h) with probability (1 - qh) and chooses some 
mixture over actions, where the mixture might depend on h, with probability 
qhe2l Let i =suphE=q. For q small, 0l will be close to s in the sup norm 
topology. It is straightforward to show that if Property 5 of neutrality is relaxed 
to allow small trembles, then versions of Proposition 1 and Proposition 2 
continue to hold and therefore the conclusion of the Theorem continues to 
hold. Of course, if players are constrained to play strategies that tremble, then 
one should demand only approximate, in particular uniform e, optimization 
rather than full optimization. I will address this point in Remark 8 in Section 
3.4.1. 

A consequence of the Theorem is the following. 

PROPOSITION 3: Let G be a stage game in which neither player has a weakly 
dominant action. Suppose X, X X2 is both neutral and at most countable. 

1. There is a 8 E (0, 1] such that, for any 8 E [0, b) and any belief or2- that gives 
weight to all of X2, Conventional Optimization fails for player 1. 

2. If, moreover, Assumetion M holds, then, for any 8 E [0, 1) and any belief o-2 
that gives weight to all of X2, Conventional Optimization fails for player 1. 

Similar results hold for player 2. 

PROOF: If players choose a strategy profile in XI x X2 then the belief of 
either player satisfies grain of truth. It follows that Conventional Prediction 
holds for both players (see KL, Theorem 3). The result then follows from the 
Theorem. Q.E.D. 

20 The metric for this topology is d(oi, vi') = suP h e1aI(h) - oi(h)I, where 11 11 is the standard 
Euclidean norm (view qj(h) E A(AI) as an element of R#Ai). 

21 This definition of tremble is fairly general; in particular, it allows for trembles that are not i.i.d. 
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As an application of Proposition 3, suppose that the Xi are defined by a 
bound on strategic complexity. I will focus on bounds defined in terms of Turing 
machines, which can be though of as computers with unbounded memory. I will 
remark briefly below on other possible complexity bounds. 

Say that a strategy is Tunrng implementable if there is a Turing machine that 
takes histories (encoded in machine readable form) as input and produces the 
name of an action as output.22 The Turing implementable strategies are pre- 
cisely those that can be defined recursively, where I use the term "recursive" in 
its Recursive Function Theory sense. Equivalently, the Turing implementable 
strategies are precisely those that can be defined by a finite flow chart or 
program. The Church-Turing Thesis, which is generally (although not quite 
universally) accepted within mathematics, asserts that recursivity captures what 
one means by "computable in principle." The set of Turing implementable 
strategies is thus the largest set of computable strategies. It is a natural 
benchmark for a conventional set that is a large subset of the set of all 
strategies. 

Turing machines, as usually defined, are deterministic and so the Turing 
implementable strategies are pure. (Randomizing Turing machines will be 
considered in Section 3.4.1.) Let ST c Si be the set of pure strategies for player i 
that are Turing implementable. ST is countable.23 Therefore, player l's belief 
can give weight to all of S'. For computability reasons, I will assume that the 
payoff functions ui are rational valued and that the discount factor 8 is rational. 

PROPOSITnON 4: Let G be a stage game in which neither player has a weakly 
dominant action. Suppose X1 X X2 = S 2f X S2 

1. There is a 8 E (0, 1] and an E > 0 such that, for any rational 8 e [0, 8), any 
E E [0, E), and any belief q2' that gives weight to all of ST, Conventional Uniform e 
Optimization fails for player 1. 

2. If, moreover, Assumption M holds, then there is an e > 0 such that, for any 
rational 8 e [0,1), any e e [0, i), and any belief ao that gives weight to all of ST, 
Conventional Uniform E Optimization fails for player 1. 

Similar results hold for player 2. 

PROOF: The result for optimization, rather than uniform e optimization, 
follows from Proposition 3 provided ST x ST is neutral. Verification of the latter 
is straightforward and is omitted. The extension to uniform E optimization is 
immediate once one notes that Proposition 1 is stated for uniform e optimiza- 

22A more formal treatment of Turing implementability for repeated game strategies can be found 
in, for example, Nachbar and Zame (1996). For general reference on Turing machines and other 
topics in computability, see Cutland (1980) or Odifreddi (1987). 

23Ay Turing machine has a finite description, hence there are only a countable number of 
Turing machines, hence only a countable number of strategies are Turing implementable. 
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tion and that, therefore, the proof of the Theorem extends to uniform E 
optimization provided X1 c Si (conventional strategies are pure). Q.E.D. 

REMARK 4: Although stated for Turing implementable strategies, Proposition 
4 holds for any standard bound on complexity: any standard complexity bound 
generates a joint conventional set that is (1) neutral and (2) at most countable. 
Hence Proposition 3 implies that, for conventional sets defined by any standard 
complexity bound, if player 1 has beliefs that give weight to all of player 2's 
conventional strategies, player 1 has no conventional best response or even, for 
E small, uniform E-best response. In this sense, player l's best response will 
always be more complicated than the strategies that are conventional for player 
2. 

REMARK 5: For intuition for Proposition 4, consider the following. Say that a 
belief o2j that gives weight to all of X2 C S2j iS Turing computable if there is a 
Turing machine that generates the belief in the form of an enumeration of pairs 
of probabilities and Turing machine descriptions, which I will refer to as 
programs, with each strategy in X2 implemented by at least one program in the 
enumeration. If beliefs are Turing computable then, for any 6 > 0, there exists a 
Turing machine implementing a uniform E-best response. Indeed, one can 
construct a Turing machine that, after any history, computes a finite approxima- 
tion to the correct posterior belief, then computes a best response with respect 
to that approximate posterior for some large truncation of the continuation 
game. Because of discounting, this best response in the truncation will be an 
approximate best response in the full continuation. One can show, although I 
will not do so here, that all the calculations required are well within the scope of 
a Turing machine. 

The problem that arises in Proposition 4 is that a belief that gives weight to 
all of X2 = S2T is not Turing computable because there is no Turing machine 
that will enumerate a list of strategy programs such that every Turing imple- 
mentable strategy is implemented by at least one program on the list. This is so 
even though the set of Turing implementable strategies is countable. The proof, 
which I omit, is a variation on the diagonalization argument used in Turing 
(1936) to show that the set of recursive functions is not recursively enumerable. 

Since beliefs that give weight to all of S2T are not Turing computable, a Turing 
machine has no way to update beliefs properly, even approximately, after some 
histories. As a result, the method given above for constructing a uniform 6-best 
response does not apply. Proposition 4 verifies that, for 6 sufficiently small, no 
uniform E-best response can be implemented by a Turing machine. Another way 
to view the same point is to recognize that, by Kuhn's Theorem, having a belief 
that is not Turing computable is equivalent to facing an opponent playing a 
strategy that is not Turing implementable. It should not be surprising that, if the 
opposing strategy is not Turing implementable, one may not have a Turing 
implementable best response or even, for E small, uniform E-best response. 
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3.4. Extensions 

3.4.1. Constrained Rational Players 

The analysis thus far has implicitly maintained the hypothesis that players are 
free to choose nonconventional strategies in order to optimize. If instead players 
are constrained to play conventional strategies (see Section 1.2.4 for motivation), 
then the Theorem implies that, so long as Conventional Prediction holds, 
neither player will be able to optimize. One might hope that, despite the 
constraint, players could at least uniformly E optimize. If this were true then a 
small modification of the argument in KL would imply asymptotic convergence 
to approximate Nash equilibrium play. 

Proposition 4 has already exploited the fact that if all conventional strategies 
are pure, then the Theorem's proof, and hence the Theorem itself, extends 
immediately to cover uniform E optimization. Thus, for E small, so long as 
Conventional Prediction holds, the constraint prevents the players from choos- 
ing strategies that are uniformly E optimal. This does not, of course, prevent a 
player from choosing a strategy that is ex ante E optimal. But, as illustrated in 
Section 1.3, ex ante E optimization per se may not be enough to guarantee 
convergence to Nash equilibrium play. 

If, on the other hand, the conventional set contains nonpure strategies, then 
the proof of the Theorem does not extend. The difficulty is that Lemma S is 
false for uniform E optimization: even if a strategy of is uniformly E optimal, 
some of the pure strategies in its support may not be. Despite this problem, if 
players are sufficiently myopic, then the conclusion of the Theorem does extend 
for conventional sets consisting of the Turing implementable strategies, the 
benchmark case covered in Proposition 4, even if one modifies the definition of 
Turing machine to permit access to randomization devices (coin tossers).24 

Let Xi/ denote the set of strategies for player i that can be implemented by a 
randomizing Turing machine. The proof of the following proposition contains a 
brief description of how randomizing Turing machines are constructed. Under 
that construction, XT is countable. Hence player l's belief can give weight to all 
of XT 

The proof is in the Appendix. 

PROPOSITION 5: Let G be a stage game in which neither player has a weakly 
dominant strategy. There is a 6 E [0, 1) and an - > 0 such that, for any rational 
8 e [0, 8), any 6 e [0,- ), and any belief o2 that gives weight to all of XT, 
Conventional Uniform E Optimization fails for player 1. A similar result holds for 
player 2. 

24A randomization device is distinct from the software used by actual computers to generate 
pseudo random numbers. Since sufficiently complicated Turing machines are capable of pseudo 
randomization, Proposition 4 already encompasses pseudo randomizing strategies. 
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REMARK 6: The proof relies on the fact that S'j is sufficiently rich in 
strategies that, for any oa E X[, there is a strategy s'2 E S2T that is close, in the 
sup norm topology, to a strategy s2 E S2, where s2 is such that, after any history, 
the mixture of actions chosen by ao is maximally suboptimal (s2 is thus an 
element of S2( o), where the latter is defined in the obvious way). The proof of 
Proposition 5 extends to any subsets of Turing implementable strategies that are 
neutral and rich in the above sense. For example, it extends to conventional sets 
formed by the strategies that are implementable by finite automata (roughly, 
computers with finite memory). 

REMARK 7: It is not known to what degree Proposition 5 extends to players 
who are patient (8 is high), although it does extend for some nongeneric stage 
games, such as Matching Pennies. 

REMARK 8: Although, as already noted, the proof used for the Theorem does 
not generally extend to uniform E optimization if conventional sets contain 
nonpure strategies, the proof does extend in special cases. In particular, suppose 
that the joint conventional set X1 x X2 is a trembled version of a pure neutral 
joint set S1 x S2; see Remark 3. Since strategies in X1 are close, in the sup norm 
topology, to strategies in Si, and since the Theorem does extend for S, x S2, a 
version of the Theorem extends for X1 x X2. Somewhat more precisely, one can 
show that there is an - > 0 such that, if Conventional Prediction holds, then 
Conventional Uniform E Optimization fails for any e [0,- ), provided 4 is 
sufficiently small (recall from Remark 3 that 4 is the maximal tremble). 

3.4.2. Boundedly Rational Players 

A boundedly rational player is one for whom deliberation is costly. There is, 
unfortunately, no consensus as to how bounded rationality should be modeled. I 
will assume that a bounded rational player is essentially a Turing machine, and 
that it is this Turing machine that formulates a belief that fashions a response. 

If a player is a Turing machine, then his belief will (almost by definition) be 
computable. As noted in Remark 5, this implies that each player will be able to 
uniformly E optimize. As also noted in Remark 5, since a player's belief is 
computable, the belief cannot give weight to all of his opponent's Turing 
implementable strategies. For example, the belief might assign positive probabil- 
ity only to opposing strategies that are implementable by a finite automaton. 
Define the conventional set for player i to be the strategies to which his 
opponent assigns positive probability. 

If the joint conventional set is neutral, then a variant of Proposition 4 (or, if 
randomization is permitted, of Proposition 5, provided conventional sets are 
sufficiently rich in the sense discussed in Remark 6) tells us that, for 6 small, 
players will choose nonconventional (but still Turing implementable) strategies 
in order to uniformly E optimize. 
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If, on the other hand, bounded rationality implies that neutrality fails, then it 
is possible for Conventional Uniform E Optimization to hold even for E 
arbitrarily small. One might thus be in the ironic position of being able to 
construct a theory of rational learning along the lines proposed when, but only 
when, players are only boundedly rational. But a failure of neutrality, in and of 
itself, does not assure Conventional Uniform E Optimization. For Conventional 
Uniform E Optimization, neutrality must fail the right away, excluding certain 
strategies but not others. Exactly which strategies will depend on the game. It is 
not clear why bounded rationality would imply that neutrality would fail in a way 
that facilitates Conventional Uniform e Optimization rather than impedes it. 

Dept. of Economics, Campus Box 1208, Washington University, One Brookings 
Drive, St. Louis, MO 63130-4899, U.S.A. 

Manuscript received May, 1996. 

APPENDIX 

PROOF OF LEMMA S: Let 
a* 

share the support of 
a, 

and suppose 
a* eBR1(a2'). 

Endow 
2i with the product (pointwise convergence) topology.25 Consider any sequence of strategies alk k XI 

such that (a) a1k converges to a* in the product topology, (b) for any k, a0k shares the support of 
a,, and (c) for any k, alk agrees with a, except for at most a finite number of histories.26 Because 

-* is not a best response, and because V1 is continuous in the product topology, there is a k such 
that a1k e BR1(a2l). Because a1k shares the support of aO, and because a1k agrees with a, except 
for at most a finite number of histories, one can show that there is an a E (0,1] and a a' Ee X1 such 
that al = aoUk + (1-a)a '. Choose any a' E BR1(o2l). Then, since a1k i BR,(a2l) and since a > 0, 

Vl(al, a2l) = Vl(C'alk + (1 -a)al?, a2l) < Vl(aal'+ (1 - 0al?, a2l). 

It follows that a, e BRi(a2l). The proof then follows by contraposition.27 

25 Since the set of finite histories is countably infinite, 21 can be viewed as the product set 
A(A1), where A(A1) is viewed as the unit simplex in R#*A. Endow A(A1) with the standard 
Euclidean topology and endow A(A1l) with the product topology. 

26 In particular, one can construct such a sequence by enumerating the finite histories and, for 
each k, defining alk(h) to equal a,*(h) for each of the first k histories, and to equal al(h) 
otherwise. 

27 The proof exploits the continuity of VI, which follows from the fact that repeated game payoffs 
are evaluated as a present value. If payoffs were instead evaluated by limit of means, continuity 
would fail and the Lemma would be false. For example, consider the two-player stage game in which 
player 2 has only one action and player 1 has two actions, Left, yielding 0, and Right, yielding 1. 
Under limit of means, it is a best response (to his only possible belief) for player 1 to play the 
strategy "following any history of length t, play Left with probability 2', Right with probability 
1 - 2-'." Under this strategy, player 1 plays Left with positive probability in every period. Thus the 
pure strategy "play Left always" is in the support of this behavior strategy even though this pure 
strategy is not a best response. 
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PROOF OF PROPOSITION 1: Let 

wl(al) = max ul(a' ,&2(a1)) - u(al, 2(al)). 
al cA 1 

wl(al) ? 0. Moreover, wl(al) = 0 iff a, is dominant (weakly or strictly). Since, by assumption, no 
action is weakly dominant, wl(al) > 0 for all al. Let 

= min wl(al) > 0. 
al eAl 

Let 

u = max max ul(al,a2), 
a1eA1 a2,EA2 

u1 = min min ul(al, a2). 
aleA1 a2 eA2 

Since no strategy is weakly dominant, i1 > u 
To prove the first part of the proposition, choose 8 sufficiently small that, under uniform c 

optimization, player 1 acts to maximize his current period payoff (i.e. he is effectively myopic). In 
particular, it will turn out that the argument below goes through for 6 > 0 and 8 E (0,11 such that, 
for any E E [0,-) and any 8 E [0, 3), 

E < Wi- ,a [U1 _1 ]- 

Note that such - and 8 do exist. 
Consider any pure strategy s, E S1 and any S2 e S2(s1). Temporarily fix q Ee (0,1). Suppose that 

player 1 learns to predict the continuation path of play. Then, for any continuation game beginning 
at time t + 1, t > t(q, 1) (that is, 1 = 1), player 1 assigns some probability (1 - q') > (1 - q) to the 
actual action chosen by player 2 at date t + 1. For specificity, suppose that at date t + 1, player 1 
chooses action a* while player 2 chooses action a*. Discounting payoffs to date t + 1, player l's 
expected payoff in the continuation game is then at most 

8 
(1 - 7q')ui(a*, a2*) + 77'U1 + U1ii. 1 - 

If player 1 were instead to choose an action a1 in period t + 1 to maximize ul(al, a*), his 
expected payoff in the continuation game would be at least 

(1 - ') max u1(al, a*) + f'uj + - u. 

Thus, uniform E optimization requires 

8 ~~~~~~~~~8 
+ (1 - i7f)ui(a*, a*) + q'Fij + 1- _8Z1 2 (1 - 71) max ul(al, a*) + i1w_u + 1 8-ul 

or 

1-8 E + 71'Fi U- u1) 2W wi _ Pia _1] 

where I have used the fact that, since S2 E S2(s1), maxa. s Al u1(a1, a*) - U1(a*, a*) = w1(a*) 2 w1. 

By the construction of 8 and 8, there is an i1 sufficiently small such that this inequality cannot hold 
for any E E [0, 8) and 8 E [0, 3). This establishes the first part of the proposition. 
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As for the second part of the proposition, suppose that Assumption M holds. Fix any 8 e [0,1) 
and choose E > 0 such that, for any c (=0, E), 

e < -3-ml - maxula,i2a) 1- 8 aleA1 j 

By Assumption M, ml > maxa1e A, ul(al,&2(ad)), hence such e exist. 
Once again, consider any pure strategy s, E S1 and any S2 E S2(sl). Temporarily fix 1 > 0 and an 

integer 1 > 0. Suppose that player 1 learns to predict the continuation path of play. Then, for any 
continuation game beginning at time t + 1, t > t(i1, 1), player 1 assigns some probability (1 - 1') > (1 
- q) to the actual I-period continuation history beginning at date t + 1. In that finite continuation 
history, player 1 receives at most maxal e A, u,(a,, d2(al)) per period. On the other hand, player 1 
believes that there is a probability iq' that the continuation history might be something else. In an 
alternate i-period continuation history, player 1 could receive at most UlI per period. Finally, from 
date t + I + 1 onwards, player 1 could receive at most uI per period. Thus beginning at date t + 1, 
player 1 expects to earn at most 

-8 (1 - q') maA ul(al2(al)) + 'u71 ] + _ , . 

In contrast, any best response must expect to earn at least ml, on average, following any history 
given positive probability by /u(1, s2). Thus, under a true best response, player 1 expects to earn at 
least 

ml 

1 -8 

Thus E optimization requires 

1- 8~~~~~~~~ 1 ~~~ 81 Ml1 
[(1-1 max ul(al, d2(al)) + q'l1 - 

1-8 L ~a1eAl 

or 

e2 (1- 71-8[ml - max u1(al,a2(a1))1 8 + (1 - 8) ] 

By the construction of -, there is an (7,q l) such that this inequality cannot hold for any s E [0, -). 
This establishes the second part of the proposition. Q.E.D. 

PROOF OF PROPOSMON 2: Consider any neutral map I: A xA -* X x I such that '(A1, A) = 

X1 X X2. Consider any pure strategy s1 E X1 = tI'(AI, A2). Let S2 E S2 be defined by 

s2(h) = d2(s1(h)) 

for every history h. I will argue that S2 E 12. I begin with the following observation. 

CLAIM: Consider anyA EA. If crc '1(A,A), then orc E!'2(A, A). 

PROOF: Define C: A xA -A xA by {(a,a')=(a',a). By Property 2(a) of neutrality (player 
symmetry), 'y (or) e YI2(A, A). By Property 3(b) of neutrality (invariance property (b)), yC(y (Or)) E 

I2(A, A). Finally, note that yC(y (cr)) = ar. Q.E.D. 

For ease of notation, henceforth let A1 = A, A2 = A'. 
Consider first the special case in which A cA'. By Property 4(a) of neutrality (consistency 

property (a)), there is an s? Ec I1(A', A') such that s?(h) = s1(h) for all h eZA, A'). By the Claim, 
s? E V2(A', A'). Choose g A' -+A' to be the identity and choose any function g2 : A' --A', 
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possibly not 1-1, such that g?(a) = d2(a) if a EA. By Property 3(a) of neutrality (invariance property 
(a)), y?(so) E IP2(A', A'). By Property 4(b) of neutrality (consistency property (b)), there is a 
strategy s' E IP2(A, A') such that s'(h) = yo(soXh) for all h E:AA, A'). One can verify that 
s2 =S' E 112(A,A'). The argument for A DA' is similar.28 

Suppose, on the other hand, that A ?A' but that #A < #A'. Then one can extend the above 
argument as follows. By an assumption made when A was defined, there exists a set A* EA with 
#A* = #A and A* cA'. Let g1: A -*A* be any bijection and let g2: A' -*A' be the identity. Then, 
by Property 2(b) of neutrality (action symmetry), y1(sl) E 11-1(A*, A'). By Property 4(a) and the 
above Claim, there is an so E A!2(A', A') such that so(h) = y1(sIXh) for any h E-*(A*, A'). Choose 
g?: A' -*A' to be the identity and choose any function g2 : A' A', possibly not 1-1, such that 
g9f(a) = d2(a) if a EA*. By Property 3(a), y2(so) E IP2(A', A'). By Property 4(b), there is a strategy 
s' c A12(A*, A') such that s'(h) = yo(soXh) for all h Ec-(A*, A'). One can verify that s2 = Y2-1(S') 
The argument for #A > #A' is similar. Q.E.D. 

PROOF OF PROPOSITION 5: I begin by sketching how a Turing machine can be made to randomize. 
Recall that a Turing machine operates by executing a sequence of discrete computational steps. In 
each such step, a standard (i.e. deterministic) Turing machine reads one bit (consisting of either a 0 
or a 1) out of memory, consults its current state (a Turing machine has a finite number of abstract 
attributes called states), and then, according to a preset deterministic rule that takes as input the 
value of the bit read from memory and the state, the machine may alter the bit in the current 
memory location, it may change its state, and it may move to a different memory location. The 
customary way to handle randomization is to add to the description of a Turing machine a finite 
number of special states corresponding to one or more coins, possibly biased. If random state f is 
entered, the machine leaves its memory alone but switches with probabilities p(Q): (1 -p(Q)) to 
one of two ordinary states. For computability reasons, p(Q) is assumed to be rational. With 
randomizing Turing machines, there is a subtlety regarding whether the Turing implementable 
strategy plays an action for certain after any history or just with probability 1. For the sake of 
generality, I will allow for the latter. Since the number of random states is finite and since the p( ) 
are rational, each randomizing Turing machine has a finite description and so the set of strategies 
implemented by such machines is countable. 

Extend the domain of fl2 to include mixtures over actions by player 1: for any a,1 E (AI), 

d2(a1) = argmax max ul(al, a2) - Ea1ul(al, a2)l 
a2 EA 2 a1 eA 1 

where Ealul(al, a2) is player l's expected payoff from the profile (a,, a2).29 Similarly, extend the 
domain of wl, introduced in the proof of Proposition 1, so that, for any a,1 E (AI), 

w1(a1) = max u1(al, d2(a1)) - Ea1 ul(a1, d2(a1)). 
a, EA1 

wl(a1) 2 0. Moreover, wl(a1) = 0 iff a1 is dominant (weakly or strictly). Since, by assumption, no 
action (pure or mixed) is weakly dominant, wl(a1)> 0 for all a1. A(A1) is compact and it is 
straightforward to show that w, is continuous. Therefore, 

w1i= min w1(al) > 0. 
a1EA (A1) 

Finally, let Ft and ul be defined as in Proposition 1. Again, since no action is weakly dominant, 
R1 >_1. 

28 Briefly, if A DA' then, by Property 4(a) and the Claim, there is an so E IP2(A, A) such that 
so(h) = sl(h) for all h E:AA, A'). The argument then proceeds largely as before. The one potential 
obstacle is the application of Property 4(b), which requires, for h c(-A, A'), that y ?(soXh) EA' cA. 
This condition is satisfied since, by definition, d2 takes values in A'. 

29As before, if the right-hand side of the defining expression for d2(al) is not single-valued, 
arbitrarily pick one of the values to be d2(al). 
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Choose 8 sufficiently small that, under uniform E optimization, player 1 acts to maximize his 
current period payoff (i.e. he is effectively myopic). In particular, it will turn out that the argument 
below goes through for -> 0 and 8 E (0,1] such that, for any E E [0, -) and any 8 E [0, 8), 

E < w 1~[Ui - l8[ _ 

Note that such - and 8 do exist. 
Choose any al E X[ and temporarily fix a rational number v > 0. I claim that there is a pure 

strategy S2 Ee ST with the property that, for any history h, 

(1) (max ul(al, s"(h)) - EOl(h)ul(al s2(h))) - w1(o1(h)) < v. 

The claim would be trivial if one could set s '(h) = a2(o1(h)). I will discuss the reason for not doing 
so when I show that there is indeed such an s5 E XT 

Temporarily fix E E [0, -), 8 E [0, 8), and q E (0,1). Let al E NT and S, E S2T be as above. Since 
player l's beliefs give weight to all of X2, which is countable, player 1 learns to predict the path of 
play generated by (a,, s'). In particular, for almost any path of play z, for any continuation 
game beginning at time t + 1, t > t(,q, 1, z) (that is 1 = 1), player 1 assigns some probability 
(1 - 71')> (1 - 71) to the actual action chosen by player 2 at date t + 1, namely s?(h), where 
h = ir(z, t), the t-period initial segment of z. Discounting payoffs to date t + 1, player l's expected 
payoff in the continuation game is then at most 

(1- 'q')E,rl(h)ul(al,s i(h)) + i1'91 + 1- 

If player 1 were instead to choose an action in period t + 1 to maximize u1(a,, s '(h)), his expected 
payoff would be at least 

(1-71') max u1(a1,s(h)) + q'u1+ u. 

Thus uniform E optimization requires 

E+ (1 - q')E0,1(h)ul(al, sj(h)) + q'U1 + 1 _ 

2 (1 - 71') max ul(a1, s2(h)) + 'q'U1 + 1 1 
a,1 eA 

or 

E + W (u1-_1) 2 (1-n )w1 (1 n )v 1 _ ^ (u1 )8 

where I have used inequality (1) and the fact that wl(a1) 2 wl. By the construction of - and 8, 
there exist v and q sufficiently small such that this inequality cannot hold for any E E [0, -) and 
8 E [0, a). 

It remains only to show that there is indeed a Turing implementable strategy s2' satisfying 
inequality (1). To avoid bogging down the paper in computability details, I will only sketch the 
Turing machine construction. Suppose, then, that a, is implemented by a Turing machine M. Let 
v > 0 be as given above. From M, one can show that one can construct a new deterministic Turing 
machine MV that does the following. On input of a history h, MV simulates the action of M on h. 
Every time M randomizes, the flow of its program branches in two. MV proceeds by simulating M 
along each branch until M either halts, giving the action chosen by the strategy implemented by M, 
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or M reaches another random state. Proceeding in this way, MV can calculate an approximation, say 
al, to the true mixture over actions, say a, = oj(h). Set 

s2Mh = d2 (al'). 

By the continuity of expectation, and the definition of wl, inequality (1) will hold provided a' is 
sufficiently close to a1. Since M has only a finite number of random states, the accuracy of the 
estimate a' improves geometrically with the depth of the simulation (number of times random 
states are hit). Moreover, since one can program knowledge of the p(f ) into MV, MV will be able to 
calculate whether a depth has been reached sufficient to ensure that its estimate a' is close enough 
to a that inequality (1) holds. Therefore, MV calculates s?(h) in finite time. 

There are two reasons to have MV approximate a, rather than to calculate it exactly. First, if M 
chooses an action only with probability 1, rather than for certain, then MV may be unable to 
calculate a1 exactly. In particular, if MV attempts to calculate a, by the above algorithm, it may 
never arrive at an answer, and so it may fail to choose an action. Second, even if M always chooses 
an action, taking an approximation rather than computing a1 exactly is desirable because it reduces 
the complexity of MV. In particular, by taking an approximation, the number of computational steps 
required by MV can be held to a multiple of the number expected for M, and may even be smaller 
than the worst case for M. Q.E.D. 
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