
A "Reputation" Refinement without Equilibrium
Author(s): Joel Watson
Source: Econometrica, Vol. 61, No. 1 (Jan., 1993), pp. 199-205
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/2951784
Accessed: 09/12/2010 00:36

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=econosoc.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=econosoc
http://www.jstor.org/stable/2951784?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=econosoc


Econometrica, Vol. 61, No. 1 (January, 1993), 199-205 

A "REPUTATION" REFINEMENT WITHOUT EQUILIBRIUM 

BY JOEL WATSON1 

THE ECONOMIC LITERATURE concerning agents' reputations has grown steadily since the 
seminal work of Kreps, Milgrom, Roberts, and Wilson.2 Early work focused on how 
incomplete information leads to equilibria that are vastly different (but more intuitive) 
than those possible in the complete information game. Recently, however, game theorists 
have been studying how incomplete information might refine the set of equilibria.3 One 
important class of games is that in which a single long-run agent plays a simultaneous 
move (stage) game with a sequence of opponents, each of whom plays only once, yet 
observes all previous play. Fudenberg and Levine (1989) study the reputation of the 
long-run player in this type of game. They argue that the "'most reasonable' equilibrium 
is the one which the long-run player most prefers." Their intuition is sustained when one 
perturbs the game with the "Stackelberg strategy." Fudenberg and Levine show that in 
the perturbed game the equilibrium payoffs of the long-run player are bounded below by 
a number that converges to the "Stackelberg payoff." 

Fudenberg and Levine (and the others who have developed reputation models) take 
the notion of Nash equilibrium as fundamental in the analysis. However, it would seem 
as though our intuition about reputations relies little on equilibrium concepts. This leads 
to two questions. First, can meaningful reputations develop apart from equilibria? 
Second, if so, under what circumstances can reputations develop? 

As I will demonstrate, equilibrium concepts are not required in order for players to 
establish significant reputations. I study (following Fudenberg and Levine (1989)) games 
in which a long-run player faces a sequence of short-run opponents. Like Fudenberg and 
Levine, I consider perturbations of the game involving the Stackelberg strategy. How- 
ever, whereas they focus on equilibria, I will only require that players "best-respond" to 
their beliefs. Whenever the conjectures of the short-run players are "generally compara- 
ble" (e.g. contained in a compact set), I obtain the same refinement as do Fudenberg and 
Levine, but without an equilibrium assumption. What is important for reputations is that 
the beliefs of the short-run agents not be too dispersed in a sense to be made precise. 
Players can thus establish meaningful reputations from within the loose confines of 
individual rationality. 

This paper borrows heavily from the work of Fudenberg and Levine (1989). In fact, 
their statistical result (their Lemma 1), which establishes the potential gain of building a 
reputation, requires no notion of equilibrium. It does require that the short-run agents 
hold the same belief, which is implied by equilibrium. I simply invoke their lemma in a 
more general setting (in which short-run players may hold different beliefs) and study the 
type of beliefs which allow it to refine the set of rational outcomes. 

Note that a similar style of research has been followed on another front as well. Cho 
(1991) extends the Coase conjecture to a nonequilibrium setting. Cho's work is similar to 
mine in that we both take as fundamental a rationalizability notion. Our analyses require 
additional restrictions, however, and it is the nature of these restrictions in which our 

11 am grateful to David Kreps, Marco LiCalzi, two referees, and the editor for comments. This is 
Chapter 2 of my Ph.D. dissertation for Stanford University Graduate School of Business. 

2 Kreps and Wilson (1982) and Milgrom and Roberts (1982) resolve Selten's (1977) chain-store 
paradox by studying the incumbent firm's potential reputation in an incomplete information game. 
Kreps, Milgrom, Roberts, and Wilson (1982) use the same technique to support cooperation in the 
finitely repeated prisoners' dilemma. 

3Examples of such inquiries are Aumann and Sorin (1989), Fudenberg and Levine (1989, 1991), 
and Watson (1992a, b). 
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methodologies differ. My model includes an infinite number of short-run players and I 
must require that their beliefs not be too dispersed in order for a reputation by the 
long-run player to be viable. Cho (1991) studies learning schemes of the buyer in the 
standard one-sided offer bargaining model under one-sided incomplete information. He 
invokes rationalizability over the learning schemes of the buyer and the strategies of the 
seller. Cho restricts the buyer's forecasting schemes to be stationary and to satisfy a 
monotonicity condition, and argues that stationarity (rather than equilibrium) drives the 
Coase conjecture. 

1. THE BASIC LONG-RUN/SHORT-RUN GAME 

Suppose a long-run player (hereafter known as player 1) faces an infinite sequence of 
short-run players (players 2). Label each player 2 with the period in which this player 
faces player 1. That is, player 2n faces player 1 in period n. Each period the long-run 
player and this period's short-run player play the finite stage game G = (A1, A2; U1, u2}. 
Each player 2 plays only once, but observes all previous play. In the stage game, player 
l's action space is A1 (from which he selects an action each period), while each player 2's 
action space is A2. The corresponding sets of mixed actions are denoted AA1 and AA2. 
The stage game payoffs of player i (i = 1,2) are given by ui: A1 xA2 -4 R, which is 
defined over action profiles and is extended to the space of independent, mixed action 
profiles by means of an expected payoff calculation. 

Let BR: AA1 -4 AA2 be the best-response correspondence of the players 2, and by a 
slight abuse of notation, let ai EAi denote the mixed strategy for player i that assigns all 
probability to action ai. If some "best-responding" player 2n holds conjecture a,1 E AA1 
about player l's action in period n, then this player will select a strategy from BR(al). 

Player l's Stackelberg (stage game) payoff is the greatest payoff player 1 can be 
guaranteed if he is able to commit to an action. That is, let 

u* max min ul(al,a2) 
ale-A1 a2eBR(ai) 

denote the (pure strategy) Stackelberg payoff, and let al* satisfy 

min ul(al*, a2) = Ui 
aE=-BR (a* 

Action a* is player l's Stackelberg action. Also, let ul mine , A u xA2 u1(a). 
The repeated game described above shall be denoted G S, where 8 E (0, 1) is player 

l's discount factor. Let the long-run player's (stage game) payoff in period n be given by 
u n, for all n = 1, 2,.... The payoff of the long-run player in the supergame is simply the 
normalized, discounted sum of stage game payoffs: (1- )2n=i8n-lun . The payoff of 
each short-run player is the stage game payoff in the period in which she faces the 
long-run player. 

In each period, the long-run and short-run players can condition their actions on the 
entire past history of play. Let Hn denote the set of possible histories through period n. 
That is, Hn =- (A1 xA2)n. Also, let H U n0Hn be the set of all possible histories, and 
let H-.= (A1 x A2)- be the set of infinite histories. Note that Ho 0 represents the 
"history" at the start of the game. Given some infinite history he. E H,, let T(h.) be the 
set of finite histories that agree with h.. I will focus on histories in which player 1 always 
plays the Stackelberg action a*. For simplicity, define H,,* as the set of all infinite 
histories in which player 1 always plays a*, let H* T(H,,*), and let Hn* Hn n H*. 

A (supergame) strategy for player 1 is a mapping s1: H - A1. A mixed (behavior) 
strategy for player 1 is a mapping o-1: H -4 A1. Likewise, a strategy for player 2n is a 
mapping sn: Hn -4A2, n= 1,2,..., and mixed strategies are defined analogously. 
Shortly, I will consider the perturbed game in which player 1 may be forced to adopt the 
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Stackelberg strategy s*, which takes the action a* in each period, regardless of the 
history. That is, s*(h) a*, for all h E H. 

Fudenberg, Kreps, and Maskin (1990) show that a kind of Folk Theorem holds for the 
game just defined. More importantly for this paper, the set of rationalizable strategies 
(Bernheim (1984) and Pearce (1984)) leads to a wide range of outcomes as well. With 
common knowledge of individual rationality, there may be beliefs of the long-run player 
which lead to payoffs that are significantly below the Stackelberg payoff, even as a 
approaches unity. I will show that best-response behavior (weaker than rationalizability) 
leads to a significant refinement in the expected payoffs of player 1 if one allows for a 
slight perturbation of the game. In fact, this payoff refinement is the same as that 
obtained by Fudenberg and Levine! 

2. THE PERTURBED GAME AND RESULTS 

In the perturbed version of G.S, player 1 may not be a "rational" player. With 
probability e player 1 is the perturbation that adopts the Stackelberg strategy s*. Other 
perturbations are allowed but do not change the results to follow, as long as player 1 is 
rational with some positive probability. So then, formally assume that before G S is 
played, nature selects player l's type. With probability e player 1 is the Stackelberg 
strategy, and with probability y player 1 is rational. (If y + 8 < 1 then other perturba- 
tions are selected with positive probability.) Denote this perturbed game G S(8, S*).4 I 
will focus on the expected payoff of the rational player 1 in this perturbed game. 

At each information set in such a game (after all histories), the players entertain 
beliefs about the strategies of their opponents. Player 1 conjectures about the strategy 
that each player 2 employs, and each player 2 holds some belief about player l's strategy 
and the strategies chosen by the other players 2. I will not need to characterize all of 
these beliefs. Rather, I will only need to formulate the conjecture of each player 2 
concerning player l's choice of action al* (after each history). 

Formally, each player 2 holds a system of conjectures 7T {=h}h , Hs which specifies this 
player's belief concerning the likelihood that player 1 will choose the Stackelberg action 
after each particular history h E H. That is, given a system of conjectures 7I and a history 
h E H, 7Th is the probability that this player assigns to player 1 selecting a* after h. Note 
that 7I does not represent a conjecture about player l's type. It merely gives the 
probability that this agent believes player 1 (rational or a perturbation) will select the 
Stackelberg action. Let H be the set of all systems of conjectures that are consistent with 
Bayes' Law and the perturbation of the game. 

Each player 2 plays in only one period, and this period is the only one in which her 
conjecture is vital to her choice of action. However, players 2 will learn from all 
preceding play (and will update their conjectures accordingly). Furthermore, I will need 
to compare the conjectures of the players 2. For these reasons, I have defined systems of 
conjectures for all of the players 2. When it is necessary to identify a particular player 2n7 
I will denote as in this player's system of conjectures in the game G LS(, s*). Otherwise 
I will drop the subscript. 

Assume that all the players know the form of the game being played. Since the game is 
perturbed, there are constraints on the system of conjectures 7I E1 H of each player 2. 
First, it must be that 7T0 > e. Furthermore, by Bayes' Law, 7Th >2 for each h E H*. 
Define the pseudo-metric d: H x H -I R+ as follows. 

For 7T,u E ll d(77A)=SUp {17Th-Ah I Ih EH*}. 

4An alternative interpretation of the perturbed game, which Fudenberg and Levine (1989) adopt, 
is- that "irrational" types are actually best-responding agents, but have different payoffs than their 
"rational" counterparts. For instance, the Stackelberg type may be thought of as having payoffs such 
that the Stackelberg strategy is dominant. 
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This pseudo-metric measures the difference in the conjectures about the Stackelberg 
action over all histories in which a* is always played. (H, d) is thus a pseudo-metric 
space.S Note, though, that HI is not compact. 

I wish to assume a minimal amount of individual rationality. Essentially, I require that 
player 1 believe (or know) that each player 2 holds conjectures that are consistent with 
Bayes' Law and that each player 2 best-responds to her conjecture when called upon to 
play the stage game. I also require that all players know the form of the game, and that 
the rational player 1 selects a strategy that is a best-response to his belief concerning the 
strategies of his opponents. Note that these assumptions are much weaker than assuming 
that players reach an equilibrium in the game. In fact, these assumptions are weaker 
than rationalizability.6 In particular, players may entertain beliefs that are not compati- 
ble with the common knowledge of individual rationality, much less compatible with each 
other. 

In addition to the assumptions above, I require one further assumption concerning 
what the long-run player believes about the strategies of his opponents. A few more 
definitions will simplify matters. Given 7r E1 H and r > 0, let BrG7 ) (iT' c I d(7r, 7r') < r} 
be the ball of radius r centered at ir. P shall denote the set of positive integers. 

DEFINITION 1: Take a function k: R+ -4 P. A set A c H is said to be of size k if and 
only if for each r > 0, A can be covered by k(r) balls of radius r. 

Note that each compact set is of size k for some k: R+ -4 P, because compact sets are 
totally bounded (by the Bolzano-Weierstrass characterization of compact sets). Also, any 
subset of a compact set (any conditionally compact set) conforms to this definition. 

I require player 1 to believe that the systems of conjectures of the short-run players 
are contained in some set of size k, for some k: R + -4 P. This doesn't mandate that 
player 1 know in what set (of size k) the conjectures of the short-run players reside. I 
only require player 1 to believe that, whatever are the conjectures of the players 2, the 
conjectures are not too dispersed. 

The nature of "dispersed conjectures" is not intuitively portrayed by Definition 1. For 
this reason, I think a few examples are in order. First, suppose A c H is a finite set. All 
finite sets are compact, so this certainly satisfies Definition 1. It also demonstrates how 
arbitrary the conjectures of the players 2 can be. Each player 2 can hold any system of 
conjectures, as long as the set of all the conjectures is finite. 

However, much more can be accommodated by Definition 1. Suppose we start with a 
finite number of arbitrary systems of conjectures, A1l, A2' ... , AL E H. Then let A c H be 
defined as the convex hull of {,t1, A2' ... LdL}; that is, vr c A if there is some x from the 
L-dimensional unit simplex such that 17 = X (A,1,... ,AL). By construction, A can be a 
very large (uncountably infinite) set and can include a wide variety of conjectures. In fact, 
A is easily seen to be compact and thus obeys Definition 1. 

As a simple example, suppose we have some finite set of mixed strategies of player 1. 
Then if each player 2 holds a belief whose support is contained in this finite set, the 
corresponding set of systems of conjectures is of size k for some k: R+ -4 P. We can 
allow the support to be infinite, but then we must insist that the beliefs of the players 2 
be convex combinations of a finite number of beliefs. An example which does not satisfy 
this restriction is the following. Suppose each player 2n believes that the rational player 1 

SUsing equivalence classes defined by d, where 1T and ,u are equivalent if and only if 
d(rr, u) = 0, we have a metric space with metric d. See Royden (1988) for details. 

6Rationalizability has not been formally defined for perturbed or Bayesian games, nor for 
infinitely repeated games. However, the notion of rationalizability (which would be present in any 
suitable definition) is based on the iterated deletion of those strategies which cannot be justified by 
best-response behavior. While rationalizability incorporates an infinite number of such iterations, I 
only require that behavior be consistent with two iterations. 
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will select the Stackelberg action through period n - 1, but in period n will select 
another action. Notice, then, that rr n - ? y for all m > n and all h E H,*_ 1. There- 
fore d(77n, rm) 2 y for all n = m, which implies that the set of conjectures of the players 
2 is not compact. My main result below will not hold in such a situation. 

Let F _{7Tn In E P} be the set containing the systems of conjectures of every player 2. 
The assumptions above are summarized by the following definition. 

DEFINITION 2: Take a function k: R+ - P and a given game 
G/f(e, s*). Players are 

said to hold type R-k beliefs if and only if the following are satisfied: 

(1) Player 1 believes (knows) that 
(a) F is of size k, 
(b) each player 2n plays a best-response to her conjecture when she is called upon 

to play (in period n), and 
(c) the system of conjectures I7,1 of each player 2n is consistent with the form of 

the game (specifically, the perturbation); and 
(2) Player 1 knows the form of the game and selects a best-response to his conjectures 

about the strategies of the players 2. 

Notice that player 1 need not know F. Also, it is not sufficient that player 1 believe 
that F is contained in some (possibly unknown) compact set. What is important is that 
player 1 believe that F is of size k for some given k. For example, it is insufficient that 
player 1 believe that F has finite cardinality; we need (in this case) that player 1 know 
that F is of cardinality M or less, for some given M. 

Let J1(0, ?, k) be the infimum expected payoff of the rational player 1 in the game 
G j(e, s*) when players hold type R-k beliefs. This infimum exists because the set of 
feasible payoffs for player 1 is bounded from below. The following result establishes the 
power of the Stackelberg perturbation and demonstrates that players can establish 
significant reputations independent of equilibria. 

THEOREM: Take any function k: R+ P and let e E (0, 1). There exists a number l(k, ?) 
such that 

Y1(, ? k) > 1(k, )u* + (1 -a1(k'E))U 

That is, in the limit (as 8 approaches unity) the rational player 1 is guaranteed at least his 
Stackelberg payoff (in terms of his own expectations). 

PROOF: Since BR is upper hemicontinuous and A2 is finite, there is some p E (0,1) 
such that [a1E AA1, a1(a*)>p] implies that BR(ad)cBR(a*).7 Therefore, given a 
system of conjectures ir for some player 2', 7hr > p implies that player 2n will play a 
best-response to a* if she faces player 1 after history h. 

For any set X, let #X denote the cardinality (number of elements) of X. Fudenberg 
and Levine (1989) prove the following result, which appears here in terms of the current 
notation. 

LEMMA: Take any system of conjectures Tr E- H of a player 2n in the game G LS(8, s*), 
and take any h. E H*. Then 

#{Th <z|h E T(h,)}< <n 
n nz 

for every z E= (0, 1). 

7See Fudenberg and Levine (1989). 
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This implies that, given a system of conjectures for some player 2,n there is a bound 
on the number of times this player would not play a best-response to a* (if called upon 
to play in all periods) if player 1 were to always play a*. 

Given the above facts, the result is not difficult to prove. Fix e E (0, 1) and take any 
function k: R+ -4 P. We presume, then, that player 1 believes F to be of size k. Let 
All A21 ... I *k((l -p)/2) E be such that 

rCB(lp,)2(pl) UB(l-p)/2(p2) U ... 
UB(l-p)/2(k((l-p)/2))- 

Now take one such ,u,, 1 < t < k((1 - p)/2). By the definition of the pseudo-metric d, 
[rh <p for some ir E B(l -p)/2(L.)] implies that Ah < (p + 1)/2. The lemma of Fuden- 
berg and Levine (1989) establishes that, for any h. E, H*, 

/t < IhET(h.)} < ln 
2 hI n(P+) 

Therefore 

#{h< p Ih E- T(h>)T E- B(l -p)/2 ( At) < p + 1 

(2) 

for each t =1, 2,.. ., k((1 - p)/2). 
Thus, for any h. E H*, we have that 

#(< P h T() X c } <k (2 l n (p + 1) - In 2 ( ) 

That is, if player 1 always selects action a*, there are at most l(k, ?) periods (indepen- 
dent of 8) in which his opponent will not play a best-response to a*. The worst case for 
player 1 is when these periods occur at the beginning of the game, where payoffs are 
least discounted. This gives the bound of the theorem. Q.E.D. 

3. AN EXTENSION 

The theorem is most powerful as a limiting result (when 8 converges to one). As such, 
it can be embellished slightly. Here is a more robust interpretation, which is somewhat of 
a corollary. Suppose that we consider a convergent sequence of discount factors {fil -} 1 
which defines a sequence of long-run/short-run games (all with the same stage game). 
Let 7r(-) be the system of conjectures of player 2n in the game indexed by i, and let 

f'-{ (') nIn E=P}. For any set Ac H let wi(A) = 0 i rrn() EAl be the dis- 
counted "weight" (in terms of player l's payoffs) of the players whose systems of 
conjectures in game i are contained in A. 

Suppose we have a sequence of sets (A') clH such that A' is of size k,: R+ P, for 
each i = 1, 2,.... Further suppose that {ki} is such that limi ' a8ki(z) = 1 for all z > 0. 
This allows ki(z) to approach infinity, but not "too quickly." Assume that w'(Ai) 
converges to one as i approaches infinity. Finally, assume players hold type R-ki beliefs 
in game i. Then it is not difficult to show that there is a lower bound J1 on the expected 
payoff of the long-run player in game i, and lim Vl = u- . 

Nuffield College, Oxford OX] INF, United Kingdom 

Manuscript received May, 1991; final revision received May, 1992. 
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