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The definition of fictitious play may depend on first move rules, initial beliefs, weights
assigned to initial beliefs, and tie-breaking rules determining the particular best replies
chosen at each stage. Using the original definition of Brown (1951) in which the first moves
are chosen arbitrarily and no tie-breaking rules are assumed, we give an example of a
fictitious play process in a 2 2 game that does not converge to equilibriulournal of
Economic LiteratureClassification Numbers: C72 C73©1996 Academic Press, Inc.

1. INTRODUCTION

Consider two players engaged in a repeated play of a finite game in stra
(normal) form. Every player observes the actions taken in previous stages, f
beliefs about his opponent’s next move, and chooses a myopic pure best
against these beliefs. In a “fictitious play,” proposed by Brown (1951), ev
player assumes that the other player is using a stationary (i.e., stage-indepel
mixed strategy. Every player takes the empirical distribution of the other play
actions to be his belief about this player's mixed strategy. The definitior
the fictitious play process may depend on first move rules, weights assi
to initial beliefs, and tie-breaking rules determining the particular best rep
chosen at each stage. Other variations of the process can include determ
perturbations of payoffs (see, e.g., Robinson, 1951) or stochastic perturbg
(see, e.g., Fudenberg and Kreps, 1993). In this paper we stick to the ori
definition of fictitious play in which the first moves are chosen arbitrarily a
no tie-breaking rules are assumed.

We say that the process converges to equilibrium if the sequence of be
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(regarded as vectors of mixed strategies) is as close as we wish to the eqt
set after sufficient number of stages. We say that a game has the fictitiou
property (FPP) if every fictitious play process converges to equilibrium. As
shown by Shapley (1964), not every game has the FPP. It is interesting the
to identify classes of games with the FPP. Three classes of such game
been already found: zero-sum games, i.e., bimatrix games of the farmA)
(Robinson, 1951); games with identical payoff functions, i.e., bimatrix ga
of the form(A, A) (Monderer and Shapley, 1996); and games that are strc
dominance solvable (Milgrom and Roberts, 1991). Obviously, every game
is best-reply equivalent in mixed strategies to a game with the FPP has th

It has been commonly thought that Miyasawa (1961) proved that everg :
game has the fictitious play property. However, Miyasawa assumed a part
tie-breaking rule. Monderer and Shapley (1996) showed that everg game
that satisfies the diagonal propértyas the FPP. In a 2 2 game that does nc
satisfy the diagonal property, at least one of the players has a strictly domi
strategy or identical strategies. In this note we show by an example that ¢
with identical strategies for one of the players do not necessarily have th
titious play property. The game we discuss has strategic complementaritie
diminishing returns. Krishna (1991) showed that in such games every ficti
play process in which the players use a particular stationary tie-breaking
converges to equilibriurh This example shows therefore that Krishna’s res
depends on the tie-breaking rule. Note that the set of games that do not sati
diagonal property has a zero measure. So, generically ever¥ game has the
FPP. We do not know whether such a generic result holds for Krishna’s g
as well. Although the game we discuss is degenerate and therefore our
can be considered “technical,” it may indicate that the fictitious play pro
is too sensitive to small changes of parameters and thus may not be the
choice for describing learning phenomena in social sciences. This conclus
supported by Deschamps’ example (Deschamps, 1973), where it is show
small perturbations in a zero-sum game yield a game without the FPP, |
can support the conceptual objections to the usage of the process as a le
device discussed in Fudenberg and Kreps (1993). Another goal of this not
clarify a commonly made mistake in quoting Miyasawa’s theofem.

Tlet G = (a(, j), bd, j))izj=1 be a bimatrix gameG has the diagonal property if # 0 and
B # 0, where

a(l,) +a2,2 —a(l,2 —a(21),
B = b1, 1) +b22 —b(,2 —b21).

S
Il

2 Each player chooses the largest best reply in a given linear order of his strategy set.
3 Such a mistake was made by the authors several times.
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2. FICTITIOUS PLAY

LetN = {1, 2} be the set of players. The set of strategies of Plaigedenoted
by Y' and the payoff function of Playéis denoted byi'. Fori e N let—i be the
other player (i.e., PlaygB —i)). Let A' be the set of mixed strategies of Playe
i and letU' be the payoff function of Playerin the mixed extension game
Fori € N and fory' € Y' we denote by, € Al the probability distribution
concentrated ory'. We calle, a pure strategy and we will identify this pure
strategy with the strategy whenever it is convenient to do so.

For every sequence(t));2, of pure strategy profiles iy = Y1 xY2we
associate asequence of beliéfs= f(e) = (f(1))2 2 in A = A x A2, where
ft) =@t ZS 1 €(s) for everyt > 1. fi(t) € Al is interpreted as the belief
of Player—i on the(t 4+ 1)th move of Player. The sequence = (e(t))2; is a
fictitious play procesi for every playeii, € (t) is a best reply versus— (t — 1)
for everyt > 1. We say that the fictitious play proce@st));°, converges to
equilibriumif every limit point of the associated belief sequence is an equilibrit
profile. Equivalently, the process converges to equilibrium if for every 0O
there exists an integdr such thatf (t) is ane-equilibrium for allt > T. We
say thatG has thefictitious play propertyif every fictitious play process i
converges to equilibrium.

THE COUNTEREXAMPLE. Let

G— 0,1 (0,0
~\L 00 O )

The rows are labeled kyandb so are the columns. We proceed to prove th
this game does not have the FPP.

Proof. Note that Player 1 is always indifferent between the rows. Playe
chooses at stageT + 1) if fX(T) > 1, he choosebif f1(T) < % and he is
indifferent between the two columns whéf(T) = 3.

Let To = & = 1. Both players plag att = 1. We choose integers4 T; <
S <T,< S < T3 <---inaway that is described below. Player 1 play®r
Ty <t < T2k+1, k > 0. He playsh otherwise. The integers are chosen so tf
f2(Ta) = 3, f2(Tar) = 2, and f1(S) =  foreveryk > 1. Consequently, in
a fictitious play process, Player 2 plaeystor everySy <t < Sy,qfork > 0,
and he play® otherwise. We show that

1
k|im inf f2(Ta2) > 7 (2.1)

Hence the sequence of beliefs has alimit pofrit, f2)with f! = 2andf2? > .

Note that the equilibrium set of the game consists of all p@ifs f?) such that
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eitherfl < 2andfZ2=0,o0rf} > Zandf2 =1, or fl = 1. Therefore the
sequence of beliefs has a limit point not in equilibrium.
Let J > 1 be an integer.
Define recursively a sequence of positive integer®;,, ¢, di, az, by, ¢, dy,
as, bs, C3,d3,.... Fork =1, = J, by = 27, ¢, is defined by the equation
J+c _ 1
Jta+b+c 2
andd; is defined by the equation

J+C1+d1 _3

J+a+bi+ci+d 4
At stagek > 1, a is defined by the equation

J+Z, l(cj+d) 1

o (a) T2

where

oc@)=J+ Y (@ +b+¢+d)+ac
j<k-1

by is defined by the equation

J+ZI 1(c,—i—dJ 1

o (by) &
whereo (by) = o (ax) + bk. ¢ is defined by the equation

I+a+ 250 +d) 1

o (C) 2
whereo (¢k) = o (by) + k. dk is defined by the equation

I+o+d+050 +d) 3

o (dy) T

whereo (d¢) = o (C) + d.
Finally defineT, = J, and fork > 1,

Sk-1=Tawr+a& Tax=Sk1+bk Sk=Tx+C Tas1= Sx+d.
We proceed to establish (2.1). Note that

1 K
f2(Tokr2) = Tra (Sl + ;(52141 — SZj)) . (2.2
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As § > T; anday,1 > ¢ for everyk > 1, (2.2) implies

k
T
T+ Z(T21+1 — T | = i (Ta) =—— Acd

f2(Tokr2) =
ah e Toxs2 = Tac+2

As |imkﬁoo(T2k+l/T2k+2) = %, we obtain (21) u

3. REMARKS

2 x 2 games without the diagonal property can be easily classified accor
to the fictitious play property. As this is a degenerate class of games and be
of the next remark, we do not think that such a classification is important.

Almost every “natural” tie-breaking rule thatis incorporated into the definiti
of the fictitious play process will make Miyasawa’s theorem valid; e.g., we
require that a player never switch from a best-reply strategy to another best-
strategy, or we can use Miyasawa'’s tie breaking rule which, in contrast, asst
that a player switches to a new best-reply strategy as soon as possible.
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