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1. INTRODUCTION

The accuracy of forecasts is a central issue in economics and game
Ž .theory. Of particular interest are three questions: 1 What are useful

Ž .notions of being accurate? 2 What are good empirical methods to check
Ž .such accuracy? and 3 What are the relationships between being accurate

and performing well on empirical tests?
This paper studies asymptotic notions of accuracy and empirical perfor-

mance in a general finite-state stochastic process governed by an unknown,
objective probability distribution. Asymptotic accuracy is achieved when a

Ž .forecast merges with the truth. Originated in Blackwell and Dubins 1962 ,
notions of merging require that for a relevant set of events, with time, the
forecasted probabilities approach the real but unknown probabilities.

Ž .Notions of calibration, originated in Dawid 1982 , check whether the
observed empirical frequencies of event occurrences converge to their
forecasted probabilities.

Recently, these notions of merging and calibration have become central
to several different learning models in economics and game theory. Some
of these models show that if players’ forecasts merge with the true
distribution or, alternatively, become calibrated with respect to the truth,
then the play of the game must converge to equilibrium. Complementing
these, other models describe sufficient conditions, on beliefs and behavior,
that lead the players to have merging or calibrated forecasts.

This paper presents both a direct and an indirect contribution to the
current literature. The direct contribution is that it establishes a full
mathematical equivalence between notions of merging and calibration.
That equivalence is summarized in Fig. 1, which describes the logical
implications between existing as well as some new notions of merging and
calibration.1

The main body of this paper consists of a formal presentation of this
diagram, including definitions and proofs. The rest of this introduction and
the concluding section discuss some implications of this diagram for the
forecasting and learning literature and suggest possible extensions and
modifications.

The Existence of Self-Calibrating Forecasts

A forecasting method is self-calibrating if, regardless of the underlying
Ž .distribution governing the system, it yields in the long run calibrated

1Our terminology is inconsistent with earlier literature where the present notions of strong
merging, merging, and weak merging were named, respectively, merging, weak merging, and
almost always merging. But it is consistent across notions; strong merging, merging, and weak
merging correspond, respectively, to strongly calibrated, calibrated, and weakly calibrated.
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FIG. 1. Notions of merging and calibration.

Ž .forecasts. Oakes 1985 illustrates the impossibility of designing such
Ž .methods if full calibration is desired. Foster and Vohra 1993 show that

when one employs strictly weaker notions of calibration, self-calibration is
Žpossible see also Fudenberg and Levine, 1999a, 1999b, and Monderer,

.Samet and Sela, 1996 for related results .
The results reported in this paper give rise to a second way to obtain

restricted self-calibration. The equivalence of merging and being cali-
brated means that being self-calibrated is the same as being able to
guarantee merging, whatever the underlying distribution of the process.
Put together with the fact that merging can be guaranteed when the set of
possible underlying distributions is restricted, we can obtain self-calibra-
tion relative to a restricted set of possible distributions.

The easiest way to illustrate this is by considering a system governed by
an unknown distribution but known to be one from a countable set of
possible distributions F. Any Bayesian forecast that assigns some positive
prior probability to every distribution in F is guaranteed to merge strongly,
whatever the true realized distribution from F. This follows from the
known results about merging and the fact that such a Bayesian forecast

Ž .must always contain a ‘‘grain of truth’’ see Kalai and Lehrer, 1993 . Thus,
such a Bayesian forecast is actually strongly self-calibrating, but only
relative to the distributions in the set F.

Following the above discussion, sufficient conditions that guarantee
Ž .merging at different levels, as in Blackwell and Dubins 1962 , Kalai and

Ž . Ž . Ž .Lehrer 1993 , Lehrer and Smorodinsky 1993, 1995 , and Sandroni 1997 ,
can be used to obtain different levels of self-calibration relative to re-
stricted sets of possible realized distributions.
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Conjectural, Self-Confirming Subjectï e Equilibria

Ž .Conjectural, self-confirming, and subjective equilibria CSS have been
identified repeatedly in recent learning models as more natural than their
established, objective counterparts. For a discussion of conjectural equilib-

Ž . Ž .ria, see Hahn 1973 and Battigalli et al. 1992 ; for self-confirming, see
Ž . Ž .Fudenberg and Kreps 1988 and Fudenberg and Levine 1993 ; and for

Ž .subjective equilibria, see Kalai and Lehrer 1993, 1994a, 1994b . The idea,
Ž .going back to von Hayek 1937 , is that such equilibria should satisfy two

properties.
The first property, subjective optimization, posits that a player operating

in an uncertain, dynamic environment, will make subjective assumptions
and assessments about how his environment works, e.g., about its unknown
parameters and transition rules. He will then choose his own strategy to be
optimal relative to his own subjective assessments.

However, if a player’s assumptions are contradicted by events he ob-
serves or by the frequency with which they occur, he will revise his beliefs
and his strategy. Thus, for equilibrium to prevail, a second condition is
required}that of confirming individual beliefs.

The current literature on CSS equilibria formulates subjective optimiza-
tion by assuming that players maximize expected utility in the Bayesian
manner}that they hold subjective prior probabilities over unknown data
and act optimally relative to these priors. Formulations of the property of
belief confirmation require that the subjective probabilities assigned by
each player to his own observable events coincide with the real objective
probabilities determined by nature and by all players’ actions. In other
words, each player’s subjective forecast of own observable events should be
accurate; in the language of this paper, his forecast should merge to the
true distribution. But since he does not know the true distribution, all he
can do to test his beliefs is check whether the events he observes and the
frequency with which they occur are consistent with his subjective assess-
ments; or in the language of this paper, he can only check whether his
beliefs are calibrated.

This observation suggests that a better definition of belief confirmation
would require players’ beliefs to be calibrated rather than accurate. With
this in mind, the equivalence relations of merging and being calibrated
presented in this paper are fundamental if we are to justify current
definitions of CSS equilibria. Also, the different levels of calibration
introduced herein could help establish more refined levels of belief con-
firmation, and thus of CSS equilibria. While such equivalence relations

Žand other subtleties may be trivial in i.i.d. independent identically dis-
.tributed generated environments, e.g., in the repeated play of an equilib-

rium of a finite horizon game, they are tremendously important if we are
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to understand these concepts in nonstationary environments, e.g., when
players learn the behavior of others in an infinite game.

The repeated-game learning model of Foster and Vohra, discussed
below, is one example. Their players act optimally against beliefs which are
calibrated in the weakest naive sense. Thus, they may be viewed as playing
a weak version of CSS equilibrium. The result of their convergence to
correlated equilibrium, described below, can therefore be reinterpreted as
a general result about such CSS equilibria. Namely, the cumulative empiri-
cal play of naively calibrated CSS equilibria approximates a correlated
equilibrium of the stage game.

Connections among Different Learning Models

As we have already mentioned, recent learning models have shown
convergence to equilibrium by players who optimize with respect to subjec-
tive forecasts that merge or become calibrated. The logical implications
between the notions of merging and calibration presented in this paper
establish relationships among such convergence results.

For a brief illustration, we restrict ourselves to the case of two-player
learning in an infinitely repeated game. We assume that the two players

Ž .know the stage game at least their own portions of the payoff table , but
do not know the repeated game strategies their opponents choose. The
players hold probabilistic assessments regarding the stage actions of their
opponents, and their own strategies are optimal against these assessments.
Each player’s assessment, together with the knowledge of his own strategy,
will result in a forecast about the play path of the repeated game. We
consider two types of results.

Ž .Under strong merging, Kalai and Lehrer 1993 show that, for any
discount parameter, after sufficiently long time T , the distributions over
future play paths approximate Nash equilibria play of the repeated game.

Ž .Under naive calibration, Foster and Vohra 1995 show that, for myopic
players, after sufficiently long time T , the cumulative empirical distribu-
tions of past plays will approximate correlated equilibria of the one shot
game.

Incorporating these results into the previous diagram, we obtain Fig. 2.
Notice that by using the above diagram we may now obtain direct

learning results. For example, if the players’ forecasts strongly merge,
merge, or even weakly merge, they must be naively calibrated. And

Žthrough the Foster and Vohra result the diagram’s bottom-right side
.implication , we may deduce that the frequencies of empirical play must

eventually approximate correlated equilibria of the stage game. Thus, the
cumulative play of optimizers who use merging forecasts will approximate
correlated equilibria of their stage game.
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FIG. 2. Merging, calibration, and equilibrium.

But, ignoring the use of the diagram, stronger conclusions hold. Con-
sider, for example, myopic players with strongly merging forecasts. By the
results of Kalai and Lehrer we know that their stage game plays will

Ževentually approximate Nash equilibria of the stage game myopic players
should be viewed in the Kalai and Lehrer model as ones with very small

.discount parameter . Thus, their cumulative play will eventually be near
the set of convex combinations of Nash equilibria, a set strictly smaller
than the one consisting of correlated equilibria.

The fact that the result obtained through the diagram is weaker than
possible suggests that there is room for refining the diagram further. It
would also be useful to study extensions that cover other behavioral
assumptions. For example, can the above diagram be tied to the new result

Ž .of Hart and Mas-Colell 1996 , about empirical convergence to correlated
equilibrium by regret-minimizing players? It seems also that results re-

Ž .ported by Nyarko 1994 , who obtains convergence to correlated equilibria
without the use of calibration, should be related in a completed diagram of
this nature.

Criticism of Calibrated Notions

While clarifying some important issues, Dawid’s and the newly pre-
sented notions of calibration are far from perfect. To understand their
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shortcomings, the reader must first be familiar with the fine details of the
definitions. The concluding section of this paper contains examples and
discussion showing when the use of calibration may be impractical or less
desirable than other alternatives from a decision theoretic viewpoint.

2. FORECASTING RULES

Consider a finite set of states, V, and a stochastic process selecting one
state v g V in each time period, t s 1, 2, . . . . For each outcome v` st
Ž . ` t Ž .v , v , . . . g V we let v s v , . . . , v denote the history of length t.1 2 1 t
V` is naturally endowed with the s-algebra FF generated by all histories.
We let m denote the probability distribution on V` governing this process,

Ž t.and thus m v N v denotes the conditional probability that the nexttq1
state will be v given the history v t.tq1

A forecasting rule, m, assigns subjective assessments to such conditional˜
Ž t.probabilities. Thus, m v N v denotes the probability that the fore-˜ tq1

caster assigns to the next state being v after observing the history v t.tq1
t Ž Ž t.Assuming that for every history v m ?N v is a probability distribution˜

over V, m induces another unique well-defined distribution on V`. We˜
refer to m and m, respectively, as the real and the subjectï e distributions.˜
ŽOur temporary abuse of notation is justified, since the conditional proba-
bilities determined by the induced are indeed the subjective probabilities
from which m is constructed. See the concluding section for additional˜

.comments.
� 4In weather prediction, for example, V s 0, 1 may denote, respectively,

Ž t.states of a dry or rainy day. m 1 N v denotes the assessed probability of˜
rain on the next day after observing the t-period history of rain described

t Ž t.by v . The real probability of rain, however, is m 1 N v . In a repeated-game
application, v describes the t-period vector of actions taken by n players,t
Ž t.m v N v describes a player’s forecasted probability of the action vector˜ tq1

v after the history of plays v t.tq1

3. NAIVE CALIBRATION

Ž .To test empirically the reliability of a forecast, Dawid 1982 introduced
a notion of being calibrated where the observed frequencies of events
match the probabilities forecast for them. For a simple illustration of this
idea, we will first discuss a substantially weaker notion of calibration,

Ž . Ždefined in the spirit of Foster and Vohra 1995 . For Foster and Vohra,
being calibrated is an assumption that leads to equilibrium. Thus, the use

.of a weaker notion is desirable, since it results in a stronger theorem.



KALAI, LEHRER, AND SMORODINSKY158

DEFINITION 1. m is naï ely-calibrated with m if m-almost every v` g V`˜
satisfies the following condition. For every state s g V and a number

` Ž Ž . .0 F p F 1, if Ý I m s N v s p s `, then˜ts1 ty1

ÝT I m s N v ty1 s p I v s sŽ . Ž .˜Ž .ts1 t
lim s p.T ty1Ý I m s N v s pTª` Ž .˜Ž .ts1

So, naive calibration requires that for all the times that a forecaster says
that the next state will be s with probability p, the long-run empirical
frequency of such occurrences will indeed be p. However, Foster and

Ž .Vohra 1995 provide an example of m which is naively calibrated with m˜
and yet lacks any predicting power.

� 4EXAMPLE 1. Let V s 0, 1 . Suppose that m assigns only one sequence
` ŽŽ ..in V a positive probability. Specifically, let m 0, 1, 0, 1, . . . s 1. A

1 1 1Ž .constant forecast of , , i.e., a probability of is assigned to both 0 and2 2 2

1 after every history, is certainly naively calibrated with m.

Example 1 illustrates a gap between naive calibration and accurate
prediction. While predicting the next state in the 0-1 alternating pattern
seems easy, the constant forecast completely fails in this task, yet it is
declared naively calibrated. Notice, however, that this poor power to
predict can be detected empirically}for example, if we compare the

1forecasted probabilities of 1’s made prior to even periods, which is always ,2

with the empirical frequencies of 1’s on even periods, which is 100%.

3.1. Checking Rules and Calibration

Generalizing the idea of checking only at even times, this section
develops a general notion of a checking rule, and explains what it means
for a forecast to pass it. We then distinguish levels of calibration of
forecasts according to the size of the sets of checking rules they pass.

� 4EXAMPLE 2. Again, let V s 0, 1 , but this time let m be defined
through the following Markovian dynamics: the next state is the same as
the current state with probability 0.99, and the other state with probability

Ž .0.01. Specifically, let the initial state be 0, m v s 0 s 1, and for any1
t Ž t. Ž t.history v , m s N v s 0.99 if s s v and m s N v s 0.01 if s / v .t t

In Example 2, states change infrequently, but the times of change are
stochastic. A good forecaster should be able to predict that a state is not
likely to change from one period to the next. Yet, the constant forecast,
Ž .0.5, 0.5 , is still naively calibrated. The inaccuracy of this forecast will be

Ž .detected, however, if we put it to a test only at the random times when
the last observed state is 1. Thus, the decision about when to check should
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allow dependence on the history of observed states. Extending this logic to
cover forward-looking patterns leads to the following definition.

DEFINITION 2. A checking rule consists of two functions, C and D, both
` t Ž 0defined on the domain of all histories, D V V is a singleton setts0

. t Ž t. � 4containing the empty history . For every history v , C v g 0, 1 , and
Ž t.D v is an event measurable at a finite time t q s where s is a nonnega-

t Žtive integer that may depend on v . An event is measurable at time r if it
is in the s-field determined by cylinders of length r, i.e., all the outcomes
with a common initial history v r belong to the event or they all do not

.belong to the event .

Ž .The interpretation of C, D is the following. The function C indicates
whether after the history v t an inspection must take place. In case an
inspection takes place, D determines what event is to be inspected. For

2 Ž . Ž 2 . Ž 2 . �Ž .example, let v s rain, rain , C v s 1, and D v s rain, rain, sun ,
Ž .4 w Ž 2 . `rain, rain, rain, sun formally, D v contains all the outcomes v with

3 Ž . 4 Ž .v s rain, rain, sun or v s rain, rain, rain, sun , and it is measurable at
xtime 4 . This means that if the first two days are rainy, we will check the

event that the weather will change some time over the next two days.
Ž .To determine whether a forecast passes the checking rule C, D at the

` Ž .outcome v s v , v , . . . we will study the long-run rate of occurrence1 2
Ž t1. Ž t2 . Ž t i.of the events D v , D v , . . . along the subsequence of histories v

whose C value is one. This rate should match the long-run average of the
forecasted probabilities for these events.

Two important comments on the definition of C and D need to be made
Ž t.here. First, requiring that D v be a measurable in finite time is crucial

to our ability to determine eventually whether it occurred or not. However,
Ž t. tthe length of all D v is not bounded as we vary v . Thus, forecasters

with accurate unbounded long-run forecasts can be identified.
Second, C and D being only functions of v t seems to exclude checking

rules which depend on earlier forecasted values. However, this exclusion is
only artificial since we implicitly assume that the checker knows the
forecasting rule. Thus, all values forecast at times 0 through t, being
functions of v t, can play a part in the checking decision at time t. If the
checker does not know the forecasting rule, we should expand the argu-
ments of C and D to depend also on the history of the forecasted values.

We may now describe naive calibration by a restricted set of checking
Ž .rules. Define for every 0 F p F 1 and s g V the m, p, s -checking rule as˜

Ž t. Ž t. Ž t.C v s 1 if m s N v s p, and 0 otherwise. And let D v consist of the˜
Ž t . t Ž .event v , s , the concatenation of v with s. Notice that 1 may be
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written as

ÝT C v ty1 I v s s ÝT m s N v ty1 C v ty1Ž . Ž . Ž . Ž .˜ts1 t ts1
lim s limT ty1 T ty1Ý C v Ý C vTª` Tª`Ž . Ž .ts1 ts1

with the right side actually being the constant p. This inspires the follow-
ing general definition.

Ž .DEFINITION 3. We say that m passes the checking rule C, D if for m˜
` Ž . ` Ž t.almost every v s v , v , . . . , whenever Ý C v s `1 2 ts0

T t ` t t tÝ C v I v g D v y m D v N vŽ . Ž . Ž .˜Ž . Ž .ts0
lim s 0. 2Ž .T tÝ C vTª` Ž .ts0

Notice that, by definition, m is naively calibrated with m if m passes all˜ ˜
Ž .m, p, s -checking rules where 0 F p F 1 and s g V. However, in addition˜
to the improvements already discussed, the new definition enables us to
check the forecaster in other important cases not covered by naive calibra-
tion. Suppose, for example, that along the outcome v` a state s is
forecasted with distinct subjective probabilities, say 0.91, 0.901, 0.9001, . . . .

Ž `. Ž .Then along v m vacuously passes the m, p, s -checking rules for every˜ ˜
value of p, since the value p is forecast at most once. Thus, testing for
naive calibration is meaningless in such a case. On the other hand, under
Definition 3, a checking rule that depends only on m and s is allowable. It˜

Ž `.will enable us to check along v that the long-run rate of occurrence of
s equals its long-run average forecasted probability of 0.90.

Motivated by the various improvements of the naively calibrated subjec-
tive measure in Example 1, and using the notion of checking rules, we
define a partial order over subjective measures.

DEFINITION 4. Let m and m be two subjective distributions. m is˜ ˜ ˜1 2 1
Ž .better calibrated than m with respect to m if m passes every checking˜ ˜2 1

rule that m passes.˜2

Ž .EXAMPLE 1 revisited . Let m and m be as in Example 1. Let m be a˜ ˜2
1ty1Ž .subjective distribution defined by m 1 N v s if 7 divides t but˜2 2

Ž ty1. Žm v N v s 1 for t not divisible by 7 the forecaster tells the truth on˜2 t
.weekdays but randomizes every Sabbath . We can easily see that m is˜2

Ž .better calibrated than the constant 0.5, 0.5 forecasting rule m.˜
We proceed to identify natural levels of calibration by restricting our-

selves to natural classes of checking rules. We start with maximal calibra-
tion.
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DEFINITION 5. m is strongly calibrated with m if it passes all checking˜
rules.

Ž .Dawid 1982 restricted himself to checking rules that consider only
next-period events. The resulting notion of calibration can be seen to be
identical to those obtained by checking rules restricted to uniformly

w t Ž t.bounded finite future horizons for some s G 1 for all v , D v is an
xevent measurable at time t q s . We provide the simpler definition.

Ž . t Ž t.DEFINITION 6. C, D is a short-run checking rule if for every v , D v
is an event measurable at time t q 1.

Ž .DEFINITION 7 Dawid, 1982 . m is calibrated with m if it passes all˜
short-run checking rules.

It is natural also to pose restrictions on checking rules through the
function C, i.e., the frequency of checking.

Ž .DEFINITION 8. A checking rule C, D is attentï e if, for almost every
` Ž . T Ž t.v , lim inf 1rT Ý C v ) 0. And, in particular, a checking rule isT ª` ts1

Ž t. tfull if C v s 1 for all v .

DEFINITION 9. m is weakly calibrated with m if it passes all short-run˜
attentive checking rules.

4. MERGING AND CALIBRATION

Notions of calibration check the consistency of the forecasted probabili-
ties with empirically observed frequencies. We now switch to notions of
merging, where subjective probabilities that are forecast are required to
converge to the true unknown objective probabilities.

Ž .DEFINITION 10 Blackwell and Dubins, 1962 . The subjective distribu-
` Ž .tion m strongly merges to m if for m-almost every v s v , v , . . .˜ 1 2

t t 6

sup m A N v y m A N v 0.Ž . Ž .˜
tª`

AgFF

Ž .DEFINITION 11 Kalai and Lehrer, 1994 . The subjective distribution m̃
` Ž .merges to m if for m almost every v s v , v , . . .1 2

t t 6

sup m A N v y m A N v 0.Ž . Ž .˜
tª`

A;V

w Ž t.The abused notation m A N v stands for the probability of the event A
t xoccurring at time t q 1 given the history v . When m merges with m the˜
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conditional probabilities of next period events, computed by m and m,˜
become arbitrarily close to each other. Under strong merging, this holds
true not just for short-run events, but also for all measurable events
A g FF, even infinite horizon ones.

Ž .DEFINITION 12 Lehrer and Smorodinsky, 1993 . m weakly merges to m˜
` Ž .if for m almost every v s v , v , . . .1 2

t t 6

sup m A N v y m A N v 0,Ž . Ž .˜
tª`

A;V

Ž .where t converges to infinity along some random subsequence of times L
Ž� 4 .of density 1, i.e., lim inf 1, . . . , n l L rn s 1.n

Definition 12 differs from Definition 11 in that it allows for a discrep-
Ž t. Ž t.ancy between m A N v and m A N v along a sparse set of periods t,˜

namely, along a set whose complement has density 1.
We now turn to the connections between merging and calibration.

Ž .Dawid 1982 proved that m is calibrated with itself, but his proof actually
shows that if m merges to m, then m is calibrated with m. In fact, both are˜ ˜
equivalent, as stated in the following theorem. For comprehensiveness, we
include Dawid’s proof.

THEOREM 1. m merges to m if and only if m is calibrated with m.˜ ˜
Proof. We first prove that calibration implies merging. Define for every

number d ) 0, B ; V and stage t:

C d , B v t s 1, if m B N v t y m B N v t ) d,Ž . Ž . Ž .˜

C d , B v t s 0, otherwise.Ž .

Ž .If m does not merge with m, then without loss of generality there is an˜
` Ž . `event A ; V , m A ) 0, such that for for every v g A there is an

t tŽ `. Ž t. d, B tŽ t.infinite sequence B s B v ; V for which C v s C v s 1. De-
t Ž t. tŽ `.fine for all such v D v s B v .

Ž .We prove now that m fails the C, D -calibration test. Define the˜
random variables

X y E X N vTy1Ž .T T` T Ty1X v s I v g B and Y s C v ,Ž . Ž .Ž .T T T T ty1Ý C vŽ .ts1

Ž Ty1.where 0r0 is defined to be 0. Recall that C v is either 0 or 1 and
w Ž Ty1.x T Ž ty1.therefore Y is either X y E X N v rÝ C v or 0. In bothT T T ts1

Ž Ty1. Žcases E Y N v s 0. Therefore, Y is a Martingale difference seeT T
. TShiryayev, 1984, p. 453 ; hence, S s Ý Y is a Martingale. In order toT ts1 T
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apply the Martingale convergence theorem it is sufficient to show that the
second moment of S is uniformly boundedT

2Ty1C vŽ . 22 Ty1E Y F ? E X y E X N vŽ . Ž .Ž .T T T2T ty1Ý C vŽ .ts1

2Ty11 C vŽ .
F ? .2T4

ty1C vŽ .Ý
ts1

Therefore

2Ty1K K1 C vŽ .
2 2E S s E Y F ?Ž . Ž .Ý ÝK T 2T ty14 Ý C vŽ .Ts1 Ts1 ts1

2Ty1 2` `1 C v 1 1 pŽ .
F ? s ? s .Ý Ý2 2T ty14 4 24nÝ C vŽ .Ts1 ns1ts1

ŽBy the Martingale convergence theorem again, see Shiryayev, 1984,
. Žp. 476 , S converges almost surely. By Kronecker’s lemma see Feller,T

. ` Ž t.1971 , if Ý C v s ` and ifts0

T ty1X y E X N vŽ .t t ty1 6

C v 0Ž .Ý t ry1 tª`Ý C vŽ .rs1ts1

converges, then

T t tÝ X y E X N v C vŽ .Ž .ts0 t t 6

0, m-a.e. 3Ž .T t Tª`Ý C vŽ .ts0

Ž ty1. Ž t ty1. Ž tBy the definition of C, whenever C v s 1, m B N v y m B N˜
ty1. Ž t ty1. Ž ty1.v which is equal to m B N v y E X N v is greater than d.˜ t

Ž .Thus, 3 implies

T t t t T t tÝ X y m B N v C v Ý X y E X N v C vŽ . Ž . Ž .˜ Ž .ts0 tq1 ts0 tq1 tq1FT t T ty1Ý C v Ý C vŽ . Ž .ts0 ts0

ÝT d ? C v tŽ .ts0 6y 0 y d. 4Ž .T t tª`Ý C vŽ .ts0

Ž .In other words, the left side of 4 is asymptotically bounded by yd - 0,
meaning that m fails the C calibration test on an event A having˜
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m-positive probability. This contradicts the assumption about m. We con-˜
clude, therefore, that m merges with m.˜

As for the converse, assume that m merges with m. Fix a checking rule,˜
Ž . Ž t. Ž t t. t w Ž .C, D , where D v s v , B , where B ; V. Thus, C, D is a short-run

xchecking rule. We obtain from the previous arguments that

T t t tÝ X y m D v N v C vŽ . Ž .Ž .ts0 tq1 6

0, m-a.e. 5Ž .T t Tª`Ý C vŽ .ts0

Ž Ž t. t.Moreover, by merging, the difference between m D v N v and
Ž Ž t. t. Ž Ž t. t.m D v N v converges to 0. Therefore, replacing m D v N v by˜
Ž Ž t. t. Ž .m D v N v in 5 , we obtain˜

T t t tÝ X y m D v N v C vŽ . Ž .˜ Ž .ts0 t
lim s 0.T tÝ C vTª` Ž .ts0

Ž .Therefore, m passes the C, D calibration test. As this is arbitrary, m is˜ ˜
calibrated. B

So far we have obtained an equivalence between merging and calibra-
tion. We proceed now to the equivalence between the strong counterparts.

THEOREM 2. m strongly merges to m if and only if m is strongly calibrated˜ ˜
with m.

The proof for Theorem 2 involves two main ideas. The first is that of
Theorem 1, namely, the use of the Martingale convergence theorem. The
second idea is based on the fact that the algebra generated by the set of all
cylinders is a basis for the s-algebra on V`. This idea is captured by the
following lemma:

Ž .LEMMA 1 Araujo and Sandroni, 1994 . If there exists a set A with
Ž . Ž . � t 4̀m A ) 0 and m A s 0, then there exist e¨ents B in the algebra˜ ts1

1t tŽ . Ž . Ž .generated by all histories such that m B ª 0, while m B ) m A ) 0˜ 2

for all t.

Proof of Theorem 2. We begin by showing that strong calibration
implies strong merging. We assume m is strongly calibrated with m and we˜
show that m strongly merges to m. Suppose this is not the case. Then by˜

Ž . `the Blackwell-Dubins’ 1962 theorem, there is a set, A ; V , such that
Ž . Ž . Ž t.m A ) 0 and m A s 0. We conclude that m A N v s 0 for all v and˜ ˜

` Ž t.all t. By Levy’s 0-1 law, for almost all v g A, m A N v ª 1, and
Ž t.therefore m A N v can be uniformly bounded from below, from some

Ž .random stage on by some c ) 0.
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By Lemma 1, there exists a sequence of sets in the algebra generated by
� t, rŽ t.4̀ < Ž t, rŽ t. t. <the set of all cylinders, B v such that m B v N v - 1rr,˜rs1

1t, r t t t, t `Ž Ž . � 4and m B v N v ) c ) 0. We focus on the sequence B . Con-ts12
Ž t.sider the checking rule defined by C v s 1 for all v and t and

Ž t. t, tŽ t. t ` Ž t.D v s B v if v can be extended to some v g A, and let C v ,
Ž t.D v be arbitrary otherwise. By similar arguments to those of Theorem 1,

Ž .one can show that m does not pass the C, D -calibration rule on the set A˜
and, therefore, the desired contradiction is reached.

As for the second part, we need to show that strong merging implies
strong calibration. Because the proof repeats the same two ideas, we leave
it to the reader. B

A similar counterpart is obtained between weak calibration and weak
merging.

THEOREM 3. m weakly merges to m iff m is weakly calibrated with m.˜ ˜
Proof. We omit the proof since it is similar to the proof of Theorem 1.

B

5. CONCLUDING REMARKS

A Local Definition of Calibration

The order of quantifiers used in the definition of calibration is one of
two seemingly natural choices. Recall that being calibrated requires pass-
ing all the checking rules in a given set of checking rules, and to pass a
given checking rule means passing it at almost all outcomes. Thus, being
calibrated is not a local property, i.e., defined first at an outcome and then
for all outcomes.

The seemingly more attractive alternative is to have a local definition.
First define being calibrated at an outcome as passing all the checking
rules at this outcome, and then define being calibrated as being calibrated
at almost all outcomes. The attractiveness of a local definition is that it
may be checked locally, i.e., one can actually determine whether one is
calibrated at the realized outcome.

Ž .Similarly with Dawid 1982 , we follow the less appealing global defini-
tion. This is in part because with a local definition it is impossible to obtain
full calibration. Consider even the extreme case of a perfect forecast,
where the forecasted probabilities are exactly correct. While for any given
checking rule there is a measure one set of outcomes that pass, therefore
implying global calibration, it is the case that for every given outcome
there are many checking rules that fail. Thus at no outcome will the
perfect forecast be locally calibrated.
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This observation leads to questions regarding a proper definition of local
calibration. It may be possible to obtain a meaningful local definition of
calibration by other natural restrictions of the set of checking rules. For
example, if one considers only a countable set of checking rules then a
global definition is equivalent to a local one. Alternatively, if we restrict
ourselves to naive checking rules, we can have a measure one set of
outcomes with the property that the forecast passes all the naive checking
rules at each and every outcome in that set. In other words, naive
calibration may be defined locally. There are other possible ways, and
other reasons, to restrict the set of checking rules, as we discuss next.

Restricting the Sets of Checking Rules

All three notions of calibration discussed in this paper require passing
an infinite number of checking rules. This again strengthens the results
that merging implies calibration. But, since it is difficult to impose in-
finitely many tests on a forecast, the other direction of the equi-
valences}that calibration implies merging}becomes less useful. Hence,
one wishes to study several questions. For example, for a class of checking
rules C, find a sufficient subset of rules R such that a forecast passing all
the checking rules in R will also pass all the checking rules in C.

To check weak calibration, we can show that the set of full short-run
Ž .checking rules checking in every period suffices for the class of attentive

Žshort-run checking rules. While this presents a substantial reduction in
.the number of checking rules , the set is still infinite.

In some situations, however, a finite number of checking rules will
suffice. Consider, for example, the case that m is Markovian with a finite

Ž .set of states. For every ordered pair of states s, r , one can construct a
small and finite number of checking rules to check the average forecasted
probabilities of transitions from the state s to r and to be compared to the
actual empirical rate of such transitions. Moreover, one does not have to
know the real transition probability in constructing these checking rules;
all one has to know is that for every pair of states the transition probability
is fixed.

This observation suggests that we enlarge the notion of sufficiency of R
for C to be relative to a known set of possible true distributions, P, from
which the unknown distribution m was drawn. For example, following the
previous discussion, if we select P to be the set of Markovian probability
distributions on a fixed and finite set of states, we should also be able to
find a finite set of checking rules sufficient to check calibration, and,
hence, also sufficient for merging.

While the Markovian case does not apply to nonstationary behaviors,
e.g., cases from game theory, it may be usefully applied to cases involving
nature and seasonal uncertainties.
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Mixed Checking Rule

In multi-person strategic interaction, in which opponents may be en-
gaged in checking, random checking rules may be useful. This may be

Ž t. Ž .accomplished by allowing C v to be any fraction not just 0 or 1 ,
indicating the probability of checking after the history v t.

The Scope of Bayesian Forecasting

Our model deals with Bayesian forecasting in the sense that the fore-
casted probability for the next state being s, after observing the history v t,

Ž t.is the conditional probability m s N v of some fixed probability distribu-˜
tion m. As may be seen from our definition of a forecasting rule, the scope˜
of such forecasting is substantially broader. It covers all forecasts with this
property: after every history, the forecasted values assigned to the next
period possible states sum to one. For a forecast with this property, the

Ž .usual construction of probabilities over finite histories cylinder sets leads
to consistent probabilities, which may be extended uniquely in the stan-
dard way to a unique m with the above-mentioned properties.˜

Consider, for example, the 2-person fictitious-play model of a repeated
game. For simplicity, assume that Player I has two feasible period actions,
denoted by a and b, and consider the probabilities that Player II assigns to
Player I’s next period action. Fitting the fictitious-play forecasting rule into

t Ž .our terminology, a history v is a t-tuple v , v , . . . , v with each v ,1 2 t j
being a or b, denoting Player I’s action at period j. Player II’s assessments
that, in the next period, after history v t, Player I will play the actions a
and b, are computed to be their empirical frequencies in the history v t,
Ž . t Ž . Ž . t Ž . Ž1rt Ý I v s a and 1rt Ý I v s b . One must assign arbitraryjs1 j js1 j
starting probabilities because the above expressions are not defined for the

.empty history. Since these two numbers sum to one, we may conclude that
Player II’s forecast is actually Bayesian, according to some distribution m.˜
Ž .m is described by a distribution of an urn process. Thus, fictitious-play˜

Ž .players are actually Bayesian see Lehrer, 1996 for an explicit construc-
.tion .

Calibrating ¨ersus Being Calibrated

Calibrating a forecast, i.e., bringing it to a calibrated state, may be
achieved in many different ways. The learning papers cited herein offer
sufficient conditions for a subjective Bayesian forecast to merge. Thus, in
view of the equivalence demonstrated in this paper, we may obtain
methods for calibrating through Bayesian updating.

However, other calibrating methods are used in macroeconomic models,
Ž .such as those of Kydland and Prescott 1982 . There one looks at large sets
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of past observed economic data and tries to adjust the parameters of an
economic model to obtain predictions that fit these data. The hope is that
if a good fit to past data is achieved, the same model will predict future
outcomes well, and thus they will be calibrated. While the method of
calibrating may be different, the tests of being calibrated will be similar to
the ones described in this paper.

Coarser Calibration

In the model presented here the forecaster observes all past states and
assigns probabilities to all possible future states. But in large economic
models, such as the macroeconomic models just mentioned, this is too
demanding for either side. The forecaster may only observe some events,
rather than all past states, and may attempt to assign probabilities just to
some future events, rather than to all states. For example, the forecaster
may only forecast probabilities to several levels of future unemployment,
and may only observe some restricted dimensions of the economy. These
situations seem to require us to develop coarser notions of calibration. In
particular, both merging and calibration under partial monitoring should
be studied. A different approach could be simple restrictions of m and m̃
to sub s-fields, while maintaining the current notions of merging and
calibration.

Calibration, Merging, and Decision Making

In economics and game theory, utility-maximizing agents use forecasts
to make decisions. It is important to note that, while this paper compares
forecasts by their level of calibration, a utility-maximizing agent may have
other criteria.

For example, consider again the deterministically alternating 0, 1 pattern
Ž .of Example 1, and the naively calibrated constant 0.5, 0.5 forecast m. Let˜
Ž .m be another forecast which assigns the states 0, 1 the probabilities˜1

Ž . Ž .0.9, 0.1 prior to even periods i.e., before 0 is truly realized , and the
Ž . Ž .probabilities 0.05, 0.95 prior to odd periods i.e., before 1 is realized .

Even though m may be less calibrated than m, it may be more useful for˜ ˜1
decision making.
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