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Imagine that one player, the "incumbent", competes with several "entrants". Each entrant 
competes only with the incumbent, but observes play in all contests. Previous work shows that, 
as more and more entrants are added, the incumbent's reputation may dominate play of the game, 
if the entrants arefaced in sequence. We identify conditions under which similar results obtain 
when the entrants are faced simultaneously, and we find specifications in which adding more 
simultaneous entrants has a dramatically different effect. We also show that, with either sequential 
or simultaneous play, incumbents need not prefer the situation in which their reputations can 
and do dominate play to the "informationally isolated" case in which each entrant observes only 
play in its own contest. 

1. INTRODUCTION 

This paper continues the study of reputation effects in games in which one player is 
engaged in "predatory conflict" with several opponents, each of whom is engaged only 
with the one. In line with the recent literature, we will call the single player the incumbent 
and its several opponents the entrants. We refer to the competition between the incumbent 
and one of its opponents as the basic contest. The notion of reputation enters into these 
games because each player is unsure about how its opponent(s) will play, and each uses 
the previous play by its opponent(s) to help predict future actions. Accordingly, in 
selecting current actions, each player must consider how this will affect not only immediate 
rewards but also the predictions, and hence future play, of its opponent(s). Using 
reputation as a loose synonym for those predictions, each player chooses current actions 
based in part on the reputation that will be built or maintained. Previous work (Kreps 
and Wilson (1982), Milgrom and Roberts (1982)) showed that, in some situations, the 
incumbent's reputation would, as more and more entrants were added, come to dominate 
play of the game, if the entrants were faced in sequence.' Our aim is to see whether 
similar results obtain when the entrants are faced simultaneously. Along the way, we 
will also sharpen what is known about models in which opponents are faced sequentially. 

The models that we examine yield two basic insights. First, the maintenance of a 
reputation in equilibrium depends on a tradeoff between the short run costs of maintaining 
that reputation (including the opportunity costs of not milking it most fully, if that would 
lead to its demise) and the longer run benefits that accrue from it. In the sequential 
contests models, the incumbent's short run cost is the cost of fighting a single entrant, 
while its long run benefits accrue from the many opponents to be faced in future contests. 
If the reputation has a positive value against each opponent, then as the number of 
opponents grows, the short run cost is eventually outweighed by the long run benefits. 
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There is no similar effect on the incentives of the entrants to invest in reputation, and so 
the reputation of the single incumbent dominates. 

The same basic tradeoff arises in simultaneous contest models, but with generally 
ambiguous results because the short run costs rise with the number of opponents. Long 
run benefits rise as well, but only when the long run benefits rise more quickly than short 
run costs will we find that, as with sequential contests, the reputation of the one incumbent 
dominates. This happens in some formulations of simultaneous play, but it does not in 
others that are equally natural. The simple addition of opponents does not ensure that the 
reputation of the one will dominate, even when the net benefits per opponent of a particular 
reputation are positive. The reputation of the one only dominates if the structure of competition 
causes the long term benefits to outweigh short run costs. We will show how the ability of 
the entrants to reenter influences the direction of this comparison. 

Second, the early literature might be interpreted as suggesting that incumbents 
generally favour conditions under which their reputations can (and do) dominate play. 
Compare the informationally linked situation above, in which each entrant observes earlier 
play in all contests, to a situation of informational isolation, in which each entrant observes 
only play in its own contest. (The comparison is between the incumbent's expected value 
from N linked contests and its expected value in N informationally isolated contests; 
not N linked vs. one isolated.) One might have thought that whenever the incumbent's 
reputation dominates linked play, the incumbent prefers linkage to isolation. Indeed, 
this is the case in the basic model of Kreps and Wilson (1982). But a small variation on 
their model (which is in the spirit of the basic model of Milgrom and Roberts (1982)) 
shows that this is not the case in general. Under linkage, the incumbent may defend his 
reputation because the short run costs of keeping it are outweighed by the long term 
opportunity losses that he would sustain if it were lost. Under isolation, he may be able 
to avoid the short run costs, and yet not suffer long term opportunity losses, the best of 
all possible worlds. 

The paper begins, in Section 2, with a very brief recapitulation of the basic model 
of the early literature. We present a formulation a bit more complex than in Kreps and 
Wilson and a bit less complex than in Milgrom and Roberts. This added complexity 
allows us to conclude Section 2 with our first point: an incumbent might prefer informa- 
tional isolation to informational linkage, even in cases in which the incumbent would 
fight to maintain its reputation. 

In the early literature (and in Section 2), the individual contest has a very simple 
temporal structure: First the entrant moves, and then the incumbent responds. Simul- 
taneous contests of this sort would be uninteresting: if entrants made their (only) moves 
before the incumbent had to act, the incumbent's play could not influence the entrants' 
future actions, and so there would be no reputation effect. For this reason, we use a 
richer model of the individual contest, the concession game found in the back half of 
Kreps and Wilson. This is roughly a game of war of attrition, in which a player wins if 
its opponent concedes first. (If neither concedes, then both are losers.) Section 3 begins 
with a brief recapitulation of the equilibrium of the single contest if played in isolation. 
Then we look at sequences of these contests, and we confirm that the results from the 
early literature continue to hold. (Analysis of this latter point is consigned to an appendix.) 

Sections 4 and 5 concern simultaneous play. In Section 4 we analyse a formulation 
in which the reputation of the incumbent does not dominate play as the number of 
entrants increases. Instead, the number of entrants is irrelevant to the equilibrium 
outcomes. The key to the formulation in Section 4 is that if and when the incumbent 
does concede, it retains the winnings it may have secured from earlier concessions by 
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some of the entrants. In this case, the short run cost of maintaining a reputation is 
proportional to the number of entrants there are remaining, as are the reputation's long 
term benefits. Thus, changing the number of entrants has no effect on the nature of the 
equilibrium. 

In contrast, in Section 5 we formulate simultaneous play so that the incumbent, if 
it does ever concede, accrues no further benefits from contests it has already won. In 
the basic tradeoff, costs are proportional to the number of entrants who have not yet 
conceded, while the gain from maintaining the reputation is proportional to the total 
number of all entrants. Thus there is the potential that benefits will exceed costs, and 
the incumbent's reputation will dominate. This does happen, for (at least) one 
specification of the model. In Subsection 5.1, we present the basic model. In Subsection 
5.2, we find the equilibrium for a simple case with two entrants. Even with two entrants, 
we are able to observe subtle effects brought about by linkage. In 5.3 we show how to 
compute the equilibrium for any number of entrants. Asymptotic results are obtained in 
Subsection 5.4; these are in direct accord with those obtained when the individual contests 
are played in sequence. 

Our use of terminology such as incumbent, entrant, simultaneous entry and reentry 
is meant to suggest applications to industrial organization, but the reader should not be 
misled by these terms into imagining that we intend the most obvious interpretations of 
them. In particular, when there is simultaneous entry, one naturally imagines a single 
market into which a number of entrants enter at once. One would expect in that situation 
that the actions of any one entrant would have a direct effect on the payoffs of other 
entrants. This would be an interesting game to investigate, but it is not the one that we 
examine. In the game considered here, each entrant's payoffs depend on its own actions 
and those of the incumbent; other entrants affect it only insofar as their actions change 
the actions of the incumbent. The incumbent is concerned with its many opponents 
learning about it through actions it takes in other contests; entrants do not care what 
they reveal about themselves except to their single opponent. This is not to say that the 
entrants are not worried about their reputation, but that they are only concerned about 
their reputation with the single incumbent. 

The models studied here only continue to scratch the surface of the reputation 
phenomenon. In particular, a priori asymmetries in the characteristics of the entrants 
lead to many interesting effects. We hope to report on some of those effects in a sequel. 

2. SEQUENTIAL PLAY WITH SIMPLE CONTESTS-A RECAPITULATION 

Kreps and Wilson (1982) and Milgrom and Roberts (1982) deal with models in which 
the individual contest has the following basic form. An entrant decides whether to enter 
or stay out of a particular market. If the entrant stays out, the contest ends. If it enters, 
the incumbent must react, either by fighting or acquiescing. With prior probability 1 -p?, 
the incumbent's payoffs in the contest are: if the entrant stays out, the incumbent nets 
a > 0; if the entrant enters and the incumbent acquiesces, the incumbent nets 0; if the 
entrant enters and the incumbent fights, the incumbent nets -1. And with prior probability 
p0, the incumbent has a strictly dominant strategy to fight any entry. For the entrant, 
with prior probability 1 - qo, staying out nets 0, entering and being met with acquiescence 
nets b > 0, and being fought yields payoff -1. And with prior probability q?, the entrant 
does better to enter than to stay out, regardless of the incumbent's reaction. We refer to 
the incumbent as being weak if it has the first payoff structure; the incumbent is strong 
otherwise. And the entrant is weak or strong, if it has the first or second payoff structure, 
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respectively. Since strong entrants and incumbents have dominant strategies, we will 
usually be lax in specifying equilibrium strategies and equilibrium expected payoffs, 
giving these for weak types of players only.2 

The contest above has a unique sequential equilibrium. If there is entry, the incumbent 
acquiesces if weak, so a weak entrant nets expected payoff (1 - p?)b +p?(-1) if it enters. 
It enters, therefore, if p0 < b/(b + 1), stays out if the strict inequality is reversed, and is 
indifferent if there is equality.3 

Now imagine that the incumbent faces a sequence of entrants, indexed by n= 
N, .. ., 1. Entrant N is faced first; after the contest against entrant N is completed, N - 1 
is faced, and so on. Each entrant is weak with probability 1 - q?, independent of the 
others. The incumbent is weak in all contests or strong in all of them, with prior probability 
p0 that it is strong. For a strong incumbent, fighting in all markets where there is entry 
is strictly dominant. The weak incumbent's payoff total is the sum of payoffs in the N 
contests, where payoffs in each contest are as above. 

If the N contests were conducted under conditions of informational isolation, where 
entrant n does not observe the actions of the incumbent in earlier contests, then entrant 
n would begin its contest with prior p0 that the incumbent is strong, and a weak incumbent 
would acquiesce if there is entry. Hence weak entrants enter if and only if po < b/(b + 1). 
In this case, the weak incumbent nets zero in every contest; if po> b/(b + 1), then the 
weak incumbent nets an expected (1 - qo)a per contest, or N(1 - qo)a overall. 

Things are much more complex if the N contests are played under conditions of 
informational linkage, where entrant n observes the past behaviour of the incumbent. 
Then, if the incumbent acquiesces in contest n, it reveals that it is weak. This, it turns 
out, guarantees that all subsequent entrants will enter in at least one sequential equilibrium 
of the game. Hence the weak incumbent, in choosing actions in contest n, must weigh 
the short term costs of fighting (-1) against the long term affect that acquiescence will 
have on its reputation, and hence on the entry decisions of subsequent entrants. From 
the early literature, we obtain the following result. 

Proposition 1. When the incumbent faces N entrants in sequential play of the simple 
contest, and the contests are informationally linked, there is a unique sequential equilibrium 
outcome. The nature of the equilibrium outcome for large N depends on the sign of 
q0 -a/(a+ 1). 

(a) If qo> a/(a + 1), then the incumbent, if weak, acquiesces at the first entry, which 
occurs "early" in the game.4 Hence as N-> oo, the weak incumbent's average payoff per 
contest approaches zero. 

(b) If q?<a/(a+ 1), then for every po>O there is a number n(p?) such that, if there 
are n(p?) or more contests left to go, the incumbent is certain tofight any entry. Accordingly, 
weak entrants with label n(p?) or higher choose not to enter, and the weak incumbent's 
average payoff per contest approaches (1 - qo)a - qo as N -> oo. 

The early literature derived the unique equilibrium outcome, obtaining the asymptotic 
payoff functions as a corollary. A simpler argument is available for obtaining the 
asymptotic results, as developed in Fudenberg and Levine (1987). A synopsis of the 
simpler argument can be given. Imagine that the incumbent follows the strategy of never 
conceding. Since the weak entrants will stay out unless the probability of being fought 
is sufficiently small, every time that a weak entrant enters and is fought the probability 
that the incumbent is strong must rise by an amount that is bounded away from zero. 
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That is, each time the incumbent is called upon to invest in his reputation by a weak 
opponent (with positive probability), doing so must have a nonnegligible effect on that 
reputation (measured by the posterior probability that the incumbent is strong). Thus 
there is a number k independent of N such that if there is positive probability of entry 
by k (or more) weak entrants, then fighting by the incumbent leads to a reputation strong 
enough to deter all future weak entrants. This shows that the incumbent's asymptotic 
average payoff is bounded below by a (1 - qo) - qo. If this expression is positive, then the 
bound is tight, since the incumbent must fight the strong entrants to have a positive 
average value asymptotically. In the case a (1 - qo) - qo < 0, then even if all weak entrants 
are deterred, the average value of fighting is negative. Hence the incumbent (if weak) 
will acquiesce early on, for an asymptotic average value of zero. 

The case qo < a/(a + 1) has received the most attention in the literature. Here the 
incumbent can credibly play the strategy "always fight" because the long-run consequences 
of acquiescence (entry by subsequent weak entrants) outweigh the short-run costs of 
fighting. To emphasize the crucial nature of the basic cost/benefit tradeoff, consider a 
formulation where the various contests have different sizes. Payoffs in the last contest 
(contest 1) are exactly the same as before. Payoffs in contest n are a + 1 times those in 
contest n - 1; for example, in contest 2 the incumbent's cost of fighting is a + 1, and his 
gain from deterring entry is a(a + 1).5 With these payoffs, it does not pay the incumbent 
to fight today, even if so doing deters all future entry. Thus, if p0 < b/(b + 1), for any N 
the unique equilibrium is for all of the entrants to enter. This means that the incumbent 
can deter all future weak entrants by fighting, but the cost of doing so outweighs any 
conceivable future gain. It is the cost! benefit tradeoff, and not the frequency of play or the 
number of opponents per se, which is the key to understanding reputation effects. 

When moving to a situation of informational linkage favours the incumbent's invest- 
ment in reputation, we will say that the incumbent has gained in strategic backbone. 
Naturally, this stiffened backbone comes at a cost. The incumbent must fight all those 
that are not scared off which, in our simple model, amounts to all the strong entrants. 
A stiffened strategic backbone brings with it a loss of strategic flexibility. Milgrom and 
Roberts make clear that this loss of strategic flexibility may sometimes have a cost that 
outweighs the benefits from the stiffened backbone, so that the incumbent's reputation 
need not dominate play. This occurs when qo>a/(a+1). Moreover, even when the 
benefits of a stiffened backbone outweigh the costs of lost flexibility given that markets 
are linked, the (weak) incumbent may be worse off for having to make the choice. 

Would the incumbent, if weak, prefer that the contests take place under conditions 
of informational linkage or informational isolation? Refer to Figure 1. 

When qo> a/(a +1) and p0 < b/(b +1), the weak incumbent is indifferent between 
linkage and isolation. All the entrants enter if there is informational isolation, and it is 
too costly to maintain a stiff backbone with linkage. 

When qo< a/(a + 1) and po< b/(b+ 1), informational linkage is preferred. Here the 
stiffened backbone deters some entrants, whereas none are deterred if the contests are 
informationally isolated, and the gain from a stiffened backbone outweighs the cost of 
maintaining it. 

When po> b/(b + 1), in contrast, the weak incumbent strictly prefers informational 
isolation. The incumbent's ex ante reputation is sufficient to deter the weak entrants, so 
that moving from informational isolation to linkage (obtaining a stiffened backbone) 
provides no gains. The accompanying loss of strategic flexibility means, however, that 
the weak incumbent must fight all the strong entrants that come along, if it wants to keep 
its reputation. The weak incumbent either gives up the reputation altogether if it costs 
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0 

-: (a) (b) 

CO (d)(O) 
0 

0 b/(b+1) 1 

p0-prior probability of 
strong incumbent 

FIGURE 1 

Isolaticn vs. linkage with the simple contest. With informational linkage, the weak incumbent's asymptotic 
payoff per contest is zero in regions (a) and (b), and a - (a + 1)q? in regions (c) and (d). With isolation, the 
asymptotic payoffs are zero in regions (a) and (d) and a(I - qo) in regions (b) and (c). Hence the weak 
incumbent prefers linkage in region (d), isolation in (b) and (c), and is indifferent between isolation and linkage 

in region (a). 

too much to maintain (if qo> b/(b + 1)), or it maintains the reputation at the cost of 
fighting the strong entrants (if qo < b/(b +1)). 

The early literature focuses on the second case, where p0 and qo are each small. This 
particular focus is natural if "strong" types are interpreted as "irrational" firms. But the 
case q?< a/(a + 1) and po> b/(b + 1) should also be borne in mind. The first inequality 
ensures that, for large N, the incumbent's reputation dominates play of the game. If 
forced to choose between having reputation for relative strength or having one for 
weakness, then the weak incumbent prefers strength. But the weak incumbent prefers 
most of all that it does not have to prove itself, because it began a priori with a good 
reputation. It will fight, in equilibrium, but it does so more to avoid losing its good 
reputation and keep scared those who would be scared without linkage than to scare 
those who would not otherwise be. 

3. THE BASIC CONCESSION GAME 

The early literature makes use of a very simple contest, where the entrant moved once, 
and then the incumbent responded. To obtain interesting analyses of simultaneous play 
against many opponents, we need a contest in which the entrants have nontrivial responses 
to the incumbent's play. We use, for the rest of this paper, the concession game of Kreps 
and Wilson (1982, Section 4) as the basic contest, and in this section we describe the 
game and its equilibrium. (Notation will be changed slightly from Kreps and Wilson 
(1982).) 

There are two players, an incumbent and an entrant. The game is played in continuous 
time, over the interval from time one to zero. Time runs backwards. At each time t, if 
neither player has yet conceded to the other, either can choose to do so. As soon as one 
side or the other concedes, the game ends. If neither side concedes by time zero, the 
game ends. 

As in Section 2, each player is one of two types, strong or weak, with the prior 
probability that the incumbent [entrant] is strong being po[q?], independent of the type 
of the other player. A player's type is private information. 
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Payoffs to a player depend on which (if either) party concedes first, when the 
concession occurs, and the player's type. For strong players (both incumbent and entrant), 
it is a dominant strategy never to concede. As in Section 2, then, we will be sloppy and 
sometimes drop the modifier "weak" in discussing the equilibrium strategies of the (weak) 
incumbent and entrant. For weak types of player, it is best to have one's opponent 
concede, second best to concede oneself, and worst to have an opponent that does not 
concede while not conceding oneself. Rewards and losses are proportional to the time 
periods over which they are received/incurred. Specifically, there are constants a > 0 and 
b > 0 with the following assignment of rewards. 

Suppose the entrant concedes first, at time t. Thus the two fight for a period of 
length 1- t, and the incumbent "wins" for a period of length t. The incumbent (if weak) 
nets reward 

at-(I -t), 

or a per unit time that it wins, with a loss of -1 per unit time during the fight. And the 
entrant (if weak) nets -(1 - t), or zero per unit time after it concedes, and -1 per unit 
time during the fight. If the incumbent concedes first at time t, the (weak) entrant nets 
bt - (1 - t) and the (weak) incumbent nets -(1 - t). That is, the cost of fighting is minus 
one per unit time as before, conceding first nets zero for the remainder of the game to 
the side that concedes, and the entrant gets a reward of b per unit time if the incumbent 
concedes first. If neither side concedes before time zero, then each loses a total of -1L6 

In the equilibrium to this game, the two (weak) players engage in a game of "chicken". 
If neither concedes at the outset, each thereafter concedes at a "rate" until such time as 
the one or the other has conceded or each is certain that the other is tough. Precisely, 
suppose that at time t neither side has yet conceded. Play to this time has led to (Bayesian) 
posterior reassessments concerning the toughness of the two players-p, will denote the 
probability that the incumbent is tough, and q, the probability that the entrant is tough. 
We hypothesize an equilibrium where the incumbent (if weak, and if it has not conceded 
by time t) will concede over the period (t, t - h) with probability Tr(t, pt, q,)h, up to terms 
that are o(h), and the (weak) entrant with probability p(t, pt, q,)h + o(h). (That is, Tr 
and p give hazard rates for the concession probabilities.) 

Since the (weak) incumbent is (supposed to be) playing this mixed strategy in 
equilibrium, it must be indifferent between immediate concession at time t and waiting 
until time t - h and then conceding. The former nets zero for the remainder of the game. 
The latter has potential costs and benefits. I With probability close to one, the entrant will 
not concede over this time period, and the costs will total -h. But there is a chance of 
order h, namely (1 - q,)ph, that the entrant does concede before time t - h. This involves 
the marginal probability that the entrant is weak (1 - q,) times the conditional probability 
that the entrant will concede if weak (ph). In this case, the benefit to the incumbent is 
at. Hence (up to terms of order o(h)) the weak incumbent is indifferent between the two 
strategies if and only if 

0= -h +( -q,)phat. 

Dropping the h and repeating the argument for the weak entrant gives the first two 
equilibrium conditions: 

0 a-1 + ( - q,)pat (3.1a) 

and 
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If the weak incumbent does use the strategy Ir, then p, will change through time. If 
ever there is a concession, this of course reveals that the incumbent is weak, and Pt will 
drop to zero. But as long as there is no concession (and Ir > 0), p, should rise. Simple 
application of Bayes' formula yields 

pi,=p,(1-p,)IrT and 4,=q,(1-q,)p. (3.2) 

(See Kreps and Wilson (1982). Here, p3, means dp,/d(-t), since time runs backwards.) 
Substituting (3.2) into (3.1) and dividing one equation by the other, we see that posteriors 
will evolve along a curve 

dq qbkbl =- or q=kpb/a 
dp pa 

for some constant k > 0. 
We assert that k = 1 is required if this is to give an equilibrium. Suppose, for example, 

that k < 1. Then, tracing back through (3.1) and (3.2), one can see that, before time zero, 
Pt will reach one at a time when qt = k < 1. Imagine that the incumbent (if weak) tries 
the strategy of no concession until just after this time. According to (3.1), the expected 
costs and benefits up to this time net out to zero. And at this time the entrant is convinced 
that the incumbent is tough. If weak (which happens with probability 1 - k), the entrant 
drops out immediately. Hence waiting until this time nets the (weak) incumbent a strictly 
positive expected value, and it could not be an equilibrium for it to use vr. Similarly, 
k> 1 is precluded. So, to have an equilibrium of the sort described, posteriors must 
evolve along the curve 

q = pb/a (3.3) 

If (q?, po) falls along this curve, we do have an equilibrium. (To see this involves a 
little checking by the reader.) What if not? Refer to Figure 2. If (q?, po) falls in the 
region labelled Region I, with q0 "small" relative to p0, then the game begins as follows: 
at time one, the entrant (if weak) concedes immediately with probability sufficient to 
make the posterior probability that it is tough if it doesn't concede equal to (PO) b/a 

Thereafter, we follow the equilibrium described above. From Region II, the (weak) 
incumbent concedes immediately with positive probability so that (once again) if there 
is no concession, the posteriors lie along the curve. 

50 Region 11 / 
D(|0/=0pb/a 

.0 

0 1 

Pt-posterior probability of 
strong incumbent 

FIGURE 2 

State space for the concession game contest. 
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These strategies do give an equilibrium. If we lie in Region I, for example, then the 
(weak) entrant randomizes at the start. This is a best response by the entrant: Dropping 
out nets zero for the entrant, as does continued fighting (as the posteriors begin to move 
along the curve). 

Note that for each (weak) player, any positive expected value from the game is 
realized right at the start. After the initial randomization (if any), if the game has not 
ended, the expected value to both sides (if weak) is zero. 

Using the methods of Fudenberg and Tirole (1986), one can show that this is the 
unique equilibrium of this game. 

We introduce this concession game to study reputation effects when the incumbent 
plays many entrants simultaneously. But before doing so, we wish to record that sequential 
play of the concession game yields the same asymptotic results as does sequential play 
with the simple contests of Section 2. Specifically, imagine that the incumbent faces a 
sequence of entrants, n = N, N - 1, . . ., 1. Each entrant is strong with probability qo, 
independent of the others, while the incumbent is either strong in all contests or in none 
of them. Entrant N is faced first, for the full unit of time, followed by entrant N - 1, 
and so on. Under informational isolation, the equilibrium is simply N copies of the 
equilibrium just described. 

Equilibrium play of the N contests under informational linkage is quite complex. 
We provide the sequential equilibrium of this game in the appendix, and we (only) record 
here that the incumbent's asymptotic payoffs are as with simple contests. 

Proposition 2. Imagine that the incumbent faces N entrants in sequential play of the 
concession game. 

(a) If qo > a/ (a + 1), the incumbent's average payoff per contest approaches zero as 
N - co. Moreover, the incumbent (if weak) concedes "early" on in the game. 

(b) If qo < a/ (a + 1), the incumbent's average payoff approaches a (1 - qo) - qo. For 
"most" of the game, the incumbent will not concede whether weak or strong, so that weak 
entrants capitulate at the outset. 

The appendix should be consulted for exact statements. We note also that the asymptotic 
average values can be derived more simply than in the appendix, using the general 
machinery of Fudenberg and Levine (1987). 

The comparison of the payoff to the weak incumbent under conditions of informa- 
tional isolation and linkage are also as before. 

Proposition 3. (Refer to Figure 3.) 
(a) If qo > a/ (a + 1) and po < (q?) a/ b, then the incumbent is asymptotically indifferent 

between linkage and isolation; under either regime, its expected valueper contest has limit zero. 
(b) If po> (a/(a + 1))a/b and a/(a + 1) ? qo (pO) b/a then the incumbent asymptoti- 

cally favours informational isolation. Indeed, under isolation the incumbent has a positive 
expected payoffper contest, whereas its expected payoffper contestfalls to zero with informa- 
tional linkage. 

(c) IfpO> (a/(a + 1)) a/b and q? < a/(a + 1), then the incumbent asymptoticallyfavours 
informational isolation. The incumbent has a positive average payoff in either regime; in 
particular, its reputation dominates play for large n under conditions of linkage. But it loses 
more from the loss of strategic flexibility than it gains from inducing more weak entrants to 
stay out for sure. 
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FIGURE 3 
Isolation vs. linkage with the concession game as the single contest. In region (a), the weak incumbent is 
asymptotically indifferent, as it nets zero per contest in either case. In regions (b) and (c) isolation is preferred. 
Note that with informational linkage, the weak incumbent maintains the reputation in region (c) and gives it 
up in (b). In region (d), the weak incumbent prefers linkage. See Proposition 3 for further details. 

(d) Ifp?< (a/(a + 1))a/b and q? < a/(a + 1), then the incumbent asymptoticallyfavours 
informational linkage. The gainsfrom stiffened strategic backbone outweigh the costs of lost 
strategic flexibility. 

The proof is a simple matter of algebra, given Proposition 2, and it is left to the reader. 

4. SIMULTANEOUS PLAY WITH CAPTURED CONTESTS 

Now we turn to simultaneous play of the concession game. We imagine that one incumbent 
faces N entrants in N distinct contests which are played simultaneously, over the same 
unit length of time. As before, the incumbent is either tough in all contests or in none, 
and the entrants are either weak or tough, independent of each other and of the incumbent. 
Entrants observe what the incumbent does in all the contests and update their assessments 
accordingly. We restrict attention to equilibria in which the incumbent, if it concedes in 
any contest, must concede simultaneously in all contests in which the entrant has not yet 
conceded. (This is not imposed by restricting the strategies available to the incumbent. 
Rather, it will be equilibrium behaviour in all the equilibria we examine.) Each entrant 
gets payoffs from its own contest; the incumbent payoff is the sum of its payoffs in each 
contest. 

Note well that when facing many entrants in sequence, the incumbent has a much 
longer horizon over which to amortize investment in its reputation than does any single 
entrant. Thus it is "natural" with sequential contests that, in some cases at least, the 
incumbent finds that the long-run benefits of a reputation outweigh its short-run costs, 
while the entrants find that reputation's costs outweigh its benefits. With simultaneous 
contests, the incumbent and the entrants amortize investments in reputation over the 
same horizon. Thus the effect of increasing the number of simultaneous entrants is not 
obvious a priori. 

At this point, the specification of the simultaneous contest game is incomplete. What 
happens if some, but not all, of the entrants have conceded by date t, at which point the 
incumbent concedes? In equilibrium, the incumbent concedes in all the remaining active 
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contests. But what happens in the contests that the incumbent has already won? (Note 
that this question is moot with sequential contests.) Does the (weak) incumbent continue 
to get the reward (a per unit time) from those contests it has already won, or does it lose 
those flows of rewards for the time remaining? And what of the entrants that conceded 
previously? Do they continue to receive zero for the remainder of the game, or can they 
reenter to get b per unit time for the time that remains? 

In this section, we will complete the description of the game according to a no reentry 
scenario. The incumbent retains the rewards from contests already won, and entrants 
who conceded earlier get no benefit from the (subsequent) concession of the incumbent. 

Proposition 4. In the no reentry scenario, the equilibrium strategies for the incumbent 
and the entrants are the same whether contests are linked informationally or are isolated. 
These strategies are independent of the number N of entrants. The expected payoffsfor weak 
entrants are precisely as in the one-vs. -one equilibrium of Section 3, while the expected payoff 
to the incumbent is simply N times the expected reward from the equilibrium of Section 3. 

In saying that the equilibrium strategies are the same, we mean that (after initial 
randomizations) each entrant uses the hazard rate p defined in (3.1a), and the incumbent 
uses the hazard rate 7r defined in (3.lb). Posteriors evolve along the curve q = pb/a (unless, 
of course, a player concedes). Initial randomizations are as in the one-vs.-one equilibrium: 
In Region I of Figure 2, the (weak) entrants simultaneously and independently randomize 
at the start of the game, so that the posterior probability that each remaining entrant is 
tough is (pO)b/a, independent of the toughness of the others. In Region II, the (weak) 
incumbent undertakes an initial randomization.7 

All this follows from the equations analogous to (3.1). Suppose we reach a point 
where k of the N entrants have not yet conceded. The indifference equation for each 
entrant, which determines 7r, is unchanged from before. For the incumbent, things are 
slightly more complex. There are k entrants to fight, so the rate of cost expenditure is 
-k. But there are k entrants that might concede, and if each is conceding (independently) 
at hazard rate (1 - q,)p (unconditional on type), then the hazard rate for the "next" 
concession is k(l - q,)p, giving the incumbent a rate of expected gains equal to k(l - q,)pat. 
(Note here the use of the no reentry scenario assumption that, if an entrant concedes, 
the incumbent is able to "bank" the amount at.) Thus the incumbent's indifference 
equation is 

O = -k + k(l - q,)pat, (4.1) 

which, cancelling the k, gives us the pair of equations (3.1). Both the cost (per unit time) 
and the expected benefits (fixing p) from continuing to fight rise linearly with k, so the 
equilibrating concession rate is unchanged with changes in k. Hence the old equilibrium 
continues to obtain.8 

Without reentry, linking the contests does not stiffen the incumbent's backbone, 
regardless of qo and N. Contrast this with the previous section, where for small qo the 
incumbent's reputation dominates play for large N. There, increasing N increases the 
(opportunity) cost of concession, but does not change the (momentary) cost of fighting. 
Here, both costs increase at the same rate. For the incumbent's reputation to dominate 
with simultaneous play, the cost of concession must (be able to) rise more quickly than 
does the number of entrants. 

It is helpful to interpret this result using the "strategic backbone/strategic flexibility" 
notions introduced earlier. One gains strategic backbone only through the (potential) 
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loss of strategic flexibility. That is, strategic flexibility is lost if one, for strategic reasons, 
would wish to treat a given opponent differently if others are watching from how that 
opponent would be treated if others could not observe. This translates to a gain in 
strategic backbone if this change in one's strategic reactions has salubrious effect on the 
initiating actions of others. Of course, to wish to treat one opponent differently from 
others, it is necessary that this opponent be somehow distinguished from the others. But 
in the no reentry scenario and the equilibrium we have constructed, entrants are distin- 
guished only insofar as some have conceded and others have not. All those that have 
not conceded are identical. Since, without reentry, the incumbent need not be concerned 
with entrants that have already conceded, there is no loss in strategic flexibility. Hence 
there can be no gain in strategic backbone. 

Imagine, however, that the game began with entrants that were tough with different 
probabilities. In particular, consider the case of two entrants, one of whom is almost 
sure to be strong, and the other is almost certainly weak. Without linkage, the incumbent 
would net almost a against the "weak" entrant and zero against the "strong" entrant, or 
a in total. It should not be surprising that the incumbent does not do as well under 
conditions of informational linkage, because it cannot afford to concede to the "strong" 
entrant until it has obtained concession from the weak. On the other hand, we believe, 
but have not shown, that if the parameters a and b, as well as the prior, vary across 
contests, then the incumbent could gain by linkage.9 

5. SIMULTANEOUS CONTESTS WITH REENTRY 

5.1. Two models 

In the sequential contests model we observed a loss of strategic flexibility, even though 
priors were equal, because in the course of play the incumbent could come to believe 
that its current opponent was more likely to be tough than are its future opponents. With 
simultaneous play, it is likewise the case that identical priors become unequal posteriors; 
viz., some entrants concede while the others fight. Without reentry this doesn't matter, 
because the incumbent needn't be concerned with entrants that have already conceded. 
But if entrants that have conceded can reenter, we can anticipate that the loss of strategic 
flexibility may be consequential, and that there may therefore be a gain from stiffened 
strategic backbone. 

To investigate this, we consider here two variations on simultaneous play "with 
reentry". In both, if the (weak) incumbent ever concedes, then it nets a zero flow of 
benefits for the remainder of the game. That is, the incumbent loses the flow of benefits 
accruing from contests already won. The variations are distinguished in what happens 
to entrants that conceded prior to the incumbent's concession. In the first variation, 
called (hereafter) reentry scenario A, all entrants receive reward at a rate of b per unit 
time after the incumbent concedes, regardless of whether those entrants conceded earlier 
or not. In reentry scenario B, only entrants that have not already conceded receive this 
positive flow of reward. The description reentry is, therefore, more descriptive of scenario 
A than it is of B; the reason for introducing scenario B will become clear as we proceed. 

The remainder of this section is organized as follows. In the next subsection, we 
analyse the equilibrium for two entrants and for a > 1, both to provide a warm-up for 
the general case and to illustrate the tension between gain in strategic backbone and loss 
of strategic flexibility. In Subsection 5.3, we present the equilibrium for general values 
of N, a and b. More precisely, we show how the equilibrium can be computed recursively; 
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but we have not obtained closed form solution. Finally, in Subsection 5.4, we present 
analysis of the limiting form of the equilibria in 5.3, for large N, under the assumptions 
of scenario B. A summary of the results of Subsection 5.4 are that for any p0 E (0,. 1), if 
q0> a/(a + 1), then the incumbent (if weak) concedes at the outset with probability 
approaching one (Proposition 4), while for q?< a/(a + 1), all weak incumbents concede 
at the outset with probability approaching one (Proposition 5). These results, once 
established, show that the (weak) incumbent's asymptotic expected payoff per contest 
under scenario B is precisely as in the case of opponents faced sequentially, and Proposition 
3 applies to simultaneous contests under scenario B, precisely as stated before for 
sequential contests. 

5.2. The case N = 2 and a > 1 

Consider the case of two entrants and a > 1. If either of the two entrants concedes, then 
the (weak) incumbent's flow of payoffs is a -1 > 0 if the second entrant does not concede. 
Hence the concession of the first entrant ensures that the incumbent will never subsequently 
concede; fighting to the end dominates concession, no matter what the second entrant 
does. This in turn implies that if one entrant does concede and the remaining entrant is 
weak, the remaining entrant, knowing that the incumbent will now fight to the end, 
concedes immediately thereafter. 

Accordingly, we derive an equilibrium of the following form. As in the case of a 
single entrant, we have a curve q =f(p) that runs between (0, 0) and (1, 1), such that if 
there has been no concession yet, if the incumbent is strong with some probability p, 
and if each entrant is strong with probability q, =f(p,), independent of each other and 
of the strength of the incumbent, then all the (weak) players have expected payoffs for 
the rest of the game of zero. Each adopts a strategy of continuous randomization, the 
(weak) incumbent dropping with hazard rate 7r, and each entrant (if weak) dropping 
independently with hazard rate p, such that posteriors computed by Bayes' rule move up 
along the curve (p,f(p)). Before time zero is reached, either some player has conceded 
(which effectively ends the game), or it is known that all players are strong; that is, the 
posteriors (1, 1) are reached. 

If, at the start of the game, (p0, qo) is above the curve, then the (weak) incumbent 
randomizes between immediate concession and beginning to fight, such that no immediate 
concession causes the entrants to reassess the probability that the incumbent is strong to 
be f -(q0). And if (p?, qo) lies below the curve, then the game starts with (independent) 
randomizations by the entrants (if weak) between concession and fighting such that, if 
they choose to fight, the probability that they are strong rises to f(p?). Note that, in this 
second case, it is possible that each entrant is weak, and that after conducting these initial 
randomizations, one chooses to fight and the other chooses to concede. Then, since one 
entrant has conceded, the incumbent is sure never to concede, and the second entrant 
(because it is weak) concedes immediately. That is, a concession by one entrant at the 
start increases the chances of a concession by the second, although their strategies are 
chosen independently. This is a manifestation of continuous time, where we are imagining 
that one player can react instantaneously to the actions of second; the phenomenon is 
just as in Fudenberg and Tirole (1985).1o 

To specify the equilibrium, it remains to give 7r and p, which will also identify the 
curve q =f(p). Analysis just as in Section 4 is employed. Each entrant, while employing 
a continuous randomization strategy p, must be indifferent between immediate concession 
(at time t) and concession after h more units of time. The cost of waiting the extra h 
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units is (with probability very close to one) -h. There is probability (1 -p,)rh that the 
incumbent will concede, which will confer a benefit of bt. And there is probability 
(1 - q,)ph that the other entrant will concede; should this occur, the first entrant (if weak) 
will concede immediately, for a zero continuation value. Since immediate concession by 
this entrant means that the incumbent will never concede, concession either at t or t - h 
means a continuation value of zero (in either scenario A or B), and the entrant's 
indifference equation, which yields 7r, is 

0 = -1 + (1 -pt)rbt. (5.1a) 

For the incumbent's indifference relation, note first that if each entrant (if weak) is 
conceding at rate p independently of the other, and each is weak with probability 1 - q, 
independently of the other, then the rate of the "next" concession by an entrant is the 
sum of the individual rates, or 2(1 - q,)p. Thus we have the indifference equation 

0 = -2+2(1 - q,)p(a + a(l - qt) - qt)t. (5.1b) 

The terms on the right hand side are the cost of fighting (divided by h) -2, and then the 
rate of the next concession 2(1 - qt)p by an entrant times the expected gain to the 
incumbent if one of the two concedes, (a + a (1 - qt) - qt) t. This last term is the gain at 
from the one entrant who does concede, plus the expected gain (a(1 - qt) - qt)t from the 
second entrant. 

Equations (5.1) are substituted into Bayes' rule (3.2) and integrated with the boundary 
condition that the curve q =f(p) passes through (1, 1). This gives the curve, with p 
written as a function of q, 

p q2a/be(1+a)(1-q)/b 

In Figure 4 we graph this curve together with the curve for a single entrant, p = qalb 
The reader can easily verify that the picture is as we have shown, with the curve for two 
entrants lying below the curve for one for high values of q, and lying above for low values 
of q. 

We can see in this picture the tension between the two sides of the informational 
linkage of the two contests, the beneficial stiffened strategic backbone and the costly loss 
in strategic flexibility. For low values of q, gains from stiffened strategic backbone exceed 
losses from the loss of strategic flexibility, because if one entrant can be made to concede, 
it is likely that the stiffened strategic backbone will cause the other to concede. For high 
values of q, if one entrant concedes there are good prospects that the other will have to 
be fought to protect the gains already won, so the losses from lost strategic flexibility 
outweigh the gains from stiffened backbone. 

We should note that a comparison of informational linkage vs. informational isolation 
in this case is not entirely trivial. If (p?, qo) lies above both curves in Figure 4, then the 
(weak) incumbent nets zero in either case. If the initial data lie in the vertically cross- 
hatched region, linkage gives the incumbent a positive expected payoff, while isolation 
gives expected payoff zero in each contest, so that linkage is clearly preferred. Similarly, 
it is clear that isolation is preferred in the horizontally cross-hatched region. But in the 
region below both curves, where the (weak) incumbent has a positive expected payoff in 
either regime, the exact computations must be carried out. We will spare the reader the 
details and simply make the assertion that at points (p?, qo) below both curves, and where 
po is at or below the level at which the two curves intersect, informational linkage is 
preferred. But for p0 above the intersection level, there are points (p?, qo) below both at 
which informational isolation is preferred. 
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FIGURE 4 

The equilibrium for the case N = 2 and a > 1. 

5.3. Construction of an equilibrium for the general case 

The equilibrium of this game for the general case has a relatively simple form, but it is 
quite difficult to compute precisely. We will begin by giving the form of the equilibrium, 
and then we will show how, inductively, one would compute it. 

Let K be the smallest integer such that (N-K)a-K'-O and (N-K-l)a- 
(K+1)<O. That is, K = [Na/(a+1)j, where [ J denotes "integer part of". Note that 
K = 0 is possible. To keep matters simple, we will assume that (N - K)a - K >0. 

Description-of the equilibrium. In either scenario A or B, the game has an equilibrium 
of the following form. (Refer to Figure 5.) For each k = K+, . . ., N, there is a 
corresponding curve in the unit square state space, passing through (0, 0) and (1, 1), with 
the curve for k lying above the curve for k+ 1. 
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FIGURE 5 

State space of the game with simultaneous contests and no reentry. 
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(i) At every time in the game, there is identical probability that any entrant is 
strong, and the strengths of different entrants are independent and independent of the 
strength of the incumbent. We denote the (common) probability that an entrant is strong 
by q, and the probability that the incumbent is strong by p,. 

(ii) If the initial datum (p?, qo) lies above and to the left of the N curve, then the 
game begins with an immediate randomization by the weak incumbent between concession 
and beginning to play, such that, conditional on no concession, the probability that the 
incumbent is strong rises to take us to the N curve. 

(iii) If at any time in the game (including the start), there are k> K entrants that 
have not previously conceded, and if (pt, q,) lies below and to the right of the k curve, 
then those of the k "remaining" entrants that are weak randomize independently between 
immediate concession and continuing to play, so that (for each) the posterior probability 
of strength given no concession moves to the k curve. Note well that if we begin with, 
say, k entrants, and all randomize, there is positive probability that some number j < k 
will continue to fight and k -j will concede immediately. If j > K, then we will again be 
at a point below the relevant curve (now the j curve), and a subsequent randomization 
between immediate concession and continuing to fight will be required. This "cascade" 
of instantaneous randomizations ends in one of two ways: either there are some number 
k'> K of entrants remaining, and the posterior probability of their strength is such that 
(Pt, q,) lies along the k' curve; or there are K or fewer entrants remaining. 

(iv) If at any time in the game there are K or fewer entrants remaining, then the 
incumbent, strong or weak, will fight to the end with probability one. Accordingly, of 
the remaining entrants, all that are weak will concede immediately. 

(v) If at any time in the game there are k > K entrants remaining, and the state of 
the game lies along the k curve, then the entrants and incumbent concede with hazard 
rates that cause the state of the game to move along the k curve. This behaviour ends 
one of three ways: the point (1, 1) is reached (which will happen before time runs out 
in the game). The incumbent concedes, in which case the game is over. One entrant 
concedes, in which case, as we are below the k- 1 curve, the prescription of step (iii) 
above is followed. 

The equilibrium described has as basis the following consideration: if ever N - K 
or more of the entrants have conceded, then the weak incumbent will never concede; the 
positive flow from the N - K contests won is enough to cover the cost of fighting the K 
contests remaining, even if none of the K remaining ever concede. (In terms of the case 
N = 2 and a > 1, K is one-as soon as the first entrant concedes, the incumbent is sure 
to fight for the rest of the game.) Hence, at any point at which the incumbent faces K 
or fewer live entrants, all the remaining entrants that are weak will concede immediately. 
It is the prospect of such an event that keeps the incumbent fighting, and (in equilibrium) 
the incumbent's instantaneous cost of fighting must just be covered by the instantaneous 
expected value composed of the chance that such an event will occur times the value the 
incumbent will receive for the remainder of the game if the event occurs. The concession 
rates of live entrants are adjusted in equilibrium so that this equation holds. And the 
concession rate of the incumbent is set so that live entrants are just compensated for 
fighting by the (instantaneous) chance that the incumbent will concede. Equations similar 
in spirit to (3.1) (and (5.1)) govern concession rates, and hence generate the curves that 
describe the equilibrium. 

The exact equations that replace (3.1) are a good deal more complex than (3.1), on 
two grounds. Consider first the indifference equation of the incumbent, if there are k 
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entrants alive, each conceding with hazard rate p. If the incumbent concedes, it will net 
zero for the remainder of the game, hence the left hand side of the replacement for (3.1a) 
remains zero. The instantaneous cost of fighting is k. The rate at which the next concession 
takes place is (1 - q,)kp. But, whereas in (3.1a) (and in (4.1)) the next concession nets 
at for the incumbent, here it does not. The expression for the incumbent's expected 
value, given this initial concession, is a monster: the k -I remaining entrants all randomize 
immediately, with concession probability that would carry the posterior up to the k - 1 
curve (whose placement is derived in the previous step of a recursive derivation). 
Conditional on the number of the k - 1 entrants that do not concede (unless it is all 
k - 1), we now have another immediate randomization to carry posteriors up to a curve 
of still lower index, etc. Working through all these, we get a marginal distribution for 
(i) the probability that this cascade of randomizations ends on a j curve for K <j < k 
with j entrants still live, in which case the incumbent nets expectation zero in continuation, 
and (ii) the probability that it ends with j_ K live entrants. If it ends with j-' K live 
entrants (the others all strong with some probability q* that depends in a nontrivial way 
on j), the incumbent nets an expected reward of t[a((K -j) +j(l - q*)) -jq*]. (This is 
at from each of the K -j already dead entrants, plus at from the each of j remaining 
that concede immediately, less - t from each of the j remaining that turn out to be strong.) 
If we have the placement of the j curves for all j < k, then this expected gain is certainly 
computable, step by step. But it seems rather formidable analytically. 

* As for the analogue to (3.1b), the distinction between scenarios A and B becomes 
important. Scenario B is the easier to deal with. If an entrant concedes, it will net zero 
for the remainder of the game. Hence the left hand side of the analogue to (3.lb) is zero. 
The instantaneous cost of fighting is -1, as in (3.1b). And the instantaneous expected 
gain arises from the chance that the incumbent concedes, which occurs at rate (1 -p,) 71 
and nets bt for the entrant. (If some other entrant concedes, either the game continues 
along some other j curve, along which the entrant nets zero expected value. Or the game 
ends with a cascade leading to K or fewer entrants, which will mean a payoff of zero 
for a (weak) entrant.) Hence, in scenario B, Xr is given by precisely (3.1b). 

In scenario A, things are more complex. Note that a weak entrant who has conceded 
does not necessarily have zero expected payoff for the remainder of the game. If there 
are more than K entrants left, there is a chance the incumbent will concede, and then 
the entrants that conceded earlier can reenter to accrue a positive reward. Hence the 
value of immediate concession, which goes on the left hand side of the analogue to (3.lb), 
is no longer zero. Rather, it is the solution of an integral equation. The right hand side 
of the entrant's indifference equation will include instantaneous cost (incurred at rate 1) 
and the gain bt times the probability that the incumbent concedes, as before. But also, 
at rate (k - 1)(1 - q,)p, some other entrant might concede, and this will effect the value 
to the weak entrant whose payoffs we are attempting to balance. The exact impact will 
depend, as before, on the distribution of the outcome of the cascade of randomizations 
let loose by any concession (although now we must condition that distribution on the 
knowledge of the one entrant that it, at least, is indeed weak) and on the value of 
continuation to a weak entrant for each of those outcomes. Finally, since this is meant 
to evaluate the expected value to an entrant of conceding after h more time units, we 
must compute that (no longer zero) expected value, which involves yet another set of 
probabilities of how the next cascade will resolve. Once again, the curves are computable 
in theory (although now they are integral instead of differential equations). 

One sees from the description how to prove that an equilibrium of the form given 
above does exist. For k = K + 1, . . ., N, one "computes" the k curve recursively, with 
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the curves for j < k already in place. The important step in the recursion is to show that 
the k curve lies below the k -1 curve. To see that this is so, note that in the analogue 
to (3.la), as the k curve comes closer to the k- 1 curve, the probability that all k- 1 
entrants continue to fight after an initial concession goes to one. Hence the "gain" term 
for the weak incumbent goes to zero. To achieve equality in the analogue to (3.1a), p 
must increase, which increases the slope of the k curve, pushing it away from (and below) 
the k -1 curve. (The exact argument is a bit more complex in scenario A, owing to 
changes in the analogue to (3.1b), but we will not go into details.) An equilibrium exists 
that does have the form given, and, with a large computer budget, one could solve (to 
any desired level of accuracy) for the position of the curves. 

5.4. Asymptotic results 

While we are unable to obtain a closed form solution for the equilibrium, we are able, 
in scenario B at least, to obtain asymptotic results for large N. As in the literature on 
sequential contests, the comparison of qo and a/(a+ 1) is the key. Let us point out, 
however, that here the asymptotics do not follow from the general argument of Fudenberg 
and Levine (1987), as no matter how many entrants are involved, the incumbent and the 
entrants have the same decision horizon. That is, the reputation of each will be of value 
for the same length of time. Of course, the incumbent's reputation is of value against 
more opponent.s, but we know from the no reentry case that this fact alone is not decisive. 
What matters is, of course, the comparison of costs and benefits of the reputation. 

Throughout this section, we let KN denote [aN/(a+ I)], and we will assume that 
a is irrational, so that aN/(a + 1) is never itself integer. 

Proposition 4. In scenario B, if q?> a/(a+ 1), then as N -- oo the incumbent begins 
the game by conceding with probability approaching one. 

Proof The idea of the proof is that, for q?> a/(a + 1), as N goes to infinity there 
is vanishingly small probability that more than N - KN entrants will ever concede, because 
there is vanishingly small probability that more than N - KN entrants are in fact weak. 
Thus there is vanishingly small chance that the incumbent will ever get a net positive 
flow of reward (in fact, we will show that the expected reward vanishes with N), so the 
incumbent will only fight for a very small period of time. But since, in scenario B, the 
amount of time the incumbent must be willing to fight is the time it takes p, to reach one, 
and the equation for the evolution of p, is independent of N, it must be that Pi (after 
initial randomizations) is, in the limit, one. For any fixed p?, this gives the result of the 
proposition. 

A bit more formally, note that in the equilibrium, it is a best response for the 
incumbent to refuse to concede until such time as (pt, q,) reaches (1, 1) (where, of course, 
the incumbent does not concede if, before this time, N - KN or more entrants do in fact 
concede). The time TN at which p, reaches 1 in the game with N entrants depends on 
the probability p1N that the incumbent is strong after any initial randomizations and the 
differential equation fi = p/ bt. In particular, this time approaches 1 (that is, the amount 
of time that elapses until (1, 1) is reached approaches zero) in N if and only if P1N goes 
to 1. So we aim to show that TN must approach one as N -> oo. 

In the game with N entrants, if the incumbent waits until time TN, then the chance 
that the incumbent "wins" before time TN is precisely the probability that there are KN 
or fewer strong entrants initially. If there are more than KN + 1 strong entrants, then the 
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incumbent will, by waiting until TN, lose at least (a+ 1)(1 - rN) (and, probably, a good 
deal more). If there are precisely KN strong entrants, the incumbent will lose some 
amount. And if there are KN or fewer strong entrants, then aN is the most the incumbent 
can hope to win. Thus, by following the "don't concede until TN" strategy, the ex ante 
expected payoff to the incumbent is bounded above by: 

Prob (KN or fewer entrants are strong) x aN 

- Prob (more than KN + 1 strong entrants) x (a + 1)(1 - 'rN)- 

From Feller (1968, VII. 6), the first probability goes to zero at a rate exceeding 
exp (-N114)/N116 and the second probability goes to one. (The estimate given is fairly 
crude.) Hence for the expected value to be nonnegative, it must be that TN - 1, which 
completes the proof. 11 

Proposition 5. In scenario B, if qo < a/(a +1), then as N approaches oo, N - KN or 
more entrants concede at the outset (and the incumbent "wins") with probability approaching 
one. 

Proof We will not give all the details, although the reader should be able to 
reconstruct them from the following sketch. To begin, establish some notation and 
terminology. Let 

A (aq + 1) 2. 

By assumption, A is less than one. Imagine that the incumbent, if weak, plays the strategy 
of no concession until such time as posteriors (1, 1) are reached. Note that this happens 
at some time t*> 0, which can be bounded below by integrating the equation for the 
evolution of p, with the initial condition Pi = po. (It is at this point only that we use the 
assumption that scenario B pertains; to ensure that the law of motion of p, does not 
change with N. Note that if the game begins with a randomization by the incumbent, Pi 
will exceed p?, and t* will be larger.) 

Imagine this incumbent watching the game evolve as he plays this particular waiting 
strategy (which, we note, is among his best responses). Let K(t) be the stochastic process 
that gives the number of remaining entrants at time t, and let +(t) denote the (common) 
posterior probability that the remaining entrants are strong. For definiteness, we fix the 
right continuous versions of these stochastic processes: K (t) gives the number of remaining 
entrants after any cascade of randomizations at time t, etc. We will use K(t-) and b(F) 
to denote the left continuous versions. Let S(t) and S(t) be equal to K(t)+(t) and 
K(t)4(t-), respectively. That is, S(t) is the expected number of strong entrants given 
the information revealed up to (and including) time t. 

Now consider two stopping times. The first is the first time (if it occurs) that there 
are KN or fewer entrants remaining-the first hitting time of {K(t) KN}. The second 
is the first time that b(t)K(t)/N?-Aa/(a+ 1). Note that, for large N. one of rl or T2 
must occur prior to t*. The first stopping time marks a time at which the incumbent has 
"won". The second marks a time at which the remaining entrants are surprisingly strong. 
The meaning of the second description arises from the following result: 

As N -> oo, the probability that rl occurs before T2 approaches one. 

We leave the proof for later, but the intuition should be clear. Given the prior probability 
q?that any entrant is strong, the expected number of strong entrants subsequently, S( t)/ N, 
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must have expected value qo. Moreover, for large N, there can be little variance in its 
value. So the probability that S(t)/N exceeds Aa/(a +1) must approach zero as N -> oo. 

Now suppose that at some time t, the incumbent "wins"; that is, the time ir1 is reached 
(before r2). We claim that the expected number of strong entrants, conditional on this 
event, is bounded above by S(t-). To see this, note that S(t-) is the expected number 
of strong entrants just before time t. The probability of enough concessions at time t to 
cause the "win" (given that at time t one of the K(t-) did concede), conditional on the 
number of actually strong entrants, is decreasing in the number of strong entrants. Hence 
the expected number of strong entrants, conditional on a win at time t, is less than the 
unconditional expectation S(t-). Thus the conditional expected value to the incumbent, 
conditional on a win at time t and conditional on K(t-) and b(F), is at least (aN- 
(a+1)S(t-))t*. Since r2 was not hit before time t, S(t)/N<Aa/(a+ 1), and we have a 
lower bound on this conditional expected value of aN(1 -A)t*. 

At time t, before the times r1 and r2, the maximal rate of cost to the incumbent is 
N. Until these two stopping times, in our equilibrium the instantaneous cost to the 
incumbent must just equal the hazard rate at which the incumbent "wins" times the 
conditional expected value it receives if it does win. So we see that the hazard rate of a 
win for the incumbent at times before rl and T2 is bounded above, uniformly in N, by 
1/(a(l - A)t*). But then by integrating the hazard rate, we see that, over the time interval 
from time one to time t*, the chance of a "no win" (that rl is delayed until after 12) is 
bounded below by 

Prob (no win at outset) x e-(1-t*)1(a(1-A)t*' 

If we know the probability of "no win before T2" must go to zero in N, then probability 
of a win at the outset must go to one. 

To complete the proof, it remains to establish that the probability that ir- is less than 
T2 goes to one as N-> oo. To show this, note that the maximum of rl and r2 is a stopping 
time, and that S(t)/N is a bounded martingale, so that E(S(ir)/N)= q0, where r= 
max(T1, T2). " Fix any e > 0, and let 

a q 4/ 

Select N sufficiently large that 

Prob (fraction of strong entrants < qo - <8. 

(That sufficiently large N do exist follows from the estimate given in the proof of the 
previous proposition.) Now decompose E(S(Qr)/N) into three pieces: the integral over 
the set A1 where 72> Tr; the integral over the set A2 where Tj > T2 and the fraction of 
strong entrants is q?- 8 or less; and integral over the set A3 where ri> T2 and the fraction 
of strong entrants is above q?- -. The integral over A1 is bounded below by the probability 
of A1 times (q?+ a/(a + 1))/2, from the definition of A1. The integral over A2 is nonnega- 
tive. And the integral over A3 is bounded below by q?- 8 times its probability. Hence 
E(S(Qr)/N) is bounded below by 

Prob(Al)x(q +?a1)j2+Prob(A3)x(qo -8) 

a? x(Prob(A )+Prob(AM))-Prob(AM) 8 +Prob(A1')(- a ao? /2 
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-q -Oq? xProb(A2)-8?Prob(Al)(aq?) /2 

/ a ~ a+ 

q?-28+Prob(Aj) +-q)2. 

By the definition of 8, then, the original integral can equal qo only if the probability of 
Al is less than E, which completes the proof. 11 

Although it takes a bit more work, the methods used to prove Propositions 4 and 5 
can be used to describe the location of the k curves (k > KN) for large N. Fixing p E (0, 1), 
for a _ a/(a + 1), the q level of the jaNj curve at p (in the N entrant game) approaches 
a/(a (a + 1)). That is, the picture is as in Figure 6. 

C 1a 
c, ai1 2 a a curvel a NJ 
co 

Cs 

.0 

0 

O a+1 curve Nl 

tl 

0 

0 1 

pt-posterior probability that incumbent 
is strong 

FIGURE 6 

Position of the [aNJ curve for large N and a X [a/(a + 1), 1]. 

In both propositions, we needed to assume that scenario B prevailed. In the first 
proposition, we needed to know that the motion of p, does not become very quick (from 
any given starting point) in N; that if Pt has to reach 1 in a short period of time, then it 
would have to begin at a value close to 1. In the second proposition, we needed to know 
that the motion of Pt does not become very slow; that starting from p0 (or above), when 
the posterior 1 is reached, there is still some amount of time (bounded below in N) left 
in the game. So it seems clear that one of the two propositions must hold in scenario A. 
Intuition would suggest that the incumbent is better off in scenario A than in B. In 
scenario A, entrants face a "free rider" problem in that it is better for any single entrant 
to sit on the sidelines and let the other entrants fight the incumbent than to fight itself. 
If the incumbent does concede, an entrant on the sidelines gets all the benefits (in scenario 
A) that accrue to one who fought. If this intuition is correct, then Proposition 5 would 
be the one more likely to survive in scenario A. 



562 REVIEW OF ECONOMIC STUDIES 

In fact, we believe that both propositions do in fact survive in scenario A. An earlier 
version of this paper (available upon request) shows that this is so at the "limit" game, 
in which the incumbent faces a continuum of entrants. But scenario B is sufficient to 
make the point that we wish to make, namely that with simultaneous play, one must look 
closely at the structure of the game to see if the reputation effect of the incumbent 
dominates. We leave further analysis to the interested reader. 

APPENDIX: SEQUENTIAL PLAY OF THE CONCESSION GAME 

In this appendix, we analyze sequential play of the concession game, as outlined at the end of Section 3. In 
particular, we provide a proof of Proposition 2. This is done for a particular equilibrium, which we will construct 
along the way. (We do not know that this is the only sequential equilibrium of this game, although we believe 
that it is.) We use the following notation: the expected value to the weak incumbent from equilibrium play in 
contests n, n - 1, . . .1, if contest n begins with the entrants assessing that the incumbent is strong with probability 
p is denoted by v,, (p). (Recall that contests are indexed backwards, so that contest 1 is the last.) The probability 
qo enters as a parameter to this function and is held fixed throughout. We will prove the following strengthened 
version of Proposition 2. 

Proposition 2'. 
(a) In the equilibrium to this game, vn(p) is nondecreasing in p. 
(b) If qo> a/(a + 1) then v,(p) < a(1 - q?)/lq< 1, and the long run expected value percontest to the (weak) 

incumbent approaches zero. There is a constant k( p?) (independent of N) such that the incumbent, if weak, will 
fight for a total length of time that is bounded above by k(p?). Hence the probability that the incumbent (if weak) 
has not conceded by the end of round N - m decays exponentially in m. 

(c) If qo < a/(a + 1), then there is a number n (p?) such that in all contests against entrants of index greater 
than n (p?), the incumbent (weak or strong) will fight for the full unit time with certainty. Accordingly, weak 
entrants in those contests concede immediately. And limN-, VN(p)N = a(1 - qo) - qo (for all p?> 0). 

The equilibrium 

The first step is to give the equilibrium construction. Recall that the incumbent, if strong, will always fight, 
and strong entrants always enter. Hence we will describe only the equilibrium strategies of the weak incumbent 
and weak entrants. Throughout, qo, the prior probability (at the beginning of each stage) that the current 
entrant is strong, is treated as a parameter and is suppressed in the notation. We use v,1(p) to denote the 
expected payoff to the weak incumbent for play of the game from stage n to stage 1, inclusive, when stage n 
begins with the entrants assessing probability p that the incumbent is strong. 

The equilibrium takes the following form at stage n: 

(0) If, at any point in the game, the incumbent concedes, whether in equilibrium or out, entrants revise 
assessments that the incumbent is strong to be zero. Thereafter, the incumbent concedes immediately in all 
contests, and entrants never concede. 

(i) If v,1_-(p)? 1, then the (weak) incumbent will refuse to concede in the current round, even if 
convinced that the current entrant is strong. Hence weak entrants will concede at the outset of this round. It 
is immediate in this case that v,,(p) = a - (a + 1)q?+ v,1-I(p). 

(ii) If v,1( - p) < 1, then there is a curve analogous to the curve q = ph/a along which play evolves in this 
stage, after initial randomization by one side or the other which takes us to the curve. The placement of this 
curve depends on n and on p. It is given by indifference equations analogous to (4.1), which in this case are 

1 = (1 -p,)lTbt and 1 = (1 -q,)p(at+ v,1_,(p,)), (A.1) 

where t in these equations refers to the time remaining in the current stage. These indifference equations, 
together with Bayes's rule (4.2), give differential equations 

p _ _ q p=- and q4= qA2 
bt at +v-, (D)(A2 
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for the evolution of the posteriors in the current stage. The boundary condition for this curve (analogous to 
the condition in the single contest game that the curve passes through (1, 1) is: at the time t* (in the current 
stage) at which q,* = 1 (the entrant is certain to be strong), the value to the incumbent beginning the next stage 
must satisfy the inequality 

v,1_ p,*) _ t~. (A.3) 

If (A.3) holds as a strict inequality, then the boundary condition is that p,* = 1, and the weak incumbent's 
strategy has called for him to concede with probability one by this point. If (A.3) holds as an equality, then 
p,* < 1 is possible, and the weak incumbent's strategy calls for him to refuse to concede for the remainder of 
the current stage. 

We establish that an equilibrium of this form exists by induction on n, the number of stages remaining 
in the game. We will show, as we proceed, that the boundary condition given in (ii) is uniquely specified as 
we compute v,, recursively. As part of the induction hypothesis, we establish that each v,, has the following 
properties: 

(iii) v,, is nonnegative, has value zero at p = 0, is nondecreasing and strictly increasing when it is nonzero, 
and it is continuous. 

Initiating the induction. As the first stage in our inductive proof, we note that v,, the value function 
associated with the equilibrium for a single stage of the game given in Section 3, has all the properties given 
in (iii). Thinking of vo as being identically zero, we see as well that the equilibrium for this last stage is described 
by (ii). This initiates the induction. 

If the incumbent ever concedes. We note next that (0) above is indeed compatible with (sequential) 
equilibrium. As long as entrants will never again concede, the weak incumbent wishes to concede immediately 
in all cases. Entrants, expecting the incumbent to concede immediately with probability one (and being 
unshakeable in this belief) will never concede. Note that this shows that v,, (0) is indeed zero. Also, since a 
strong incumbent will never concede, the beliefs entailed in (0) are consistent with any equilibrium strategies 
for this game. 

Beginning with vn-1 (p) 1. Suppose the properties above have been established for all j_ n - 1. Consider 
play beginning at the start of stage n, with initial probability p" that the incumbent is strong. If v,,_,(p`) ' 1, 
then play as described in step (i) is certainly equilibrium play. If the incumbent will not concede at all in this 
stage, then weak entrants concede immediately. If weak entrants concede immediately, then the incumbent 
will be certain, if there is no concession, that the current entrant is strong, and hence the current stage will cost 
1. Given (0), if the weak entrant does concede, then p will move to zero, and the incumbent will then net the 
continuation value vn_-(0) = 0. Hence it is an equilibrium for the weak incumbent to pay the cost of 1 and get 
in return the continuation value vn_-(p`)- 

(Indeed, this is the only possible path of equilibrium play at this stage, given that v,,_, gives the continuation 
value. If in some equilibrium the weak incumbent were to concede with positive probability, then Bayes' rule 
would force beliefs given concession to zero, giving zero continuation value next period. Since fighting will 
lead to a p`l beginning the next stage which is no lower than the current value p", and since v,,_ is (by the 
induction hypothesis) strictly increasing above p" (and, hence, is strictly greater than one), it cannot be an 
equilibrium for the weak incumbent to concede with positive probability.) 

This implies that v,(p") = a - qo(a + 1) + v_,1 (p"). Thus v,, inherits all the properties of v,,_, that are 
outlined in (iii) for p above the smallest value such that v,,(p) ' 1. 

Beginning with v,,(p) < 1-preliminaries. The harder case is where we begin stage n with p" such that 
v,,-,(p') < 1. Note that, in such circumstances, the behaviour described in (i) is not equilibrium behaviour. If 
the entrants play as in (i), then unless the entrant concedes immediately, the incumbent concludes that he faces 
a strong entrant, but the value of continuation if he follows the equilibrium strategy and does not concede is 
insufficient to compensate him for the cost of fighting to the end of the current period. 

We construct instead an equilibrium of the form outlined in (ii). There is, as in Section 3, an initial 
randomization by one side or the other, such that if there is no initial concession, then both sides (if weak) 
have continuation value zero for the rest of the game. Each then concedes continuously, until such time as 
either one or the other concedes, or until an appropriate boundary condition is reached. We use, as before, Xf 
to denote the concession (hazard) rate of the weak incumbent, and p to denote the concession rate of the weak 
entrant. By the same sort of logic as in the one stage game, Xf and p must satisfy the indifference equations 
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(A.1) given above. The equation for ir is just as before-the weak entrant must just be compensated for the 
cost of fighting by the expected rate at which the incumbent will concede, times the prize won if the incumbent 
does concede. The equation for p has an additional term, since concession by the entrant gives the weak 
incumbent at in the current contest and v,,_,(p,) beginning the next. Bayes' rule is as always, so in this regime 
of continuous randomizations, posteriors evolve according to the differential equations (A.2). 

v,, (p) < 1-solutions of the differential equations and the r function. The next step is to consider the 
solution to the differential equations (A.2) as a function of initial conditions. Refer to Figure Al. We suppose 
that we start the current round at some point (pf, q?), and that there may be an initial randomization by one 
(weak) side or the other, so the differential equations will be initiated at some point (Pi, q,) with either pi - p" 
and q, = qo or P, = p" and q, ? qo. That is, we begin the differential equations running at some point along 
one of the two rays emanating from (pnf, q?) that are shown in Figure Al. Given the assumptions about v,,1 
in the induction hypothesis, the solutions to the differential equations are well behaved in their initial conditions: 

(iv) The solutions to the differential equations (A.2), as functions of their initial conditions along the 
rays shown in Figure Al, are continuous in those initial conditions. Paths from two different initial conditions 
do not intersect. 
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FIGURE Al 

Solutions to the differential equations (A.2) for various starting and ending points. 

The equation for p, integrates to show that, since j- p, as long as pN >0, the level p, = 1 is reached 
by some time prior to time zero. Hence from each of the possible initial conditions along the two rays, there 
is a time t* depending on the initial conditions at which the path of (p,, q,) exists from the unit square. 
Moreover, because of (iv), there is a continuous bijection between initial conditions along the two rays and 
"terminal positions" {(p, 1): p ' p"I} u {(l, q): q ' qo} at which (p,, q,) departs the unit square. 

Accordingly, there is some particular initial condition (p^, q) along one of the two rays such that the 
solution of (A.2) starting from that point passes out of the unit square at (1, 1). Figure Al is drawn so that 
(p^, q) lies to the right of (p', qo); this need not be the case in general. However the following is generally true. 
For every p'e [po, 1], there is a unique starting position (p(p'), q(p')) lying to the right and/or above (p^, q), 
along one of the two rays, such that with (p(p'), q(p')) as starting position, the solution to the differential 
equations exists the unit square at (p', 1). These initial conditions are continuous in p'. 
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Let r(p') be the time remaining when the curve that exists at (p', 1), starting at (p(p'), q(p')), hits (p', 1). 
Being excessively formal, r(p') is such that, in the solution to (A.2) with initial condition (p(p'), q(p')), 

p,(p) -p' and q,(P,) = 1. (Note that p(p'), q(p'), and (p') all depend on the initial point (p", q?), since (p", q?) 
determines the two rays that form the set of possible initial conditions.) Now we can show: 

(v) For any initial point (pf, q?), r(p') is continuous and strictly decreasing in p'e [p", 1]. Moreover, 
for fixed p', T(p') is nonincreasing in p", and it is strictly decreasing if p(p') = p". 

We leave to the reader the task of establishing (v), using the differential equations (A.2) and the assumed 
monotonicity (in p) of v,,1-. Note that r(p") = 1 and T(l) > 0. 

v,,,(p) < 1-terminal conditions and the equilibrium. We can now derive the terminal condition that 
determines the equilibrium beginning at stage n with pn. Refer to Figures A2(a) and A2(b). We have graphed 
there T(p') and v,,-1(p') for p'E [pn, 1]. Note that, by assumption, vn_ ((p") <1 = T(p"). Hence we either have 
a picture as in A2(a), in which the two curves intersect once and once only at some p'e (p', 1], or we have the 
picture in A2(b), in which Vn-I (1) < T(1). The uniqueness and existence of an intersection point (if Vn- (1) _ Tr(1)) 

follows from the facts that both v,,1 and r are continuous, r is strictly decreasing, and v,,1 is strictly increasing 
(where it is nonzero). 
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Finding the correct terminal condition for stage n 

(a) In this case, the correct ending is (p*, 1), where p* is the solution of T(p)= V,,,(p). 

(b) In this case, where T(1) > V,, -I(1), the correct ending point is (1, 1). 
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Imagine that v_,-(1) < r(1). Then we use a terminal condition for stage n the condition that the curve 
must pass through the point (1, 1). At this point, by assumption, the value to the weak incumbent starting in 
the next stage is less than the cost the incumbent would pay to wait for the next stage to begin (since the 
incumbent now knows that the current entrant is strong with probability one). Accordingly, if the weak 
incumbent waits until this posterior is reached, its optimal continuation is to concede immediately, netting 
value zero. This is the right terminal condition; as in the single contest analysis, we can now integrate back 
from this terminal condition to show that the weak incumbent's expected payoff is zero all along the curve 
through (1, 1), hence XT is a best response for the weak incumbent to its opponents' strategies. 

Now consider the case where the curves v,, , and r do intersect. We use in this case the terminal condition 
that the curve for stage n passes through the point (p*, 1) where p* is the point of intersection of the two 
curves. By construction, when the time r(p*) is reached, the value of continuation beginning in the next stage 
is just equal to the cost the weak incumbent must incur to get to that stage. Hence the value to the incumbent 
at this terminus is zero. Once again, the incumbent's value all along the curve integrates back to be identically 
zero, and the incumbent is using a best response to its opponents' strategies. 

It is important that, in the second case, the incumbent does not concede at the time r(p*) with positive 
probability-it continues on to the next stage with probability one. Of course, after the instant r(p*) the 
incumbent wishes strictly to remain, as the value beginning the next stage is undiminished, while the cost 
remaining to be paid to get to that stage decreases as time passes. But at r(p*), the incumbent is just indifferent. 
Still, if the incumbent were to concede with positive probability at r(p*), then the weak entrant would, by 
waiting until (just after) r(p*), obtain a positive expected value, contradicting the optimality of the strategy 
specified by p. 

v,,_,I(p) < 1-completing the induction step. We have now established that the equilibrium in stage n has 
the form we outlined. To complete the induction (and finish the proof that there is an equilibrium of this 
form), we must show that vn inherits all the required properties. Continuity of v,, is tedious but straightforward: 
If p" moves a bit, so do the associated initial conditions p(p') and q(p') for each p', and (therefore) so does 
r(p'). The intersection point p* therefore moves a bit, which means that the initial condition at the intersection 
point q(p*) moves continuously in pn, and this initial condition continuously determines v,. 

Nonnegativity of vn is obvious. It remains to show that v,, is strictly increasing in p" when it is nonzero. 
Fix, therefore, some p" such that v (p) > 0, and consider v ( ") for some p" > p'. The argument was given 
for the case v,, (p') ' 1. So we may suppose that v_, (p') < 1. Since vn (p") > 0, we know from the form of 
the equilibrium that the appropriate starting condition for the corresponding curve is (p", q) for some q > qo, 
and the weak incumbent's expected payoff is v,,(p) = (1 - qo/q)(a + v,,(p")). Consider two cases. First, if 
V,1 I (p") : 1, then v_, ( n) = a - (a + 1)q?+ v,1_,(p") - a + v,,1(f") - (a + v,,f, p"))q?= (1- qo)(a + v,l( "')) > 
v,1(p"). The other possibility is the v,,(p^") < 1, so that v,,(j$") = (1 - q/q)(a + v,,(")), where q is the 
posterior appropriate to starting at (en, qo). By the monotonicity of v,,_,, we have the desired result as soon 
as we show that q ' q. 

This follows from the derivation of terminal conditions in these cases: as noted before, the r curve for 
the starting value p = p" is (as a function of the terminating p') everywhere greater than the r curve for the 
starting value p = p". Thus the equilibrating p* and the amount of time left r must both be greater starting in 
p^ than in p". But if qc < q, the argument used to prove (vi) above can be used to show that -r will be less for 
(p^", q) than for (p", q), a contradiction. Thus we have an equilibrium of the form described. 

The equilibrium for large N 

We next characterize the equilibrium for large N. It is easiest to begin with the case q?> a/(a + 1), for which 
the following holds: 

(vi) If q?>a/(a+ 1), then v,,(p)'a(1-q?)/q?< 1, uniformly in p and n. Accordingly, the equilibrium 
behaviour is never of the form described in (i) but always has the form (ii). There is an upper bound k(p?) 
on the amount of time the incumbent (if weak) will fight, and (therefore) the probability that the incumbent 
(if weak) has not conceded by the end of round N - m decays exponentially in m. 

We establish the uniform bound on vn by induction. In the last stage, v,(p) < a(1 - qo) which is less than our 
bound. Suppose that it has been shown that v,, <a (1 - q?)/ q < 1, uniformly in p. Then we know that the 
form of the equilibrium in stage n, regardless of p", has the form (ii), and the expected payoff to the weak 
incumbent is (1- q/q)(a + v,,_,(p"), which is bounded above by (1- q)(a + a(1 - q?)/q?) = a(1 - q?)/q?. (An 
easier proof is to use the monotonicity of vn in p and compute directly v,,(1).) 
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(Indeed, one can show that for any p < 1 this bound is not tight: limN - . VN(P) < a(I - q?)/q?. This in 
turn implies that no matter how large is N, the probability that the incumbent, if weak, concedes in the first 
contest is bounded away from zero. We leave this to the reader.) 

To obtain the uniform bound on the total amount of time that the weak incumbent will fight, reason as 
follows. If ever p reaches one, by that time the incumbent, if weak, must have conceded with probability one. 
Hence we wish to show that p reaches one after the incumbent has fought for an amount of time that is bounded 
above (depending on po). We can obtain such a bound from the law of motion of p, since any time p is moving, 
p-' p/b. The proof is complicated slightly by the fact that the weak incumbent may be fighting at times when 
p is not moving. (Recall that when the state reaches the boundary q = 1, the incumbent does not concede for 
the remainder of the contest.) But in any contest in which the incumbent does fight at all, p must be moving 
for the first 1 - a(I - q?)/q? units of time; if the boundary was struck before that time, then the time remaining 
would exceed the continuation value, in contradiction to the nature of the equilibrium (unless p has already 
reached one). So for every one unit of time that the incumbent fights, p moves for 1 - a(I - q?)/q? or more. 
This, together with a bound on how long p can be moving before it strikes one, gives an upper bound on how 
long the (weak) incumbent will fight. 

Finally, the incumbent, if weak, will have to fight every strong entrant it meets, for the full unit of time 
(until it concedes). Given an upper bound k(p?) on the amount of time the weak incumbent will fight, the 
chance that it will live beyond the first k(p?) + m contests is bounded above by the chance that in those first 
k(p?) + m contests, m or more of the entrants faced are weak. This clearly decays exponentially. 

Large N and q?< a/(a+ 1). When q?< a/(a + 1), a very different picture emerges. 

(viii) If qo < a/(a + 1), then there is a number n (p?) such that in all contests of index greater than n (p?), 
the incumbent (weak or strong) will fight for the full unit of time with certainty. That is, the equilibrium 
behaviour is as in (i) above. Accordingly, weak entrants in those contests concede immediately. And 
limN,O VN(p)/ N = a - (a + 1)qq. 

First recall from the previous step that we can easily bound the total amount of time that the weak 
incumbent randomizes between fighting and conceding, irrespective of N (depending on po), since whenever 
such randomization is taking place, the evolution of p, is governed by the relationship pi = p/ bt - p/b. 

Suppose that we have n contests left to play in the game. We will develop a bound on the expected 
length of time that there will be fighting, if the (weak) incumbent adopts the (nonequilibrium) strategy of never 
conceding, and the entrants follow their equilibrium strategies. 

E[total time fighting]= Z_=, E[time fighting in contest k] 

='_=, E[time fighting in contest k and entrant k is tough] 

+ E[time fighting in contest k and k is weak] 

_= I qo+_= E[time fighting in contest k and k is weak]'nq?+K. 

The last inequality follows from the previous paragraph-the total time fighting weak opponents is bounded 
by K, because whenever the opponent is weak and is fighting, the probability p must be moving. 

Hence by following the strategy of fighting all the way to the end, starting with n stages left and against 
the equilibrium strategies of the entrants, the weak incumbent will net an expected value of 

aE [time not fighting] -E [time fighting] = an - (a +1 ) E [time fighting] 

which, by the previous estimate, is no less than 

n(a-(a+1)q?)-(a+1)K. 

For n sufficiently large, under the hypothesis that qo < a/(a + 1), this exceeds one. Since the optimal response 
by the weak incumbent must do at least this well, we know that for all sufficiently large n, v,,(p?) > 1, which 
is what we wanted. The remainder of (viii) follows trivially. 

vn is nondecreasing in n. To complete the analysis, we establish that v,, is nondecreasing in n. If 
vn-I(p" ) ' 1, then vn (p") = a - (a + 1)qo +v,_,(pn ). Moreover, the condition v,,_1(p" )1 requires that qo < 
a/(a + 1). Hence we have the result. 

If vn_1(pn) = O, then the result is trivial. Hence we have left the case where O< v,,-1(p") <1. Now assume 
inductively that vn1- v,n2. Looking at the differential equations (A.2), we see that for any termination point 
(p', 1), the curve for stage n - 1 will be more steeply sloped than the curve for stage n. Moreover, looking at 
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Figure A2, the r function for stages n and n - 1 are the same, at least in the neighbourhood and to the left of 
the solution for n-1, since (as vn-I(p ")>O) we know that the time left upon hitting (p', 1) from (p", q) 
depends on the evolution of p, the differential equation for which is independent of n. Combined with the 
induction hypothesis that v,n ' v,2, this means that the equilibrating terminal condition in stage n is moved 
leftward from the terminal condition for stage n - 1. Accordingly, for the same starting point (p", qo) in stages 
n and n - 1, the relevant curve in stage n lies everywhere above the curve for n - 1. At stage n, then, there is 
higher probability that the entrant will concede immediately. And if the entrant does concede immediately, 
the incumbent receives a larger reward (from the value of continuation). Thus v,, > v" 
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NOTES 
1. By "dominate play of the game", we mean that the incumbent will, in equilibrium, maintain its 

reputation regardless of how the entrants act, and so the entrants' equilibrium play is given by an easily solved 
optimization problem. 

2. Kreps and Wilson (1982) consider the case where qo = 0. Milgrom and Roberts (1982) have a somewhat 
richer structure of payoffs, but the ones given here will suffice to make our points. 

3. For the rest of the paper, we will ignore all such knife-edge cases. 
4. If p0 < b/(b + 1), the first entry occurs in the first round of the game. If p?> b/(b + 1), the first entry 

occurs at the earliest date that the entrant is strong. 
5. One can also scale up the payoffs to the entrants, but this is clearly irrelevant. 
6. It is important that rewards be proportional to the amount of time left. The analysis would change 

substantially if there were a fixed reward if the other side concedes first, regardless of when the concession 
takes place. Also, throughout this paper we will be less than perfectly formal. The reader may be troubled by 
our use of a continuous time game, for example. But note that this game can be viewed as a one-shot selection 
by each side of a "concession time"-a time at which one will concede if the other side has not done so first. 
This formulation is perfectly legitimate, and the analysis that follows describes an equilibrium for it. 

7. Of course, informational linkage "forces" the incumbent to concede, if at all, at times which are 
perfectly correlated among the contests. Under informational isolation, concession in the different contests 
could take place at, say, independently distributed times. 

8. Since we did not restrict the strategy space of the incumbent so that concession in all contests must 
take place simultaneously, we must say what happens should the incumbent concede in some, but not all, 
contests. At this point, entrants all assess probability one that the incumbent (i) is weak and (ii) will concede 
everywhere immediately, and the incumbent (if weak) does concede everywhere. The careful reader can check 
that this out-of-equilibrium behaviour supports the equilibrium we have given. 

9. Cases of asymmetries of these and other sorts may be treated in a sequel. 
10. The reader may be concerned with our less than completely formal style, especially since the general 

theory of games in continuous time is underdeveloped. A completely tight formalization of all the analysis we 
give in this section is possible, using one of two game forms. In the first, periods of "real time", the lengths 
of which are determined by the minima of stopping times chosen independently by players, are interspersed 
with periods of discrete, fictitious time, in which players react to each others' actions. In the second, players 
choose sets of stopping times, where, in particular, each entrant chooses a time at which it will concede if k 
or more of its fellow entrants have conceded, for each k = 0, . ., N - 1. We leave all these formal details to the 
interested reader. 

11. Recall that clocks run backwards in this model, so that the maximum of two stopping times is a 
stopping time, etc. 
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