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Econometrica, Vol. 53, No. 5 (September, 1985) 

REPEATED PRINCIPAL-AGENT GAMES WITH DISCOUNTING 

BY RoY RADNERI 

In a repeated principal-agent game (supergame) in which each player's criterion is his 
long-run average expected utility, efficient behavior can be sustained by a Nash equilibrium 
if it is Pareto-superior to a one-period Nash equilibrium. Furthermore, if the players 
discount future expected utilities, then for every positive epsilon, and every pair of discount 
factors sufficiently close to unity (given epsilon), there exists a supergame equilibrium that 
is within epsilon (in normalized discounted expected utility) of the target efficient behavior. 
These supergame equilibria are explicitly constructed with simple "review strategies." 

1. INTRODUCTION 

1.1. Some Background 

IN A PRINCIPAL-AGENT SITUATION, the agent chooses an action "on behalf of" 
the principal. The resulting consequence depends on a random state of the 
environment as well as on the agent's action. After observing the consequence, 
the principal makes a payment to the agent according to a pre-announced reward 
function, which depends directly only on the observed consequence. This last 
restriction expresses the fact that the principal cannot directly observe the agent's 
action, nor can the principal observe the information on which the agent bases 
his action. This situation is one of the simplest examples of decentralized decision- 
making in which the interests of the decision-makers do not coincide.2 

If this action-reward situation occurs only once, I shall call it a short-run 
principal-agent relationship. The situation can be naturally modeled as a two-move 
game, in which the principal first announces a reward function to the agent, and 
then the agent chooses an action (or decision function if he has prior information 
about the environment). 

The Nash (or perfect Nash) equilibria of such a game are typically inefficient 
(unless the agent is neutral towards risk), in the sense that there will typically 
be another (but nonequilibrium) reward-decision pair that yields higher expected 
utilities to both players. 

In order to increase the efficiency of short-run equilibria, the principal could 
monitor (at least ex post) the information and decision of the agent. However 
such monitoring would tyically be costly, so that net efficiency need not be 
increased by monitoring. 

Another approach to increasing efficiency is suggested by the theory of repeated 
games. If a game with two or more players is repeated, the resulting situation 
can be modeled naturally as a game ("supergame") in which the players' actions 
in any one repetition are allowed to depend on the history of the previous 
repetitions. In the principal-agent situation, the repetition of the game would 

l I am grateful to R. A. Aumann, R. W. Rosenthal, and A. Rubinstein for helpful discussions of 
the topic of this paper, and to A. Rubinstein, J. Mirrlees, and the referees for comments on a previous 
draft. The views expressed here are those of the author, and do not necessarily reflect the views of 
AT&T Bell Laboratories. 

2 The references relevant to the Introduction are gathered in the Bibliographic Notes in Section 9. 
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give the principal an opportunity to observe the results of the agent's actions 
over a number of periods, and use some statistical test to infer whether or not 
the agent was choosing the appropriate actions. The repetition of the game would 
also provide the principal with opportunities to "punish" the agent for apparent 
departures from the appropriate actions. Thus, roughly speaking, the principal 
could employ the analogue of a "statistical quality control chart" to deter 
"cheating" by the agent. However, since the accumulation of reliable statistical 
evidence takes time, the threat of future punishment would be a less effective 
deterrent the more the agent discounts future utility. 

A formal analysis suggested by the preceding intuitive ideas is carried out in 
the present paper, for the case in which the game is repeated infinitely often. I 
shall show that the less the players discount future utility the closer they can 
approach efficiency with equilibria of the supergame. These equilibria can all be 
achieved by a family of relatively simple strategy-pairs that I shall call review 
strategies. Roughly speaking, in a review strategy the principal periodically 
evaluates the cumulative performance of the agent since the last review. If a 
review results in a satisfactory evaluation, a new review phase is begun; if not, 
the players enter a penalty phase, after which a new review phase is begun. 
During each entire review phase the principal pays the agent according to the 
target efficient reward function. During the penalty phases the players revert to 
the short-run equilibrium. A particular review strategy is characterized by the 
lengths of the review and penalty phases, and by the criterion for satisfactory 
performance at the times of review. 

I should emphasize that, by definition, the equilibrium strategy pairs are 
self-enforcing, and thus do not rely on any binding contracts or other pre- 
commitments. In particular, the agent induces the principal to follow an equilib- 
rium review strategy by threatening to initiate a phase of myopic optimization 
(short-run equilibrium) following any departure by the principal from the target 
reward function during a review phase. Without such a threat, the principal might 
be tempted to shorten a particular review phase if, for example, the agent had 
already attained a very high cumulative performance and hence could safely 
"coast" to the end of the current review phase with minimal effort. 

1.2. Summary of the Main Results 

Let u* and v* be the one-period expected utilities of the principal and agent, 
respectively, corresponding to an inefficient short-term equilibrium, and let u and 
v^ be respective one-period expected utilities corresponding to an efficient 
reward-decision pair that is more efficient than the short-run equilibrium (i.e. 
u > u* and > v*); such an improvement will always exist in the present model. 
Let y and 8 be the players' respective discount factors; then for every E > 0 there 
will exist y, and 8, less than 1 such that for each (y, 8) with y y, and 8 > 86 
there exists an equilibrium of the corresponding supergame that yields the players' 
(normalized) discounted expected utilities at least u - E and v - e, respectively. 
Inrparticular, there will be critical discount factors above which there exist 
supergame equilibria that are strictly more efficient than (u*, v*). 

1174 
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In the remainder of this introductory section I shall discuss some aspects of 
these results more fully, before proceeding to a more formal presentation and 
analysis of the model. For this discussion, however, some minimum of formal 
notation will be helpful. To simplify the exposition, suppose for the time being 
that both players have the same discount factor, say 8 (0 - 8 < 1). If, for a given 
pair of supergame strategies, the principal's expected utility in period t is ut, then 
his normalized discounted expected utility for the supergame is defined to be 

u=(l-8)E ` Ut; 
t=1 

a corresponding formula defines the agent's supergame payoff, say v. For each 
8, let W(8) denote the set of pairs (u, v) of normalized discounted expected 
utilities of the players corresponding to equilibria of the supergame. 

Let W denote the set of efficient one-period expected utility pairs. The first 
main result of the paper can be paraphrased as follows: for every pair (u, v) in 
W that is superior to (u*, v*), i.e., u> u* and v>v*, one can get arbitrarily 
close to (u, v) with points in W(8), by taking 8 sufficiently close to 1. In addition, 
an explicit construction of such "approximately efficient" supergame equilibrium 
strategies is given, namely the "review strategies" described above. 

1.3. Multiplicity of Equilibria of the Supergame 

For every pair of the players' discount factors, the corresponding supergame 
equilibrium is not unique, provided the discount factors are not too small. For 
example, the pair of supergame strategies in which each player stubbornly sticks 
to his short-term-equilibrium strategy is a supergame equilibrium, whatever the 
players' discount factors. Thus, for each 8, (u*, v*) is in W(8). In addition, there 
will be many equilibria in review strategies, as described above. Indeed, it can 
be shown that for sufficiently large discount factors the set of equilibria has the 
cardinality of the continuum. Following standard terminology, I shall call the 
mapping from 8 to W(8) the equilibrium utility correspondence. 

For a fixed discount factor 8, a utility-pair in W(8) is called second-best-efficient 
if there is no other utility-pair in W(8) that is at least as large in each coordinate 
and strictly larger in one. It would be of interest to characterize such second-best- 
efficient utility-pairs and the associated supergame equilibrium strategies, but I 
have not attempted to do so in this paper. It does not appear that the review 
strategies alluded to above are second-best-efficient, even though they are approxi- 
mately efficient (and therefore approximately second-best-efficient) for discount 
factors close to unity. This point is discussed more fully in Section 8. 

1.4. The Case of No Discounting 

It is natural to try to define a "limit supergame" as the discount factor 8 
approaches 1. One way to do this is suggested by Abel's Theorem, which states 
that 

lim(l-8) 8t-utu= lim -E ut 
8-1 t=1 T-oo T t=1 
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provided the right-hand limit exists. Thus, for the case in which 8 = 1, define the 
principal's supergame payoff to be 

I T 

lim inf- E ut, 
T-oo T t=_ 

which is well-defined and finite for every bounded sequence (ut), and define the 
agent's supergame payoff analogously. It can be shown (see Section 9) that, for 
the case 8 = 1, the corresponding set W( 1) of supergame equilibria contains every 
efficient pair in W that is superior to a short-run equilibrium pair (u*, v*). In 
other words, if the players do not discount the future at all, then they can attain 
exact efficiency with supergame equilibria. On the other hand, there will also be 
inefficient supergame equilibrium payoff pairs, e.g., (u*, v*). 

1.5. A Continuity Property 

Taking the two preceding results together, we see that the equilibrium payoff 
correspondence W(-) has a continuity-like property, with respect to efficient 
payoff pairs, at 8= 1. This property of the repeated principal-agent game is 
apparently not shared by more general repeated games under uncertainty (see 
Bibliographic Notes, Section 9). Because of this ability to exploit long-term 
relationships to increase efficiency, the principal-agent mechanism may be par- 
ticularly important in decentralized organizations. The implications of this for 
organization theory will be explored elsewhere.3 

1.6. Outline of the Paper 

Section 2 defines the one-period principal-agent game and reviews those of its 
properties that are relevant to the present paper. Section 3 defines the repeated 
game, and Section 4 desribes a family of review strategies for the repeated game. 
In Section 5 the discounted expected utilities of such strategies are derived. In 
Section 6, as a preparation for the first main result on equilibria, I derive 
information about the agent's optimal response to a review strategy of the 
principal; in particular I derive lower bounds on the players' expected utilities 
corresponding to such an optimal response by the agent. Section 7 gives the main 
result on equilibria for the discounting case, and in particular shows that the 
principal's optimal response to a review strategy is itself a review strategy. 

To make the exposition less abstract and thus appeal to the reader's imagination, 
the argument in Sections 2-7 is developed entirely in the context of a simple 
example in which the agent's action is a level of "effort," the stochastic con- 
sequence of the agent's action is either success or failure, and the principal is 
neutral towards risk. The extension of the argument to a more general model is 
sketched in Section 8 and in the Appendix. 

3 For a partial treatment see [15], where the reader will also find other references to the literature 
on theories of economic decentralization and incentives. 



REPEATED GAMES 

References to the related literature, as well as other bibliographic notes, are 
gathered in Section 9. 

2. THE ONE-PERIOD GAME 

I shall start with a description of the one-period game. First, the principal 
announces a reward function, cw, which is a pair of numbers (wo, wl). Second, 
the agent chooses an action, a, which is a real number. Third, there is a con- 
sequence, which is a random variable taking on the values 1 ("success") or 0 
("failure"); the probability of success is an increasing function of the agent's 
action. Finally, the agent receives a monetary reward, w, or Wo, according as the 
consequence of his action is success (C = 1) or failure (C =0); the principal 
receives the remainder, C - We. Without loss of generality, one can take the 
agent's action to be the probability of success, i.e. 

Prob (C = 1)= a, 

Prob (C = 0) = 1 -a. 

Assume that the resulting utility to the principal is 

U = C-W, 

and the utility to the agent is 

V= P(wc)- Q(a), 

where P and Q are differentiable and strictly increasing, P is strictly concave, 
and Q is strictly convex. Make the convention that 

P(0) = Q() = 0. 

It is typically realistic to impose two constraints on the rewards. The first 
constraint is that the principal may not impose arbitrarily large penalities on the 
agents; in other words, the rewards are constrained so that the agent's disutility 
is bounded from below. The second constraint expresses the condition that the 
agent is free to refuse to enter into the relationship (i.e., to play the game). For 
this, the rewards Wo and w, must be such as to enable the agent to achieve some 
minimum expected utility. For the purposes of this paper, it is sufficient to impose 
a constraint of the first type; the addition of the second constraint would slightly 
complicate the exposition, but would not change the results in any essential way. 
To express the first constraint, one can assume that the rewards are bounded 
below (and that the function P is finite everywhere); without loss of generality 
I assume that they are nonnegative: 

Co- (wo, wI) 0. 

Note that it has been assumed that the principal is neutral towards risk, whereas 
the agent is averse to risk. 
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In this game, the principal's pure strategy is the reward function, co, and the 
agent's pure strategy is a mapping, a, from reward functions to actions: 

a = a(@v). 

An equilibrium of the game is a pair of strategies, (co*, a*), such that (i) co* 
maximizes the principal's expected utility, u = EU, given that the agent uses a*, 
and (ii) a*(co*) maximizes the agent's expected utility, v = EV, given co*. In this 
paper I shall consider only perfect equilibria, in which, for every co (not just co*), 
a*(cv) is an optimal action for the agent given cw. Thus "equilibrium" is henceforth 
to be understood here as "perfect equilibrium." (See Section 8.3.) 

It is not necessary for the purpose of this paper to give a complete analysis of 
the one-period game. However, an understanding of a few aspects of the game 
will clarify the main issues that are addressed in subsequent sections.4 Given the 
reward function co, if the agent chooses the action a his expected utility will be 

(2.1) v = aP(w,)+ (1-a)P(wo-Q(a), 

and the principal's expected utility will be 

u = a(l-wl)-(1 -a)wO. 

The principal can achieve at least u =0 by taking w1 = wo=0. One can easily 
verify from (2.1) that if w0 = w, the agent will have no incentive to work, i.e., 
a*(w, w) = 0. In addition, one sees from (2.1) that if 

Q'(O) <PM, 

then a*(wo, wl) = 0 for all w0 and w, between 0 and 1; in this case the only 
equilibrium has cv* = (0, 0) and a* = 0. On the other hand, if 

Q'(O) > P(1), 
then the equilibrium is characterized by 

(2.2) 0= w* < w* <1, 

a* >0; 

also, a*(O, w1) is strictly increasing in w1 whenever a*(O, w1) is strictly between 
0 and 1. This is the case I shall discuss from now on. 

A pair (co, d) is efficient (Pareto optimal) if no other pair (co, a) yields each 
player as much expected utility and at least one player strictly more. It is easy 
to see that, for the same level of effort, a, the agent prefers the compensation 
function (w, iw) to the compensation function (w0, w,), where 

w = aw +(1-a)wo, 

4Since the main focus of the present paper is the repeated game, it is neither necessary nor 
appropriate here to give a thorough and rigorous treatment of the one-period game. Most of the facts 
about the latter that are alluded to here are discussed more systematically in [2] and in the references 
cited there. 
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whereas the principal is indifferent between the two (recall that the agent is 
risk-averse and the principal is risk-neutral). Hence, if [(Wo, Wi), a] is efficient, 
then wo = w1. Together with (2.2) this shows that an equilibrium is not efficient. 

There are, of course, many efficient pairs [(w, w), d]; one can verify that for 
0 < a < 1 they are characterized by the condition 

P'(w) = Q'(a). 

In summary, we shall be concerned with an equilibrium (o*, a*) of the 
one-period game that is inefficient, and for which there is no Pareto-superior 
equilibrium. Since (o*, a*) is not efficient, it follows from the structure of the 

one-period game that there is a pair (o, a) that is efficient and is strictly better 
than (o*, a*) for both players. Thus let u and v be the respective one-period 
expected utilities yielded by (6o, a); then u> u* and v> v*. 

3. THE REPEATED GAME 

I shall now describe the infinitely-repeated game, or supergame. Roughly 
speaking, during each period the principal and agent play a one-period game, 
with a new random environment each time. Each period each player's action can 

depend on what he has observed up to that point in time, his information history. 
For the principal, this is the history of his own previous actions (i.e., announced 
reward-pairs), and the history of previous successes and failures. For the agent 
this is the history of his own and the principal's previous actions, the history of 
previous successes and failures, and the reward-pair that the principal has just 
announced. Neither player ever observes the random environments, which are 
assumed to be independent and identically distributed. At the end of each period, 
after having observed the current success or failure, the principal compensates 
the agent according to the reward-pair that he announced at the beginning of 
the period. A supergame strategy for a player is a sequence of decision-rules that 
determine his action at each period as a function of his information history at 
that point of time. The supergame payoff for a player is the normalized sum of 
his discounted expected one-period utilities. 

Here is a more formal definition of the supergame. For t = 1, 2,..., ad inf., 
let Ot, be the reward function announced by the principal at the beginning of 

period t, let A, be the action chosen by the agent in period t, let C, be the 

corresponding realized consequence, and let Wt = wt(Ct) be the agent's reward. 
Define, for t 1, 

H = (C1,..., Ct), 

H A=(1,..., At), 

H' = (to, .. . , tot); 

it is convenient to define HI , AA, and H' to be arbitrary one-element sets. The 
information available to the principal when he makes his decision in period t is 

(3.1a) It= (Hc l, HT_i), 

1179 
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and the information available to the agent when he makes his decision in period 
t is 

(3.1b) IM = (Hc H', H A). 

The difference between I' and IP expresses the assumption that the principal 
cannot learn the past actions of the agent. 

A supergame strategy for the principal is a sequence a = (at) in which ot maps 
the information I' into a reward function wt. Similarly, a supergame strategy for 
the agent is a sequence r= (rt) in which rt maps the information IP into an 
action At. Assume that Ct= 1 or 0, and that 

Prob (Ct = llI'I', At) = At. 

The realized utilities of the principal and agent, respectively, in period t are 

Ut= Ct- Wt, 

Vt = P( Wt) - Q(At). 

The corresponding discounted expected utilities are 

oD 

u(y) = (1-) E y t -E Ut, 0 -- y < 1, 
t= X 

00 

v(5) = (I -) E at-IEVt, 0-,--<1. 
t=l 

Since the realized utilities in each period are uniformly bounded, the discounted 
expected utilities are well-defined and finite for all the permissible discount factors 
y and 8. 

One can now define (Nash) equilibrium for the supergame in the usual way, 
namely, a supergame equilibrium is a pair of supergame strategies (one for each 
player) such that no player can increase his own supergame payoff by unilaterally 
changing his strategy. 

One equlibrium of the supergame is the pair (oC*, r*) in which, for all t and 
all information histories, 

0rt(I't) =@*5 

Tt(I)t)= a*(wt) 

where (w*, a*) is the (inefficient) equilibrium of the one-period game that was 
described in Section 2. The discounted expected utilities yielded by this equilib- 
rium are u* and v*. I shall say that the agent optimizes myopically during any 
period in which he uses a*. 

4. REVIEW STRATEGIES 

As in Section 2, let (w*, a*) be associated with an equilibrium of the one-period 
game, yielding one-period expected utilities u* and v* to the principal and agent 
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respectively, and let (co, d) be an efficient pair in the one-period game, with 
co = (w', w'), yielding respective one-period expected utilities ui and v. Furthermore, 
suppose that (co, d) is more efficient than (co*, a*), so that u > u* and v > v*. I 
shall now describe a class of sequential strategy pairs, (a, r), from which equilib- 
rium strategy-pairs in the supergame will be constructed; these strategy-pairs will 
be called review strategies. (I emphasize that the review-strategies that I construct 
will be equilibria in the space of all strategy-pairs, not just in the space of review 
strategies.) 

Recall that H c= (C1, . . ., Ct), and define St = C1 + + C. Recall that 

Prob (C, = IIHcL, A,) =A 

Prob (Ct = OIHc 1, At) = 1 -At. 

Roughly speaking, a review strategy for the principal pays the agent the reward 
w during periods 1 through R, whatever the agent's performance during this time, 
and then reviews the agent's cumulated performance, SR. If SR is large enough 
(the agent "passes the review"), then the process is repeated. If SR is too small 
(the agent "fails the review"), then the principal uses the one-period equilibrium 
reward function co* for M periods, where M is a number to be determined; after 
period (R + M) the process is repeated. Passing the review is defined by the 
condition 

SR , Ra-B, 

where a is the agent's efficient action, and B is also a (positive) parameter yet 
to be determined. The quantity q = Ra - B may be interpreted as the agent's 
quota of successes during the review phase. Notice that if the agent were to use 
the action a in each period, then the expected number of successes in R periods 
would be Ra, so that B can be interpreted as the "margin of error" in cumulated 
performance that is allowed by the principal at the time of review. Thus the 
principal's review strategy is determined by the parameters R (the length of a 
review phase), B (the allowable margin of error at review), and M (the length 
of the "penalty phase"). Notice that the "penalty" consists in reverting to short-run 
noncooperative behavior for some length of time, so a better term might be 
"noncooperative" phase. 

If (5, i) is to be an equilibrium pair of strategies in the supergame, with C a 
review strategy, then (by definition of equilibrium) i must be optimal for the 
agent given v. In particular, it is clear that it will be optimal for the agent to 
optimize myopically (see Section 3) against the reward function during each 
period of a penalty phase, since the agent cannot influence the principal's 
one-period strategies during the remainder of the penalty phase. Section 6 provides 
further information about the agent's optimal response to v. 

In addition, to further specify the agent's sequential strategy, one must describe 
what the agent would do if the principal did not pay the agent the (constant) 
reward w at the end of some period during a review phase. In this case, the agent 
optimizes myopically during the remainder of the review phase and for M' 
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additional periods. (This will also be called a penalty phase.) The number M' is 
another parameter of the pair of review strategies. 

Finally, for completeness one should specify what each player would do if he 
did not himself follow his own strategy at some previous period. (This specifica- 
tion, which may appear arcane to many readers, will be used to show that the 
equilibrium satisfies a criterion like perfectness; this point will be discussed in 
Section 8.4.) If the principal does not pay the constant reward w during some 
period in a review phase, then he will use the reward function o* during the 
remaining periods of what would have been the review phase plus additional 
M' periods. Otherwise, if either player has not followed his strategy at some 
period, as described above, then he will nevertheless continue to follow it in 
subsequent periods. 

In order to give a precise description of the players' strategies, it is desirable 
to have some notation for the successive review and penalty phases, although 
this notation is somewhat complicated. (The reader who is satisfied with the 
preceding heuristic description of review strategies can proceed at this point to 
the next section without loss of continuity.) Define: 

(4.1) q= aR-B, 

D(l)=min{t: (, t )}, 

H°(l) = the event {SR < q}, 

H'(1) = the event {D( 1) R}, 

N'(1) =min (D(l), R), 

(R+M', if H(1l), 
N(1)= R+M, if H°(1) but not H(l), 

R, otherwise. 

Similarly, recursively define for n > 1: 

(4.2) D(n+ 1) =min {t: t 

> 

N(n) and w, c3}, 

H°(n + 1) = the event {CN(n)+ + .. + CN(n)+R < q}, 

Hl(n+ 1) =the event {D(n+ 1) N(n)+ R}, 

N'(n + 1) = min {D(n + 1), N(n)+ R}, 

(N(n)+M', if H'(n), 
N(n+ 1) = N(n)+M, if H°(n) but not HL(n), 

t N(n) + R, otherwise. 

The nth review phase consists of the periods n(n - 1)+ 1,..., N'(n), and the nth 
penalty phase, which may be empty, consists of the periods (if any) N'(n)+1, 
..., N(n). By convention, N(O) = 0. 

The principal's review strategy cr(R, B, M, M') is defined by 

(4.3) t = 
c during review phases, 

(4o during penalty phases. 
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The agent's review strategy r(R, B, M, M') is defined to be a sequential strategy 
that is optimal against To(R, b, M, M') and, in particular, satisfies 

(4.4) At = {one-period-optimal action against to during penalty phases} 

= a*(ot). 

(Recall that condition (4.4) defines myopic optimization.) In addition, the agent 
uses the same strategy in each review period. 

5. DISCOUNTED EXPECTED UTILITIES FOR REVIEW STRATEGIES 

Let the nth epoch be the periods included in the nth review phase, together 
with the following penalty phase if there is one. (In the notation of the end of 
the previous section these are the periods from N(n- 1)+ 1 through N(n).) The 

beginnings of successive epochs are points of "renewal" or "regeneration" if 
review strategies are used, in the sense that events within different epochs are 

statistically independent. This fact facilitates the calculation of the players' 
discounted expected utilities. 

As in Section 3, for any pair (ao, r) of review strategies let ( U) and (V,) denote 
the corresponding sequences of realized utilities for the principal and the agent, 
respectively and let the respective (normalized) discounted expected utilities be 
denoted by 

00 

u(y)=(1l-y) E y()EU, 
t=l 

v(8) =(1-) E 8'-IEVt, 
t=l 

where y and 8 are the discount factors for the principal and the agent, respectively. 
The normalization factors, (1 - y) and (1- ), are used to keep the discounted 

expected utilities bounded uniformly in y and 8, where 0 y < 1 and 0 8 < 1. 
These are the natural normalization factors, since by Abel's Theorem (see [5, 
Theorem 55, p. 108]), 

1 T 
lim u(y) = lim - E U,, 
y--l T-oo t= 1 

l<1 

provided the limit on the right-hand side exists. 
During the first review phase, the principal's realized utility in period t is 

Ct - W; during each period of the penalty phase (if any), the principal's expected 
utility is u*. Let 4 denote the probability of H°(1), i.e. the probability that the 

agent fails the first review. By the strong Markov property, the conditional 
discounted expected utility of the principal from period N( 1)+1 on, given the 

history of the process during the first epoch, is u(y). Hence u(y) satisfies the 
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equation 
R 

(5.1) u(y)=(1-y) E y'-I(EC - W)+[R(1--yM)u* YR+ Mu()] 
t=l 

+(1- )yRu(y). 

Hence, solving (5.1) for u(y), one gets 

R 

(1- ) E "-I(ECt--w)+ OR(-l-_M)U* 
(5".2) u(7)= U1Mt= (5.2) u(y)=R+M )R 

Similarly, the agent's discounted expected utility, v(8), satisfies the equation 

R 

v(8) =(1-8) E 6t'-EVt + 4[R(1-8 M)V*+ S R+w(8)] 
t=l 

+(1- )S R(8), 

so that 
R 

(1-8) E a' lEV,+ 86R(1-6M)v* 

(5.3) (5)= 1 

6. OPTIMAL REVIEW STRATEGIES FOR THE AGENT 

In this section I derive some useful information about the agent's optimal 
response to a review strategy of the principal. In particular, I derive lower bounds 
on both players' expected utilities corresponding to such an optimal response by 
the agent. These preliminary results have an independent interest in the case in 
which the principal can make a binding commitment to follow an announced 
review strategy, although this case is not explicitly treated in the present paper 
(however see Section 9). 

For any specification of R, B, and M, the agent will choose the strategy r to 
maximize (5.3); call the resulting maximum v(8). This optimization problem can 
be formulated as a standard dynamic program with a finite set of states,5 and 
the existence of a stationary optimal strategy can be demonstrated by standard 
techniques. However, we shall need here only a few properties of the optimal 
strategy. 

Notice that the agent has only to decide what to do during the review phase. 
One strategy that is available to the agent is to use the "efficient" action a 
throughout the review phase; call this the "good faith" strategy and denote it by 

5 At date t, take the state of the system to be the history of the process during the current epoch. 
A stationary strategy would then use the same strategy within each epoch. 
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r. From (5.3) one obtain, the following formula for the discounted expected 
utility to the agent under A where k denotes the value of k under 7: 

A (1-8R )A 
+ 

68R(I _ 6M)V* 
(6.1) v( 6) i_o,6R+M_(l_ )8 

This formula provides, therefore, a lower bound for the optimal value, v(8). It 
will be useful to have in mind the limit of i^(8) as 8 approaches unity: 

(6.2) lim AM(8)= R+sMv 

Equation (6.2) has an easy interpretation. The expected length of the penalty 
phase is OM (if we make the convention that the penalty phase has length zero 
when the agent passes review), the expected length of an epoch is (R + OM), 
and (6.2) is a weighted average of v^ and v*, with the weights proportional to 
the expected lengths of the corresponding phases. If the expected length of the 
penalty phase can be made small, then v^(6) will be close to v^ when 8 is close 
to unity. I shall show that this can be done by an appropriate choice of R, B, 
and M This will imply that v(8) can be made at least close to v^ when 8 is close 
to unity. 

A precise statement of this result is embodied in Lemma 6.1 below. Lemma 
6.2 gives a corresponding result for the principal's expected utility. I shall lead 
up to these lemmas with some preliminary work. 

The next step in the study of review strategies is to derive an upper bound on 
the agent's discounted expected utility. From the convexity and monotonicity of 
the function Q it follows that there is a positive number K such that, for any 
strategy of the agent, any review period t, and any history Hcl, 

E( VtIHc 1)-v + K(At -a) 0, 

or 

(6.3) E Vt|Htc l)v+K (a -At). 

It follows from this and (5.3) that 

R 

( v+ (1 ) )K , a (- ECt)+ +8( M* 

(6.4) v(8) ts1 

Define 

Y I1-xy (6.5) f(x,y)- E (1-Xt-1)=Y- , Ox<1. 
t=1 1-x 

Since Ia - ECtI S 1, one can verify that 
R R 

(6.6) a a - ECt)=-1 a-ECt) f(5,R), 
t=1 t=l 
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so that 
R 

(6.7) E t-'(a--ECt) - RRa--ESR +f(8, R). 
t=1 

Since 

<1 =:Prob (SR< Ra -B), 

SR , 0, 

it follows that 

(6.8) Ra-ESR< Rd+a(l-)B. 

Thus (6.4)-(6.8) imply that 

(6.9a) v(8>) vo(8), 

where 

(6.9b) v0(8) (1_ 8R) + p5R( - M) (1 -3R) 

A48 (1 
M 

+ (1-8)K[4Rd +(1-)B +f(8, R)] 
(1-8R) + 48R(1j_M) 

Compare this with (6.1), which can be rewritten as 

(6.10) v( 6) = 
(l'6R)+(p5R(l_5M) 

I shall now specify the following relations among R, B, and M: 

(6.11) B=J3RP, 13>0, I>p<1. 

(6.12) M=pR, u>O. 

Define 

(6.13) k=Var(CtjAt = d) d(l-). 

By Chebychev's Inequality, 

(6.14) A 
Rk k 

(P -j '82pR2p-1 

so that k approaches zero as R increases without limit. Hence, from (6.10)-(6.14) 
one sees that v (8) approaches v^(l) uniformly in R, as 5 approaches 1 (for fixed 
,u, ,B, and p), and 

A 
^( 1) = 

o 
++q, (6.15) iv()I---- 
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This is equivalent to (6.2). In particular, for every e <0 there exist Re and 8e 
such that 

(6.16) vg(8)> v-e, for R R, and 8< 8. 

If in (6.9b) one lets 8 approach unity, for fixed R, one obtains 

v^ + Ov* + K[oa- + (1 - + )pRP-l] 
(6.17) vo(l) = 1+ +t/ 

Let r be a number, fixed throughout the remainder of the discussion, such that 

(6.18a) 0< r< - v*, 

and fix / so that 

(6.18b) /Lx>, v- v - r7 

With an elementary calculation one can verify that for any positive e' < r, 

(6.19) K3R(-*-')-a + E 
i( v- v*E - ) - Ka + KpRp- 

implies that 

(6.20) Vo(1) -e'. 

With a slight change in notation, let v3(8, R) denote the maximum discounted 
expected utility of the agent, and let 4(8, R) be the corresponding probability 
of failing the review. 

LEMMA 6.1: For every positive e < 2,7, there exist Re and 8e < 1 such that 8 > 86 
implies that 

(6.21) v(8, R,)> v- 

(6.22) q (8, R) < e. 

PROOF. Let Re be a value of R such that Re > Re/4 in (6.16) and the right-hand 
side of (6.19) does not exceed E, with e'= e/2. Let 8e be a value of 8 such that 
8e > 8'e/4 in (6.16) and such that, for R = Re and 8 8be, 

(6.23) Iv o (l)- l < . 
4 

Inequality (6.21) in the conclusion of the lemma follows immediately from (6.16). 
On the other hand, if 8 > 86 and 4 (8, Re) were > E, then (6.19) and (6.20) would 
imply 

Vo(1)_ v-2 2' 
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which with (6.23) would imply 

(6.24) vo(8) v-. 
4 

But v(8, R_) vo(6), so that (6.24) contradicts (6.21), which proves (6.22), and 
completes the proof of the lemma. 

If the probability that the agent fails the review is small, and B is small relative 
to Rd, then the principal's utility will be close to the efficient level most of the 
time. This is formalized in the proof of the next lemma, which shows that review 
strategies yield the principal discounted expected utility close to u if the review 
phase is long enough and if the discount factors of the principal and agent are 
high enough. 

LEMMA 6.2 Let u((y, 6, R) denote the principal's discounted expected utility 
yielded by review strategies given R, if the discountfactors of the principal and agent 
are y and 8, respectively; then for every e > 0 there is a y' < 1 such that if R = RE 
and 8 > 86 (as in Lemma 6.1), and y y', then 

(u - EU/tu*- (a + RP-') - RP- 
u(y,8,R,) > -e. 

1+ ek 

PROOF. First note that 

ECt- =(a-)+(EC- a) 

= E+(EC,-a). 

Hence, from (5.2), and writing u(y) for u(y, 8, R) and k for 0(8, R), 

R 

(1-R)^+r R(1-yM)u*+(1 -) E yt-'(ECt-a) 
t=l 

MU( =(1 -YR)+ ±byR(1 -M) 

By an argument that parallels the one leading from (6.4) to (6.9b) one can show 
that 

(6.25) u(y7) uMo(y), 

where 

(1 - YR)UA + 
) YR(1 YM)u* (6.25b) uo(y) ( _R) 

(1 - yR) + OYR(1 YM) 

(1 -y)[+Ra +(1-q)B+f (y, R)] 

(1 - R) + 7yR(1 - M) 
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and that for fixed R and 4, 

(6.26) lim uo(y)= uo(1) 
y-1 

u ++"-a-( -),8RP-1 

1+ A 

The conclusion of the lemma now follows from (6.26) and Lemma 6.1. 

7. EQUILIBRIUM REVIEW STRATEGIES 

In this section I give the main results on equilibria for the case of discounting, 
namely, that efficiency can be approached with equilibria of the supergame as 
the players' discount factors approach unity, and such equilibria can be attained 
with review strategies. These results are stated formally in Theorems 7.1 and 7.2. 
An immediate corollary is that for all discount factors above some critical values 
there are equilibria in review strategies that yield the principal and agent discoun- 
ted expected utilities strictly greater than u* and v*, respectively. 

Recall that a pair of review strategies, (a, r), is characterized by the parameters 
R, B, M, and M' (see Section 3). The relationships among R, B, and M were 
specified by (6.11) and (6.12), which I repeat here: 

B = fRp, 

M-=,uR, 

where /3, p, and ,u are fixed parameters satisfying 

,8>0, 2<p<1, 

and, from (6.18ab), 

O < 77< A_-v*, 

Ka 
A * 

Finally, the agent's review strategy is specified to be optimal against the principal's 
review strategy, and satisfy (4.4). Thus we can adequately denote the principal's 
review strategy by o-(R, M') and the agent's review strategy by r(5, R, M'), which 
represents a natural change of notation from that of Section 3. As in Section 4, 
let i7(y, 6, R) and v(8, R) denote the corresponding discounted expected utilities 
of the principal and agent, respectively. 

Since it is part of the definition of r(8, R, M') that it be optimal against 
o-(R, M'), in order to show that a particular pair is an equilibrium it is sufficient 
to show that o-(R, M') is optimal against r(6, R, M'). Sufficient conditions for 
this will be given in this section. 

By (4.1) and (4.2), if the principal departs from the constant reward c = (w, w) 
during a review phase, then this action-which I shall call stopping-initiates a 
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penalty phase. By (4.4), the agent optimizes myopically against o, during 
a penalty phase, so that it is optimal for the principal to set to = o* during a 
penalty phase; hence the second line of (4.3). Hence to show that o-(R, M') is 
optimal against r(6, R, M') it is sufficient to show that the principal should not 
stop during a review phase. 

For the time being, let u(y) denote the principal's maximum discounted 
expected utility against r(8, R, M'), and Ht = Hc. If the principal stops just after 
period t < R during the first review phase, and then follows an optimal policy 
thereafter, his discounted conditional expected utility after period t, given H,, 
will be 

(7.1) (1 - y R-t+M') *+ R-t+M'(y). 
If the principal continues without stopping from t to the end of the first review 
phase and follows an optimal policy thereafter, his discounted conditional 
expected utility after period t, given H,, will be 

(7.2) E{(1 - )( y Utn) 
n=l 1 

+ yR-t(l 
_ 

yM(HR))u*+ 
R- 

t+M(HR)u(Y)lH}, 

where 

09 if SR , Ra - B, 
, if SR Ra -B, 

By the optimality principle of dynamic programming, u(y) is at least as large as 
the maximum of (7.1) and (7.2), so a sufficient condition for o-(R, M') to be 
optimal is that (7.1) be less than (7.2) for each t = 0,..., R - 1. 

A feasible strategy for the principal is to use co, = co* for all t; hence 

u(y) u*. 

Also, in (7.2), 

(7.3) Un -w (n 1,..., R-), 

so that replacing M(HR) by M cannot increase (7.2). Hence (7.2) is as least as 
large as 

(7.4) -(1 - R-1)W + tR-t(l - M)u*+ yR-T+M(y). 

Hence a sufficient condition for o-(R, M') to be an equilibrium is that (7.1) be 
strictly less than (7.4), or equivalently, 

7R-t(yM _ yM'(Y)u yR)(( +)-U*)>)(+U), for t=O,..., R-1. 

Since u(y) , u*, this is equivalent to 

(7.5a) yR(yM - yM)(U(y)--u*)>(1- yR)(+ u*), 

(7.5b) u(y)> u*. 
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REPEATED GAMES 1191 

Let us first investigate the second line of (7.5). For this it is sufficient that 
uo(y)> u*, where uo(y) is defined in (6.25b); see the proof of Lemma 6.2. By 
(6.26), for given 8 and R, this last inequality is satisfied for y sufficiently large, 
provided 

(7.6) b(8, R)ad+[l-b(8, R)]f3R` <1 -u 

This last inequality is satisfied for R sufficiently large, and 8 sufficiently close to 
1 given R, as was shown in Lemma 6.1. 

Let us now examine the first line of (7.5), which (if the second line holds) is 
implied by 

(7.7) eM 
R y ( < R 

where 

(7.8) Z(y) u(y) -a 

(Keep in mind that uo(y) and Z(y) also depend on 8 and R.) Inequality (7.7) 
is satisfied for sufficiently large M' provided that the right-hand side of (7.7) is 
positive, or that 

y( I +)R 

(7.9) R > Z(y). I -ey 

For every R and 8 satisfying (7.6), this last inequality is in turn satisfied for y 
sufficiently close to 1, since, by (6.26), the limit of Z(y) exists and is positive as 
y tends to 1. 

To summarize the analysis of (7.5), for each 8 and R let r(8, R) be the infimum 
of all y' < 1 such that for all y - y', both uo(y) > u* (see (6.25)) and inequality 
(7.9) is satisfied; if no such y' exists assign the value infinity to r(8, R). In 
particular, r(8, R) is finite (and less than 1) for R sufficiently large, and 8 
sufficiently close to 1 given R. In this case, if y>F r(, R) there is a number M' 
satisfying (7.7); call the infimum of such numbers MM'(6, y, R). Thus we have 
demonstrated the first main result. 

THEOREM 7.1: If 8 and R satisfy (7.6), y > F(a, R), and M'> MM'(8, y, R), 
then the review strategies o-(R, M') and r(8, R, M') form an equilibrium of the 
supergame. 

The second main result concerns the existence of equilibria in review strategies 
that are arbitrarily close to efficient for discount factors sufficiently close to unity. 
Note that (7.7) is only needed to assure that the principal's review strategy is 
optimal against the agent's review strategy, but the discounted expected utilities 
of the players do not depend on M'. 
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THEOREM 7.2: For every positive e < 27r there exist Re, 81, and y, such that, for 
every 5 > 5S, y > y,, and M'> MM'(8, y, Re), the review strategies o-(R£, M') and 
r(8, Re, M') form an equilibrium of the supergame and yield discounted expected 
utilities 

U(y,8,R,) U-e, ui(y , RE) 6 - E; 

furthermore, k(8, R£), the probability that the agent fails a review, does not 
exceed E. 

PROOF: The Theorem follows immediately from Lemmas 6.1 and 6.2, and 
Theorem 7.1. 

COROLLARY: For all discount factors above some critical values there are equilib- 
ria in review strategies that yield the principal and agent discounted expected utilities 
strictly greater than u* and v*, respectively. 

It is of some interest to note that, for equilibria that are close to efficient with 
discount factors close to 1, it is sufficient to take M' proportional to R. To see 
this, write the first line of (7.5) as 

(7.10) yR - M'> ( R u)(()-mu ) 

Under the hypothesis of Theorem 7.2, with s < (u- u*)/2, 
A * 

u(y)- u = u(8, y, RE)-u > 
u 

2 

Hence (7.10) will be satisfied if 

(7.11) yu,e _ ,M,> 21 Y) U 

Letting y tend to 1 in (7.11), one sees that (7.11) is satisfied for y sufficiently 
close to 1 if 

(7.12) M'- tR = KR. 

where K is a number such that 

K /+u*\ K>2 A * . 
uM-Mu* 

One can rewrite (7.12) as 
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8. GENERALIZATIONS AND FURTHER REMARKS 

8.1. A More General Model 

Theorems 7.1, 7.2, and 8.1 can be generalized, with relatively minor modifica- 
tions of the proofs, to cases in which (i) the consequences C, are bounded random 
variables, rather than variables taking on only the values 0 and 1, (ii) the agent 
bases his choice of action in each period on some (possibly noisy) information 
about the environment, and (iii) the principal is averse to risk. The second 
extension is, of course, important if one wants to apply the results to situations 
in which the principal employs the agent precisely because the agent has 
"superior" information in each particular period. The players' utility functions 
need not be additively separable. 

This more general model contains as special cases all of the one-period 
principal-agent models in the literature of which I am aware, except those in 
which the principal can base the agent's reward on partial information about the 
agent's action or the random environment. I believe that the analysis could be 
extended to cover such cases as well, but I have not yet attempted to do this. 

On the other hand, the assumption that the successive random environments 
are independent and identically distributed plays an important role in the present 
analysis of the supergame, which could not be carried through in general if the 
agent observed a random event at the beginning of the supergame, and this 
random event remained payoff-relevant throughout the supergame. 

A precise description of the more general model is given in the Appendix. 

8.2. Review-Strategy Equilibria Are Not Second-Best 

I have not attempted here to characterize those supergame equilibria that are 
most efficient within the set of equilibria that are attainable with fixed discount 
factors. It does not appear that the equilibria described in Section 7 are in fact 
efficient in this second-best sense. For these equilibria, the agent has a quota of 
successes to fulfill in each review phase, namely q = Ra - B. Once the agent has 
fulfilled his quota, he has no incentive to put in any effort during the remainder 
of the review phase. On the other hand, if the agent is too far from the quota at 
some point in the review phase (i.e., St + R - t < q), then he also has no incentive 
to put in any effort during the remainder of the review phase. 

To induce the agent to over-fulfill his quota, the principal could share with 
him the proceeds from successes over and above the quota. Thus, if St = q, then 
the agent might receive Wn = wi +fCn, for n = t + 1, . . ., R, where f is a number 
between 0 and 1. To induce the agent not to "give up" after unfavorable 
experience, the length of the penalty phase could be made an increasing function 
of the amount by which the agent falls short of the quota, e.g., M = 

mo+ mI(q - SR), where mo and ml are positive parameters. These modifications 
would appear to increase efficiency, but it is not known to me whether they are 
sufficient to actually attain second-best efficiency. 
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8.3. Precommitment by the Principal 

In the one-period game studied here, the principal moves first by announcing 
a reward function, which he is committed to use at the end of the period. In the 
corresponding supergame, these commitments last one period at a time, and the 
principal cannot bind himself in advance to a sequence of two or more reward 
functions. A variation of this game would have the principal move second, and 
announce (and pay) the reward after observing the consequence of the agent's 
action. In the one-period game it would, of course, be optimal for the principal 
to pay the agent nothing, but in the supergame the situation would be analogous 
to the one studied here. The important aspect of the problem studied here, which 
is common to the two variations, is that neither player can make binding commit- 
ments to follow any particular sequence of one-period strategies. 

One could also consider a variation of the supergame in which the principal 
can enter into a binding commitment to follow his pre-announced supergame 
strategy. In this case the principal would choose a supergame strategy that is 
best for him, given that the agent would optimize against it. Since the review- 
strategy equilibria studied here are not second-best efficient, the optimal super- 
game strategy for the principal would not be a review strategy. On the other 
hand, Lemmas 6.1 and 6.2 would still be valid for the agent's optimal responses 
to review strategies of the principal, and so optimal equilibria of the supergame 
with precommitment by the principal would also be approximately first-best 
efficient for discount factors close to unity. 

8.4. Credible Equilibria 

It is known that one must typically impose some further restriction on Nash 
equilibria of sequential games in order to assure that they will be "credible," i.e., 
that any threats that are implicit in the players' strategies are credible. Space 
limitations allow me only a few remarks here for the already initiated reader. 
For recent discussions, see [8, 9]. 

One such restriction is sub-game perfectness. The criterion of subgame-perfect- 
ness in the supergame has not been formally invoked here because, strictly 
speaking, there are typically no proper subgames after the principal's first move. 
This is implied by the fact that the principal can never observe the agent's actions 
directly, and if A, is never 0 nor 1 then all finite sequences of consequences have 
positive probability. Nevertheless, both the agent and the principal can immedi- 
ately detect any departure from a pre-announced strategy of the principal. An 
alternative concept of "credible equilibrium" that seems useful in this situation, 
called sequential equilibrium, has been proposed by Kreps and Wilson [9]. In 
fact, one can show that the review-strategy equilibria constructed in Sections 4-7 
satisfy their definition. 

9. BIBLIOGRAPHIC NOTES 

In the case of a one-period game, Groves [3, 4] studied a more general decentral- 
ized decision-making situation with several risk-neutral agents and an organizer 
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(principal). Using the assumption of risk-neutrality of the agents, he constructed 
reward functions that induce efficient equilibria. Early analyses of short-run 
principal-agent relationships (with one agent) were provided by Spence and 
Zeckhauser [22], Ross [18], and Mirrlees [12]. For later work see Hurwicz and 
Shapiro [7], Holmstr6m [6], Shavell [23], Grossman and Hart [2], and the many 
references cited in those papers. An early forerunner of this literature was Simon's 
1953 paper on the employment relation [24]. 

The properties of the set of supergame equilibrium payoff vectors are well- 
understood for the case of repeated games under certainty in which (i) the players 
can monitor the actions of the other players after each one-period game ("perfect 
monitoring") and (ii) the players do not discount their future utilities ("no 
discounting"). In this case, the set of supergame equilibrium payoff vectors is 
the same as the set of feasible, individually rational payoff vectors in the one- 
period game. (This is the so-called Folk Theorem.) The same conclusion can be 
derived for perfect equilibria of the supergame; this deeper result is due to 
Aumann and Shapley (unpublished) and to A. Rubinstein; see [20] for references 
and a related result. The case of perfect monitoring with discounting has not 
been so well explored; see Kurz [10] and Lockwood [11]. 

Unfortunately, the condition of perfect monitoring is ruled out by the informa- 
tional structure of the principal-agent situation (without additional cost, as noted 
above). I am not aware of any previous treatment of the infinite principal-agent 
supergame with discounting. For the case of no discounting, Radner [13] has 
shown that for sufficiently long but finite principal-agent supergames one can 
sustain approximate efficiency by means of approximate equilibria. Particular 
infinite principal-agent supergames have been analyzed in a similar spirit, again 
for the no-discounting case, by Rubinstein [19] and by Rubinstein and Yaari 
[21]. However, the strategies used for the no-discounting case in the above-cited 
literature do not appear to be applicable to the case of discounting. 

The use of review strategies permits a more-or-less unified treatment of the 
two cases; for the no-discounting case one can construct equilibria with review 
strategies in which the review periods are progressively longer. Furthermore, the 
use of review strategies permits a more elementary mathematical analysis. For a 
full treatment of the no-discounting case, see Radner [16]. 

As mentioned in Section 1.5, the continuity-like property of the equilibrium 
payoff correspondence at efficient payoff-pairs, as the players' discount factors 
approach unity, is apparently not a general property of repeated games with 
imperfect monitoring. An example is provided by repeated partnership games 
(Radner [14]), for which there are fully efficient supergame equilibria without 
discounting, whereas in the case of discounting the set of supergame equilibrium 
payoff vectors may be bounded away from efficiency uniformly in the players' 
discountfactors, provided these are strictly less than unity (see Radner, Myerson, 
and Maskin [17]). 

AT & T Bell Laboratories, Murray Hill, New Jersey. 

Manuscript received October, 1981; final revision received October, 1984. 
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APPENDIX 

In this Appendix I sketch the general model described informally in Section 8.1, and indicate the 
corresponding changes in the proofs of the main results of the paper. 

THE ONE-PERIOD GAME 

The principal moves first, announcing a nonnegative reward function, w. The environment is a 
random variable, X. The agent observes a random variable, Y, and then chooses in action, A (the 
agent's move). The consequence, also a random variable, is 

(A. 1) C=C(A,X). 

The principal pays the agent 

(A.2) W= (C). 

The resulting (stochastic) utilities to the principal and agent, respectively, are 

(A.3) U = U(C, W), 

(A.4) V= V(A, W). 

The principal's strategy is the same as his move, o. The agent's strategy is a mapping, a, that determines 
his action as a function of the announced reward function and his observation: 

(A.5) A = a(w, Y). 

For given strategies w and a, equations (A.1)-(A.5) determine the respected expected utilities for 
the principal and agent: 

(A.6) u = EU, v=EV. 

All of the above data, including the joint probability distribution of X and Y, are common knowledge. 
Assume that the utility functions, U and V, are bounded. To avoid technical issues of measure 

theory, it is convenient to assume that X, Y, and C have only finitely many values. (This assumption 
could be replaced by various regularity conditions; I omit the details.) 

I assume further that the following situation obtains. There is a (perfect) Nash equilibrium, (w*, a*), 
of the one-period game, yielding an expected-utility pair (u*, v*); in particular, for each w and Y 
the action a*(w, Y) maximizes the agent's conditional expected utility. Since the principal's utility 
is bounded, one can without loss of generality make the convention that Ut 5 O. Assume that u* > 0. 
Let (6, a) be efficient (Pareto-optimal), with corresponding expected-utility pair (u^, vu), such that 
u^> u* and v^> v*. Finally, assume that there is a positive number K such that, for any strategy a 
of the agent, if the principal uses w then the corresponding expected utility of the agent and expected 
consequence satisfy 

(A.7) (v-v)+K(u-a^)O. 

This assumption states that the set of feasible expected-utility pairs (u, v) is supported at (u, vu) by 
a line of finite and strictly negative slope, given that the principal uses W. 

THE REPEATED GAME 

The repeated game is constructed from the one-period game just as in Section 3, except that to 
the agent's available information at date t is added the history of observations, HY = (Y,..., Y,), 
through period t; cf. (3.lb). The successive pairs (Xt, Yt) are independent and identically distributed. 
Define 

G- U[ Ct, (C,) , 

and note that, for every history Ht,, 

E(GtIHC_ , a, = a) = u. 
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Also, note that Gt is observable by both players. Review strategies can now be defined as in Section 
4, except that SR = G1 + * *· + GR, and the criterion for passing review is SR > R^ - B. Thus, during 
the review phase, the principal gauges the agent's performance directly by his own utility, Gt, rather 
than by the consequence, Ct. 

From (A.7) it follows that for any strategy of the agent and any period t during a review phase, 

(A.8) E( VtlHC_ ) v^<+ K[u-E(GtlHc_ )], 

which is the analogue of (6.3). Also, note that in (5.2) and elsewhere the principal's expected utility 
during a review period becomes EGt instead of ECt - w. One can replace the inequality preceding 
(6.6) by u - EGt < L. Similarly, (7.3) can be replaced by Ut+, >0, and correspondingly in (7.5b), 
(7.8), (7.10), and elsewhere, + u* can be replaced by u*, which is positive. 

With these changes and corresponding modifications elsewhere, the arguments of Sections 5-7 can 
be carried out in a straightforward manner. 
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