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Ten Little Treasures of Game Theory
and Ten Intuitive Contradictions

By Jacob K. Goeree and Charles A. Holt*

This paper reports laboratory data for games that are played only once. Thes
games span the standard categories: static and dynamic games with complete a
incomplete information. For each game, the treasure is a treatment in which
behavior conforms nicely to predictions of the Nash equilibrium or relevant refine
ment. In each case, however, a change in the payoff structure produces a larg
inconsistency between theoretical predictions and observed behavior. These co
tradictions are generally consistent with simple intuition based on the interaction o
payoff asymmetries and noisy introspection about others’ decisions.(JELC72, C92)
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The Nash equilibrium has been the cent
piece of game theory since its introductio
about 50 years ago. Along with supply an
demand, the Nash equilibrium is one of th
most commonly used theoretical constructs
economics, and it is increasingly being appli
in other social sciences. Indeed, game the
has finally gained the central role envisioned
John von Neumann and Oscar Morgenstern, a
in some areas of economics (e.g., industr
organization) virtually all recent theoretical de
velopments are applications of game theo
The impression one gets from recent surve
and game theory textbooks is that the field h
reached a comfortable maturity, with neat cla
sifications of games and successively stron
(more “refined”) versions of the basic approa
being appropriate for more complex categor
of games: Nash equilibrium for static gam
with complete information, Bayesian Nash fo
static games with incomplete information, su
game perfectness for dynamic games with co
plete information, and some refinement of t
-
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sequential Nash equilibrium for dynamic game
with incomplete information (e.g., Robert Gib-
bons, 1997). The rationality assumptions tha
underlie this analysis are often preceded b
persuasive adjectives like “perfect,” “intuitive,”
and “divine.” If any noise in decision-making is
admitted, it is eliminated in the limit in a pro-
cess of “purification.” It is hard not to notice
parallels with theology, and the highly mathe
matical nature of the developments makes th
work about as inaccessible to mainstream eco
omists as medieval treatises on theology wou
have been to the general public.

The discordant note in this view of game
theory has come primarily from laboratory ex
periments, but the prevailing opinion among
game theorists seems to be that behavior w
eventually converge to Nash predictions unde
the right conditions.1 This paper presents a
much more unsettled perspective of the curre
state of game theory. In each of the major type
of games, we present one or more examples f
which the relevant version of the Nash equilib
rium predicts remarkably well. These “trea
sures” are observed in games played only on
by financially motivated subjects who have ha
prior experience in other, similar, strategic sit
uations. In each of these games, however, w
show that a change in the payoff structure ca
produce a large inconsistency between theore

ll,
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1 For example, George J. Mailath’s (1998) survey of
evolutionary models cites the failure of backward induction
as the main cause of behavioral deviations from Nash pre-
dictions.
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ical prediction(s) and human behavior. For e
ample, a payoff change that does not alter t
unique Nash equilibrium may move the data
the opposite side of the range of feasible de
sions. Alternatively, a payoff change may cau
a major shift in the game-theoretic prediction
and have no noticeable effect on actual beha
ior. The observed contradictions are typical
somewhat intuitive, even though they are n
explained by standard game theory. In a sim
taneous effort-choice coordination game, f
example, an increase in the cost of playe
“effort” decisions is shown to cause a dramat
decrease in effort, despite the fact thatanycom-
mon effort is a Nash equilibrium for a range o
effort costs. In some of these games, it see
like the Nash equilibrium works only by coin
cidence, e.g., in symmetric cases where t
costs of errors in each direction are balanced.
other cases, the Nash equilibrium has consid
able drawing power, but economically signifi
cant deviations remain to be explained.

The idea that game theory should be test
with laboratory experiments is as old as th
notion of a Nash equilibrium, and indeed, th
classic prisoner’s dilemma paradigm was i
spired by an experiment conducted at t
RAND Corporation in 1950. Some of the stra
tegic analysts at RAND were dissatisfied wi
the received theory of cooperative and zero-su
games in von Neumann and Morgenstern
(1944)Theory of Games and Economic Beha
ior. In particular, nuclear conflict was no
thought of as a zero-sum game because b
parties may lose. Sylvia Nasar (1998) describ
the interest at RAND when word spread that
Princeton graduate student, John Nash, had g
eralized von Neumann’s existence proof f
zero-sum games to the class of all games w
finite numbers of strategies. Two mathema
cians, Melvin Dresher and Merrill Flood, ha
been running some game experiments with th
colleagues, and they were skeptical that hum
behavior would be consistent with Nash’s n
tion of equilibrium. In fact, they designed a
experiment that was run on the same day th
heard about Nash’s proof. Each player in th
game had a dominant strategy to defect, b
both would earn more if they both used th
cooperative strategy. The game was repea
100 times with the same two players, and a fa
amount of cooperation was observed. One
Nash’s professors, Al W. Tucker, saw the pa
-
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offs for this game written on a blackboard, and
he invented the prisoner’s dilemma story that
was later used in a lecture on game theory tha
he gave in the Psychology Department at Stan
ford (Tucker, 1950).

Interestingly, Nash’s response to Dresher and
Flood’s repeated prisoner’s dilemma experi-
ment is contained in a note to the authors tha
was published as a footnote to their paper:

The flaw in the experiment as a test of
equilibrium point theory is that the exper-
iment really amounts to having the play-
ers play one large multi-move game. One
cannot just as well think of the thing as a
sequence of independent games as one
can in zero-sum cases. There is just too
much interaction . . . (Nasar, 1998 p.
119).

In contrast, the experiments that we report in
this paper involved games that were playedonly
once, although related results for repeated
games with random matching will be cited
where appropriate. As Nash noted, the advan
tage of one-shot games is that they insulate
behavior from the incentives for cooperation
and reciprocity that are present in repeated
games. One potential disadvantage of one-sho
games is that, without an opportunity to learn
and adapt, subjects may be especially prone t
the effects of confusion. The games used in
this paper, however, are simple enough in
structure to ensure that Nash-like behavior
can be observed in the “treasure” treatment
In addition, the study of games played only
once is of independent interest given the
widespread applications of game theory to
model one-shot interactions in economics and
other social sciences, e.g., the FCC license
auctions, elections, military campaigns, and
legal disputes.

The categories of games to be considered ar
based on the usual distinctions: static versus
dynamic and complete versus incomplete infor-
mation. Section I describes the experiments
based on static games with complete informa-
tion: social dilemma, matching pennies, and
coordination games. Section II contains results
from dynamic games with complete informa-
tion: bargaining games and games with threats
that are not credible. The games reported in
Sections III and IV have incomplete infor-
mation about other players’ payoffs: in static
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1404 THE AMERICAN ECONOMIC REVIEW DECEMBER 2001
settings (auctions) and two-stage settings (s
naling games).

It is well known that decisions can be a
fected by psychological factors such as framin
aspiration levels, social distance, and heurist
(e.g., Daniel Kahneman et al., 1982; Catheri
Eckel and Rick Wilson, 1999). In this paper w
try to hold psychological factors constant an
focus on payoff changes that are primarilyeco-
nomic in nature. As noted below, econom
theories can and are being devised to explain
resulting anomalies. For example, the ration
choice assumption underlying the notion of
Nash equilibrium eliminates all errors, but if th
costs of “overshooting” an optimal decision a
much lower than the costs of “undershooting
one might expect an upward bias in decision
In a game, the endogenous effects of such
ases may be reinforcing in a way that create
“snowball” effect that moves decisions we
away from a Nash prediction. Models that in
troduce (possibly small) amounts of noise in
the decision-making process can produce p
dictions that are quite far from any Nash equ
librium (Richard D. McKelvey and Thomas R
Palfrey, 1995, 1998; Goeree and Holt, 199
Equilibrium models of noisy behavior hav
been used to explain behavior in a variety
contexts, including jury decision-making, ba
gaining, public goods games, imperfect pri
competition, and coordination (Simon P
Anderson et al., 1998a, b, 2001a; C. Moni
Capra et al., 1999, 2002; Stanley S. Reynol
1999; Serena Guarnaschelli et al., 2001).

A second type of rationality assumption th
is built into the Nash equilibrium is that belief
are consistent with actual decisions. Beliefs a
not likely to be confirmed out of equilibrium
and learning will presumably occur in suc
cases. There is a large recent literature on
corporating learning into models of adjustme
in games that are played repeatedly with diffe
ent partners.2 These models include adaptiv
learning (e.g., Vincent P. Crawford, 1995
David J. Cooper et al., 1997), naive Bayesi
learning (e.g., Jordi Brandts and Holt, 199
Dilip Mookherjee and Barry Sopher, 1997), r
inforcement or stimulus-response learning (e.
Ido Erev and Alvin E. Roth, 1998), and hybri
2 See, for instance, Drew Fudenberg and David K. Le-
vine (1998) for a survey.
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models with elements of both belief and rein-
forcement learning (Colin Camerer and Teck-
Hua Ho, 1999). Learning from experience is not
possible in games that are only played once, and
beliefs must be formed from introspective
thought processes, which may be subject to
considerable noise. Without noise, iterated bes
responses will converge to a Nash equilibrium,
if they converge at all. Some promising ap-
proaches to explaining deviations from Nash
predictions are based on models that limit play-
ers’ capacities for introspection, either by lim-
iting the number of iterations (e.g., Dale O.
Stahl and Paul W. Wilson, 1995; Rosemarie
Nagel, 1995) or by injecting increasing amounts
of noise into higher levels of iterated beliefs
(Goeree and Holt, 1999; Dorothea Ku¨bler and
Georg Weizsa¨cker, 2000). The predictions de-
rived from these approaches, discussed in Sec
tion V, generally conform to Nash predictions
in the treasure treatments and to the systematic
intuitive deviations in the contradiction treat-
ments. Some conclusions are offered in
Section VI.

I. Static Games with Complete Information

In this section we consider a series of two-
player, simultaneous-move games, for which
the Nash equilibria show an increasing degree
of complexity. The first game is a “social di-
lemma” in which the pure-strategy Nash equi-
librium coincides with the unique rationalizable
outcome. Next, we consider a matching pennies
game with a unique Nash equilibrium in mixed
strategies. Finally, we discuss coordination
games that have multiple Nash equilibria, some
of which are better for all players.

In all of the games reported here and in
subsequent sections, we used cohorts of studen
subjects recruited from undergraduate econom
ics classes at the University of Virginia. Each
cohort consisted of ten students who were paid
$6 for arriving on time, plus all cash they earned
in the games played. These one-shot game
followed an initial “part A” in which the sub-
jects played the same two-person game for ten
periods with new pairings made randomly in
each period.3 Earnings for the two-hour ses-
er
3 We only had time to run about six one-shot games in
each session, so the data are obtained from a large numb
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6 In other games, rationalizability may allow outcomes
that are not Nash equilibria, so it is a weaker concept than
that of a Nash equilibrium, allowing a wider range of
possible behavior. It is in this sense that Nash is more
persuasive when it corresponds to the unique rationalizable
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sions ranged from $15 to $60, with an avera
of about $35. Each one-shot game began w
the distribution and reading of the instruction
for that game.4 These instructions containe
assurances that all money earned would be p
and that the game would be followed by “an
other, quite different, decision-making exper
ment.” Since the one-shot treatments we
paired, we switched the order of the treasu
and contradiction conditions in each subsequ
session. Finally, the paired treatments were
ways separated by other one-shot games o
different type.

A. The One-Shot Traveler’s Dilemma Game

The Nash equilibrium concept is based on t
twin assumptions of perfect error-free decisio
making and the consistency of actions and b
liefs. The latter requirement may see
especially strong in the presence of multip
equilibria when there is no obvious way fo
players to coordinate. More compelling argu
ments can be given for the Nash equilibriu
when it predicts the play of the unique justifi
able, or rationalizable, action (B. Douglas
Bernheim, 1984; David G. Pierce, 1984). R
tionalizability is based on the idea that playe
should eliminate those strategies that are ne
a best response for any possible beliefs, a
realize that other (rational) players will do th
same.5

To illustrate this procedure, consider th
game in which two players independently an
simultaneously choose integer numbers b
tween (and including) 180 and 300. Both pla
ers are paid thelower of the two numbers, and
in addition, an amountR . 1 is transferred
from the player with the higher number to th
player with the lower number. For instance,
one person chooses 210 and the other choo
250, they receive payoffs of 2101 R and
e
e
r
th

4 These instructions can be downloaded from http://
www.people.virginia.edu/;cah2k/datapage.html.

5 A well-known example for which this iterated deletion
process results in a unique outcome is a Cournot duopol
game with linear demand (Fudenberg and Jean Tirole, 199
pp. 47–48).
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210 2 R respectively. SinceR . 1, the best
response is to undercut the other’s decision b
(if that decision were known), and therefore, th
upper bound 300 is never a best response to
possible beliefs that one could have. Cons
quently, a rational person must assign a prob
bility of zero to a choice of 300, and hence 29
cannot be a best response to any possible bel
that rule out choices of 300, etc. Only the low
bound 180 survives this iterated deletion pr
cess and is thus the unique rationalizable acti
and hence the unique Nash equilibrium.6 This
game was introduced by Kaushik Basu (199
who coined it the “traveler’s dilemma” game.7

Although the Nash equilibrium for this gam
can be motivated by successively droppin
those strategies that are never a best respo
(to any beliefs about strategies that have not
been eliminated from consideration), this del
tion process may be too lengthy for huma
subjects with limited cognitive abilities. When
the cost of having the higher number is sma
i.e., for small values ofR, one might expect
more errors in the direction of high claims, we
away from the unique equilibrium at 180, an
indeed this is the intuition behind the dilemm
In contrast, with a large penalty for having th
higher of the two claims, players are likely t
end up with claims that are near the uniqu
Nash prediction of 180.

To test these hypotheses we asked 50 subje
(25 pairs) to make choices in a treatment wi
R 5 180, andagain in a matched treatmen
with R 5 5. All subjects made decisions in
each treatment, and the two games were se
rated by a number of other one-shot games. T
d
-
s.
e

outcome.
7 The associated story is that two travelers purchase

identical antiques while on a tropical vacation. Their lug-
gage is lost on the return trip, and the airline asks them to
make independent claims for compensation. In anticipation
of excessive claims, the airline representative announces:
“We know that the bags have identical contents, and we will
of sessions where part A involved a wide range of repeat
games, including public goods, coordination, price comp
tition, and auction games that are reported in other pape
The one-shot games never followed a repeated game of
same type.
y
3

entertain any claim between $180 and $300, but you will
each be reimbursed at an amount that equals theminimumof
the two claims submitted. If the two claims differ, we will
also pay a rewardR to the person making the smaller claim
and we will deduct a penaltyR from the reimbursement to
the person making the larger claim.”
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ordering of the two treatments was alternate
The instructions asked the participants to dev
their own numerical examples to be sure th
they understood the payoff structure.

Figure 1 shows the frequencies for each 1
cent category centered around the claim label
the horizontal axis. The lighter bars pertain
the high-R “treasure” treatment, where close t
80 percent of all the subjects chose the Na
equilibrium strategy, with an average claim o
201. However, roughly the same fraction cho
the highestpossible claim in the low-R treat-
ment, for which the average was 280, as sho
by the darker bars. Notice that the data in t
contradiction treatment are clustered at the o
posite end of the set of feasible decisions fro
the unique (rationalizable) Nash equilibrium8

Moreover, the “anomalous” result for the low-R
treatment does not disappear or even dimin
over time when subjects play the game repe
edly and have the opportunity to learn.9 Since

FIGURE 1. CLAIM FREQUENCIES IN A TRAVELER’S DILEMMA

FOR R 5 180 (LIGHT BARS) AND R 5 5 (DARK BARS)
is
e
n

8 This result is statistically significant at all conventional
levels, given the strong treatment effect and the relative
large number of independent observations (two paired o
servations for each of the 50 subjects). We will not repor
specific nonparametric tests for cases that are so clea
significant. The individual choice data are provided in th
Data Appendix for this paper on: http://www.people
virginia.edu/;cah2k/datapage.html.
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the treatment change does not alter the uniq
Nash (and rationalizable) prediction, standa
game theory simply cannot explain the mo
salient feature of the data, i.e., the effect of th
penalty/reward parameter on average claims.

B. A Matching Pennies Game

Consider a symmetric matching pennie
game in which the row player chooses betwee
Top and Bottomand the column player simul-
taneously chooses betweenLeft and Right, as
shown in top part of Table 1. The payoff for the
row player is $0.80 when the outcome is (Top,
Left) or (Bottom, Right) and $0.40 otherwise.
The motivations for the two players are exactl
opposite: column earns $0.80 when row ear
$0.40, and vice versa. Since the players ha
opposite interests there is no equilibrium in pur
strategies. Moreover, in order not to be ex
ploited by the opponent, neither player shou
favor one of their strategies, and the mixed
strategy Nash equilibrium involves randomiz
ing over both alternatives with equa
probabilities. As before, we obtained decision
from 50 subjects in a one-shot version of th
game (five cohorts of ten subjects, who wer
randomly matched and assigned row or columly

b-

TABLE 1—THREE ONE-SHOT MATCHING PENNIES GAMES

(WITH CHOICE PERCENTAGES)

Left (48) Right (52)
Symmetric Top (48) 80, 40 40, 80

matching
pennies

Bottom(52) 40, 80 80, 40

Left (16) Right (84)
Asymmetric Top (96) 320, 40 40, 80

matching
pennies

Bottom(4) 40, 80 80, 40

Left (80) Right (20)
Reversed Top (8) 44, 40 40, 80

asymmetry Bottom(92) 40, 80 80, 40
t

y/
e
,

nt
v-
t-
n

y

9 In Capra et al. (1999), we report results of a repeat
traveler’s dilemma game (with random matching). Whe
subjects chose numbers in the range [80, 200] withR 5 5,
the average claimrose from approximately 180 in the first
period to 196 in period 5, and the average remained abo
190 in later periods. Different cohorts played this game wi
different values ofR,and successive increases inR resulted
rly
e
.

d
n

ve
h

in successive reductions in average claims. With a penalt
reward parameter of 5, 10, 20, 25, 50, and 80 the averag
claims in the final three periods were 195, 186, 119, 138, 85
and 81 respectively. Even though there is one treatme
reversal, the effect of the penalty/reward parameter on a
erage claims is significant at the 1-percent level. The pa
terns of adjustment are well explained by a naive Bayesia
learning model with decision error, and the claim distribu-
tions for the final five periods are close to those predicted b
a logit equilibrium (McKelvey and Palfrey, 1995).
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11 This anomaly is persistent when subjects play the
game repeatedly. Jack Ochs (1995a, b) investigates a match-
ing pennies game with an asymmetry similar to that of the
middle game in Table 1, and reports that the row players

1407VOL. 91 NO. 5 GOEREE AND HOLT: TREASURES AND CONTRADICTIONS
roles). The choice percentages are shown
parentheses next to the decision labels in the
part of Table 1. Note that the choice percentag
are essentially “50-50,” or as close as possib
given that there was an odd number of playe
in each role.

Now consider what happens if the row play
er’s payoff of $0.80 in the (Top, Left) box is
increased to $3.20, as shown in the asymme
matching pennies game in the middle part
Table 1. In a mixed-strategy equilibrium,
player’s own decision probabilities should be
such that theother player is made indifferent
between the two alternatives. Since the colum
player’s payoffs are unchanged, the mixe
strategy Nash equilibrium predicts thatrow’s
decision probabilities do not change either.
other words, the row player should ignore th
unusually high payoff of $3.20 and still choos
Top or Bottom with probabilities of one-half.
(Since column’s payoffs are either 40 or 80 fo
playing Left and either 80 or 40 for playing
Right, row’s decision probabilities must equa
one-half to keep column indifferent betwee
Left and Right, and hence willing to random-
ize.)10 This counterintuitive prediction is dra
matically rejected by the data, with 96 perce
of the row players choosing theTop decision
that gives a chance of the high $3.20 payo
Interestingly, the column players seemed
have anticipated this, and they playedRight 84
percent of the time, which is quite close to the
equilibrium mixed strategy of7⁄8. Next, we low-
ered the row player’s (Top, Left) payoff to
$0.44, which again should leave the row pla
er’s own choice probabilities unaffected in
mixed-strategy Nash equilibrium. Again the e
fect is dramatic, with 92 percent of the choice
being Down, as shown in the bottom part o
Table 1. As before, the column players seem
to have anticipated this reaction, playingLeft80
percent of the time. To summarize, the uniq
Nash prediction is for the bolded row-choic
percentages to be unchanged at 50 percent
all three treatments. This prediction is violate
10 The predicted equilibrium probabilities for the row
player are not affected if we relax the assumption of ris
neutrality. There are only two possible payoff levels for
column so, without loss of generality, columns’ utilities for
payoffs of 40 and 80 can be normalized to 0 and 1. Henc
even a risk-averse column player will only be indifferent
when row uses choice probabilities of one-half.
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in an intuitive manner, with row players’
choices responding to their own payoffs.11 In
this context,the Nash mixed-strategy prediction
seems to work only by coincidence,when the
payoffs are symmetric.

C. A Coordination Game with a Secure
Outside Option

Games with multiple Nash equilibria pose
interesting new problems for predicting behav
ior, especially when some equilibria produce
higher payoffs for all players. The problem of
coordinating on the high-payoff equilibrium
may be complicated by the possible gains an
losses associated with payoffs that are not pa
of any equilibrium outcome. Consider a coordi
nation game in which players receive $1.80 i
they coordinate on the high-payoff equilibrium
(H, H) $0.90 if they coordinate on the low-
payoff equilibrium (L, L), and they receive
nothing if they fail to coordinate (i.e., when one
player choosesH and the otherL). Suppose that,
in addition, the column player has a secur
optionSthat yields $0.40 for column and results
in a zero payoff for the row player. This game is
given in Table 2 whenx 5 0. To analyze the
Nash equilibria of this game, notice that for the
column player a 50-50 combination ofL andH
dominates S, and a rational column player
should therefore avoid the secure option. Elim
inating S turns the game into a standard 23 2
coordination game that has three Nash equilibri

TABLE 2—AN EXTENDED COORDINATION GAME

L H S
L 90, 90 0, 0 x, 40
H 0, 0 180, 180 0, 40
k

e

continue to selectTop considerably more than one-half of
the time, even after as many as 50 rounds. These results are
replicated in McKelvey et al. (2000). Similarly, Goeree et
al. (2000) report results for ten-period repeated matching
pennies games that exactly match those in Table 1. The
results are qualitatively similar but less dramatic than those
in Table 1, with row’s choice probabilities showing strong
“own-payoff” effects that are not predicted by the Nash
equilibrium.
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both players choosingL, both choosingH, and
a mixed-strategy equilibrium in which both
players chooseL with probability 2⁄3.

The Nash equilibria are independent ofx,
which is the payoff to the row player when (L,
S) is the outcome, since the argument for elim
inating S is based solely on column’s payoffs
However, the magnitude ofx may affect the
coordination process: forx 5 0, row is indif-
ferent betweenL andH when column selectsS,
and row is likely to preferH when column does
not selectS (since thenL andH have the same
number of zero payoffs for row, butH has a
higher potential payoff). Row is thus mor
likely to chooseH, which is then also the opti-
mal action for the column player. Howeve
whenx is large, say 400, the column player ma
anticipate that row will selectL in which case
column should avoidH.

This intuition is borne out by the experimen
tal data: in the treasure treatment withx 5 0, 96
percent of the row players and 84 percent of t
column players chose the high-payoff actionH,
while in the contradiction treatment withx 5
400 only 64 percent of the row players and 7
percent of the column players choseH. The
percentages of outcomes that were coordina
on the high-payoff equilibrium were 80 for th
treasure treatment versus 32 for the contrad
tion treatment. In the latter treatment, an add
tional 16 percent of the outcomes we
coordinated on the low-payoff equilibrium, bu
more than half of all the outcomes were unc
ordinated, non-Nash outcomes.

D. A Minimum-Effort Coordination Game

The next game we consider is also a coor
nation game with multiple equilibria, but in this
case the focus is on the effect of payoff asym
metries that determine the risks of deviating
the upward and downward directions. The tw
players in this game choose “effort” levels s
multaneously, and the cost of effort determin
the risk of deviation. The joint product is of th
fixed-coefficients variety, so that each person
payoff is the minimum of the two efforts, minu
the product of the player’s own effort and
constant cost factor,c. In the experiment, we let
efforts be any integer in the range from 110
170. If c , 1, any common effort in this
range is a Nash equilibrium, because a u
lateral one-unit increase in effort above
-

e

6

ed

c-
i-

-

i-

-

common starting point will not change the
minimum but will reduce one’s payoff byc.
Similarly, a one-unit decrease in effort will
reduce one’s payoff by 12 c, i.e., the reduc-
tion in the minimum is more than the savings
in effort costs whenc , 1. Obviously, a
higher effort cost increases the risk of raising
effort and reduces the risk of lowering effort.
Thus simple intuition suggests that effort lev
els will be inversely related to effort costs,
despite the fact that any common effort leve
is a Nash equilibrium.

We ran one treatment with a low effort cos
of 0.1, and the data for 50 randomly matche
subjects in this treatment are shown by the da
bars in Figure 2. Notice that behavior is quite
concentrated at the highest effort level of 170
subjects coordinate on the Pareto-dominant ou
come. The high effort cost treatment (c 5 0.9),
however, produced a preponderance of effor
at the lowest possible level, as can be seen b
the lighter bars in the figure. Clearly, the exten
of this “coordination failure” is affected by the
key economic variable in this model, even
though Nash theory is silent.12

FIGURE 2. EFFORT CHOICE FREQUENCIES FOR AMINIMUM -
EFFORT COORDINATION GAME WITH HIGH EFFORT COST

(LIGHT BARS) AND LOW EFFORT COST (DARK BARS)
s

i-

12 The standard analysis of equilibrium selection in co-
ordination is based on the John C. Harsanyi and Reinha
Selten’s (1988) notion of risk dominance, which allows a
formal analysis of the trade-off between risk and payof
dominance. Paul G. Straub (1995) reports experiment
evidence for risk dominance as a selection criterium. Ther
is no agreement on how to generalize risk dominance b
yond 2 3 2 games, but see Anderson et al. (2001b) for
proposed generalization based on the “stochastic potentia
Experiments with repeated plays of coordination game
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TABLE 3—TWO VERSIONS OF THEKREPSGAME (WITH CHOICE PERCENTAGES)

Left (26) Middle (8) Non-Nash(68) Right (0)
Basic game Top (68) 200, 50 0, 45 10, 30 20,2250

Bottom(32) 0,2250 10,2100 30, 30 50, 40

Left (24) Middle (12) Non-Nash(64) Right (0)
Positive payoff frame Top (84) 500, 350 300, 345 310, 330 320, 50

Bottom(16) 300, 50 310, 200 330, 330 350, 340
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E. The Kreps Game

The previous examples demonstrate how t
cold logic of game theory can be at odds wi
intuitive notions about human behavior. Th
tension has not gone unnoticed by some ga
theorists. For instance, David M. Kreps (199
discusses a variant of the game in the top par
Table 3 (where we have scaled back the payo
to levels that are appropriate for the laboratory
The pure-strategy equilibrium outcomes of th
game are (Top, Left) and (Bottom, Right). In
addition, there is a mixed-strategy equilibrium
in which row randomizes betweenTopandBot-
tom and column randomizes betweenLeft and
Middle. The only column strategy that is no
part of any Nash equilibrium is labeledNon-
Nash.Kreps argues that column players wi
tend to chooseNon-Nashbecause the othe
options yield at best a slightly higher payo
(i.e., 10, 15, or 20 cents higher) but could lea
to substantial losses of $1 or $2.50. Notic
that this intuition is based on payoff magn
tudes out of equilibrium, in contrast to Nas
calculations based only on signs of payo
differences.

Kreps did try the high-hypothetical-payof
version of this game on several graduate s
dents, but let us consider what happens w
financially motivated subjects in an anonymo
i-
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laboratory situation. As before, we randomly
paired 50 subjects and let them make a sing
choice. Subjects were told that losses wou
be subtracted from prior earnings, which wer
quite substantial by that point. As seen from
the percentages in parentheses in the top p
of the table, theNon-Nashdecision was se-
lected by approximately two-thirds of the col-
umn players. Of course, it is possible that thi
result is simply a consequence of “loss-ave
sion,” i.e., the disutility of losing some
amount of money is greater than the utility
associated with winning the same amoun
(Daniel Kahneman et al., 1991). Since all th
other columns contain negative payoffs, loss
averse subjects would thus be naturally in
clined to chooseNon-Nash.Therefore, we ran
another 50 subjects through the same gam
but with 300 cents added to payoffs to avoi
losses, as shown in the bottom part of Tab
3. The choice percentages shown in parenth
ses indicate very little change, with close to
two-thirds of column players choosingNon-
Nash as before. Thus “loss aversion” biase
are not apparent in the data, and do not see
to be the source of the prevalence ofNon-
Nashdecisions. Finally, we ran 50 new sub
jects through the original version in the top
part of the table, with the (Bottom, Right)
payoffs of (50, 40) being replaced by (350
400), which (again) does not alter the equ
librium structure of the game. With this ad-
mittedly heavy-handed enhancement of th
equilibrium in that cell, we observed 96 per
cent Bottom choices and 84 percentRight
choices, with 16 percentNon-Nashpersisting
in this, the “treasure” treatment.

II. Dynamic Games with Complete Information

As game theory became more widely used
fields like industrial organization, the complex
ity of the applications increased to accommoda

o-

nd
e
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have shown that behavior may begin near the Pare
dominant equilibrium, but later converge to the equili
rium that is worst for all concerned (John B. Van Huyc
et al., 1990). Moreover, the equilibrium that is select
may be affected by the payoff structure for dominat
strategies (Russell Cooper et al., 1992). See Goeree
Holt (1998) for results of a repeated coordination gam
with random matching. They show that the dynam
patterns of effort choices are well explained by a simp
evolutionary model of noisy adjustment toward high
payoffs, and that final-period effort decisions can
explained by the maximization of stochastic potent
function.
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13 See Beard and Beil (1994) for similar results in a
two-stage game played only once.
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dynamics and asymmetric information. One o
the major developments coming out of thes
applications was the use of backward inductio
to eliminate equilibria with threats that are no
“credible” (Selten, 1975). Backward induction
was also used to develop solutions to alternatin
offer bargaining games (Ariel Rubinstein
1982), which was the first major advance on th
historically perplexing topic since Nash’s
(1950) axiomatic approach. However, the
have been persistent doubts that people are a
to figure out complicated, multistagebackward
induction arguments. Robert W. Rosenthal (198
quickly proposed a game, later dubbed the “ce
tipede game,” in which backward induction over
large number of stages (e.g., 100 stages) w
thought to be particularly problematic (e.g
McKelvey and Palfrey, 1992). Many of the game
in this section are inspired by Rosenthal’s (198
doubts and Randolph T. Beard and Beil’s (199
experimental results. Indeed, the anomalies in t
section are better known than those in other s
tions, but we focus on very simple games with tw
or three stages, using parallel procedures and s
jects who have previously made a number
strategic decisions in different one-shot games

A. Should You Trust Others to Be Rational?

The power of backward induction is illus
trated in the top game in Figure 3. The firs

FIGURE 3. SHOULD YOU TRUST OTHERS TO BE RATIONAL ?
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player begins by choosing between a safe dec
sion,S,and a risky decision,R. If R is chosen,
the second player must choose between a de
sionP that punishes both of them and a decisio
N that leads to a Nash equilibrium that is also a
joint-payoff maximum. There is, however, a
second Nash equilibrium where the first playe
choosesS and the second choosesP. The sec-
ond player has no incentive to deviate from this
equilibrium because the self-inflicted punish-
ment occurs off of the equilibrium path. Sub-
game perfectness rules out this equilibrium b
requiring equilibrium behavior in each sub-
game, i.e., that the second player behave op
mally in the event that the second-stage
subgame is reached.

Again, we used 50 randomly paired subject
who played this game only once. The data fo
this treasure treatment are quite consistent wit
the subgame-perfect equilibrium; a preponder
ance of first players trust the other’s rationality
enough to chooseR, and there are no irrational
P decisions that follow. The game shown in the
bottom part of Figure 3 is identical, except tha
the second player only forgoes 2 cents b
choosingP. This change does not alter the fac
that there are two Nash equilibria, one of which
is ruled out by subgame perfectness. The choic
percentages for 50 subjects indicate that a m
jority of the first players did not trust others
to be perfectly rational when the cost of
irrationality is so small. Only about a third of
the outcomes matched the subgame-perfe
equilibrium in this game.13 We did a third treat-
ment (not shown) in which we multiplied all
payoffs by a factor of 5, except that theP
decision led to (100, 348) instead of (100, 340)
This large increase in payoffs produced an eve
more dramatic result; only 16 percent of the
outcomes were subgame perfect, and 80 perce
of the outcomes were at the Nash equilibrium
that is not subgame perfect.

B. Should You Believe a Threat
That Is Not Credible?

The game just considered is a little unusual in
that, in the absence of relative payoff effects
the second player has no reason to punish, sin
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the first player’sR decision also benefits the
second player. This is not the case for the gam
in Figure 4, where anR decision by the first
player will lower the second player’s payoff. As
before, there are two Nash equilibria, with th
(R, P) equilibrium ruled out by subgame per
fectness. In addition to not being credible, th
threat to playP is a relatively costly punishmen
for the second player to administer (40 cents

The threat to playP in the top part of Figure
4 is evidently not believed, and 88 percent o
the first players choose theR strategy, with
impunity. The threat is cheap (2 cents) for th
game in the bottom part of the figure, and ou
comes for 25 subject pairs are evenly divide
between the subgame-imperfect outcome, t
incredible threat outcome, and the subgam
perfect outcome. Cheap threats often are (a
apparently should be) believed. Again we se
that payoff magnitudes and off-the-equilibrium
path risks matter.

Since theP decisions in the bottom games o
Figures 3 and 4 only reduce the second playe
payoff by 2 cents, behavior may be affected b
small variations in payoff preferences or emo
tions, e.g., spite or rivalry. As suggested b
Ernst Fehr and Klaus Schmidt (1999) and Ga
E Bolton and Axel Ockenfels (2000), player
may be willing to sacrifice own earnings in
order to reduce payoff inequities which woul
explain theP choices in the contradiction treat

FIGURE 4. SHOULD YOU BELIEVE A THREAT THAT

IS NOT CREDIBLE?
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ments. Alternatively, the occurrence of the hig
fraction of P decisions in the bottom game o
Figure 4 may be due to negative emotions th
follow the first player’sR decision, which re-
duces the second player’s earnings (Matthe
Rabin, 1993). Notice that this earnings redu
tion does not occur when the first playe
choosesR for the game in the bottom part of
Figure 3, which could explain the lower rate o
punishments in that game.

The anomalous results of the contradictio
treatments may not come as any surprise
Selten, the originator of the notion of subgam
perfectness. His attitude toward game theo
has been that there is a sharp contrast betwe
standard theory and behavior. For a long tim
he essentially wore different hats when he d
theory and ran experiments, although his 199
Nobel prize was clearly for his contributions in
theory. This schizophrenic stance may see
inconsistent, but it may prevent unnecessa
anxiety, and some of Selten’s recent theoretic
work is based on models of boundedly ration
(directional) learning (Selten and Joachim
Buchta, 1998). In contrast, John Nash was r
portedly discouraged by the predictive failure
of game theory and gave up on both experime
tation and game theory (Nasar, 1998 p. 150)

C. Two-Stage Bargaining Games

Bargaining has long been considered a ce
tral part of economic analysis, and at the sam
time, one of the most difficult problems for
economic theory. One promising approach is
model unstructured bargaining situations “as if
the parties take turns making offers, with th
costs of delayed agreement reflected in a shrin
ing size of the pie to be divided. This problem i
particularly easy to analyze when the number
alternating offers is fixed and small.

Consider a bargaining game in which eac
player gets to make a single proposal for how
split a pie, but the amount of money to b
divided falls from $5 in the first stage to $2 in
the second. The first player proposes a split
$5 that is either accepted (and implemented)
rejected, in which case the second player pr
poses a split of $2 that is either accepted
rejected by the first player. This final rejection
results in payoffs of zero for both players, so th
second player can (in theory) successfully d
mand $1.99 in the second stage if the first play
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prefers a penny to nothing. Knowing this, th
first player should demand $3 and offer $2
the other in the first stage. In a subgame-perf
equilibrium, the first player receives the amou
by which the pie shrinks, so a larger cost
delay confers a greater advantage to the pla
making the initial demand, which seems reaso
able. For example, a similar argument show
that if the pie shrinks by $4.50, from $5 t
$0.50, then the first player should make a
initial demand of $4.50.

We used 60 subjects (six cohorts of ten su
jects each), who were randomly paired for ea
of the two treatments described above (altern
ing in order and separated by other one-sh
games). The average demand for the first pla
was $2.83 for the $5/$2 treatment, with a sta
dard deviation of $0.29. This is quite close
the predicted $3.00 demand, and 14 of the
initial demands were exactly equal to $3.00
this treasure treatment. But the average dema
only increased to $3.38 for the other treatme
with a $4.50 prediction, and 28 of the 30 de
mands were below the prediction of $4.50. R
jections were quite common in this contradictio
treatment with higher demands and correspo
ingly lower offers to the second player, which
not surprising given the smaller costs of rejectin
“stingy” offers.

These results fit into a larger pattern survey
in Douglas D. Davis and Holt (1993 Chapter 5
and Roth (1995); initial demands in two-stag
bargaining games tend to be “too low” relativ
to theoretical predictions when the equilibrium
demand is high, say more than 80 percent of t
pie as in our $5.00/$0.50 treatment, and initi
demands tend to be close to predictions wh
the equilibrium demand is 50–75 percent of th
pie (as in our $5.00/$2.00 treatment). Intere
ingly, initial demands are “too high” when the
equilibrium demand is less than half of the pi
Here is an example of why theoretical explan
tions of behavior should not be based on exp
iments in only one part of the parameter spac
and why theorists should have more than jus
casual, secondhand knowledge of the expe
mental economics literature.14 Many of the di-
verse theoretical explanations for anomalo
e
e

e

14 Another example is the development of theories o
generalized expected utility to explain “fanning out” pref-
erences in Allais paradox situations, when later experimen
in other parts of the probability triangle found “fanning in.”
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behavior in bargaining games hinge on mode
of preferences in which a person’s utility de
pends on the payoffs of both players, i.e., di
tribution matters (Bolton, 1998; Fehr and
Schmidt, 1999; Bolton and Ockenfels, 2000
Miguel Costa-Gomes and Klaus G. Zaune
2001). The role of fairness is illustrated drama
ically in the experiment reported in Goeree an
Holt (2000a), who obtained even larger devia
tions from subgame-perfect Nash prediction
than those reported here by giving subjec
asymmetric money endowments that were pa
independently of the bargaining outcome. The
endowments were selected to accentuate
payoff inequities that result in the subgame
perfect Nash equilibrium, and hence their effe
was to exaggerate fairness issues without alt
ing the equilibrium prediction. The result (for
seven different one-shot bargaining games) w
for demands to beinverselyrelated to the sub-
game-perfect Nash predictions.

III. Static Games with Incomplete Information

William Vickrey’s (1961) models of auctions
with incomplete information constitute one of th
most widely used applications of game theory.
private values are drawn from a uniform distribu
tion, the Bayesian Nash equilibrium predicts tha
bids will be proportional to value, which is gen
erally consistent with laboratory evidence. Th
main deviation from theoretical predictions is th
tendency of human subjects to “overbid” (relativ
to Nash), which is commonly rationalized in term
of risk aversion, an explanation that has lead
some controversy. Glenn W. Harrison (1989), fo
instance, argues that deviations from the Na
equilibrium may well be caused by a lack o
monetary incentives since the costs of such de
ations are rather small: the “flat maximum cri
tique.” Our approach here is to specify two
auction games with identical Nash equilibria, bu
with differing incentives not to overbid.

First, consider a game in which each of tw
bidders receives a private value for a prize to b
auctioned in a first-price, sealed-bid auction. I
other words, the prize goes to the highest bidd
for a price equal to that bidder’s own bid. Eac
bidder’s value for the prize is equally likely to
be $0, $2, or $5. Bids are constrained to b
integer dollar amounts, with ties decided by th
flip of a coin.

The relevant Nash equilibrium in this gam

f

ts
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TABLE 4—EQUILIBRIUM EXPECTED PAYOFFS FOR THE(0,2,5) TREATMENT (EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*)

Bid 5 0 Bid 5 1 Bid 5 2 Bid 5 3 Bid 5 4 Bid 5 5

Value 5 $0 0* 20.5 21.66 23 24 25
Value 5 $2 0.33 0.5* 0 21 22 23
Value 5 $5 0.83 2 2.5* 2 1 0

TABLE 5—EQUILIBRIUM EXPECTED PAYOFFS FOR THE(0,3,6) TREATMENT (EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*)

Bid 5 0 Bid 5 1 Bid 5 2 Bid 5 3 Bid 5 4 Bid 5 5

Value 5 $0 0* 20.5 21.66 23 24 25
Value 5 $3 0.5 1* 0.83 0 21 22
Value 5 $6 1 2.5 3.33* 3 2 1
f-
m
s
s
e

b
i

o
e
c

e
o

-

e

re
e

f

fo
te

r
he
in
e

es
ui-
-
e
6)
e

i-

m
a
f
-
e

d-
or

e
on
r-

wo
ty
nt
or
0,
he
0,
nd
with incomplete information about others’ pre
erences is the Bayesian Nash equilibriu
which specifies an equilibrium bid for each po
sible realization of a bidder’s value. It i
straightforward but tedious to verify that th
Nash equilibrium bids are $0, $1, and $2 for
value of $0, $2, and $5 respectively, as can
seen from the equilibrium expected payoffs
Table 4. For example, consider a bidder with
private value of $5 (in the bottom row) wh
faces a rival that bids according to the propos
Nash solution. A bid of 0 has a one-half chan
of winning (decided by a coin flip) if the rival’s
value, and hence the rival’s bid, is zero, whic
happens with probability one-third. Therefor
the expected payoff of a zero bid with a value
$5 equals1⁄2 p 1⁄3 p ($5 2 $0) 5 $5/6 5 0.83.
If the bid is raised to $1, the probability of win
ning becomes1⁄2 (1⁄3 when the rival’s value is $0
plus 1⁄6 when the rival’s value is $2). Hence, th
expectedpayoff of a $1 bid is1⁄2 p ($5 2
$1) 5 $2. The other numbers in Table 4 a
derived in a similar way. The maximum expect
payoff in each row coincides with the equilibrium
bid, as indicated by anasterisk (p). Note that the
equilibrium involves bidding about one-half o
the value.15

Table 5 shows the analogous calculations
the second treatment, with equally likely priva
values of $0, $3, or $6. Interestingly, this in
crease in values does not alter the equilibriu
bids in the unique Bayesian Nash equilibrium
e
in
m
ns
Of

15 The bids would be exactly one-half of the value if the
highest value were $4 instead of $5, but we had to raise t
highest value to eliminate multiple Nash equilibria.
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as indicated by the location of optimal bids fo
each value. Even though the equilibria are t
same, we expected more of an upward bias
bids in the second (0, 3, 6) treatment. Th
intuition can be seen by looking at payoff loss
associated with deviations from the Nash eq
librium. Consider, for instance, the middle
value bidder with expected payoffs shown in th
second rows of Tables 4 and 5. In the (0, 3,
treatment, the cost of bidding $1 above th
equilibrium bid is $12 $0.835 $0.17, which is
less than the cost of bidding $1 below the equ
librium bid: $12 $0.505 $0.50. In the (0, 2, 5)
treatment, the cost of an upward deviation fro
the equilibrium bid is greater than the cost of
downward deviation; see the middle row o
Table 4. A similar argument applies to the high
value bidders, while deviation costs are th
same in both treatments for the low-value bi
der. Hence we expected more overbidding f
the (0, 3, 6) treatment.

This intuition is borne out by bid data for th
50 subjects who participated in a single aucti
under each condition (again alternating the o
der of the two treatments and separating the t
auctions with other one-shot games). Eigh
percent of the bids in the (0, 2, 5) treatme
matched the equilibrium: the average bids f
low-, medium-, and high-value bidders were $
$1.06, and $2.64, respectively. In contrast, t
average bids for the (0, 3, 6) treatment were $
$1.82, and $3.40 for the three value levels, a
only 50 percent of all bids were Nash bids. Th
bid frequencies for each value are shown
Table 6. As in previous games, deviations fro
Nash behavior in these private-value auctio
seem to be sensitive to the costs of deviation.

he



a
v
-
g

n
p
d
r
i-
a
t

e

y
fu
s
e
d
y
e

s

e

e

n

1414 THE AMERICAN ECONOMIC REVIEW DECEMBER 2001
course, this does not rule out the possibility th
risk aversion or some other factor may also ha
some role in explaining the overbidding ob
served here, especially the slight overbiddin
for the high value in the (0, 2, 5) treatment.16

IV. Dynamic Games with Incomplete
Information: Signaling

Signaling games are complex and interesti
because the two-stage structure allows an o
portunity for players to make inferences an
change others’ inferences about private info
mation. This complexity often generates mult
ple equilibria that, in turn, have stimulated
sequence of increasingly complex refinemen
of the Nash equilibrium condition. Although it
is unlikely that introspective thinking about th
game will produce equilibrium behavior in a
single play of a game this complex (except b
coincidence), the one-shot play reveals use
information about subjects’ cognitive processe

In the experiment, half of the subjects wer
designated as “senders” and half as “respon
ers.” After reading the instructions, we began b
throwing a die for each sender to determin

TABLE 6—BID FREQUENCIES

(EQUILIBRIUM BIDS MARKED WITH AN ASTERISK*)

(0, 2, 5) Treatment (0, 3, 6) Treatment

Bid Frequency Bid Frequency

Value 5 0 0* 20 Value5 0 0* 17

Value 5 2 1* 15 Value5 3 1* 5
2 1 2 11
3 0 3 2

Value 5 5 1 1 Value5 6 1 0
2* 5 2* 3
3 6 3 4
4 2 4 6
5 0 5 1
6 0 6 1
or

16 Goeree et al. (2001) report a first-price auction exper-
iment with six possible values, under repeated random
matching for ten periods. A two-parameter econometric
model that includes both decision error and risk aversion
provides a good fit of 67 value/bid frequencies and show
that both the error parameter and risk-aversion paramete
are significantly different from zero. David Lucking-Reiley
(1999) mentions risk aversion as a possible explanation fo
overbidding in a variety of auction experiments.
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whether the sender was of type A or B. Every-
body knew that theex anteprobability of a type
A sender was one-half. The sender, knowing
his/her own type would choose a signal,Left or
Right.This signal determined whether the pay-
offs on the right or left side of Table 7 would be
used. (The instructions used letters to identify
the signals, but we will use words here to facil-
itate the explanations.) This signal would be
communicated to the responder that wa
matched withthat sender. The responder would
see the sender’ssignal,Left or Right,but not the
sender’s type, and then choose a response,C, D,
or E. The payoffs were determined by Table
7, with the sender’s payoff to the left in each
cell.

First, consider the problem facing a type A
sender, for whom the possible payoffs from
sending aLeft signal (300, 0, 500) seem, in
some loose sense, less attractive than thos
for sending aRight signal (450, 150, 1,000).
For example, if each response is thought to b
equally likely (the “principle of insufficient
reason”), then theRight signal has a higher
expected payoff. Consequently, type A’s pay-
offs have been made bold for theRight row in
the top right part of Table 7. Applying the
principle of insufficient reason again, a type B
sender looking at the payoffs in the bottom
row of the table might be more attracted by
the Left signal, with payoffs of (500, 300,
300) as compared with (450, 0, 0).17 There-
fore, sender B’s payoffs are in bold for the
Left signal. In fact, all of the type B subjects
did send theLeft signal, and seven of the ten
type A subjects sent theRight signal. All
responses in this game wereC, so all but three
of the outcomes were in one of the two cells
marked by an asterisk. Notice that this is an
equilibrium, since neither type of sender
would benefit from sending the other signal,
and the respondent cannot do any better tha
the maximum payoff received in the marked
cells. This is a separating Nash equilibrium;
the signal reveals the sender’s type.

The payoff structure for this game becomes a
little clearer if you think of the responses as one
of three answers to a request: Concede, Deny,
s
r

r

17 These are not dominance arguments, since the responder
can respond differently to each signal, and the lowest payoff
from sending one signal is not higher than the highest payoff
that can be obtained from sending the other signal.
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TABLE 7—SIGNALING WITH A SEPARATING EQUILIBRIUM (MARKED BY ASTERISKS) (SENDER’S PAYOFF, RESPONDER’S PAYOFF)

Response toLeft signal Response toRight signal

C D E C D E

Type A sendsLeft 300, 300 0, 0 500, 300 Type A sendsRight 450, 900 150, 150 1,000, 300
(*)

Type B sendsLeft 500, 500 300, 450 300, 0 Type B sendsRight 450, 0 0, 300 0, 150
(*)

TABLE 8—SIGNALING WITHOUT A SEPARATING EQUILIBRIUM (SENDER’S PAYOFF, RESPONDER’S PAYOFF)

Response toLeft signal Response toRight signal

C D E C D E

Type A
sendsLeft

300, 300 0, 0 500, 300 Type A
sendsRight

450, 900 150, 150 1,000, 300

Type B
sendsLeft

300, 300 300, 450 300, 0 Type B
sendsRight

450, 0 0, 300 0, 150
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19 Brandts and Holt (1992, 1993) report experimental
data that contradict the predictions of the intuitive criterion,
i.e., the decision converged to an equilibrium ruled out by
that criterion.

20 Unlike the paired treatments considered previously,
the payoff change for these signaling games does alter the
Evade. With some uncertainty about the se
er’s type, Evade is sufficiently unattractive
respondents that it is never selected. Cons
the other two responses and note that a sen
always prefers that the responder choose C
cede instead of Deny. In the separating equi
rium, the signals reveal the senders’ types,
responder always Concedes, and all players
satisfied. There is, however, a second equi
rium for the game in Table 7 in which th
responder Concedes toLeft and DeniesRight,
and therefore both sender types sendLeft to
avoid being Denied.18 Backward induction ra-
tionality (of the sequential Nash equilibrium
does not rule out these beliefs, since a deviat
does not occur in equilibrium, and the respo
dent is making a best response to the belie
What is unintuitive about these beliefs (that
deviant Right signal comes from a type B) i
that the type B sender is earning 500 in th
(Left, Concede) equilibrium outcome, and no
deviation could conceivably increase this pa
off. In contrast, the type A sender is earning 3
in the Left side pooling equilibrium, and thi
type could possibly earn more (450 or ev
1,000), depending on the response to a de
tion. The In-Koo Cho and Kreps (1987)intui-
18 To check that the responder has no incentive to dev-
ate, note that Concede is a best response to aLeft regardless
of the sender’s type, and that Deny is a best response to
deviantRightsignal if the responder believes that it was sen
by a type B.
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tive criterion rules out these beliefs, and selec
the separating equilibrium observed in the tre
sure treatment.19

The game in Table 8 is a minor variation o
the previous game, with the only change b
ing that the (500, 500) in the bottom left pa
of Table 7 is replaced by a (300, 300) pa
off.20 As before, consider the sender’s e
pected payoffs when each response
presumed to be equally likely, which lead
one to expect that type A senders will choo
Right and that type B senders will choos
Left, as indicated by the bold payoff number
In the experiment, 10 of the 13 type A sende
did chooseRight, and 9 of the 11 type B
senders did chooseLeft. But the separation
observed in this contradiction treatment isnot
a Nash equilibrium.21 All equilibria for this
i

a
t

set of Nash equilibria.
21 The respondents would prefer to Concede to aRight

signal and Deny aLeft signal. Type B senders would there-
fore have an incentive to deviate from the proposed sepa-
rating equilibrium and send aRight signal. In the
experiment, half of theLeft signals were Denied, whereas
only 2 of the 12Right signals were Denied.
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contradiction treatment involve “pooling,
with both types sending the same signal.22

V. Explaining Anomalous Behavior
in One-Shot Games

Although the results for the contradictio
treatments seem to preclude a game-theor
explanation, many of the anomalous data p
terns are related to the nature of the incentiv
This suggests that it may be possible to deve
formal models that explain both treasures a
contradictions. Below we discuss several rec
approaches that relax the common assumpt
of perfect selfishness, perfect decision-mak
(no error), and perfect foresight (no surprise

As noted in Section II, the anomalies o
served for the dynamic games in Figures 3 a
4 are consistent with models of inequity ave
sion (Fehr and Schmidt, 1999; Bolton and O
kenfels, 2000), which assumes that people l
higher payoffs for themselves and dislike ea
ing less than the other person (“envy”) or ea
ing more (“guilt”). Inequity aversion also seem
to play a role when players bargain over t
division of a fixed amount of money (Goere
and Holt, 2000a). However, it cannot expla
observed behavior in the contradiction matc
ing pennies treatments. Consider, for exa
ple, the “320” version of the matchin
pennies game in Table 1. Since the colum
player is averse to the (320, 40) outcome,
column player would only be willing to ran
domize betweenLeft and Right if the attrac-
tiveness ofRight is increased by having th
row player playBottom more often than the
0.5 probability that would make a purely se
ish column player indifferent. This prediction
that the row player should playBottommore
22 For example, it is an equilibrium for both types to sen
Right if a Left signal triggers aC or a D response. TheD
response toLeft is appropriate if the respondent thinks th
deviant signal comes from a type B sender, and theC
response is appropriate if the deviant is thought to be of ty
A. Beliefs that the deviant is of type A are intuitive, sinc
type A earns 450 in equilibrium and could possibly ea
more (500) by switching toLeft (if an E response follows).
A second pooling equilibrium involves both types sending
Left signal to which the respondents Concede. A devia
Right signal is Denied, which is appropriate if the respon
dent thinks the deviant signal comes from a type B send
Again these beliefs are intuitive since the type B send
could possibly gain by deviating.
tic
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often, is sharply contradicted by the data i
the middle part of Table 1.23,24

Another possibility is that behavior in one
shot games conforms to a simple heuristic. In
deed, some experimental economists ha
suggested that subjects in the initial period of
repeated game choose the decision that ma
mizes their security level, i.e., the “maximim”
decision. For example, in the Kreps game o
Table 3, the frequently observedNon-Nashde-
cision maximizes column’s security. The stron
treatment effects in the matching pennies gam
cannot be explained in this way, however, sinc
in all three treatments each player’s minimum
payoff is the same for both decisions. A simila
argument applies to the coordination game
Table 2. Moreover, the security-maximizing
choices in the traveler’s dilemma and th
minimum-effort coordination game are the low
est possible decision, which is contradicted b
the high claim and effort choices in the contra
diction treatments. Subjects may be risk aver
in unfamiliar situations, but the extreme risk
aversion implied by maximum security is gen
erally not observed. Furthermore, heuristic
based on reciprocity or a status quo bias do n
apply to single-stage, one-shot games whe
there is neither a precedent nor an opportun
to reciprocate. Nor can loss aversion be th
primary cause, since losses are impossible
most of the games reported here, and the po
sibility of a loss had no effect in the Kreps
game.

As an alternative to simple heuristics, on
could try to model players’ introspective
thought processes. Previous models have ty
cally specified some process of belief forma
tion, assuming that playersbestrespond to the
d
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23 Goeree et al. (2000) report formal econometric tests
that reject the predictions of inequity aversion models in the
context of a group of repeated asymmetric matching pennies
games.

24 Payoff inequity aversion also has no effect in the
minimum-effort coordination game; any common effort
level is still a Nash equilibrium. To see this, note that a
unilateral effort increase from a common level reduces
one’s own payoff and creates an disadvantageous inequity.
Similarly, a unilateral decrease from a common effort level
reduces one’s payoff and creates an inequity where one
earns more than the other, since their costly extra effort is
wasted. Thus inequity aversion cannot explain the strong
effect of an increase in effort costs.
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resulting beliefs.25 The experiments reported
above indicate thatmagnitudes(not justsigns)
of payoff differences matter, and it is thus na
ural to consider a decision rule for which choic
probabilities are positively but imperfectly re
lated to payoffs. The logit rule, for example
specifies that choice probabilities,pi , for op-
tions i 5 1, ... ,m, are proportional to exponen
tial functions of the associated expecte
payoffs,pi

e:

(1) pi 5
exp~p i

e/m!

¥
j 5 1,...,m

exp~p j
e/m!

, i 5 1, ... , m,

where the sum in the denominator ensures th
the probabilities sum to one, and the “erro
parameter,”m, determines how sensitive choic
probabilities are to payoff differences.26

In order to use the “logit best response” i
(1), we need to model the process of beli
formation, since belief probabilities are used
calculate the expected payoffs on the right si
of (1). By the principle of insufficient reason
one might postulate that each of the other
actions are equally likely. This corresponds
the Stahl and Wilson (1995) notion of “leve
one” rationality, which captures many of th
first-period decisions in the “guessing game
,
ut
g
d

fs,

25 Perhaps the best-known model of introspection is Har-
sanyi and Selten’s (1988) “tracing procedure.” This proce
dure involves an axiomatic determination of players’
common priors (the “preliminary theory”) and the construc-
tion of a modified game with payoffs for each decision that
are weighted averages of those in the original game and o
the expected payoffs determined by the prior distribution
By varying the weight on the original game, a sequence o
best responses for the modified game are generated. Th
process is used to select one of the Nash equilibria of th
original game. Gonzalo Olcina and Amparo Urbano (1994
also use an axiomatic approach to select a prior distribution
which is then revised by a simulated learning process that i
essentially a partial adjustment from current beliefs to bes
responses to current beliefs. Since neither the Harsany
Selten model nor the Olcina/Urbano model incorporates an
noise, they predict that behavior will converge to the Nash
equilibrium in games with a unique equilibrium, which is an
undesirable feature in light of the contradictions data re
ported above.

26 As m goes to zero, payoff differences are “blown up,”
and the probability of the optimal decision converges to 1
In the other extreme, asm goes tò , the choice probabilities
converge to 1/m independently of expected payoffs. See R.
Duncan Luce (1959) for an axiomatic derivation of the logit
choice rule in (1).
t
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e
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reported by Nagel (1995).27 It is easy to verify
that level one rationality also provides goo
predictions for both treasure and contradictio
treatments in the traveler’s dilemma, th
minimum-effort coordination game, and th
Kreps game. There is evidence, however, that
least some subjects form more precise belie
about others’ actions, possibly through high
levels of introspection.28 In the matching pen-
nies games in Table 1, for example, a flat pri
makes column indifferent betweenLeft and
Right, and yet most column players seem
anticipate that row will chooseTop in the 320
version andBottom in the 44 version of this
game.

Of course, what the other player does d
pends on what they think you will do, so th
next logical step is to assume thatothersmake
responses to a flat prior, and then you respond
that anticipated response (Selten, 1991). This
Stahl and Wilson’s (1995) “level two” rational-
ity. There is, however, no obvious reason
truncate the levels of iterated thinking. The no
tion of rationalizability discussed above, for ex
ample, involves infinitely many levels of
iterated thinking, with “never-best” response
eliminated in succession. But rationalizabilit
seems to imply too much rationality, since
predicts that all claims in the traveler’s dilemm
will be equal to the minimum claim, indepen
dent of the penalty/reward parameter. One w
to limit the precision of the thought process
without making an arbitrary assumption abo
the number of iterations, is to inject increasin
amounts of noise into higher levels of iterate
thinking (Goeree and Holt, 1999; Ku¨bler and
Weizsäcker, 2000). Letfm denote the logit best-
response map (for error ratem) on the right side
of (1). Just as a single logit response to belie
p0, can be represented asp 5 fm(p0), a series of
such responses can be represented as:29

-

f
.
f
is
e
)
,
s

t
i/
y

-

.

27 In our own work, we have used a noisy response to a
flat prior as a way of starting computer simulations of
simulations of behavior in repeated games (Brandts and
Holt, 1996; Capra et al., 1999, 2002; Goeree and Holt,
1999).

28 Costa-Gomes et al. (2001), for example, infer some
heterogeneity in the amount of introspection by observing
the types of information that subjects acquire before making
a decision.

29 Goeree and Holt (2000b) use continuity arguments to
show that the limit in (2) exists even if the (increasing) error
parameters are person specific.
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(2) p 5 lim
n3`

fm1~fm2~... fmn
~p0!!!,

where m1 # m2 # ... , with m` converging
to infinity.30 This assumption captures the ide
that it becomes increasingly complex to d
more and more iterations.31 Sincefm for m 5 `
maps the whole probability simplex to a singl
point, the right side of (2) is independent of th
initial belief vectorp0. Moreover, the introspec-
tion process in (2) yields a unique outcome eve
in games with multiple Nash equilibria. Note
that the choice probabilities on the left side o
(2) generally do not match the beliefs at an
stage of the iterative process on the right. I
other words, the introspective process allow
for surprises, which are likely to occur in one
shot games.

For games with very different levels of com
plexity such as the ones reported here, the er
parameters that provide the best fit are likely
be different. In this case, the estimates indica
the degree of complexity, i.e., they serve as
measurement device. For games of similar com
plexity, the model in (2) could be applied to
predict behavior across games. We have used
to explain data patterns in a series of 37 simp
matrix games, assuming a simple two-param
ter model for whichmn 5 mtn , wheret deter-
mines the rate at which noise increases wi
higher iterations (Goeree and Holt, 2000b). Th
estimated value (t 5 4.1) implies that there is
more noise for higher levels of introspection,
result that is roughly consistent with estimate
obtained by Ku¨bler and Weizsa¨cker (2000) for
data from information-cascade experiments.

The analysis of introspection is a relativel
understudied topic in game theory, as compar
with equilibrium refinements and learning, fo
,

y

30 The case of a constant parameter (m1 5 m2 5 ... 5 m)
is of special interest. In this case, the process may no
converge for some games (e.g., matching pennies), b
when it does, the limit probabilities,p*, must be invariant
under the logit map:fm( p*) 5 p*. A fixed point of this
type constitutes a “logit equilibrium,” which is a special
case of the quantal-response equilibrium defined i
McKelvey and Palfrey (1995). It is in this sense that the
logit equilibrium arises as a limit case of the noisy intro-
spective process defined in (2).

31 For an interesting alternative approach, see Capr
(1998). In her model, beliefs are represented by degenera
distributions that put all probability mass at a single point
The location of the belief points is,ex ante,stochastic.
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example. Several of the models discussed abov
do a fairly good job of organizing the qualitative
patterns of conformity and deviation from the
predictions of standard theory, but there are
obvious discrepancies. We hope that this pape
will stimulate further theoretical work on mod-
els of behavior in one-shot games. One poten
tially useful approach may be to elicit beliefs
directly as the games are played (Theo Offer
man, 1997; Andrew Schotter and Yaw Narkov,
1998).

VI. Conclusion

One-shot game experiments are interestin
because many games are in fact only playe
once; single play is especially relevant in appli-
cations of game theory in other fields, e.g.
international conflicts, election campaigns, and
legal disputes. The decision makers in thes
contexts, like the subjects in our experiments
typically have experience in similar games with
other people. One-shot games are also appea
ing because they allow us to abstract away from
issues of learning and attempts to manipulat
others’ beliefs, behavior, or preferences (e.g.
reciprocity, cooperativeness). This paper re
ports the results of ten pairs of games that ar
played only once by subjects who have experi
ence with other one-shot and repeated game
The Nash equilibrium (or relevant refinement)
provides accurate predictions for standard ver
sions of these games. In each case, howeve
there is a matched game for which the Nash
prediction clearly fails, although it fails in a way
that is consistent with simple (non-game-
theoretic) intuition. The results for these expe-
rienced subjects show:

(1) Behavior may diverge sharply from the
unique rationalizable (Nash) equilibrium in
a social (traveler’s) dilemma. In these
games, the Nash equilibrium is located on
one side of the range of feasible decisions
and data for the contradiction treatment
have a mode on theoppositeside of this
range. The most salient feature of the data
is the extreme sensitivity to a parameter
that has no effect on the Nash outcome.

(2) Students suffering through game theory
classes may have good reasons when the
have trouble understanding why a change
in one player’s payoffs only affects the
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other player’s decision probabilities in a
mixed-strategy Nash equilibrium. The dat
from matching pennies experiments sho
strong “own-payoff” effects that are no
predicted by the unique (mixed-strategy
Nash equilibrium. The Nash analysis seem
to work only by coincidence, when the pay
off structure is symmetric and deviation
risks are balanced.

(3) Effort choices are strongly influenced b
the cost of effort in coordination games, a
intuitive result that is not explained by stan
dard theory, sinceany common effort is a
Nash equilibrium in such games. Moreove
as Kreps conjectured, it is possible to de
sign coordination games where the majori
of one player’s decisions correspond to th
only action that is not part of any Nash
equilibrium.

(4) Subjects often do not trust others to b
rational when irrationality is relatively cost-
less. Moreover, “threats” that arenot cred-
ible in a technical sense may neverthele
alter behavior in simple two-stage game
when carrying out these threats is no
costly.

(5) Deviations from Nash predictions in alter
nating-offer bargaining games and in pr
vate-value auctions are inversely related
the costs of such deviations. The effects
these biases can be quite large in the gam
considered.

(6) It is possible to set up a simple signalin
game in which the decisions reveal the si
naler’s type (separation), even though th
equilibrium involves pooling.

So what should be done? Reinhard Selte
one of the three game theorists to share the 19
Nobel Prize, has said: “Game theory is for prov
ing theorems, not for playing games.”32 Indeed,
the internal elegance of traditional game theo
is appealing, and it has been defended as be
a normative theory about how perfectly ration
people should play games with each othe
rather than a positive theory that predicts actu
behavior (Rubinstein, 1982). It is natural t
separate normative and positive studies of ind
vidual decision-making, which allows one to
32 Selten reiterated this point of view in a personal com-
munication to the authors.
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compare actual and optimal decision-makin
This normative-based defense is not convincin
for games, however, since the best way for on
to play a game depends on how othersactually
play, not on how some theory dictates that ra
tional peopleshouldplay. John Nash, one of
the other Nobel recipients, saw no wa
around this dilemma, and when his exper
ments were not providing support to theory
he lost whatever confidence he had in th
relevance of game theory and focused o
more purely mathematical topics in his late
research (Nasar, 1998).

Nash seems to have undersold the importan
of his insight, and we will be the first to admit
that we begin the analysis of a new strateg
problem by considering the equilibria derive
from standard game theory, before considerin
the effects of payoff and risk asymmetries o
incentives to deviate. But in an interactive, stra
tegic context, biases can have reinforcing e
fects that drive behavior well away from Nas
predictions, and economists are starting to e
plain such deviations using computer simula
tions and theoretical analyses of learning an
decision error processes. There has been re
tively little theoretical analysis of one-sho
games where learning is impossible. The mo
els of iterated introspection discussed here off
some promise in explaining the qualitative fea
tures of deviations from Nash predictions enu
merated above. Taken together, these ne
approaches to a stochastic game theory enha
the behavioral relevance of standard game th
ory. And looking at laboratory data is a lot les
stressful than before.
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Kübler, Dorothea and Weizsäcker, Georg. “Lim-
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