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Econometrica, Vol. 46, No. 1 (January, 1978) 

TEMPORAL RESOLUTION OF UNCERTAINTY AND DYNAMIC 
CHOICE THEORY 

BY DAVID M. KREPS AND EVAN L. PORTEUS' 

We consider dynamic choice behavior under conditions of uncertainty, with emphasis on 
the timing of the resolution of uncertainty. Choice behavior in which an individual 
distinguishes between lotteries based on the times at which their uncertainty resolves is 
axiomatized and represented, thus the result is choice behavior which cannot be rep- 
resented by a single cardinal utility function on the vector of payoffs. Both descriptive and 
normative treatments of the problem are given and are shown to be equivalent. Various 
specializations are provided, including an extension of "separable" utility and representa- 
tion by a single cardinal utility function. 

CONSIDER THE FOLLOWING idealization of a dynamic choice problem with 
uncertainty. At each in a finite, discrete sequence of times t = 0, 1, . . ., T, an 
individual must choose an action d,. His choice is constrained by what we 
temporarily call the state at time t, xt. Then some random event takes place, 
determining an immediate payoff zt to the individual and the next state xt+l. The 
probability distribution of the pair (zt, xt+l) is determined by the action dt. 

The standard approach in analyzing this problem, which we will call the payoff 
vector approach, assumes that the individual's choice behavior is representable as 
follows: He has a von Neumann-Morgenstern utility function U defined on the 
vector of payoffs (z0, z1, . . ., ZT). Each strategy (which is a contingent plan for 
choosing actions given states) induces a probability distribution on the vector of 
payoffs. So the individual's choice of action is that specified by any optimal 
strategy, any strategy which maximizes the expectation of utility among all 
strategies (assuming sufficient conditions so that an optimal strategy exists). 

This paper presents an axiomatic treatment of the dynamic choice problem 
which is more general than the payoff vector approach, but which still permits 
tractable analysis. The fundamental difference between our treatment and the 
payoff vector approach lies in our treatment of the temporal resolution of uncer- 
tainty: In our models, uncertainty is "dated" by the time of its resolution, and the 
individual regards uncertainties resolving at different times as being different. For 
example, consider a situation in which a fair coin is to be flipped. If it comes up 
heads, the payoff vector will be (zo, z1) = (5, 10); if it is tails, the vector will be 
(5, 0). Because z0 = 5 in either case, the coin flip can take place at either time 0 or 
time 1. It will not matter when the flip occurs to someone who has cardinal utility 
on the vector of payoffs. But an individual can obey our axioms and prefer either 
one to the other. 

One justification for our approach is the well known "timeless-temporal" or 
"joint time-risk" feature of some models (usually models which are not "com- 
plete"). For example, preferences on income streams which are induced from 
primitive preferences on consumption streams in general depend upon when the 

1 The authors gratefully acknowledge the comments and suggestions of Professors J. M. Harrison 
and Robert Wilson. This research was supported in part by a grant from the Atlantic Richfield 
Foundation to the Graduate School of Business, Stanford University. 
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uncertainty concerning future income resolves (see Spence and Zeckhauser [9]). 
Our treatment gives a framework within which such effects can be modeled, 
without overburdening the model with the detail of the primitive preferences.2 

The second (and, we believe, the more important) justification is that the 
relevance of the time of resolution arises naturally in a dynamic choice setting. 
Following work on the theory of dynamic choice under certainty, such as 
Hammond [3] and Peleg and Yaari [6], we first consider the individual's choice 
behavior at each distinct time and then we consider how his choice behavior at 
different times is related. At a single time, the individual chooses from among 
actions, identified as probability distributions on immediate payoff and next state 
pairs, and we assume standard axioms which make these choices representable by 
a cardinal utility function on such pairs. Then a "temporal consistency" axiom is 
given which knits together these representations: The result is a preference 
structure in which the time of resolution may be relevant. 

This approach, essentially descriptive, is developed in Sections 1, 2, and 3. In 
Section 1, formal definitions and constructions of dynamic choice problems, 
states, and actions are given both mathematically and diagrammatically (as 
decision trees). Axioms and results for choice behavior at a single time are given in 
Section 2. We rely on standard theories of cardinal utility (especially Fishburn 
[1]), so details and proofs are omitted. Section 3 presents the "temporal consis- 
tency" axiom and its consequences for representation of choice behavior. Also, 
the complete representation theorem is illustrated by a simple example. 

An alternative approach to preferences in dynamic choice problems, equivalent 
to that given in Sections 1, 2, and 3, is developed in Section 4. This is a more 
normative approach which clarifies the issue of temporal resolution of uncertainty 
and provides an easy comparison with the payoff vector approach. Taken as 
primitive are the individual's preferences among objects called temporal lotteries, 
from which choices in dynamic choice problems are derived. This formulation 
parallels the payoff vector approach, where preferences on lotteries are primitive 
and dynamic choices are induced. Thus the difference between the two is seen to 
lie in the definition of a temporal lottery, which formalizes the temporal aspect of 
uncertainty. 

In Section 5, we examine the consequences of assuming that the individual 
prefers earlier resolution of uncertainty to later or vice versa. Then we show that 
our approach is equivalent to the payoff vector approach if and only if the 
individual is indifferent to the time of resolution. 

In our treatment, choice behavior at time t is allowed to depend on the payoffs 
received up to time t (zo, e * *, zt- ). The consequences of assuming that time t 
choices are independent of previous payoffs are discussed in Section 6, and 
comparisons are made with similar separability assumptions in the payoff vector 
approach. 

2 Briefly, the issue can be illustrated as follows. If in the example the coin flip determines your 
income for the next two years, you probably prefer to have the coin flipped now, so that you are better 
able to budget your income for consumption purposes. In later work we will explore the connection 
between such "induced preferences" and the preference systems analyzed here. 
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We conclude in Section 7 with some miscellaneous discussion. In particular, 
relaxation of the "temporal consistency" axiom (in the spirit of Hammond [3] and 
Peleg and Yaari [6]) is touched upon. 

Work similar to that presented here, concerning preferences for "certain- 
uncertain" pairs, has been done independently by Selden [8]. 

To keep mathematical detail to a minimum, standard proofs are often just 
sketched and sometimes omitted, and the axioms employed (particularly our 
continuity axiom) are stronger than is strictly necessary (but see Section 7). 

Much of the content of this study lies in the definitions of dynamic choice 
problems and temporal lotteries-objects which allow us to "date" uncertainty by 
the time of its resolution. The reader is forewarned that the mathematical 
definitions of these objects are quite complex. The diagrammatic representations 
(as decision trees and probability trees) which follow the mathematical definitions 
should be read together with the mathematics. 

1. MATHEMATICAL AND DIAGRAMMATIC REPRESENTATION 

We assume given a finite integer T and, for each time t (t , 0, 1 ... ., T), a set Z, 
of possible payoffs. We assume that each Z, is a compact Polish (i.e., complete 
separable metric) space. A generic element of Z, is denoted by z,. Let Y1 = Zo and, 
for t=2,..., T+1, let Yt= Yt- 1xZt-1. The set Yt is called the set of payoff 
histories up to (but not including) time t, with generic element y, = (zo, .. ., zt-1). 
Note that YT+1 is the set of complete payoff vectors. For k < t, Zk(yt) and Yk(Yt) 
will denote the projections onto Zk and Yk, respectively. 

Next, let DT be the set of Borel probability measures on ZT, endowed with the 
Prohorov metric (the metric of weak convergence), and, recursively, let Xt be the 
set of nonempty closed subsets of Dt, endowed with the Hausdorff metric, and let 
Dt-1 be the set of Borel probability measures on Zt- x Xt, endowed with the 
Prohorov metric. These constructions are possible because of the following two 
results from analysis. 

LEMMA 1: If Z and X are compact Polish spaces and D is the set of Borel 
probability measures on Z x X, then D is a compact Polish space under the Prohorov 
metric (cf. Parthasarathy [5, Ch. 2, especially Theorems 6.2 and 6.4]). 

LEMMA 2: If D is a compact Polish space and X is the set of nonempty closed 
subsets of D, then X is a compact Polish space under the Hausdorff metric (cf. 
Kuratowski [4]). 

(For notational convenience, we sometimes will write Yt and Yt when t = 0 and 
Xt+1 and xt+l when t = T. In such cases, YO and XT+1 may be thought of as any 
convenient singleton sets, and DT as the set of Borel probability measures on 
ZT X XT+1.) 

DEFINITIONS: A dynamic choice problem (over {Zt}) from time t to T is any 
element xt of Xt. An action at time t is any element dt of Dt. 
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Recall the description given at the beginning of the paper. At each time t, the 
individual chooses an action, constrained by what we called the state. The action 
chosen determines a probability distribution over the next payoff-state pair. In 
formalizing these notions, we simply define an action as the probability distribu- 
tion itself. And the term "state" is replaced by "choice problem", which is defined 
as a closed set of actions. (In the standard teminology of dynamic programming, 
something like D,(x,) is used to denote the set of actions feasible at state x,. Here, 
in contrast, x, itself is that set.) 

Our constructions can be represented diagrammatically by decision trees. 
Suppose T= 1 and Zo = Z, = [0, 10]. The space D1, the space of actions at time 1, 
is the space of probability distributions on Z1. Diagrammatically, d1 eD1 is a 
chance node (depicted by a circle) with outcomes in ZA. For example, one element 
in D1, called di(a), a .6 chance at 2 and a .4 chance at 6, is drawn as in Figure 1. 

(Edi(0)[U3] 
32.542) 54(U(3,2) 

6 2U(3,6): 

3 - xi(a ~ ~~~~~3.0) 
(U0(3, 

~2.5482) 
7 1 2.03) 

( E [U =6.86) = 
d0(a) y0 i( 

d0(a 10 (3.606) 

/ < (7.258) (2.694)236) 

4 - x,(b) d c) . 

5 (3.0) 

\ /!25 (5.706) (2.389) .8 2 (2.236) 
3- XI(c) I1d .2 

6 (3.0) 

.25 (7.258) (2.694) 2 (2.236) .4 
(6.87) 3 xi (d) di(e) . 

d(b) 2 6 (3.0) 

.54 

5 (3.0) 

7 (3.317) 

FIGURE 1. 
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(Ignore the expressions and numbers in the parentheses in Figure 1. These 
illustrate concepts developed later.) Another element of D1, called d1(b) and also 
drawn in Figure 1, is a .7 chance at 1 and a .3 chance at 10. 

Elements of X1, decision problems commencing at time 1, are nonempty closed 
subsets of D. For example, x1(a) = {d1(a), d1(b)} is in X1 and is depicted as in 
Figure 1. 

Elements of Do are probability distributions on Zo X X1. One example is do(a) 
as depicted in Figure 1: This represents equal chances at prizes (3, x1(a)) and 
(4, xi(b)). Finally, an element x0 from Xo is drawn as shown. In all of these 
drawings, we have depicted only probability distributions with finite supports and 
closed subsets which are finite. More general cases are clearly encompassed in our 
mathematical framework. 

Notational conventions which we employ include the following: For z, E Zt and 
xt+1 E Xt+1, the distribution in Dt which is degenerate at (zt, xt+,) is denoted simply 
by (zt, xt+,). Given dt E Dt, we write dt E Xt in place of {dt} E Xt for the (closed) 
subset of Dt which contains the single element dt. Combining these, we can write 
(zt, dt+1) for both the element of Dt which is degenerate at (zt, dt+1) E Zt x Xt+l and 
for the singleton set it forms (in Xt). Continuing in this fashion, 
(zt, Zt+i, * .. , Zk, Xk+J) will denote the action at time t (element of D,) which yields, 
with certainty and without any intervening (nontrivial) choice, payoffs z; for 
j = t, . . ., k and the choice problem Xk+1 at time k + 1. It also denotes the singleton 
set that this action forms. 

Each set Dt is a mixture space: For a E [0, 1] and d, d' E Dt, there is an element 
in Dt which "is" d with probability a and d' with probability 1- a. Let (a; d, d') 
denote this element.3 

For each real valued bounded measurable function f on Zt x Xt+l and for each 
d E Dt, the integral of f with respect to the measure d is denoted by Ed [f]. 

2. CHOICE BEHAVIOR AT A POINT IN TIME 

At time t, the individual chooses from a (nonempty closed) subset of Dt. That is, 
he faces a dynamic choice problem xt and must choose a member of xt. His choices 
are allowed to depend on the history of previous payoffs, yt, and are assumed to be 
consistent in the following sense. 

AXIoM 2.1: For each t and Yt, the individual's choices from closed subsets of Dt 
are representable by a complete and transitive binary relation >Yt on Dt. 

Note that the individual's choice behavior is assumed to be independent of the 
dynamic choice problem he is facing; we do not write >Yt,Xt, This constitutes an 
assumption of "independence of irrelevant alternatives". The induced indiffer- 
ence and strict preference relations are denoted by -Yt and >Yt' respectively. 

3Formally, for A a Borel measurable subset of Zt x Xt+?, the measure assigned by (a; d, d') to A is 
ad(A)+ (1- a)d'(A). 
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AXIOM 2.2 (Continuity): For each t and yt, >y is continuous.4 

This axiom is stronger than necessary for our eventual objectives, but it is made to 
keep mathematical detail from dominating the exposition: It partially justifies the 
restriction of our attention to closed subsets of Dt, because with continuous 
preferences, an individual may be assumed to be indifferent between any subset of 
actions and the closure of that subset (but see footnote 5). 

AXIoM 2.3 (Substitution): For each t and Yt, if d, d' E D, are such that d > y d', 
then (a; d, d") >Yt (a; d', d") for all a E (0, 1) and for all d" e D,. 

These three axioms are sufficient to allow the application of the machinery of 
cardinal utility theory (see, e.g., Fishburn [1, Theorem 10.1]). 

LEMMA 3: Axioms 2.1, 2.2, and 2.3 are necessary and sufficient for there to 
exist, for each yt, a (bounded) continuous function Uy,: Z, x X+1 -> R such that for 
d, d' E Dt, d > Yt d' if and only if Ed[ Uyt] 3Ed[ Uyt]. 

The proof is omitted, but note that in the necessity half, continuity of the Uy, will 
give Axiom 2.2. The functions Uyt are, of course, unique up to a positive affine 
transformation. 

The function Uyt can be extended to Dt by defining Uyt(d) = Ed[Uyt] and then to 
Xt by defining Uy,(x) = maxdEX Uy,(d). Because x is compact and Uy, is continuous 
on Dt, the maximum is attained. The extension to Dt makes Uy, a (continuous) 
representation of >yt, and the extension to Xt makes Uyt a (continuous) 
representation of the extension of >yt to X, by the rule: x >yt x' if for each d' E x' 
there exists a d e x such that d >Yt d'. Using the compactness of x, we can 
alternatively define: x Yt X' if there exists d E x such that for all d'e x', d > Yt d '. 
Note that Yt extended to Xt in this manner is complete, transitive, and 
continuous.5 

3. TEMPORAL CONSISTENCY AND THE REPRESENTATION THEOREM 

Preferences at different times are tied together by the following. 

AXIoM 3.1 (Temporal consistency): For all t, y e Yt, z c Zt and x, x' EXt+,, 

(z, x) >y (z, x') at time t if and only if x >(y,z) x' at time t + 1.6 

The motivation for this key axiom runs as follows. Suppose that at time t with 
payoff history y, the individual has a choice between the two (degenerate) actions 

4That is, for each Yt and d,, the sets {d' cE D,: d' t dt} and {d E Dt: d t dt} are both closed (in 
the weak convergence topology). 

S If >Yt is extended to all subsets of D, by these definitions, then they are not equivalent. The latter 
yields a transitive but incomplete binary relation, while the former yields a complete and transitive 
ordering. Note also that the former does not yield indifference between a subset of D, and its closure. 

6 Alternatively: (z, x) y (z, x') if and only if for each d' E x' there exists d E x such that d >(y,z) d'. 
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(z, x) and (z, x'), and he selects (z, x) (so that (z, x) > , (z, x')). Then the axiom 
requires that when the payoff history is (y, z), he cannot strictly prefer x' to x. 
Doing so would make him "inconsistent" in that he would "regret" his earlier 
choice. Similarly, if at time t + 1 with payoff history (y, z) he weakly prefers x to x', 
then he cannot at time t strictly prefer (z, x') to (z, x) when the history is y. For in 
doing so, he is "inconsistent" as he strictly prefers (z, x') although it leads with 
certainty to an immediate payoff identical to that of (z, x) and a subsequent 
decision problem which at time t + 1 will not be viewed as better. (An alternative 
justification for Axiom 3.1, more consistent with the normative approach taken in 
Section 4, will be given there.) 

A consequence of Axiom 3.1 is that every relation > Yt can be reconstructed 
from >Yo as follows: If yt = (zo,. . . , zt-1)e Yt and x, x' E Xt are fixed, then x Yt X' 

if and only if (zo, . . . , zt-1, x) >yo (zo, . . . , zt-1, x'). Axiom 3.1 also allows us to tie 
together the functions Uy, provided by Lemma 3 as follows. 

LEMMA 4: Axioms 2.1, 2.2, 2.3, and 3.1 are necessary and sufficientfor there to 
exist functions Uy, as in Lemma 3 and, for fixed { Uyt, unique functions 

uyt {(z, y) E Zt x R: y = U(yt,z)(x) for some x E Xt+1} -> R 

which are strictly increasing in their second argument and which satisfy 

(1 ) Uy (z, X) =-uy (z, U(y,Z)(X )) 

for allye Yt, zeZt, and xeX+X1. 

PROOF: Assume that the four axioms hold and fix the functions Ut as provided 
by Lemma 3. Equation (1) serves to define the uyt uniquely if we show that 
U(Y Z)(x) = U(y,z)(x') implies Uy (z, x) = Uy (z, x'). But this is a trivial consequence 
of Axiom 3.1. That uyt is strictly increasing in its second argument is similarly an 
easy consequence of Axiom 3.1. 

Conversely, if functions Uyt and uyt with the given properties exist, then Axioms 
2.1, 2.2, and 2.3 follow from Lemma 3. And if for y E Yt, z E Z, and x, x'eXt+1, 
x >(y,z) x', then U(y,Z)(x): U(y,z)(x') and, by the monotonicity of uy, U (z, x) = 

uy(z, U(y,z)(x)): uy(z, U(y,z)(x')) = Uy(z, x'), thus (z, x) y (z, x'). Repeating the 
argument with strict preferences and strict inequalities, using the strict 
monotonicity of uy, yields Axiom 3.1. Q.E.D. 

Alternative (and perhaps clearer) forms of equation (1) are 

(2) Uy (z, x) = uy (z, max Ed [ U(y,J)]) = max uy (z, Ed [ U(y,z)]). 

The role played by the functions uy is clear if we write 

u(z, y) = Uy (z, U(yz)(y)), 

where Axiom 3.1 guarantees that the choice of x e U-1)(y) can be made 
arbitrarily. Thus we see that the uyt act to "convert" from the utility scale used at 



192 D. M. KREPS AND E. L. PORTEUS 

time t + 1 to tne scale used at time t. As we shall see, this conversion is not simply a 
"renormalization" but must involve the attitude of the individual to the resolution 
of uncertainty at time t vs. at time t + 1. 

Nothing is said in Lemma 4 about the continuity of the u,. In fact, we can show 
that each uy is continuous in its second argument. But unless care is taken in 
specifying the collection {Uyj, continuity of uy in its first argument may fail. The 
trick is to pick Uy, which are continuous not only in (zt, x,+,) but in (yt, zt, x,+1)-if 
this is done then the uyt are continuous in (yt, zt, y). As we are about to see, Axiom 
3.1 enables us to do this, thus enabling us to give the following "continuous" 
version of Lemma 4. 

THEOREM 1: Axioms 2.1, 2.2, 2.3, and 3.1 are necessary and sufficientfor there 
to exist a continuous function U: YT+j -- R and, for t = O, .. ., T- 1, continuous 
functions ut: Yt x Zt X R - R, strictly increasing in their third argument, so that if we 
define UYT(ZT) = U(YT, ZT) and, recursively, 

(3) Uy,(zt,xt+i)= max ut(yt,zt,Ed[ U(y,,z,)]), 
d{ext+j 

then forall yt and d, d'E Dt, d >Yt d' if and only if Ed[UY] y Ed,[ Uy,]. (That is, {Uy, 
satisfies Lemma 3.) 

PROOF: We only sketch the proof. Assuming the four axioms, let Uy0 be as 
guaranteed by Lemma 3. For each Yt, there exist x' and x" in Xt such that 
x'>Ytx t x" for all xeXt. Fix the version of Uyt as in Lemma 3 so that 
Uyt(x') = Uy.(yt, x') and Uyt(x") = Uy.(yt, x"). (Use Axiom 3.1 to ensure that 
xYt [resp., >yt] x" implies Uy,(yt, x') = [resp., >] Uy,(yt, x").) Show that for 
these {Uyt , if yt(n)- Yt and x- xt, then Uyt(f,)(Xn)-_ Uyt(xt). Now produce {uyt} as 
in Lemma 4, and show that they are continuous in (yt, xt, y). Extend them 
arbitrarily so that they are continuous for all y e R. Then U(YT+1) = UYT(XT) and 
ut(yt, xt, y) = uyt(x, y) will satisfy the theorem. 

Conversely, if we have U and ut as described, we can apply the necessity half of 
Lemma 4 once we show that the derived Uyt are continuous in (zt, xt+i). This is 
easily done inductively. Q.E.D. 

This is our basic representation theorem. Notice that it explicitly involves only U 
and the functions ur-these serve to define implicitly the functions Uyt. Our 
machinations concerning the continuity of the ut were required for the necessity 
half of the theorem, in order to ensure that the Uyt derived from U and the u, are 
continuous. 

To aid in understanding this theorem, it is helpful to "solve" a dynamic choice 
problem. Consider the problem x0 depicted in Figure 1, where T= 1 and 
Zo= = [0, 10], and an individual whose choice behavior is represented by 
U(zO, z1) = (z0 + z1)112 and u0(z0, y) = y2 (for y - 0). Analysis of this problem is 
given in Figure 1. First, Uyl(z1) = U(y1, z1) is computed for each "complete 
branch". For the uppermost branch where (z0, z1) = (3, 2), we have U(3, 2) = 
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2.236. After computing each of these, EdJUYJ] is computed for each d1 E D1. For 
example, Ed,(a)[U(3)I = (.6)(2.236)+(.4)(3.)= 2.542. Similarly, Ed,(b)[U(3)] = 

2.482. Thus di1(a) > (3) di1(b)-at time 1, when y, = (3) and the individual faces the 
problem x1(a), he chooses action d1(a). And therefore U(3)(x1(a))= 
maxdex1(a) U(3)(d)= 2.542. Now we can use equation (3) to compute 
Uy0(3, x1(a)) = uo(3, 2.542) = (2.542)2 = 6.462. This is done for each x1 eA X1, with 
values obtained as indicated. Now Ed[ UyJ is computed for each d E Do; we find 
E4o(a)[Uyo] = 6.86 and Ed0(b)[Uy0] = 6.87. Thus do(b) >yo do(a). At time 0, action 
do(b) is taken. 

4. TEMPORAL RESOLUTION OF UNCERTAINTY AND TEMPORAL LOTTERIES 

Consider the dynamic choice problem depicted in Figure 2, which corresponds 
to the following story: A fair coin is to be flipped and based on the outcome, the 
individual either receives payoffs (zo, z1) = (5, 0) or (5, 10). Since z0 = 5 in both 
cases, it is feasible to have the coin flipped either at t = 1 (which is do(a)) or at t = 0 
(which is do(b)). This individual obeys the four axioms of Sections 2 and 3, and his 
choice behavior is represented by U and u0 as given in the previous example. We 
calculate E4(a)[Uyj] = 9.33 and Edo(b)[UyoI = 10, so he strictly prefers to have the 
coin flipped at t =0, as shown in the figure. But suppose his choices were 
represented by U as above and uo(zo, 'y) = y1/2 (for y > 0). Then Eo(a)[UyJ] = 

1.748 and E4(b)[Uyo] = 1.732, and he strictly prefers to have the coin flipped at 
t = 1. Obviously, the four axioms have not resulted in von Neumann-Morgenstern 
utility on the vector of payoffs, as any individual whose choice behavior is 
representable in that manner will be indifferent between do(a) and do(b). 

In order to compare our treatment with the payoff vector approach, it is helpful 
to recast our treatment in a different but equivalent form. This equivalent form 
resembles the payoff vector approach in which one takes as primitive the 
individual's preferences on the space of lotteries of payoff vectors, and from these 
preferences one induces choices in dynamic choice problems. We define objects 
called temporal lotteries in which uncertainty is "dated" by the time of its 

(9.33) (9.330) (3.054) 0 (2.236) 
a 5{ . 

10 (3.873) 

(5.0) (2.236) 

(10.0) .5 d1b 0 (2.236) 

5 F (15.0) 2. 

5 d { 10 (3.873) 

FIGURE 2. 
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resolution. (Temporal lotteries form a subset of the space of dynamic choice 
problems, namely dynamic choice problems where all choices are trivial. They are 
depicted by probability trees.) Axioms are given for the individual's preferences 
on the space of temporal lotteries and a representation theorem is proved. Then 
we show that if choice behavior in dynamic choice problems is induced in a natural 
way from the individual's preferences on the space of temporal lotteries, the 
choice behavior obtained satisfies the four axioms of Sections 2 and 3. Conversely, 
if one takes as primitive dynamic choice behavior as described in Sections 2 and 3, 
then the induced preferences on the subspace of temporal lotteries satisfy the 
three axioms of this section. 

Let D*= DT and, recursively, let X?* be the set of all singleton subsets of D*, 
and let D* 1 be the set of all Borel probability measures on Zt-1 X X*. Elements of 
D* and X?* correspond to decision trees (beginning, respectively, with time t 
chance and choice nodes) where all choice nodes are singleton. If the choice nodes 
were suppressed, elements of D* (and X:) when drawn would be probability trees. 
The degenerate choice nodes are not suppressed, however, so that we are able to 
relate these objects with the previously defined actions and dynamic choice 
problems. Clearly, D* c Dt and X* c Xt. 

Next, let Pt(yt) be the subset of D* of decision trees whose chance nodes for 
times k =0, 1, . . . , t -1 are degenerate with immediate payoffs given by yt. 
Verbally, do e D* is in P,(yt) (for some yt) if no uncertainty resolves in do before 
time t. An element of P,(yt) is denoted by pt = (yt, dt) where dt e D*. Note that if 
Yk(Yt) = Yk for k - t, then Pk(Yk) Pt,(yt). Also, Po(yo) = D*0. 

DEFINITIONS: Elements of D* are called temporal lotteries. Elements of P,(yt) 
(for any t and Y,) are called temporal lotteries resolving from time t. 

Examples can be culled from Figure 2. Both do(a) and do(b) are in D* and 
d1(a), d1(b), and d1(c) are in D*. In do(a), there is no uncertainty until time t = 1 
and the first payoff is 5, so do(a)eP1(5). Also, do(a) can be written (5, d1(a)). In 
do(b), there is no uncertainty concerning zo but do(b)M P1(5) because there is 
uncertainty which is resolved at time 0 concerning x1. 

The space Po(yo) = D* is a mixture space; if p and p' are in D* and a e [0, 1], 
then (a; p, p') is in D*. But suppose p and p' are also in Pt(yt) for some Yt. Write 
P = (yt, dt) and p' = (yt, d') for dt, d eE D*. For a e [0, 1], we have (a; dt, d') is in 
D, thus (yt, (a; dt, d')) is in Pt(yt). Note carefully the difference-(a; p, p') is p 
and p' "mixed at time 0", while (yt, (a; dt, d )) is p and p' "mixed at time t". A final 
bit of notation: For p and p' in P,(yt), a e [0, 1] and k - t, let (k, a; p, p') denote p 
and p "mixed at time k" (which is in Pk(Yk(Yt))). In this new notation, (a; p, p') is 
denoted by (0, a; p, p'). Of course, (t, a; p, p') does not make sense unless both p 
and p' are in Pt(yt) for some Yt. 

For example, two elements of P1(5) are p(a) = (5, 0) (zo= 5 and z1 = 0, both 
with certainty) and p(b) = (5, 10). We can construct (1, .5; p(a), p(b)) which is 
do(a) and (0, .5; p (a), p (b)) = do(b) in Figure 2. The only difference between do(a) 
and do(b) is when the uncertainty resolves. 
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Taken as primitive in this approach is a binary relation on Do which represents 
the individual's (weak) preferences on D*. It is denoted by >, with > and 
denoting the induced strict preference and indifference relations, respectively. 
Three axioms concerning the relation > are posed. 

AxioM 4.1: The relation > is complete and transitive on D*. 

AxioM 4.2 (Continuity): The relation > is continuous on D*. 

AxioM 4.3 (Temporal substitution): If p, p'e Pt(yt) satisfy p > p', then 
(t, a; p, p")> (t, a; p', p") for all a e (0, 1) and p"e Pt(yt). 

Axioms 4.1 and 4.2 are clearly analogous to Axioms 2.1 and 2.2, respectively. 
Axiom 4.3 is roughly analogous to Axiom 2.3, although we shall see that Axiom 
3.1 (temporal consistency) and Axiom 2.3 are needed to derive 4.3. We do not 
give a temporal consistency axiom in our second approach, as we have only one 
binary relation, >, insteady of a collection of relations y,.7 

THEOREM 2: The existence of a relation > on D* satisfying Axioms 4.1, 4.2, 
and 4.3 is necessary and sufficient for there to exist continuous functions 
U*: YT,+1oR andu*: YtxZtR,-R R(t=O,..., T-1)such that(i)each ut*is 
strictly increasing in its third argument, and (ii) if one defines UY*: ZT -,R by 
UYT(ZT) = U* (YT, ZT) and, recursively, U*: Zt x Xt+ 1- R by 
(4) LJ*yt(zt, dt+ 1) = u* (yt, zt, Edt+ JyZ)) 

then for p = (yt, dt) and p' = (yt, d') in Pt(yt), p > p' if and only if 
Edt[U*] U 

Edj UytJ. 

PROOF: The proof is obtained by mimicking the proofs of Lemmas 3 and 4 and 
Theorem 1. Note that Axiom 4.3 acts as the usual substitution principle on each 
pt(yt) taken separately, allowing us to construct the functions U*. Q.E.D. 

Given a relation > on D* which satisfies Axioms 4.1, 4.2, and 4.3, we are able 
to use the representation given by Theorem 2 to induce choice behavior in 
dynamic choice problems which satisfies Axioms 2.1,2.2,2.3, and 3.1 as follows. 

COROLLARY 1: Given a relation > on D* which satisfies Axioms 4.1, 4.2, and 
4.3 and functions U* and ut* representing > in the sense of Theorem 2, define 
UYT: ZT -- R by UYT,(ZT) = U*(YT, ZT), and, recursively, define Uyt: Zt x Xt+1 -, R 
by 

(5) Uyt (zt xt+) = max u1 U(yt, zt, Ed[U(yt,zt)]). 
dr=xt+l 

7 Alternatively, we could begin with relations >Yt on D* and include a "consistency" axiom of the 
form: >Yt on D* "agrees" with > on P,(y,). Cf. footnote 8. 
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If binary relations >, on D, are defined by d Yt dyd if Edj[ UyJ] > Ed,[ Uyj, then the 
collection {>Yt} satisfies Axioms 2.1, 2.2, 2.3, and 3.1. Furthermore, the relations 
>Yt defined by equation (5) are determined by > and do not otherwise depend on the 
particular functions U* and u * used to represent >. Finally, >yo restricted to D* 
coincides with >. 

PROOF: That Yt satisfies Axioms 2.1, 2.2, 2.3, and 3.1 follows from the 
necessity half of Theorem 1. A straightforward argument by backward induction 
yields the last two statements. Q.E.D. 

The following is the converse to Corollary 1. 

COROLLARY 2: Given relations >Yt on the sets Dt which satisfy Axioms 2.1, 
2.2, 2.3, and 3.1, if we let > denote the restriction of >yo to D*, then > satisfies 
Axioms 4.1, 4.2, and 4.3. Furthermore, if functions U* and u * represent > in the 
sense of Theorem 2, and from U* and u * we construct functions Uyt via equation 
(5), then the functions Uyt represent the relations yt in the sense of Theorem 1. 

The second part of the corollary can be rephrased as follows: The individual's 
preferences for temporal lotteries completely and unambiguously specify his 
dynamic choice behavior, if that choice behavior satisfies the first four axioms. 

PROOF: Axioms 2.1 and 2.2 trivially imply Axioms 4.1 and 4.2, respectively. 
To show Axiom 4.3, let p = (yt, d), p' = (yt, d'), and p" = (yt, d") be from Pt(yt) and 
let a E (0, 1). If p >p', then by Axiom 3.1 d >Yt d'. By Axiom 2.3, this yields 
(a;d,d") >yt (a; d',d") and so, by Axiom 3.1 again, (t, a;p,p")= 
(yt, (a; d, d")) > (yt, (a; d', d")) = (t, a; p', p"). For the second part, note that if 
functions U and ut represent the relations yt in the sense of Theorem 1, then they 
represent > in the sense of Theorem 2. The second part of Corollary 1 therefore 
applies. Q.E.D. 

Corollaries 1 and 2 establish the equivalence between the two treatments we 
have given (assuming that equation (5) is used to define the relations yt from >). 
However, we feel that there is a significant philosophical difference between 
them: The treatment of Sections 1, 2, and 3 is felt to be descriptive in comparison 
with the normative approach of taking preferences on D* as primitive. In 
particular, compare the roles played by Axiom 3.1 in the first treatment and by 
equation (5) in the second. From a normative point of view, the individual's 
preferences for dynamic choice problems should be derived from the "prospects" 
for future payoffs that the problems represent according to the individual's 
preferences for temporal lotteries.8 Equation (5) is explicitly this derivation. But 
in a descriptive theory, one's choices at the various times for lotteries on Zt x Xt+1 

8 In this normative approach, it seems natural to begin with a single, perforce consistent, preference 
relation on the space of temporal lotteries, although this rules out consideration of changing 
preferences as in Hammond [3] and Peleg and Yaari [6]. 
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are the primitive data. One might interpret Axiom 3.1, as saying that the revealed 
"value" that the individual attaches to the xt is derived from the "prospects" for 
future payoffs that the x, entail. But we prefer to view Axiom 3.1 as saying only 
that revealed choice behavior at different times is consistent, without attaching 
this sort of normative meaning to it. 

Comparisons with the payoff vector approach are most easily made by examin- 
ing our second treatment. The fundamental difference is in the (often implicit) 
"reduction of compound lotteries" assumption in the payoff vector approach. In 
many treatments (e.g., Herstein and Milnor [21), the space from which the 
individual is choosing is the space of lotteries on YT+1, so a compound lottery is 
identified implicitly by the simple lottery that it reduces to, no matter when its 
uncertainty resolves. In other treatments (e.g., Raiff a [7]), this is made explicit (in 
Raiffa, it is derived from his "Fundamental Observation")-the individual 
chooses from among compound lotteries but is indifferent between a compound 
lottery and the simple lottery that it reduces to. But in our treatment, the space of 
objects being chosen from is the space of temporal lotteries. There is a well 
defined notion of the time at which uncertainty resolves, and although there is an 
implicit "reduction of compound lotteries" axiom for uncertainty that resolves at 
a single time, there is no axiom which says or implies that uncertainties at two 
different times are equivalent or can be "reduced". Instead, if p and p' are from 
P,(y,) for some t > 1 and some ye, the individual distinguishes between (t, a; p, p') 
and (t -1, a; p, p'), saying that the uncertainty resolves one period later in the first 
than in the second, and he may thereupon prefer one to the other. 

5. PREFERENCES FOR EARLIER OR LATER RESOLUTION OF UNCERTAINTY 

In this section, we give the consequences for our representation of assuming 
that the individual prefers earlier resolution of uncertainty to later or vice versa. 
Also, we give the additional necessary condition to reduce our treatment to the 
payoff vector approach-that when uncertainty resolves is unimportant to the 
individual. 

THEOREM 3. Suppose the individual's choice behavior obeys Axioms 2.1, 2.2, 
2.3, and 3.1 and, as guaranteed by Theorem 1, his choice behavior is represented by 
functions U and u,. Construct { Uy} and, for each t, Yt, and zt, let [(yt, Zt) 

{I E R: y = U(Yt,Zt)(xt+l) for some xt+1 E Xt+1}. (The set r(y zt) is the set of values y 
which are " relevant" for ut(yt, Zt ).) Then for fixed t < T, yt, and zt, 

(t, a; p, p') > [resp., <,, (+ 1,a; p,p') 

for all a E [0, 1], and p, p' E P,+1(yt, zt) if and only if ut(yt, zt, y) is convex [resp., 
concave, ajfine] in y for all y E F(yt, Zt). 

PROOF: Fix t, ye, and zt, and let y, y' E r(yt, zt) with y = U(y ,zJ)(d) and y' = 

U(yt,zJ)(d') where d, d' E D *+1. (A standard argument shows that d, d' E D* 1 can be 
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assumed.) Let p = (yt, zt, d) and p' = (yt, zt, d'). Then for a E [0, 1], 

(t, (x; p, p') > (t + 1, (x; p, p') if and only if 

U, ((a; (zt, d), (zt, d'))) : U, (zt, (a; d, d')) if and only if 

a UY,(zt, d) + (1 - a)U, (zt, d') - Uy,(zt, (a; d, d')) if and only if 

aut (yt, zt, y) +(1 -a)ut(yt, zt, y': )ut (yt, zt, ay+ (1 -) a)y 

Repeating this argument for < and - gives the result. Q.E.D. 

The necessary and sufficient conditions for Ut(yt, zt, y) to be strictly convex or 
concave for y E r(yt, zt) are easy extensions of these results and are left to the 
reader. Also, it is possible to combine this notion of preference for earlier or later 
resolution of uncertainty with the standard notions of risk averse or risk seeking 
preferences to obtain results such as: If the individual is risk averse for lotteries 
resolving entirely at time 0 and if he prefers earlier resolution of uncertainty, then 
he is risk averse for lotteries which resolve at any time. (Results of this sort will be 
given in subsequent work.) 

Returning momentarily to the example at the beginning of Section 4, we can see 
Theorem 3 at work. If uo(zo, -y) = y2 (for yy - 0), then uo is convex and so, as 
verified computationally, the individual prefers that the coin flip take place at 
t = 0. But if uo(zo, y) = y11/2, U0 is concave, and he prefers the flip at t = 1. 

If we assume that the timing of resolution is inconsequential to the individual, 
we obtain the payoff vector approach. 

AxioM 5.1: For all t ?1, Yt, ae[O,1] and p, p'E Pt(yt), (t,a;p,p')- 
(t- 1, a; p, p').9 

COROLLARY 3: Axioms 2.1, 2.2, 2.3, 3.1, and 5.1 are necessary and sufficient 
for the individual's choices to be representable by a single (von Neumann- 
Morgenstern) utility function Uon YT+1, by which we mean: In the representation of 
Theorem 1, we can take ut(yt, zt, -y) =y for all t, Yt, and zt. 

PROOF: We can select U and ut in Theorem 1 so that for the induced Uy, 
Uy,(x) = U,0(yt, x') and Uy,(xt) = UyJ(yt, x'") where x' and x'" may depend on Yt 
and x' > x't unless >Y is void. (See the proof of Theorem 1.) But then for all xt, 
Uyt(xt) = Uy0(yt, xt), because Theorem 3 and Axiom 5.1 yield that Uy0(yt, ) 
is a (positive) affine transformation of U,,( ), and they agree at two distinct 
values (except in the trivial case, for which the proof is obvious). And as ut must 
satisfy ut(yt, zt, U(yts,t)(xt+l)) = Uyt(zt, xt+), we have ut(yt, zt, Uyo(yt, zt, xt+i))= 

Uyo(yt, zt, xt+i), or ut(yt, zt, y) = y. 
The necessity half is a trivial consequence of Theorem 3. Q.E.D. 

6. PAYOFF HISTORY INDEPENDENCE 

In this section we consider the consequences of assuming that the individual's 
choices at time t are independent of past payoffs. 

9 It suffices to have the stated property for only the most and least preferred elements of P1(y,), 
instead of for all p, p' E P,(yt). 
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AXIOM 6.1: Ifd,d'eD,satisfyd > ,d'forsomey, thend > d'forally e Yt. 

COROLLARY 4: Axioms 2.1, 2.2, 2.3, 3.1, and 6.1 are necessary and sufficient 
for there to exist continuous functions U: ZT - R and u,: Z, x R -> R 
(t = O, ... ., T- 1) such that the u, are strictly increasing in their second argument 
and, if we define UT: ZT-OR by UT-U and, recursively, Ut: Z, X X,+l -* R by 
U,(z, x) = maXdEX u,(z, Ed[Ut,+1]), then ford, d' E D, d >Yt d' for all y, if and only if 
Ed [ Ut] I ?' Ed [ Ut I 

PROOF: Suppose the five axioms hold. Arbitrarily select y+e YT and let 
yt = Yt (Y T). Obtain U': YT+l - R and u : Yt x Zt x R - R as in Theorem 1. Set 
U(ZT)= U'(Y'T, ZT) and ut(zt, y)= ut(y, zt, y). Then inductively, Ut(z, xt+1)= 
U'y (zt, xt+1). Applying Axiom 6.1 gives the result. The necessity half is trivial. 

Q.E.D. 

Of course, we cannot combine Corollaries 3 and 4 to say that if Axioms 2.1, 2.2, 
2.3, 3.1, 5.1, and 6.1 all hold, then the individual's choices can be represented by 
U: ZT - R and ut: Zt x R -> R where ut(zt, y) = y. Each proof required that 
particular versions of the Uy, be selected, and these versions may differ. Instead, 
we have the well known result for separable cardinal utility: If all the axioms hold, 
choices can be represented by U: ZT -- R and ut: Zt x R -> R where ut(zt, y) - 
at(zt) + bt(zt) y, for bt(zt) > 0. 

7. DISCUSSION 

The feature that most clearly distinguishes our treatment from previous work is 
its focus on the temporal aspect of uncertainty. Our approach to dynamic choice 
problems and temporal lotteries explicitly models uncertainty as "attached" to a 
certain time. Although reduction of compound uncertainty at a single time is 
implicit, reduction of uncertainty at several different times is not allowed. Our 
treatment is no more nor less than an application of standard cardinal utility 
theory to this expanded conception of a "mixture space". (Note that if attention is 
restricted to choice problems/temporal lotteries where all uncertainty resolves at 
t = 0, there is a single "mixing" of prizes and one gets the payoff vector approach.) 

It is this temporal character of uncertainty which has led to our results and not 
"temporal inconsistency" (in the sense of Hammond [31 or Peleg and Yaari [6]). 
This is clear from Theorem 2 and Corollary 1, where we show that our axioms are 
equivalent to the supposition of a single (perforce consistent) preference relation, 
albeit on the larger domain of temporal lotteries. It is possible, however, to give 
analyses of "inconsistent choice behavior" in the spirit of the cited papers, by 
relaxing Axiom 3.1. (Equivalently, one can posit for each t and yt preference 
relations Yt on De which are not consistent and legislate, in place of equation (5), 
"naive" or "sophisticated" choice behavior. In either approach, the troublesome 
issue of "ties" for sophisticated choice comes up exactly as in the analyses of 
inconsistent choice behavior under certainty.) 

We conclude with two technical points. The assumptions that each Zt is 
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compact and that choices/preferences are continuous are more necessary for 
mathematical reasons than may be apparent. If ZT, say, is not compact, then DT 

will be Polish but also not compact and XT as topologized will not be separable. 
And if >YT is not continuous, then we cannot even partially justify looking only at 
closed subsets of DT in forming XT, so that topologizing XT is difficult. Relaxing 
either or both of these assumptions is not fatal, but the required constructions are 
much more involved. 

Stanford University 

Manuscript received August, 1976; revision received February, 1977. 
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