
Repeated Games with Almost-Public Monitoring∗

George J. Mailath
Department of Economics
University of Pennsylvania

3718 Locust Walk
Philadelphia, PA 19104 USA
gmailath@econ.sas.upenn.edu

Stephen Morris
Cowles Foundation
Yale University

30 Hillhouse Avenue
New Haven, CT 06520 USA
stephen.morris@yale.edu

August 1999
July 13, 2001

Running Head: Almost-Public Monitoring

Corresponding author:
George J. Mailath
phone:(215) 898-7908
fax: (215) 573-2057

∗This is a substantial revision of “Repeated Games with Imperfect Private Monitoring: Notes on a
Coordination Perspective.” That paper was written while Mailath was visiting the Australian National
University and Morris was visiting Northwestern University: we thank both institutions for their hospi-
tality. We thank Drew Fudenberg, Michihiro Kandori, and two referees for helpful comments. Mailath
gratefully acknowledges financial support from NSF Grant #SBR-9810693 and Morris gratefully ac-
knowledges financial support from the Alfred P. Sloan Foundation and NSF Grant #SBR-9896328.



Almost-Public Monitoring 2

Repeated Games with Almost-Public Monitoring
by
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Abstract

In repeated games with imperfect public monitoring, players can use public signals
to coordinate their behavior, and thus support cooperative outcomes. But with private
monitoring, such coordination may no longer be possible. Even though grim trigger
is a perfect public equilibrium (PPE) in games with public monitoring, it often fails
to be an equilibrium in arbitrarily close games with private monitoring. If a PPE has
players’ behavior conditioned only on finite histories, then it induces an equilibrium in
all close-by games with private monitoring. This implies a folk theorem for repeated
games with almost-public almost-perfect monitoring. Journal of Economic Literature
Classification Numbers: C72, C73.
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Repeated Games with Almost-Public Monitoring

by George J. Mailath and Stephen Morris

1. Introduction

Perfect public equilibria of repeated games with imperfect public monitoring are well-
understood.1 When public signals provide information about past actions, punishments
contingent on public signals provide dynamic incentives to choose actions that are not
static best responses (see Green and Porter [17] and Abreu, Pearce, and Stacchetti
[2]). Moreover, if the public signals satisfy an identifiability condition, a folk theorem
holds: if the discount rate is sufficiently close to one, any individually rational payoff can
be supported as the average payoff of an equilibrium of the repeated game (Fudenberg,
Levine, and Maskin [16]). Perfect public equilibria (PPE) of games with public monitor-
ing have a recursive structure that greatly simplifies their analysis (and plays a central
role in Abreu, Pearce, and Stacchetti [2] and Fudenberg, Levine, and Maskin [16]). In
particular, any PPE can be described by an action profile for the current period and
continuation values that are necessarily PPE values of the repeated game. However, for
this recursive structure to hold, all players must be able to coordinate their behavior
after any history (i.e., play an equilibrium after any history). If the relevant histories
are public, then this coordination is clearly feasible.

Repeated games with private monitoring have proved less tractable. Since the rele-
vant histories are typically private, equilibria need not have a simple recursive structure.2

Consider the following apparently ideal setting for supporting non-static Nash behav-
ior. There exist “punishment” strategies with the property that all players have a best
response to punish if they know that others are punishing; and private signals provide
extremely accurate information about past play, so that punishment strategies contin-
gent on those signals provide the requisite dynamic incentives to support action profiles
that are not static Nash. Even in these circumstances, there is no guarantee that non-
static Nash behavior can be supported in equilibrium. While a player may be almost
sure another has deviated and would want to punish if he believed that others were pun-
ishing, he cannot be sure that others are also almost sure that someone has deviated.
With private signals, unlike public signals, there is a lack of common knowledge of the
histories that trigger punishments. If there is approximate common knowledge of the
history of play, it should be possible to support non-static Nash behavior with the type
of punishment strategies that we are familiar with from the perfect and imperfect public
monitoring cases. But in what sense must there be approximate common knowledge of
past play, and what kind of strategies will generate approximate common knowledge of
past play?3
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We approach these questions as follows: Fix a repeated game with imperfect pub-
lic monitoring and a strict pure strategy PPE of that game. Consider the simplest
perturbation of the game to allow private monitoring. Fix the set of public monitoring
signals. Let each player privately observe a (perhaps different) signal from that set. The
private-monitoring distribution is said to be close to the public-monitoring distribution
if the probability that all players observe the same signal, under the private-monitoring
distribution, is close to the probability of that signal under the public-monitoring dis-
tribution. In this case, we say that there is almost-public monitoring. Now suppose
players follow the original strategy profile, behaving as if the private signals they ob-
serve were in fact public. When is this an equilibrium of the perturbed game with
private monitoring?

An important representation trick helps us answer this question. Recall that all
PPE of a repeated game with public monitoring can be represented in a recursive way
by specifying a state space, a transition function mapping public signals and states
into new states, and decision rules for the players, specifying behavior in each state
(Abreu, Pearce, and Stacchetti [2]). We use the same state space, transition function
and decision rules to summarize behavior in the private monitoring game. Each player
will now have a private state, and the transition function and decision rules define a
Markov process on vectors of private states. This representation is sufficient to describe
behavior under the given strategies, but (with private monitoring) it is not sufficient
to check if the strategies are optimal. It is also necessary to know how each player’s
beliefs over the private states of other players evolve. A sufficient condition for a strict
equilibrium to remain an equilibrium with private monitoring is that after every history
each player assigns probability uniformly close to one to other players being in the
same private state (Theorem 4.1). Thus, approximate common knowledge of histories
throughout the game is sufficient for equilibria with public monitoring to be robust to
private monitoring.

But for which strategy profiles will this approximate common knowledge condition
be satisfied, for nearby private monitoring? A necessary condition is that the public
strategy profile be connected : there is always a sequence of public signals that leads to
the same final state independent of the initial state (Section 3.2 analyzes an example
failing connectedness). However, connectedness is not sufficient, since the grim-trigger
strategy profile in the repeated prisoners’ dilemma with public monitoring is connected
and yet is never a sequential equilibrium in any close-by game with private monitoring
(Section 3.3).4 In fact, for “intuitive” public monitoring distributions (where coopera-
tion always increases the probability of observing the “good” signal), grim trigger is not
even Nash. One sufficient condition is that strategies depend only on a finite history of
play (Theorem 4.3).

These results concern the robustness to private monitoring of perfect public equi-
libria of a fixed repeated game with imperfect public monitoring, with a given discount
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rate. The importance of finite histories is particularly striking, given that many of the
standard strategies studied, while simple, do depend on infinite histories (e.g., trigger
strategies). Our results convey a negative message for the recursive approach to an-
alyzing repeated games with imperfect public monitoring. This approach is powerful
precisely because it allows for the characterization of feasible equilibrium payoffs with-
out undertaking the difficult task of exhibiting the strategy profiles supporting those
payoffs. Our results suggest that if one is concerned about the robustness of perfect
public equilibria to even the most benign form of private monitoring, fine details of
those strategy profiles matter.

In the results discussed so far, the bound on the distance between the private-
monitoring and the public-monitoring distribution depends, in general, on the discount
rate, with the bound converging to zero as the discount factor approaches one. We also
provide results that hold uniformly over discount rates close to one. A connected finite
public strategy profile is said to be patiently strict if it is a uniformly strict PPE for all
discount rates close to one. In this case, approximate common knowledge of histories is
enough for there to exist ε > 0, such that for all discount rates close to one, the strategy
profile is an equilibrium of any ε-close private monitoring game (Theorem 5.1). This
result implies a pure-action folk theorem for repeated games with almost-public almost-
perfect monitoring (Theorem 6.2). Public monitoring is said to be almost perfect if the
set of signals is the set of action profiles and, with probability close to one, the signal is
the true action profile. There is almost-public almost-perfect monitoring if the private-
monitoring distribution is close to some almost-perfect public-monitoring distribution.
The folk theorem in this case follows from our earlier results, since it is possible to prove
almost perfect monitoring folk theorems by constructing patiently-strict finite-history
strategy profiles.

This paper describes techniques and results for determining whether a fixed pure
strategy public profile remains an equilibrium when translated to a private (but almost-
public) monitoring setting. These techniques do not directly answer the traditional
question of interest: what payoffs are achievable in equilibrium (with perhaps very
complicated equilibrium strategies). A growing and important literature does examine
this question, with a focus on the infinitely-repeated prisoners’ dilemma with almost-
perfect but not necessarily almost-public monitoring.5 One branch of this literature
(Sekiguchi [27], Compte [12]) shares with our work a focus on the evolution of beliefs;
we discuss this literature in Section 3.4. The other branch (initiated by Piccione [26]
and extended by Ely and Välimäki [14]) follows a completely different approach. In
this approach, it is not necessary to study the evolution of beliefs, because each player
is indifferent over his own actions after all private histories (he is not indifferent about
the behavior of his opponent). This indifference is obtained by requiring players to
randomize after every history (and since they are indifferent, they will be willing to do
so).6 In these equilibria, there is no need for players to coordinate their behavior at
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histories where they lack common knowledge. It is worth emphasizing that the role of
randomization in these equilibria is very different from that in Sekiguchi [27], which we
describe in Section 3.4.

We consider only the case of private monitoring close to full-support public monitor-
ing with no communication. Thus, we exclude private monitoring environments where a
subset of players perfectly observe the behavior of some player (Ben-Porath and Kahne-
man [6] and Ahn [3]) as well as using cheap talk among the players to generate common
belief of histories (Compte [11], Kandori and Matsushima [19], and Aoyagi [5]). In both
approaches, the coordination problem that is the focus of our analysis can be solved,
although of course new and interesting incentive problems arise. We also always ana-
lyze equilibria (not ε-equilibria) and assume strictly positive discounting. If players are
allowed to take sub-optimal actions at some small set of histories, either because we are
examining ε-equilibria of a discounted game or equilibria of a game with no discounting,
then it is possible to prove stronger results (Fudenberg and Levine [15] and Lehrer [21]).

The paper is organized as follows. Section 2 introduces repeated games with pub-
lic monitoring and close-by private-monitoring distributions. Section 3 focuses on the
repeated prisoners’ dilemma, describing some strict public equilibria that are robust to
private monitoring and some that are not, including grim trigger. Section 4 contains
the results on approximating arbitrary strict public equilibria for fixed discount factors.
Section 5 presents the high discounting version of our results and Section 6 applies this
result to derive a folk theorem for repeated games with almost-public almost perfect
monitoring.

2. Almost-Public Monitoring

We begin our investigation of the extent to which games with public monitoring can
be approximated by games with private monitoring by describing the game with public
monitoring. The finite action set for player i ∈ {1. . . . , N} is Ai. The public signal,
denoted y, is drawn from a finite set, Y . The probability that the signal y occurs when
the action profile a ∈ A ≡ QiAi is chosen is denoted ρ(y|a). We restrict attention to
full-support public monitoring (this plays an important role, see Lemma 1 below):

Assumption. ρ(y|a) > 0 for all y ∈ Y and all a ∈ A.

Since y is the only signal a player observes about opponents’ play, it is common to
assume that player i’s payoff after the realization (y, a) is given by u∗i (y, ai). Stage game
payoffs are then given by ui (a) ≡

P
y u
∗
i (y, ai) ρ (y|a).7 The infinitely repeated game

with public monitoring is the infinite repetition of this stage game in which, at the end
of the period, each player learns only the realized value of the signal y. Players do not
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receive any other information about the behavior of the other players. All players use
the same discount factor, δ.

Following Abreu, Pearce, and Stacchetti [2] and Fudenberg, Levine, and Maskin [16],
we restrict attention to perfect public equilibria of the game with public monitoring. A
strategy for player i is public if, in every period t, it only depends on the public history
ht ∈ Y t−1, and not on i’s private history. Henceforth, by the term public profile, we will
always mean a strategy profile for the game with public monitoring that is itself public.
A perfect public equilibrium (PPE) is a profile of public strategies that, conditional
on any public history ht, specifies a Nash equilibrium for the repeated game. Under
full-support public monitoring, every public history arises with positive probability,
and so every Nash equilibrium in public strategies is a PPE. Henceforth, equilibrium
for the game with public monitoring means Nash equilibrium in public strategies (or,
equivalently, PPE).

Any pure public strategy profile can be described as an automaton as follows: There
is a set of states, W , an initial state, w1 ∈ W , a transition function σ : Y ×W → W ,
and a collection of decision rules, di : W → Ai.8 In the first period, player i chooses
action a1i = di

¡
w1
¢
. The vector of actions, a1, then generates a signal y1 according to

the distribution ρ
¡·|a1¢. In the second period, player i chooses the action a2i = di ¡w2¢,

where w2 = σ
¡
y1, w1

¢
, and so on.9 Since we can take W to be the set of all histories of

the public signal, ∪k≥0Y k, W is at most countably infinite. A public profile is finite if
W is a finite set.

If the profile is an equilibrium, each state has a continuation value, described by a
mapping φ :W → <N , so that the following is true (Abreu, Pearce, and Stacchetti [2]):
Define a function g : A×W → <N by

g(a;w) ≡ (1− δ)u(a) + δ
X
y

φ (σ (y;w)) ρ(y|a).

Then, for all w ∈ W , the action profile (d1(w), . . . , dN(w)) ≡ d (w) is a pure strategy
equilibrium of the static game with strategy spaces Ai and payoffs gi(·;w) and, moreover,
φ (w) = g (d (w) , w). Conversely, if

¡
W,w1,σ, d,φ

¢
describes an equilibrium of the static

game with payoffs g (·;w) for all w ∈ W , then the induced pure strategy profile in the
infinitely repeated game with public monitoring is an equilibrium.10 We say that the
equilibrium is strict if d (w) is a strict equilibrium of the static game g (·;w) for all
w ∈W .

In this paper, we consider private monitoring where the space of potential signals
is also Y ; Mailath and Morris [23] extends the analysis to a broader class of private
signals. Each player has action set Ai (as in the public monitoring game) and the set of
private signals is Y N . The underlying payoff structure is unchanged, being described by
u∗i (yi, ai). For example, if y is aggregate output in the original public monitoring game,
then yi is i’s perception of output (and i never learns the true output). In a partnership
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game, y may be the division of an output (with output a stochastic function of actions),
and private monitoring means that player i is not certain of the final payment to the
other partners.

The probability that the vector of private signals y ≡ (y1, . . . , yN ) ∈ Y N is realized
is denoted π (y|a). We say that the private-monitoring distribution π is ε-close to the
public-monitoring distribution ρ if |π (y, . . . , y|a)− ρ (y|a)| < ε for all y and a. If π is
ε-close to ρ, then

P
y π (y, . . . , y|a) > 1 − ε |Y | for all a, where |Y | is the cardinality

of Y . We denote the vector (1, . . . , 1) by 1, whose dimension will be obvious from
context. Thus, π (y, . . . , y|a) is written as π (y1|a). Let πi (y−i|a, yi) denote the implied
conditional probability of y−i ∈ Y N−1. Note that for all η > 0, there is an ε > 0

such that if π is ε-close to ρ, then
¯̄̄P

y u
∗
i (yi, ai)π (y|a)−

P
yi
u∗i (yi, ai) ρ (yi|a)

¯̄̄
< η.

Consequently, we can treat the stage game payoffs in the game with private monitoring
as if they are given by ui (a) (i.e., the stage game payoffs of the game with public
monitoring,

P
yi
u∗i (yi, ai) ρ (yi|a)).

An immediate but important implication of the assumption that the public moni-
toring distribution has full support is that, for ε small, a player observing the private
signal y assigns high probability to all other players also observing the same signal,
irrespective of the actions taken:

Lemma 1. Fix a full support public monitoring distribution ρ and η > 0. There exists
ε > 0 such that if π is ε-close to ρ, then for all a ∈ A,

πi (y1|a, y) > 1− η.

Every public profile induces a private strategy profile (i.e., a profile for the game
with private monitoring) in the obvious way:

Definition 1. The public strategy profile described by the collection
¡
W,w1,σ, d

¢
in-

duces the private strategy profile s ≡ (s1, . . . , sN ) given by:

s1i = di(w
1),

s2i
¡
a1i , y

1
i

¢
= di

¡
σ
¡
y1i , w

1
¢¢ ≡ di(w2i ),

and defining states recursively by wt+1i ≡ σ
¡
yti , w

t
i

¢
, for hti ≡

¡
a1i , y

1
i ; a

2
i , y

2
i ; . . . ; a

t−1
i , yt−1i

¢
∈ (A× Y )t−1,

sti
¡
hti
¢
= di

¡
wti
¢
.

We are thus considering the public strategy translated to the private context. Note
that these strategies ignore a player’s actions, depending only on the realized signals. If
W is finite, each player can be viewed as following a finite state automaton. Hopefully
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without confusion, we will abuse notation and write wti = σ
¡
hti;w

1
¢
= σ

¡
hti
¢
, taking

the initial state as given. We describe wti as player i’s private state in period t. It is
important to note that while all players are in the same private state in the first period,
since the signals are private, after the first period, different players may be in different
private states. The private profile is the translation to the game with private monitoring
of the public profile of the game with public monitoring.

If player i believes that the other players are following strategies induced by a public
profile, then player i’s belief over the other players’ private states, βti ∈ ∆

¡
WN−1¢, is a

sufficient statistic for hti, in that i’s expected payoff from any continuation strategy only
depends on hti through the induced belief β

t
i. Thus, after any private history h

t
i, player i

is completely described by the induced private state and belief,
¡
wti ,β

t
i

¢
. In principle,W

may be quite large. For example, if the public strategy profile is nonstationary, it may
be necessary to take W as the set of all histories of the public signal, ∪k≥0Y k. On the
other hand, the strategy profiles typically studied can be described with a significantly
more parsimonious collection of states, often finite. When W is finite, the need to keep
track of only each player’s private state and that player’s beliefs over the other players’
private states is a tremendous simplification.

Denote by Vi(hti) player i’s expected average discounted payoff under the private
strategy profile after observing the private history hti. Let βi

¡·|hti¢ ∈ ∆ ¡WN−1¢ denote
i’s posterior over the other players’ private states after observing the private history
hti. We denote the vector of private states by w = (w1, . . . , wN ), with w−i having the
obvious interpretation. We also write d (w) ≡ (d1 (w1) , . . . , dN (wN )).

The following version of the no one-shot deviation principle plays an important role
in our analysis.

Lemma 2. The private profile induced by
¡
W,w1,σ, d

¢
is a sequential equilibrium if

for all private histories hti, di
¡
σ
¡
hti
¢¢
maximizesX

w−i

(
(1− δ)ui(ai, d−i (w−i)) + δ

X
y

Vi
¡
hti, ai, yi

¢
π(yi,y−i|ai, d−i (w−i))

)
βi
¡
w−i|hti

¢
.

(2.1)

This lemma follows from the observation that, under any private profile induced by
a public profile, future behavior depends only on private states, and private histories
determine private states only through private signals. The action chosen is relevant only
in forming the posterior beliefs over the other players’ private states from the realized
private signal. This is true even for actions off-the-equilibrium-path. We emphasize that
the lemma requires equation (2.1) to be satisfied at all histories, including histories that
a player only reaches following his own deviations. Weaker conditions are sufficient for
Nash equilibrium. We return to this issue briefly in Example 3.3 and Theorem 4.2
below.
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3. The Prisoners’ Dilemma

In this section, we study a repeated prisoners’ dilemma with public monitoring and
examine the robustness of three alternative strict PPE of the public monitoring game.
The first and second profiles provide clean illustrations of robust and non-robust profiles.
Our third example, the classic grim trigger, illustrates a number of more subtle issues.

The stage game is given by

Player 2
C D

Player 1 C 2, 2 −1, 3
D 3,−1 0, 0

There are two signals, y and ȳ, and the public monitoring distribution ρ is given by

ρ {ȳ|a1a2} =

p, if a1a2 = CC,
q, if a1a2 = CD or DC,
r, if a1a2 = DD.

(3.1)

Each public profile we consider can be described by a two-state automaton, with state
space W = {wC , wD}, initial state w1 = wC , and decision rules di (wC) = C, di (wD) =
D, for i = 1, 2; the profiles differ only in the specification of the transition function.

3.1. A Robust Profile.

The transition function is

σ (yw) =

½
wC , if y = ȳ,
wD, if y = y.

(3.2)

The resulting profile is a strict equilibrium of the public monitoring game if r ≥ q and
δ > [3p− 2q − r]−1 (and thus p > 2

3q +
1
3r +

1
3).

11

Under this profile, play starts at CC, and continues as long as the good signal y
is observed, and then switches to DD after the “bad” signal y. Play returns to CC
once the good signal y is observed again. A notable feature of this profile is that σ
has finite (in fact, one period) memory. The actions of the players only depend upon
the realization of the signal in the previous period. Thus, if player 1 (say) observes
ȳ and assigns a probability sufficiently close to 1 that player 2 had also observed ȳ,
then it seems reasonable (and, in fact, true) that player 1 will find it optimal to play
C. Theorem 4.3 below implies that the public profile is therefore robust to public
monitoring.

To illustrate this conclusion, let the public monitoring distribution satisfy r =
q and the private monitoring distribution π satisfy π (y1y2|CD) = π (y1y2|DC) =
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π (y1y2|DD) ≡ πDy1y2 and π (y1y2|CC) ≡ πCy1y2 . Note that the private monitoring distri-
bution is identical if at least one player chooses D. To explicitly compute the equilib-
rium conditions, we assume πCyy = p (1− 2ε), πCyy = (1− p) (1− 2ε), πDyy = q (1− 2ε),
πDyy = (1− q) (1− 2ε), and πayy = πayy = ε for a ∈ {C,D}.12

Let Vaa0 be the continuation value to a player under the profile when he is in state
wa and his opponent is in state wa0 . The continuation values satisfy

VCC = (1− δ) 2 + δ
n
πCȳȳVCC + εVCD + εVDC + πCyyVDD

o
,

VCD = − (1− δ) + δ
n
πDȳȳVCC + εVCD + εVDC + πDyyVDD

o
,

VDC = (1− δ) 3 + δ
n
πDȳȳVCC + εVCD + εVDC + πDyyVDD

o
, and

VDD = δ
n
πDȳȳVCC + εVCD + εVDC + πDyyVDD

o
.

Thus,

VCC − VDD = 2 (1− δ)

1− δ (p− q) (1− 2ε) . (3.3)

Suppose a player is in state wC and assigns a probability ζ to his opponent also being
in state wC . His incentive constraint to follow the profile’s specification of C is

ζ
n
(1− δ) 2 + δ

h
πCȳȳVCC + εVCD + εVDC + πCyyVDD

io
+ (1− ζ)

n
(1− δ) (−1) + δ

h
πDȳȳVCC + εVCD + εVDC + πDyyVDD

io
≥ ζ

n
(1− δ) 3 + δ

h
πDȳȳVCC + εVCD + εVDC + πDyyVDD

io
+ (1− ζ)

n
δ
h
πDȳȳVCC + εVCD + εVDC + πDyyVDD

io
;

this expression simplifies to

ζδ (p− q) (1− 2ε) (VCC − VDD) ≥ 1− δ. (3.4)

Substituting from (3.3) into (3.4), we have

(1 + 2ζ) (1− 2ε) ≥ 1

δ (p− q) . (3.5)

Recall that if r = q the public profile is an equilibrium of the game with public mon-
itoring if 3 ≥ [δ (p− q)]−1, and fix some δ > [3 (p− q)]−1. We claim that the same
upper bound on ε suffices for the private profile to be an equilibrium of the game with
private monitoring for any δ ≥ δ. For the incentive constraint describing behavior after
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ȳ, it suffices to have the inequality (3.5) hold for δ = δ, which can be guaranteed by ζ
close to 1 and ε close to 0. A similar calculation for the incentive constraint describing
behavior after y yields the inequality

(3− 2ζ) (1− 2ε) ≤ 1

δ (p− q) ,

which can be guaranteed by appropriate bounds on ζ and ε, independent of δ. Finally,
Lemma 1 guarantees that ζ can be made uniformly close to 1 by choosing ε small
(independent of history).

This example has the strong property that the bound on the private monitoring can
be chosen independent of δ. We return to this point in Section 5.

3.2. A Nonrobust Profile.

We now describe a profile that cannot be approximated in some arbitrarily close games
with private monitoring. The transition function is given by

σ (yw) =


wC , if w = wC and y = ȳ,

or w = wD and y = y,
wD, if w = wC and y = y,

or w = wD and y = ȳ.

(3.6)

The resulting profile is a strict equilibrium of the game with public monitoring if q ≥ r
and δ > [3p− 2q + r − 1]−1 (and thus p > 2

3q − 1
3r +

2
3).

13

Under this profile, behavior starts at CC, and continues there as long as the “good”
signal ȳ is observed, and then switches to DD after the “bad” signal y. In order
to generate sufficient punishment, the expected duration in the punishment state wD
cannot be too short, and so play only leaves DD after the less likely signal y is realized.
This profile (unlike the previous one) is consistent with q and r being close to 1, as long
as they are less than p.

The private monitoring distribution π is obtained by the compound randomization
in which in the first stage a value of y is determined according to ρ, and then in the
second stage, that value is reported to player i with probability (1− ε) and the other
value with probability ε > 0; conditional on the realization of the first stage value of y,
the second-stage randomizations are independent across players.

Rather than attempting to directly calculate the beliefs of a player after different
private histories, we proceed as follows. Note first that the profile induces a Markov
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chain on the state space W 2 ≡ {wCwC , wDwD, wCwD, wDwC}, with transition matrix
p (1− ε)2 + (1− p) ε2 (1− r) (1− ε)2 + rε2 ε (1− ε) ε (1− ε)

(1− p) (1− ε)2 + pε2 r (1− ε)2 + (1− r) ε2 ε (1− ε) ε (1− ε)

ε (1− ε) ε (1− ε) q (1− ε)2 + (1− q) ε2 (1− q) (1− ε)2 + qε2

ε (1− ε) ε (1− ε) (1− q) (1− ε)2 + qε2 q (1− ε)2 + (1− q) ε2

 .
Let γεt be the unconditional distribution overW ×W in period t. While player 1’s belief
about player 2’s private state, βt1

¡
w|ht1

¢
, depends on 1’s private history, the “average”

belief of player 1 (conditioning only on her private state) is described by γεt :

E ©βt1 ¡w|ht1¢¯̄σ ¡ht1¢ = w0ª = γεt (w
0w)

γεt (w
0wD) + γεt (w

0wC)
.

Since the Markov chain on W 2 is irreducible, it has a unique invariant distribution, αε.
Moreover, γεt → αε as t→∞. The invariant distribution αε is given by

Pr (wCwC) ≡ αε
1 =

(1− r) (1− ε)2 + rε2 + ε (1− ε)

2
³
(p+ r) ε2 + (2− p− r) (1− ε)2 + 2ε (1− ε)

´ ,
Pr (wDwD) ≡ αε

2 =
(1− p) (1− ε)2 + pε2 + ε (1− ε)

2
³
(p+ r) ε2 + (2− p− r) (1− ε)2 + 2ε (1− ε)

´ ,
and

Pr (wCwD) ≡ αε
3 =

1

4
= Pr (wDwC) ≡ αε

4.

For ε small, this distribution is close to α0, where

α01 =
(1− r)

2 (2− p− r) , α
0
2 =

(1− p)
2 (2− p− r) , and α03 = α04 =

1

4
.

Consider now the question of what beliefs a player should have over his opponent’s
private state after a very long history. Observe first that the probability that 1 assigns
to 2 being in state wC , conditional only on 1 being in state wC , is close to (for ε small)

Pr {wC |wC} = 2 (1− r)
2 (1− r) + (2− p− r) =

2 (1− r)
4− p− 3r ,

while the probability that 1 assigns to 2 being state in wC , now conditional only on 1
being in state wD, is close to

Pr {wC |wD} = 2− p− r
4− 3p− r .
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Then, for ε small,
Pr {wC |wC} < Pr {wC |wD} .

Since this probability is the asymptotic expected value of the player’s beliefs, there are
two histories hti and ĥ

t
i such that wD = σ

¡
hti
¢
and wC = σ

³
ĥti

´
and βi

³
wC |ĥti

´
<

βi
¡
wC |hti

¢
. But if C is optimal after ĥti, then it must be optimal after h

t
i, and so the

profile is not an equilibrium of the game with private monitoring. Notice that this
argument relies only on behavior on the equilibrium path. Thus the induced private
profile is not a Nash equilibrium.

In this example, once there is disagreement in private states, the public profile
maintains disagreement. Moreover, when there is private monitoring, disagreement
arises almost surely, and so players must place substantial probability on disagreement.
Thus, a necessary condition for beliefs to be asymptotically well behaved is that the
public profile at least sometimes moves a vector of private states in disagreement into
agreement (we call this property connectedness in Section 5).14

3.3. Grim Trigger.

The above two examples provide the simplest possible illustration of why some public
profiles are robust and some public profiles are not. In our final example, we examine a
grim-trigger strategy profile. Because the strategy depends on infinite history, there is no
easy technique for proving robustness. In particular, since the profile has an absorbing
state (both players will eventually end up defecting), we cannot use the asymptotic
behavior of the profile to prove non-robustness, and so focus on the evolution of beliefs
along different play paths. The analysis also illustrates the distinction between Nash
and sequential equilibrium.

The grim trigger profile is described by the transition function

σ (yw) =

½
wC , if w = wC and y = ȳ,
wD, if w = wC and y = y, or w = wD.

(3.7)

The resulting profile is a strict equilibrium of the public monitoring game if δ >
[3p− 2q]−1 (and thus p > 2

3q+
1
3). In this profile, behavior starts at CC, and continues

there as long as the “good” signal ȳ is observed, and then switches to DD permanently
after the first “bad” signal y.15

We will show that if q > r, the implied private profile is not a Nash equilibrium in
any close-by game with full-support private monitoring.16 On the other hand, if r > q,
while the implied profile is not a sequential equilibrium in any close-by game with full-
support private monitoring, it is a Nash equilibrium in every close-by game with private
monitoring.17 When it is Nash, since the game has no observable deviations, there is a
realization-equivalent sequential equilibrium (Sekiguchi [27, Proposition 3]). Since the
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game and strategy profile are both symmetric, we focus on the incentives of player 1,
assuming player 2 follows grim trigger.

In the case q > r, in close-by games with private monitoring, it is not optimal for
player 1 to play D following a private history of the form

¡
C, y;D, y;D, y;D, y; . . .

¢
, as

required by grim trigger. The intuition is as follows. Immediately following the signal
y, player 1 assigns a probability very close to 0 to player 2 being in the private state wC
(because with probability close to 1, player 2 also observed the signal y). Thus, playing
D in the subsequent period is optimal. However, since π has full support, player 1 is
not sure that player 2 is in state wD, and observing the signal ȳ after playing D is an
indication that player 2 had played C (recall that ρ (ȳ|DC) = q > r = ρ (ȳ|DD)). This
makes player 1 less sure that 2 was in state wD and, if player 2 was in state wC and
observes ȳ,18 then 2 will still be in state wC . Eventually, player 1 believes that player
2 is almost certainly in state wC , and so will have an incentive to cooperate.

We now formalize this intuition. Suppose player 1 initially assigns prior probability
η to player 2 being in state wC . Write ζπ (η, a, y) for the posterior probability that he
assigns to player 2 being in state wC one period later, if he chooses action a and observes
the private signal y, believing that his opponent is following grim trigger. Then,

ζπ (η,D, y) =
π (ȳȳ|DC) η©

π (ȳȳ|DC) + π
¡
ȳy|DC¢ª η + ©π (ȳȳ|DD) + π

¡
ȳy|DD¢ª (1− η)

.

If π is ε-close to ρ,

ζπ (η,D, y) >
(q − ε) η

(q + 2ε) η + (r + 2ε) (1− η)
.

A simple calculation shows that for any η̄ > 0, there exists ε̄ > 0, such that for
all private-monitoring distributions π ε̄-close to ρ, ζπ (η,D, y) > η for all η ≤ η̄ [set
ε̄ = 1

4 (1− η̄) (q − r)]. Hence, for any η ∈ (0, η̄), there exists an n such that after ob-
serving n signals ȳ, the posterior must exceed η̄ (n goes to infinity as η becomes small).
This implies that after a sufficiently long history

¡
C, y;D, y;D, y;D, y; . . .

¢
, player 1

eventually becomes very confident that player 2 is in fact in state wC , and so no longer
has an incentive to play D.19 Since

¡
C, y;D, y;D, y;D, y; . . .

¢
is a history that occurs

with positive probability under grim trigger, grim trigger is not a Nash equilibrium.
This, of course, implies that grim trigger is also not sequential.

We now argue that grim trigger is not a sequential equilibrium for any configuration
of q and r. In particular, it is not sequentially rational to follow grim trigger’s specifica-
tion of D after long private histories of the form

¡
C, y;C, y;C, y;C, y; . . .

¢
. For π ε-close

to ρ, player 1’s posterior satisfies

ζπ (η, C, ȳ) >
(p− ε) η

(p+ 2ε) η + (q + 2ε) (1− η)
.
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Similar to the previous paragraph, for any η̄ > 0, there exists ε̄ > 0, such that for all
π ε̄-close to ρ, ζπ (η, C, y) > η for all η ≤ η̄, and so after a sufficiently long history¡
C, y;C, y;C, y;C, y; . . .

¢
, player 1 eventually becomes very confident that player 2 is in

fact still in state wC , and so 1 will find it profitable to deviate and play C. Since grim
trigger specifies D after such a history, grim trigger is not a sequential equilibrium.

However, histories of the form
¡
C, y;C, y;C, y;C, y; . . .

¢
occur with zero probability

under grim trigger. We now show that, when r > q, given any ξ > 0, we can choose
ε > 0 such that for every history reached with positive probability under grim trigger, if
a player has observed y at least once, he assigns probability less than ξ to his opponent
being in state wC ; and if he has always observed y, he assigns probability at least 1− ξ
to his opponent being in state wC . This implies that grim trigger is Nash (and the
induced outcome is sequential) in any close-by game with almost-public monitoring (see
Theorem 4.2).

Consider histories in which at least one y has been observed. The easy case is
a history in which y was observed in the last period. Then, for ε small, immediately
following such a signal, player 1 assigns a probability of at least 1−ξ that 2 also observed
y (and so will be in state wD).20 We now turn to histories in which ȳ was observed in
the last period. Observing ȳ after playing D is an indication that player 2 had played
D (this requires q < r), and21

ζπ (η,D, y) <
(q + ε) η

(q + ε) η + (r − ε) (1− η)
.

There thus exists ε > 0 such that for all π that are ε-close to ρ, ζπ (η,D, y) < η for all
η ∈ (0, 1) [set ε < 1

2 (r − q)].22 So, irrespective of the private signal a player observes,
along every play path, the player becomes increasingly confident that his opponent is
in state wD.

Finally, consider histories of the form (C, y;C, y;C, y;C, y...). The posterior on such
histories satisfies

ζπ (η, C, y) >
(p− ε) η

pη + (q + 2ε) (1− η)
.

For any η̄ > 0, there exists ε > 0 such that for all π that are ε-close to ρ, ζπ (η, C, y) > η̄
for all η > η̄ [set ε = 1

3 (1− η̄) (p− q)]. Thus the player’s belief that his opponent is in
state wC will never fall below η̄ given private histories of the form (C, y;C, y;C, y;C, y...).
It is worth noting that for η close to 1, ζπ (η, C, y) < η. For example, even if η = 1 (such
as in period 1), and player 1 observed ȳ, there is a positive probability that 2 observed y,
and so switched state to wD. As a consequence, even after initially observing a sequence
of ȳ’s, player 1’s posterior probability that 2 is in state wC must fall. However, it cannot
fall below the fixed point ηε of ζ

π (η, C, ȳ), and ηε → 1 as ε→ 0.
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3.4. Discussion.

Our analysis of the grim trigger strategy profile has a similar flavor to that of Compte
[12] and Sekiguchi [27]: we all study strategies with the property that a player’s belief
about a binary state of the other player is a sufficient statistic for their private histories;
thus checking for optimality involves understanding the evolution of beliefs over long
histories.

We restricted attention to a very simple strategy (grim trigger) and exploited the
closeness of the evolution of beliefs under nearby almost-public monitoring distributions
to that of the beliefs under public monitoring. This allowed us to prove positive and
negative results about the pure grim trigger strategy.

Compte [12], for the case of conditionally independent monitoring (in the sense
that, conditional on the action profile, players’ signals are independent23), studies a
much larger class of trigger-strategy equilibria: those with the property that once a
player defects, he thereafter defects with probability one. Compte [12] shows that, for
sufficiently patient players, the average expected payoff in any trigger-strategy equilib-
rium is close to the payoff from defection.24 Compte’s task is complicated by the need
for a result that holds uniformly across trigger-strategy profiles, i.e., for different trig-
gering events.25 Essentially, when players are patient, if a triggering event is sufficiently
forgiving to imply payoffs under the profile significantly better than the payoff from
defection, it cannot provide sufficient incentives to support cooperation, since a player
could defect occasionally without significantly changing the beliefs of his opponent.

Sekiguchi [27] showed that it was possible to achieve efficiency in the repeated pris-
oners’ dilemma, even if the private monitoring is conditionally independent, as long as
the monitoring is almost perfect.26,27 Since always play D is the only pure strategy equi-
librium with conditionally-independent signals, the equilibrium Sekiguchi constructs is
in mixed strategies. Consider first a profile in which players randomize at the beginning
of the game between the strategy of always play D, and grim trigger strategy. This
profile is an equilibrium (given a payoff restriction) for moderate discount factors and
sufficiently accurate private monitoring. Crudely, there are two things to worry about.
First, if a player has been cooperating for a long time and has always received a co-
operative signal, will the player continue to cooperate? The answer here is yes, given
sufficiently accurate private monitoring. This argument is the analog to our argument
that a player who always observes signal y will think it more likely that his opponent is
in wC .

Second, will a player defect as soon as a defect signal is received? Suppose first that
the first defect signal occurs after a long history. That is, suppose player i is playing
grim trigger, has observed a long sequence of cooperative signals (so that i is reasonable
confident that player j is also playing grim trigger), and then observes the defect signal.
The two highest order probability events are that i received an erroneous signal (in
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which case j is still cooperative) and that player j had received an erroneous signal in
the previous period (in which case j now defects forever). These two events have equal
probability, and if players are not too patient (so they are unwilling to experiment),
player i will defect. (If players are patient, even a large probability that the opponent
is already defecting may not be enough to ensure that the player defects: One more
observation before the player commits himself may be quite valuable.) Suppose now
that the first defect signal occurs early in the game. The most extreme possibility is
the defect signal is the first signal observed. Clearly, in the initial period player j is not
responding to any signal, and so for player i to assign positive probability to j playing D
in the initial period, j must in fact defect in the initial period with positive probability
(and this is why the profile is in mixed strategies).28 Our assumption that monitoring
is almost public implies that these latter considerations are irrelevant. As soon as a
player receives a defect signal, he assigns very high probability to his opponents having
received the same signal, and so will defect. This is why we do not need randomization,
nor an upper bound on the discount factor.

Sekiguchi thus shows that the existence of an always defect/grim-trigger strategy
mixture that is a Nash equilibrium for moderate discounting. The upper bound on the
discount factor can be removed by observing (following Ellison [13]) that the repeated
game can be divided into N distinct games, with the kth game played in period k+ tN ,
where t ∈ N. This gives an effective discount rate of δN on each game. Of course, the
resulting strategy profile does not look like grim trigger.

4. Approximating Arbitrary Strict Public Equilibria - Fixed Discount
Factors

We now formalize the idea that if players are always sufficiently confident that the other
players are in the same private state as themselves, then the private profile induced by a
strict PPE is an equilibrium. In this section, we focus on the case of fixed discount fac-
tors. More specifically, we ask: If a public profile is a strict PPE for some discount factor
δ, then, for close-by private-monitoring distributions, is the same profile an equilibrium
in the game with private monitoring for the same discount factor δ?

Recall that βi
¡
σ
¡
hti
¢
1|hti

¢
is the posterior probability that player i assigns to all

the other players being in the same private state as player i after the private history
hti, i.e., in the private state σ

¡
hti
¢
. Our first observation is that if all players assign

uniformly high probability to all players always being in the same private state and if
the private monitoring is sufficiently close to the public monitoring distribution, then
Vi
¡
hti
¢
is close to the continuation value of the state σ

¡
hti
¢
in the game with public

monitoring:
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Lemma 3. Fix δ. For all υ > 0, there exists η > 0 and ε > 0, such that for all public
profiles, if the posterior beliefs induced by the private profile satisfy βi

¡
σ
¡
hti
¢
1|hti

¢
>

1− η for all hti, and if π is ε-close to ρ, then for all ĥ
t
i,
¯̄̄
Vi

³
ĥti

´
− φi

³
σ
³
ĥti

´´¯̄̄
< υ.

We sketch a proof: For fixed δ, there is a T such that the continuation value from
T + 1 is less than υ/3. For π sufficiently close to ρ, the probability that all players
observe the same T period history of private signals is close to 1. Thus, for ε small,
for any private history ĥti, conditional on all players starting in the common private

state σ
³
ĥti

´
, the value over T periods is within υ/3 of the value over T periods of the

game with public monitoring starting in the state φi
³
σ
³
ĥti

´´
. Finally, for η small, the

impact on the continuation value of players being in disagreement is less than υ/3.
Given this lemma, the next result is almost immediate. It is worth emphasizing

again that the induced profile in the game with private monitoring is an equilibrium
(for sufficiently small ε) for the same discount factor; in contrast to Example 3.1, the
bound on ε depends on δ, and this bound becomes tighter as δ → 1.

Theorem 4.1. Suppose the public profile
¡
W,w1,σ, d

¢
is a strict equilibrium of the

game with public monitoring for some δ and |W | <∞. For all κ > 0, there exists η and
ε such that if the posterior beliefs induced by the private profile satisfy βi

¡
σ
¡
hti
¢
1|hti

¢
>

1−η for all hti, and if π is ε-close to ρ, then the private profile is a sequential equilibrium
of the game with private monitoring for the same δ, and the expected payoff in that
equilibrium is within κ of the public equilibrium payoff.

Proof. Let
¡
W,w1,σ, d

¢
be the automaton description of the public profile. From

Lemma 2, it is enough to show that for all ĥti, no player has an incentive in period t to

choose an action different from âi = di

³
σ
³
ĥti

´´
. Fix a history ĥti. Let w

t
i = σ

³
ĥti

´
.

Since the public monitoring equilibrium is strict, there exists θ such that, for all ai 6=
âi = di

¡
wti
¢
,

φi
¡
wti
¢− θ ≥ (1− δ)ui

¡
ai, d−i

¡
wti
¢¢
+ δ

X
y

φi
¡
σ
¡
y;wti

¢¢
ρ
¡
y|ai, d−i

¡
wti
¢¢
. (4.1)

Using Lemma 3, by choosing η and ε̄ sufficiently small, we have for all ai 6= âi,

Vi

³
ĥti

´
≥
X
w−i

(1− δ)ui (ai, d−i (w−i))

+δ
X
yi

X
y−i∈Y N−1

Vi
¡
hti; di

¡
σ
¡
hti
¢¢
, yt+1i

¢
π
¡
yi,y−i|di

¡
σ
¡
hti
¢¢
, d−i (w−i)

¢βi
¡
w−i|hti

¢
.
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Since Ai and W are finite, θ can be chosen independent of ĥti, and so we are done.

A similar result holds for strict public profiles that have an infinite state automaton
description, as long as the incentive constraints are “uniformly strict,” i.e., θ in (4.1)
can be chosen independently of the state wti .

While all our later results concern sequential equilibria, we note that if we only
require the restriction on posterior beliefs to hold on private histories consistent with
the strategy profile, we obtain a Nash equilibrium. The proof is in the Appendix.

Theorem 4.2. Suppose the public profile
¡
W,w1,σ, d

¢
is a strict equilibrium of the

game with public monitoring for some δ and |W | < ∞. For all κ > 0, there ex-
ists η and ε such that if the posterior beliefs induced by the private profile satisfy
βi
¡
σ
¡
hti
¢
1|hti

¢
> 1− η for all hti =

¡
di
¡
w1
¢
, y1i ; di

¡
w2i
¢
, y2i ; . . . ; di

¡
wt−1i

¢
, yt−1i

¢
, where

wτ+1
i ≡ σ (yτi , w

τ
i ), and if π is ε-close to ρ, then the private profile is a Nash equilibrium

of the game with private monitoring for the same δ, there is a realization-equivalent
sequential equilibrium, and the expected payoff in that equilibrium is within κ of the
public equilibrium payoff.

Returning to sequential equilibria, the key issue is the behavior of βi
¡
σ
¡
hti
¢
1|hti

¢
.

In particular, can βi
¡
σ
¡
hti
¢
1|hti

¢
be made arbitrarily close to 1 uniformly in hti, by

choosing ε sufficiently small? It is straightforward to show that for any integer T and
η > 0, there is an ε̄ such that for any private monitoring distribution that is ε-close
to the public monitoring distribution, with ε ∈ (0, ε̄), the beliefs for player i satisfy
βi
¡
σ
¡
hti
¢
1|hti

¢
> 1− η for t ≤ T . The difficulty is in extending this to arbitrarily large

T . As T becomes large, the bound on ε becomes tighter.
There is one important case where βi

¡
σ
¡
hti
¢
1|hti

¢
can be made arbitrarily close to 1

uniformly in hti, and that is when the public strategy profile only requires finite memory
of the public signals.

Definition 2. A public profile has finite memory (of public signals) if there is an integer
L such that W can be taken to be the set (Y ∪ {∗})L, and σ

¡
y,
¡
yL, . . . , y2, y1

¢¢
=¡

y, yL, . . . , y2
¢
for all y ∈ Y . The initial state is w1 = (∗, . . . , ∗).

We have introduced the “dummy” signal ∗ to account for the first L periods. This
allows for finite memory profiles in which behavior in the first L periods is different
from that when L periods have elapsed. An example of a profile that does not have
finite memory is the grim trigger profile, studied in Section 3.3. While the grim trigger
profile requires only one-period memory when that memory includes both last period
signal and action, if only signals can be remembered, then the entire history of signals
is required: the strategy requires player i to play C after (ȳ, ȳ, · · · , ȳ), and to play
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D after
¡
y, ȳ, · · · , ȳ¢. This difference is crucial, since this profile is never a sequential

equilibrium, and is often not a Nash equilibrium in close-by private monitoring games.
Cole and Kocherlakota [9] show that, for some imperfect public monitoring distributions
that support a folk theorem with infinite histories, all symmetric public profiles with
finite memory must have defection in every period. On the other hand, other strategies
from the literature on repeated games with imperfect public monitoring do have finite
memory: the two-phase, “stick and carrot,” strategies of Abreu [1] have finite memory
and are optimal punishments, within the class of strongly symmetric strategies, in a
repeated Cournot game. The proof of the following theorem is in the Appendix.

Theorem 4.3. Given a finite memory public profile, for all η > 0, there exists ε > 0
such that if π is ε-close to ρ, the posterior beliefs induced by the private profile satisfy
βi
¡
σ
¡
hti
¢
1|hti

¢
> 1− η for all hti.

5. Arbitrarily Patient Players

In this section, we obtain bounds on ε that are uniform in δ, for δ close to 1. We first
rewrite the incentive constraints of the public monitoring game so that, at least for the
class of finite public profiles defined below, they make sense when evaluated at δ = 1.
A public profile is a strict equilibrium if, for all i ∈ N , w ∈W , and all ai 6= di (w),

φi (w) > (1− δ)ui (d−i (w) , ai) + δ
X
y

φi (σ (y;w)) ρ (y|d−i (w) , ai) ,

where
φi (w) = (1− δ)ui (d (w)) + δ

X
y

φi (σ (y;w)) ρ (y|d (w)) .

For simplicity, write ûi (w) for ui (d (w)), and ûi (w, ai) for ui (d−i (w) , ai). For a fixed
state w ∈W , the mapping σ induces a partition on Y :

yw
¡
w0
¢
=
©
y ∈ Y : σ (y;w) = w0ª .

The incentive constraints at w can be written more transparently, focusing on the tran-
sitions between states, as

φi (w) > (1− δ) ûi (w, ai) + δ
X
w0

φi
¡
w0
¢
θww0 (d−i (w) , ai) , (5.1)

where θww0 (a) is the probability of transiting from state w to state w0 under the action
profile a, i.e.,

θww0 (a) =

½ P
y∈yw(w0) ρ (y|a) , if yw (w0) 6= ∅,

0, if yw (w0) = ∅.
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Substituting for φi (w)in (5.1) and rearranging yields (writing θ̂ww0 for θww0 (d (w)) and
θ̂ww0 (ai) for θww0 (d−i (w) , ai)),

δ
X
w0

φi
¡
w0
¢ ³

θ̂ww0 − θ̂ww0 (ai)
´
> (1− δ) (ûi (w, ai)− ûi (w)) . (5.2)

For any w̄ ∈W , (5.2) is equivalent to

δ
X
w0 6=w̄

¡
φi
¡
w0
¢− φi (w̄)

¢ ³
θ̂ww0 − θ̂ww0 (ai)

´
> (1− δ) (ûi (w, ai)− ûi (w)) . (5.3)

The following property of connectedness plays a critical role in obtaining a bound
on ε that are uniform in δ, for δ close to 1.

Definition 3. A public profile is connected if, for all w,w0 ∈ W , there exists m and
y1, . . . , ym and w̄ ∈W such that

σ
¡
ym,σ

¡
ym−1, . . . ,σ

¡
y1, w

¢¢¢
= w̄ = σ

¡
ym,σ

¡
ym−1, . . . ,σ

¡
y1, w0

¢¢¢
.

While stated for any two states, connectedness implies that any disagreement over
all the players is removed after some sequence of public signals, and so, is removed
eventually with probability one (the proofs of the Lemmas in this section are in the
Appendix).

Lemma 4. For any connected finite public profile, there is a finite sequence of signals
y1, . . . , yn and a state w̄ such that

σ
¡
yn,σ

¡
yn−1, . . . ,σ

¡
y1, w

¢¢¢
= w̄, ∀w ∈W.

If the profile is finite and connected, the Markov chain on W implied by the profile
is ergodic, and so has a unique stationary distribution. As a consequence, limδ→1 φi (w)
is independent of w ∈ W , and so simply taking δ → 1 in (5.3) yields 0 ≥ 0. On the
other hand, if we can divide by (1− δ) and take limits as δ → 1, we have a version of
the incentive constraint that is independent of δ. The next lemma assures us that this
actually makes sense.

Lemma 5. Suppose the public profile is finite and connected. For any two states w,
w̄ ∈W ,

∆ww̄φi ≡ lim
δ→1

(φi (w)− φi (w̄)) / (1− δ)

exists and is finite.
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So, if a connected finite public profile is a strict equilibrium for discount factors
arbitrarily close to 1, we haveX

w0 6=w̄
∆w0w̄φi ×

³
θ̂ww0 − θ̂ww0 (ai)

´
≥ ûi (w, ai)− ûi (w) .

Strengthening the weak inequality to a strict one gives a condition that implies (5.3)
for δ large.

Definition 4. A connected finite public profile is patiently strict if for all players i,
states w ∈W , and actions ai 6= di (w),X

w0 6=w̄
∆w0w̄φi ×

³
θ̂ww0 − θ̂ww0 (ai)

´
> ûi (w, ai)− ûi (w) , (5.4)

where w̄ is any state.

The particular choice of w̄ in (5.4) is irrelevant: if (5.4) holds for one w̄ such that
θ̂ww̄ ∈ (0, 1), then it holds for all such w̄. The next lemma is obvious.

Lemma 6. For any patiently-strict connected finite public profile, there exists δ < 1
such that, for all δ ∈ (δ, 1), the public profile is a strict public equilibrium of the game
with public monitoring.

The remainder of this section proves the following theorem. It is worth remembering
that every finite memory public profile is both a connected finite public profile and,
by Theorem 4.3, induces posterior beliefs that assign uniformly large probability to
agreement in private states. Note that if we only imposed the belief requirement after
histories consistent with the strategy profile, the profile would still be a Nash equilibrium
(and the induced outcome sequential) in the game with private monitoring (by Theorem
4.2).

Theorem 5.1. Suppose a connected finite public profile is patiently strict. There exist
δ < 1, η > 0, and ε > 0 such that, if the posterior beliefs induced by the private profile
satisfy βi

¡
σ
¡
hti
¢
1|hti

¢
> 1−η for all hti, π is ε-close to ρ, and δ ∈ (δ, 1), then the private

profile is a sequential equilibrium of the game with private monitoring.

The finite public profile induces in the game with private monitoring a finite state
Markov chain (Z,Qπ), where Z ≡WN and, forw = (w1, . . . , wN ) andw0= (w01, . . . , w0N ),

qπww0 (a) =

( P
y1∈yw1(w01) · · ·

P
yN∈ywN (w0N) π (y|a) , if ywi (w

0
i) 6= ∅ for all i,

0, if ywi (w
0
i) = ∅ for some i.
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The value to player i at the vector of private states w is

ψπ
i (w) = (1− δ)ui (d (w)) + δ

X
y

ψπ
i (σ (y1;w1) , . . . ,σ (yN ;wN))π (y|d (w))

= (1− δ)ui (d (w)) + δ
X
w0

ψπ
i

¡
w0
¢
qπww0 (d (w))

= (1− δ) ũi (w) + δ
X
w0

ψπ
i

¡
w0
¢
q̃πww0 ,

where ũi (w) = ui (d (w)) and q̃πww0 = qπww0 (d (w)).
Analogous to Lemma 5, we have the following:

Lemma 7. Suppose the public profile is finite and connected.

1. For any two vectors of private states w, w̄ ∈WN ,

∆ww̄ψ
π
i ≡ lim

δ→1
(ψπ
i (w)− ψπ

i (w̄)) / (1− δ)

exists and is finite;

2. ∆ww̄ψπ
i has an upper bound independent of π; and

3. for any two states w, w̄ ∈ W , and any ζ > 0, there exists ε > 0 such that, for all
π ε-close to ρ, |∆w1,w̄1ψπ

i −∆ww̄φi| < ζ.

This lemma implies that an inequality similar to (5.4) holds.

Lemma 8. If a connected finite public profile is patiently strict, then for ε small, and
π ε-close to ρ,X

w0 6=w̄1
∆w0,w̄1ψ

π
i ×

¡
q̃πw1,w0 − q̃πw1,w0 (ai)

¢
> ûi (w, ai)− ûi (w) , (5.5)

where w̄ is any state.

The value player i assigns to being in state w, when she has beliefs βi over the
private states of her opponents, is

V π
i (w;βi) =

X
w−i

ψπ
i (w,w−i)βi (w−i) ,

and her incentive constraint in private state w is given by, for all ai 6= di (w),

V π
i (w;βi) ≥

X
w−i

(
(1− δ) ũi (w−i, ai) + δ

X
w0

ψπ
i

¡
w0
¢
q̃πww−i,w0 (ai)

)
βi (w−i) .
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If βi assigns probability close to 1 to the vector w1, this inequality is implied by

ψπ
i (w1) > (1− δ) ũi (w1, ai) + δ

X
w0

ψπ
i

¡
w0
¢
q̃πw1,w0 (ai) . (5.6)

Substituting for ψπ
i (w1) yields

δ
X
w0

ψπ
i

¡
w0
¢ ¡
q̃πw1,w0 − q̃πw1,w0 (ai)

¢
> (1− δ) (ũi (w1, ai)− ũi (w1))

= (1− δ) (ûi (w, ai)− ûi (w)) .

For any state w̄ ∈W , (5.6) is equivalent to

δ
X
w0 6=w̄1

¡
ψπ
i

¡
w0
¢− ψπ

i (w̄1)
¢ ¡
q̃πw1,w0 − q̃πw1,w0 (ai)

¢
> (1− δ) (ûi (w, ai)− ûi (w)) .

Dividing by (1− δ) and taking limits then yields (5.5). Thus, (5.5) implies that, if
player i assigns a probability close to 1 to all her opponents being in the same private
state as herself, the incentive constraint for i at that private state holds, and so (since
there are only a finite number of incentive constraints) the theorem is proved.

6. An Application to Folk Theorems

A natural question is whether some form of the folk theorem holds for games with
almost-public monitoring. As a corollary of our earlier results, we find that, if the
monitoring is also sufficiently accurate, then a pure-action version of the folk theorem
holds in general.

Fix a pure action profile a ∈ A that is individually rational in the stage game
g : A → <N . In repeated games with perfect monitoring, players observe the action
profile of all previous periods. The folk theorem asserts that, under a dimensionality
condition, there is a discount factor δ0 such that for each δ ≥ δ0, there is a subgame
perfect equilibrium of the repeated game with perfect monitoring in which a is played
in every period. Since this equilibrium can be chosen to have finite memory (see, for
example, the profile in Osborne and Rubinstein [25, Proposition 151.1]), we immediately
have the following result:

Fix a discount factor δ > δ0 such that, for every history ht ∈ At, the continuation
value to any player from following the profile is strictly larger than that from deviating
in period t and then following the profile thereafter. Say that a public monitoring
distribution (Y, ρ) is η-perfect if Y = A and ρ (a|a) > 1 − η. There then exists η0 > 0
such that if (Y, ρ) is η0-perfect, then the profile is a strict PPE of the game with public
monitoring (the arguments are almost the same as the proofs of Lemma 3 and Theorem
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4.1). Since the public profile has finite memory, we then have (from Theorems 4.1
and 4.3) a bound on ε (that depends on ρ and δ) so that if the private monitoring
distribution is ε-close to ρ,29 the public profile induces an equilibrium in the game with
private monitoring and the equilibrium payoffs are close to g (a).

This is a weak result in the sense that, first, η depends on the discount factor and
η → 0 as δ → 1, and second, even if η was independent of δ, ε → 0 as δ → 1.30

The remainder of this section is concerned with obtaining bounds on η and ε that are
independent of δ. Since it is crucial that when a player observes the private signal y,
she assigns a sufficiently high probability to her opponents all having observed the same
signal, the bound on ε must depend on ρ (see Lemma 1).

In order to apply the techniques of Section 5, we first modify the profile used for
the perfect monitoring folk theorem so that in η-perfect public monitoring games, it is
patiently strict.31 Let g

i
denote player i’s pure strategy minmax payoff, ai−i the action

profile that minmaxes player i, and aii a myopic best response for i to a
i
−i (so that

g
i
= gi(a

i)). An action profile a is strictly individually rational if gi (a) > gi. We use
the version of the folk theorem given in Osborne and Rubinstein [25, Proposition 151.1].
We do not know if a similar result holds for the mixed action version, with unobservable
mixing. The proofs of Theorem 6.1 and its corollary are in the Appendix.

Definition 5. The action a∗ ∈ A satisfies the perfect folk theorem condition if it is
strictly individually rational, and there exists N strictly individually rational action
profiles, {a (i) : i ∈ N}, such that for all i ∈ N , gi (a∗) > gi (a (i)) and gi (a (j)) >
gi (a (i)) for all j 6= i.

Theorem 6.1. (Perfect Monitoring) Suppose a∗ satisfies the perfect folk theorem con-
dition. Then there exists L < ∞ and δ < 1, such that for all δ ∈ (δ, 1), there is a
subgame perfect equilibrium of the δ-discounted infinitely repeated game with perfect
monitoring such that

1. on the equilibrium path, a∗ is played in every period;

2. for every history ht ∈ At, the continuation value from following the profile is
strictly larger than that from deviating in period t and then following the profile
thereafter;

3. behavior in period t only depends on the action profiles of the last min {L, t}
periods; and

4. after any history ht ∈ At, under the profile, play returns to a∗ in every period
after L periods.

Moreover, the equilibrium strategy profile can be chosen independent of δ ∈ (δ, 1).
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If the public monitoring distribution has as signal space Y = A, then any profile of
the repeated game with perfect monitoring also describes a public profile of the repeated
game with public monitoring. As a corollary to Theorem 6.1, we have:

Corollary 1. (Imperfect Public Monitoring) Fix a stage game g : A → <N . Suppose
a∗ satisfies the perfect folk theorem condition. Let s denote the subgame perfect equi-
librium profile described in Theorem 6.1. There exists δ < 1 and η > 0 such that if
the public monitoring distribution is η-perfect, then for any δ ∈ (δ, 1), the profile s is a
public equilibrium of the δ-repeated game with public monitoring. Moreover, the profile
is patiently strict.

This corollary, with Theorems 4.3 and 5.1, yields:

Theorem 6.2. (Private Monitoring) Fix a stage game g : A → <N . Suppose a∗

satisfies the perfect folk theorem condition. For all ν > 0, there exists δ0 < 1 and η > 0
such that for all η-perfect public monitoring distributions (Y, ρ), there exists ε > 0 such
that for all private monitoring distributions, π, ε-close to ρ, for all δ ∈ ¡δ0, 1¢, there is a
sequential equilibrium of the repeated game with private monitoring whose equilibrium
payoff is within ν of g (a∗).

A. Proofs for Section 4. Fixed Discount Factors

Proof of Theorem 4.2. A private history hti is consistent with the strategy profile if it
is of the form

¡
di
¡
w1
¢
, y1i ; di

¡
w2i
¢
, y2i ; . . . ; di

¡
wt−1i

¢
, yt−1i

¢
, where wτ+1

i ≡ σ (yτi , w
τ
i ).

We need the following (which can be proved along the lines of the proof of Lemma 3):
Suppose the strategies for players j 6= i are described by ¡W,w1,σ, d¢. If si is an arbi-
trary (continuation) pure strategy for player i and hti is an arbitrary history consistent
with the strategy profile, denote by Vi

¡
si|hti

¢
player i’s continuation value of si in the

game with private monitoring, conditional on the private history hti. Denote by φi (si|w)
player i’s continuation value of si in the game with public monitoring, when the other
players are in the common state w. (Note that if si is the strategy corresponding to
σ and di, starting at state σ

¡
hti
¢
, then Vi

¡
si|hti

¢
= Vi

¡
hti
¢
and φi

¡
si|hti

¢
= φi

¡
hti
¢
.)

Then, for all υ > 0, there exists ε and η > 0 such that for all si and all histo-
ries on the equilibrium path, if βi

¡
σ
¡
hti
¢
1|hti

¢
> 1 − η and π is ε-close to ρ , then¯̄

Vi
¡
si|hti

¢− φi
¡
si|σ

¡
hti
¢¢¯̄

< υ.
Fix a history hti consistent with the strategy profile. Let s̃i be a deviation continua-

tion strategy for player i with s̃1i 6= di
¡
wti
¢
, and let ŝi denote the continuation strategy

that agrees with s̃i in period t and then follows di and σ (ŝi is a one-shot deviation).
Then,

φi
¡
s̃i|σ

¡
hti
¢¢ ≤ φi

¡
ŝi|σ

¡
hti
¢¢
,
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and since the public profile is strict, there exists θ > 0 (as above, θ can be chosen
independent of hti) such that

φi
¡
ŝi|σ

¡
hti
¢¢
< φi

¡
wti
¢− θ.

Finally, by choosing υ < θ/3, we have

Vi
¡
s̃i|hti

¢
< φi

¡
s̃i|σ

¡
hti
¢¢
+ θ/3

< φi
¡
wti
¢− 2θ/3

< Vi
¡
hti
¢− θ/3,

so that s̃i is not a profitable deviation. Thus,
¡
W,w1,σ, d

¢
describes a Nash equilibrium

of the game with private monitoring.
Finally, since games with almost-public monitoring have no observable deviations,

any Nash equilibrium outcome can be supported by a sequential equilibrium (Sekiguchi
[27, Proposition 3]).

Proof of Theorem 4.3. Denote by L the length of the memory of the public profile.
Each player’s private state is determined by the last L observations of his/her private
signal. Suppose t+1 > L and denote player i’s last L observations by w ≡ ¡y1i , . . . , yLi ¢
(this is just player i’s private state wt+1i ). In period τ , t+1−L ≤ τ ≤ t, player i chooses
action aτi = di (w

τ
i ), where w

τ
i is player i’s private state in period τ , given the private

state wt+1−Li and the sequence of private observations y1i , . . . , y
`
i , where ` = τ − (t− L).

Note that the index ` runs from 1 to L. For notational simplicity, we write a`i for
at−L+`i . We need to show that by making ε sufficiently small, the probability that
player i assigns to all the other players observing the same sequence of private signals in
the last L periods can be made arbitrarily close to 1. Let a(L) ∈ AL denote a sequence
of L action profiles, where a`−i ∈ A−i is arbitrary. Then,

Pr
n
w = w1|a(L)

o
=

LY
`=1

π
³
y`i1|a`

´
and

Pr
n
wi = w|a(L)

o
=

X
(y1−i,...,yL−i)∈Y (N−1)L

LY
`=1

π
³
y`−i, y

`
i |a`

´
.

Since these probabilities are conditional on the actions taken in the last L periods, they
do not depend upon player i’s private state in period t + 1 − L. Then for any η > 0,
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there exists ε̄ > 0 such that for all a(L) ∈ AL and ε ∈ (0, ε̄),

Pr
n
w−i = w1|wi = w, a(L)

o
=
Pr
©
w = w1|a(L)ª

Pr
©
wi = w|a(L)

ª
=

QL
`=1 π

¡
y`i1|a`

¢P
(y1−i,...,yL−i)∈Y (N−1)L

QL
`=1 π

¡
y−i, y`i |a`

¢
> 1− η.

[For ε = 0, Pr
©
w−i = w1|wi = w, a(L)

ª
= 1. Moreover, the denominator is bounded

away from zero, for all ε ≥ 0 and all a(L) ∈ AL, and so continuity implies the result.]
Let λ ∈ ∆ ¡AL¢ denote the beliefs for player i over the last L actions taken by the

other players after observing the private signals w. Then,

Pr {w−i = w1|wi = w} =
X

a(L)∈AL
Pr
n
w−i = w1|wi = w, a(L)

o
λ
³
a(L)

´
> (1− η)

X
a(L)∈AL

λ
³
a(L)

´
= 1− η.

B. Proofs for Section 5. Arbitrarily Patient Players

Proof of Lemma 4. We prove this for |W | = 3, the extension to an arbitrary finite
number of states is straightforward. Fix w1, w2, and w3. Let y1, . . . , ym be a sequence
that satisfies σ

¡
ym,σ

¡
ym−1, . . . ,σ

¡
y1, w1

¢¢¢
= σ

¡
ym,σ

¡
ym−1, . . . ,σ

¡
y1, w2

¢¢¢ ≡ w.
Since the profile is connected, there is a sequence of signals ym+1, . . . , ym+m

0
such that

σ(ym+m
0
,σ(ym+m

0−1, . . . ,σ
¡
ym+1, w

¢
)) = σ(ym+m

0
,σ(ym+m

0−1, . . . ,σ
¡
ym+1, w0

¢
)), where

w0 ≡ σ
¡
ym,σ

¡
ym−1, . . . ,σ

¡
y1, w3

¢¢¢
. The desired sequence of signals is then y1, . . . , ym+m

0
.

We need the following standard result (see, for example, Stokey and Lucas [29,
Theorem 11.4]). If (Z,R) is a finite-state Markov chain with state space Z and transition
matrix R, Rn is the matrix of n-step transition probabilities and r(n)ij is the ij-th element
of Rn. For a vector x ∈ <`, define kxk∆ ≡

P
j |xj |.

Lemma A. Suppose (Z,R) is a finite state Markov chain. Let η(n)j = mini r
(n)
ij and

η(n) =
P
j η
(n)
j . Suppose that there exists ` such that η(`) > 0. Then, (Z,R) has a

unique stationary distribution p∗ and, for all p ∈ ∆ (Z),°°°pRk` − p∗°°°
∆
≤ 2

³
1− η(`)

´k
.
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Proof of Lemma 5. Let Θ denote the matrix of transition probabilities on W
induced by the public profile (W is a finite set by assumption). The ww0-th element
is θww0 (d (w)) = θ̂ww0 . If ûi ∈ <W and φi ∈ <W are the vectors of stage payoffs and
continuation values for player i associated with the states, then

φi = (1− δ) ûi + δΘφi.

Solving for φi yields

φi = (1− δ) (IW − δΘ)−1 ûi

= (1− δ)
∞X
t=0

(δΘ)t ûi,

where IW is the |W |-dimensional identity matrix. Let ew denote the w-th unit vector
(i.e., the vector with 1 in the w-th coordinate and 0 elsewhere). Then,

φi (w)− φi (w̄) = (1− δ)
∞X
t=0

(ew − ew̄) (δΘ)t ûi = (1− δ)
∞X
t=0

δt
¡
ewΘ

t − ew̄Θt
¢
ûi.

Because the public profile is connected, for any two distributions on W , α and α0,°°αΘt − α0Θt
°° → 0 at an exponential rate (Lemmas 4 and A). This implies thatP∞

t=0

¡
ewΘ

t − ew̄Θt
¢
ûi is absolutely convergent, and so (φi (w)− φi (w̄)) / (1− δ) has a

finite limit as δ → 1.

Proof of Lemma 7. The proof of the first assertion is identical to that of Lemma
5.

Since the public profile is finite and connected, for the purposes of applying Lemma
A, we can take ` = n, independent of π, where

¡
y1, . . . , yn

¢
is the finite sequence of

signals from Lemma 4. Moreover, there exists ε > 0 such that for all π ε-close to ρ,X
w0
min
w
q
π,(n)
ww0 >

1

2
×
X
w0
min
w

θ
(n)
ww0 ≡ η∗.

This gives a bound on the rate at which α (Qπ)t converges to απ, the stationary dis-
tribution of (Z,Qπ), independent of π and α ∈ ∆ (Z). This then implies the second
assertion.

Now,

∆ww̄φi =
∞X
t=0

¡
ewΘ

t − ew̄Θt
¢
ûi
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and

∆w1,w̄1ψ
π
i =

∞X
t=0

¡
ew1 (Q

π)t − ew̄1 (Qπ)t
¢
ũi.

Fix ζ > 0. There exists T such that¯̄̄̄
¯
TX
t=0

¡
ewΘ

t − ew̄Θt
¢
ûi −∆ww̄φi

¯̄̄̄
¯ < ζ/3

and, for all π ε-close to ρ,¯̄̄̄
¯
TX
t=0

¡
ew1 (Q

π)t − ew̄1 (Qπ)t
¢
ũi −∆w1,w̄1ψπ

i

¯̄̄̄
¯ < ζ/3.

Order the states in (Z,Qπ) so that the first |W | states are the states in which all
players’ private states are in agreement. Then, we can write the transition matrix as

Qπ =

·
Qπ
11 Qπ

12

Qπ
21 Qπ

22

¸
,

and so [IW : 0] ũi = ûi. As π approaches ρ, Qπ
11 → Θ, Qπ

12 → 0, and Qπ
22 → 0.

Now, h
(Qπ)2

i
11
= (Qπ

11)
2 +Qπ

12Q
π
21

and h
(Qπ)2

i
12
= Qπ

11Q
π
12 +Q

π
12Q

π
22,

and, in general, £
(Qπ)t

¤
11
= (Qπ

11)
t +Qπ

12

h
(Qπ)t−1

i
21

and £
(Qπ)t

¤
12
= Qπ

11

h
(Qπ)t−1

i
12
+Qπ

12

h
(Qπ)t−1

i
22
.

Thus, for all t,
£
(Qπ)t

¤
11
→ Θt and £(Qπ)t

¤
12
→ 0, as π approaches ρ. Hence, there

exists ε0 > 0 such that for all t ≤ T , if π is ε0-close to ρ,¯̄̄̄
¯
TX
t=0

¡
ewΘ

t − ew̄Θt
¢
ûi −

TX
t=0

¡
ew1 (Q

π)t − ew̄1 (Qπ)t
¢
ũi

¯̄̄̄
¯ < ζ/3.

So, for ε00 = min {ε, ε0}, if π is ε00-close to ρ,

|∆ww̄φi −∆w1,w̄1ψπ
i | < ζ.
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Proof of Lemma 8. Let

ζ =
1

2

X
w 6=w̄

∆ww̄φi ×
³
θ̂ww − θ̂ww (ai)

´
− (ûi (w, ai)− ûi (w))

 .
Since the public profile is patiently strict, ζ > 0.

The left hand side of (5.5) isX
w 6=w̄

∆w1,w̄1ψ
π
i ×

¡
q̃πw1,w1 − q̃πw1,w1 (ai)

¢
+

X
w0 6=w1,
w∈W

∆w0,w̄1ψ
π
i ×

¡
q̃πw1,w0 − q̃πw1,w0 (ai)

¢

and, by Lemma 7, there exists ε00 > 0 such that for π ε00-close to ρ,¯̄̄̄
¯̄̄̄ X
w0 6=w1,
w∈W

∆w0,w̄1ψ
π
i ×

¡
q̃πw1,w0 − q̃πw1,w0 (ai)

¢¯̄̄̄¯̄̄̄ < ζ/2.

Moreover, again by Lemma 7, by choosing ε small, for π ε-close to ρ,

¯̄̄̄
¯̄X
w 6=w̄

∆ww̄φi ×
³
θ̂ww − θ̂ww (ai)

´
−
X
w 6=w̄

∆w1,w̄1ψ
π
i ×

¡
q̃πw1,w1 − q̃πw1,w1 (ai)

¢¯̄̄̄¯̄ < ζ/2,

and soX
w0 6=w̄1

∆w0,w̄1ψ
π
i ×

¡
q̃πw1,w0 − q̃πw1,w0 (ai)

¢
>
X
w 6=w̄

∆w1,w̄1ψ
π
i ×

¡
q̃πw1,w1 − q̃πw1,w1 (ai)

¢− ζ/2

>
X
w 6=w̄

∆ww̄φi ×
³
θ̂ww − θ̂ww (ai)

´
− ζ

> ûi (w, ai)− ûi (w) ,

which is the desired inequality (5.5).
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C. Proofs for Section 6. An Application to Folk Theorems

Proof of Theorem 6.1. While the profile specified in the proof of Proposition 151.1
of Osborne and Rubinstein [25] satisfies the first three properties, it does not satisfy
the requirement that play eventually return to a∗. The following modification does. We
first describe the profile presented in Osborne and Rubinstein [25]. The profile has three
types of phases, C(0) , C(j), and P (j). Player i chooses a∗i in phase C(0), ai (j) in phase
C(j), and aji in phase P (j). Play starts in phase C(0), and remains there unless there
is a unilateral deviation, by player j, say. After such a deviation, the profile switches
to phase P (j) for L∗ periods, after which play switches to C(j), and remains there. If
there is a unilateral deviation in P (j) or C(j) by player k, say, the profile switches to
P (k) for L∗ periods, and then to C (k), and remains there. Now modify the profile so
that once the profile switches to C(j), it stays in C(j) for L∗∗ periods, for an L∗∗ to be
determined, after which it reverts to C(0).

For notational simplicity, set a (0) = a∗. First choose L∗ large enough so that, for
all j ∈ N ∪ {0} (where M ≡ maxi,a |gi (a)|),32

M − gi (a (j)) < L∗
³
gi (a

∗)− g
i

´
. (C.1)

Second, choose L∗∗ sufficiently large so that, for all i,

M − gi
¡
aj
¢
+ L∗

³
g
i
−min©gi (a∗) , gi ¡aj¢ª´ < L∗∗ (gi (a (j))− gi (a (i))) . (C.2)

Each player has a strict incentive to follow the prescribed path when in phase C (j)
if, for all ` ∈ {1, . . . , L∗∗} (where ` is the number of periods remaining in phase C (j)),33

M +
L∗+1X
k=2

δt−1g
i
+
L∗+L∗∗+1X
k=L∗+2

δt−1gi (a (i)) <
X̀
k=1

δt−1gi (a (j)) +
L∗+L∗∗+1X
k=`+1

δt−1gi (a∗) .

(C.3)
Evaluating this inequality at δ = 1 and rearranging yields

M − gi (a (j)) < (`− 1) (gi (a (j))− gi (a (i))) + L∗
³
gi (a

∗)− g
i

´
+ (L∗∗ − (`− 1)) (gi (a∗)− gi (a (i))) ,

which is implied by (C.1), since gi (a (j)) > gi (a (i)) and gi (a∗) > gi (a (i)). Thus, there
exists δ0 such that for δ ∈ ¡δ0, 1¢, and any ` ∈ {1, . . . , L∗∗}, (C.3) holds.

Each player has a strict incentive to follow the prescribed path when in phase P (j)
if, for all ` ∈ {1, . . . , L∗} (where ` is now the number of periods remaining in phase
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P (j)),

M +
L∗+1X
k=2

δk−1g
i
+
L∗+L∗∗+1X
k=L∗+2

δk−1gi (a (i)) (C.4)

<
X̀
k=1

δk−1gi
¡
aj
¢
+
`+L∗∗X
k=`+1

δk−1gi (a (j)) +
L∗+L∗∗+1X
k=`+L∗∗+1

δk−1gi (a∗) .

Evaluating this inequality at δ = 1 and rearranging yields

M − gi
¡
aj
¢
+ L∗g

i
− (`− 1) gi

¡
aj
¢− (L∗ + 1− `) gi (a∗) < L∗∗ (gi (a (j))− gi (a (i))) ,

which is implied by (C.2). Thus, there exists δ00 such that for δ ∈ ¡δ00, 1¢, and any
` ∈ {1, . . . , L∗}, (C.4) holds.

The proof is completed by setting L = L∗+L∗∗ and δ = max
©
δ0, δ00

ª
. By construc-

tion, all one-shot deviations are strictly suboptimal (the incentive constraints (C.3) and
(C.4) hold strictly).

Proof of Corollary. Let
¡
W,w1,σ, d

¢
be a finite state automaton description of

the strategy profile from Theorem 6.1. Let vi :W → < describe player i’s continuation
values under this profile. Observe that, for all w ∈ W , vi (w) → gi (a

∗) as δ → 1. Not
surprisingly,

vi = (1− δ) ĝi + δDvi,

where ĝi ∈ <W is given by ĝi (w) = gi (d (w)) and D is the transition matrix with ww0-th
element given by

Dww0 =

½
1, if w0 = σ (d (w) ;w) ,
0, otherwise.

We can view D as a degenerate stochastic matrix for the Markov chain (W,D). By
construction, this Markov chain is ergodic. Now,

vi (w)− vi
¡
w0
¢
= (1− δ)

∞X
t=0

δt
¡
ewD

t − ew0Dt
¢
ĝi

= (1− δ)
LX
t=0

δt
¡
ewD

t − ew0Dt
¢
ĝi,

and so
∆w0w̄vi ≡ lim

δ→1
¡
vi
¡
w0
¢− vi (w̄)¢ / (1− δ)
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is well-defined and finite. Moreover, (C.1) and (C.2) imply that the profile is patiently
strict: for all players i and states w ∈W , for all ai 6= di (w),X

w0 6=w̄
∆w0w̄vi × (Dww0 −Dww0 (ai)) > ûi (w, ai)− ûi (w) ,

where w̄ is any state, and

Dww0 (ai) =

½
1, if w0 = σ (d−i (w) , ai;w) ,
0, otherwise.

The proof of Lemma 8 can then be used to show that the public profile in the η-perfect
game of public monitoring is patiently strict for η small.
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Notes

1A strategy is public if it only depends on the public history, and a perfect pub-
lic equilibrium is a profile of public strategies that induces a Nash equilibrium after
every public history. Recent work (Kandori and Obara [20] and Mailath, Matthews,
and Sekiguchi [22]) exploring private strategy profiles in games with imperfect public
monitoring suggests that there is more to learn about games with public monitoring.

2Amarante [4] provides a nonstationary recursive characterization of the equilibrium
set of repeated games with private monitoring.

3Compte [10] was concerned with similar robustness issues, with perfect monitoring,
rather than imperfect public monitoring, as the benchmark.

4For some public monitoring distributions, the grim-trigger strategy profile is a Nash
equilibrium, and so there is a realization-equivalent sequential equilibrium (Theorem
4.2). However, the specification of the off-the-equilibrium-path behavior in the original
strategy profile (reinterpreted as a profile for the game with private monitoring) is not
sequentially rational.

5In much of this literature, each player observes a private noisy (but reasonably
accurate) signal of the opponent’s play.

6This work builds on an idea in Kandori [18].

7While interpreting ui as the expected value of u∗i yields the most common interpre-
tation of the game, the analysis that follows does not require it.

8Since we are restricting attention to pure strategies, the restriction to public strate-
gies is without loss of generality: any pure strategy is realization equivalent to some
pure public strategy (see Abreu, Pearce, and Stacchetti [2]).

9We assume W contains no irrelevant states, i.e., every w ∈ W is reached from w1

by some sequence of public signals.

10We have introduced a distinction betweenW and the set of continuation payoffs for
convenience. Any pure strategy equilibrium payoff can be supported by an equilibrium
where W ⊂ <N and φ (w) = w (again, see Abreu, Pearce, and Stacchetti [2]).

11If q > r, this profile will not be an equilibrium for δ close to 1, as players would
have an incentive to cooperate in state wD.

12In this section only, we will use a to denote an arbitrary action C or D, rather than
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an action profile.

13If q < r, this profile will not be an equilibrium for δ close to 1, as players would
have an incentive to cooperate in state wD.

14A similar point was made in Compte [10].

15As δ → 1, the average payoff in this profile converges to 0, since the expected
waiting time till a bad signal is finite and independent of δ. This profile is an example
of a 1-period grim trigger. In a K-period grim trigger, behavior begins in CC, and
switches to DD permanently after the first K “bad” signals. By choosing K sufficiently
large, for fixed δ, the average payoff can be made arbitrarily close to 1. We analyze
general K-period grim trigger strategy profiles in Mailath and Morris [23].

16A private monitoring distribution has full-support if π (y|a) > 0 for all y ∈ Y N and
a ∈ A.
17It will be clear from the argument that the specification ρ {ȳ|CD} = ρ {ȳ|DC} is

purely for notational convenience, since nothing depends upon the relative values of
ρ {ȳ|CD} and ρ {ȳ|DC}. Thus, we characterize the robustness of grim trigger under
generic two signal imperfect public monitoring technologies.

18And it is very likely that player 2 has observed ȳ when player 1 has observed ȳ,
because the monitoring is almost public.

19We are implicitly appealing to an argument by contradiction. Suppose grim trigger
is a Nash equilibrium. After private histories that arise with positive probability under
the strategy profile, it is optimal to play C when in state wC and optimal to playD when
in state wD. Moreover, these incentives are strict when a player assigns probability one
to the opponent being in the same private state as himself. Thus, whenever a player
assigns arbitrarily large probability to the opponent being in state wD, playing C is
suboptimal.

20After observing y in period t, a player’s posterior that his opponent’s private state
in period t was wC increases. However, if the opponent’s signal were also y, then the
opponent’s private state in period t+1 is necessarily wD. For ε-close private monitoring
distributions, the second consideration clearly dominates the first.

21Recall that x/ (x+ a) is increasing in x for a > 0.

22Note that this implies another failure of sequentiality. Suppose player 1 is in state
wC . After long histories of the form (D, ȳ;D, ȳ;D, ȳ; . . .), player 1 assigns high proba-
bility to player 2 being in state wD, and even though he is still in state wC , will prefer
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to play D.

23This immediately rules out almost-public monitoring.

24Matsushima [24] also shows an anti-folk theorem. In particular, suppose that signals
are independent and that players are restricted to pure strategies which depend on
payoff-irrelevant histories only if that payoff-irrelevant history is correlated with other
players’ future play. These restrictions are enough to prevent coordination.

25These triggering events include the triggering events of footnote 15, where K be-
comes arbitrarily large as δ → 1.

26This result and the associated technique, which builds on Bhaskar and van Damme
[8], has been significantly generalized by Bhaskar and Obara [7] and Sekiguchi [28].

27The class studied includes both independent and correlated signal distributions.
Denote by lower case letters the private signals that a player observes, so that ci is the
signal that player i observes about player j. Almost-perfect monitoring requires not
only that Pr {c1c2|C1C2} and Pr {d1d2|D1D2} be close to one, but that Pr {c1d2|D1C2}
be close to one. If we interpret ȳ as ci and y as di, then this is inconsistent with
almost-public monitoring, for any choice of p, q, and r.

There is an interpretation, however, under which almost-perfect monitoring is con-
sistent with almost-public monitoring in our example. Suppose p and r are close to
1, and q is close to 0. Then, if i has chosen C, ȳ is an almost sure indication that j
had also chosen C, while y is an almost sure indication that j had chosen D. On the
other hand, if i had chosen D, ȳ is an almost sure indication that j had also chosen D,
while y is an almost sure indication that j had chosen C. The interpretation of ȳ (as
a signal of j’s choice) now depends upon i’s action. Observe, however, that since grim
trigger only depends upon the signal while the player is choosing C, the differences in
interpretation have no impact on play. The differences are relevant in belief formation.
Note that when player i in state wD observes ci (y), indicating that player j is still in
state wC , player j will observe (with high probability) dj (y) and so switch to state wD
(cf. footnote 20).

28In other words, grim trigger is not a Nash equilibrium because players have an
incentive to ignore defect signals received in the first period (players believe their oppo-
nents are still cooperating and do not want to initiate the defect phase) and so players
have no incentive to cooperate in the initial period.

The randomization probability is chosen to make the players indifferent between
cooperation and defection in the initial period. Moreover, as long as the discount is
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close to the value at which a player is indifferent between cooperation and defection
against grim trigger in a game with perfect monitoring, then for sufficiently accurate
monitoring, this randomization probability assigns small weight to initial defection.

29It is worth emphasizing we are imposing a particular structure on the private mon-
itoring distribution. There are almost-perfect private monitoring distributions (with
support AN) that are conditionally independent, and so not almost public. Also note
that for private monitoring distributions that are ε-close to an η-perfect public moni-
toring distribution, observation errors are almost perfectly correlated.

30Sekiguchi [28] proved such a result for efficient outcomes in the repeated prisoners’
dilemma.

31While the profile from Osborne and Rubinstein [25, Proposition 151.1] in η-perfect
games of public monitoring is finite and connected, the Markov chain onW is not ergodic
for games with perfect monitoring. Since the Markov chain is ergodic for games with
public monitoring, the incentive properties of the profile (in terms of strict patience)
may differ between perfect and public monitoring. Property 4 in Theorem 6.1 implies
that, even when the monitoring is perfect, the Markov chain on W is ergodic.

32Osborne and Rubinstein [25, Proposition 151.1] fix L∗ large enough so that M −
gi (a (j)) < L

∗
³
gi (a (j))− gi

´
, rather than as in (C.1), because in their profile, after a

deviation play never returns to a∗.

33If j = 0, then the value of ` is irrelevant.


