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show that the equilibrium consumption function is continuous and monotonic
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time models of hyperbolic discounting. All of the pathological properties of

discrete-time hyperbolic models are eliminated by our continuous-time model.
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1. INTRODUCTION

Robert Strotz (1956) first suggested that discount rates are higher in the short run
than in the long run. Almost every experimental study on time preference has
supported his conjecture (Ainslie 1992). To capture this empirical regularity, Laib-
son (1997a) adopted a discrete-time discount function, {1, 36, B6%,88%, ... .}, which
Phelps and Pollak (1968) had previously used to model intergenerational time pref-
erences. With § < 1, this ‘hyperbolic’ discount function captures the gap between a
high short-run discount rate and a low long-run rate. In the last several years, this
discrete-time discount function has been used to model a wide range of behavior: e.g.,
saving, contracts, job search.!

The hyperbolic discount function implies that current preferences are inconsistent
with those held in the future. Beginning with the work of Strotz, such dynamic incon-
sistency has been analyzed by treating the individual as a sequence of independent
selves whose choices are modelled as an intrapersonal game.

This game-theoretic framework has proved fruitful. A recurrent problem has,
however, plagued most of these hyperbolic applications: strategic interaction among
intrapersonal selves often generates counterfactual policy functions. Hyperbolic con-
sumption functions need not be globally monotonic in wealth, and may even drop
discontinuously at a countable number of points. Numerous authors, including Laib-
son (1997b), Morris and Postlewaite (1997), O’Donoghue and Rabin (1999a), Harris
and Laibson (2001b), and Krusell and Smith (2000) have identified hyperbolic exam-
ples in which the consumption function has negatively sloped intervals or downward
discontinuities. Figure 1 plots examples of such ‘pathological’ consumption functions.

Two solutions to this problem have been proposed. First, Harris and Laibson

(2001b) point out that pathologies occur only when the model is calibrated in a

I For some examples, see O’Donoghue and Rabin (1999b), Angeletos, Laibson, Repetto, Tobacman
and Weinberg (2001), and Della Vigna and Paserman (2000).
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limited region of the parameter space. When the hyperbolic model is calibrated with
reasonable levels of noise (i.e. income volatility) and reasonable values for other
preference and technology parameters, the pathologies typically vanish. However,
Harris and Laibson (2001b) acknowledge that there do exist defensible calibrations
for which the pathologies are still present (notably when the coefficient of relative
risk aversion lies well below unity).

Second, O’Donoghue and Rabin (1999a) point out that pathologies arise only
to the extent that consumers recognize that their own preferences are dynamically
inconsistent. If consumers do not recognize this, then they will not have any incentive
to act strategically vis-a-vis their own future selves. Hence, naive consumers who do
not anticipate their own dynamic inconsistency will not exhibit pathologies. However,
this solution requires that consumers be completely naive about their own future
preferences. Any partial knowledge of future dynamic inconsistency reinstates the
pathologies.

In the current paper we identify a solution to the pathology problem that is
more robust than either of those cited above. First, we propose a continuous-time
model of time discounting that captures the qualitative properties of the discrete-time
hyperbolic model. This model distinguishes between the ‘present’ and the ‘future’.
The present is valued discretely more than the future, mirroring the one-time drop
in valuation implied by the discrete-time quasi-hyperbolic discount function (Phelps
and Pollak 1998, Laibson 1997) and its continuous-time generalizations (Barro 1999,
Luttmer and Mariotti 2000). In addition, we assume that the transition from the
present to the future is determined by a constant hazard rate. This simplifying
assumption enables us to reduce our problem to a system of two differential equations
that characterize present and future value functions.

Second, we show that our model has a limit case that is analytically tractable and

psychologically relevant. This is the case in which the present is vanishingly short.
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By focusing on this psychologically important limit case, we take the phrase “in-

stantaneous gratification” literally. We analyze a model in which individuals prefer
gratification in the present instant discretely more than consumption in the momen-
tarily delayed future. This model is a useful benchmark that captures the essence of
nearby models in which the present is short, but not precisely instantaneous.

Third, we show that the instantaneous-gratification model, which is dynamically
inconsistent, shares the same value function as a related dynamically consistent opti-
mization problem with a wealth-contingent utility function. Using this partial equiv-
alence, we can show both existence and uniqueness of the hyperbolic equilibrium.
However, our economy is not observationally equivalent to the related dynamically
consistent optimization problem. The partial equivalence applies to the value func-
tions but not to the policy functions.

We also show that the equilibrium consumption function of the hyperbolic problem
is continuous and monotonic in wealth. The monotonicity property relies on the
condition that the long-run discount rate is weakly greater than the interest rate.
When this inequality is satisfied, all of the pathological properties of discrete-time
hyperbolic models are eliminated by our continuous-time model.

Two other sets of authors have analyzed hyperbolic preferences in continuous time.
Barro (1999) analyzes the choices of hyperbolic agents with constant relative risk aver-
sion. He focuses on the general equilibrium implications of hyperbolic discounting
and the ways in which hyperbolic economies may be observationally equivalent to ex-
ponential economies. Luttmer and Mariotti (2000) analyze the choices of agents with
arbitrary discount functions, constant relative risk aversion, and stochastic asset re-
turns. Luttmer-Mariotti generalize Barro’s observational-equivalence result, but also
identify particular endowment processes for which the hyperbolic model has interest-
ing new asset-pricing implications (e.g., an elevated equity premium). Luttmer and

Mariotti work with general discount functions and consider numerous special cases.
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They have independently identified some properties of the particular case in which
the present is vanishingly short. However, their findings do not overlap with ours.

Barro and Luttmer-Mariotti both restrict their analysis to linear policy rules. The
existence of a linear equilibrium depends on special preference assumptions (constant
relative risk aversion) and market assumptions (complete markets enabling sales of
future labor income). We do not make restrictive assumptions of this kind: we work
with a broad class of preferences; and we introduce the constraint that consumers may
not borrow against future labor income. We pursue these generalizations for greater
realism. Our problem does not admit a linear equilibrium. We have to contend
with the pathologies that arise in our general setting, but do not arise under the
Barro/Luttmer-Mariotti assumptions in either discrete or continuous time.

Our results also differ from Barro and Luttmer-Mariotti in that we are able to
prove uniqueness of Markov equilibrium in the class of all policy rules. This is a
desirable and unexpected result, since the hyperbolic model is a dynamic game, and
can therefore generate non-uniqueness. For example, Krusell and Smith (2000) have
shown that hyperbolic Markov equilibria are not unique in a deterministic discrete-
time setting. In the current paper, we provide two uniqueness results. First, we prove
uniqueness in a class of continuous-time models with stochastic asset returns. Second,
we propose a refinement that uses the unique equilibrium in the stochastic setting
to select a sensible unique equilibrium in the deterministic setting. This refinement
takes the natural approach of selecting the limiting equilibrium obtained as the noise
in the asset returns vanishes.

The rest of the paper formalizes these claims. In Section 2 we present our gen-
eral continuous-time model and formulate some of the properties of this model. In
Section 3 we describe an important limit case of our model. We call this limit case
the instantaneous-gratification model. In Section 4 we show that the instantaneous-

gratification model has the same wvalue function as a particular dynamically consis-
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tent optimization problem. We call this latter problem the ‘equivalent problem’,
but note that it is not observationally equivalent to the hyperbolic problem. The
instantaneous-gratification model shares the same long-run discount rate as the equiv-
alent problem, but the two problems have different instantaneous utility functions and
different equilibrium policy functions.? In Section 5, we use our partial equivalence
result to derive several important properties of the instantaneous-gratification prob-
lem, including equilibrium existence, equilibrium uniqueness, consumption-function
continuity, and consumption-function monotonicity. In Section 6 we derive the de-
terministic version of the instantaneous-gratification model, and provide a complete
analysis of the case of constant relative risk aversion. In Section 7 we formulate results

that complement and generalize the results of Section 3. In Section 8 we conclude.

2. A ConTINUOUS-TIME CONSUMPTION MODEL

Our modelling framework incorporates liquidity constraints, an important qualitative

feature of consumers’ planning problems (cf. Deaton 1991, Carroll 1992, 1997).

2.1. Dynamics. Time, t, is indexed by the real numbers. At a point in time,
the consumer has wealth z € [0,+00). The consumer receives a continuous flow of
labor income y € (0, +00).

Since wealth is a stock variable, if z > 0, the consumer may choose any instanta-
neous consumption level ¢ € (0,400). If z = 0, she may choose any instantaneous
consumption level ¢ € (0,y]; i.e., when wealth is zero, instantaneous consumption
must lie weakly below instantaneous income. In particular, the consumer may never
borrow.

Whatever the consumer does not consume is invested in an asset, the returns

2By contrast, see Barro (1999), Laibson (1996), and Luttmer and Mariotti (2000) for the special
case — log utility and no liquidity constraints — in which observational equivalence of the policy
functions does hold.
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on which are distributed normally with mean pudt and variance o?dt, where p €

(—o0,4+00) and o € (0,400). The change in her wealth at time ¢ is therefore

dr = (px +y — ¢) dt + oxdz,

where z is a standard Wiener process.

We could easily generalize this framework by adding a stochastic source of labor
income. For example, stochastic increments of labor income could follow a Poisson
arrival process. We do not pursue this generalization, since it would not qualitatively

change the analysis that follows.

2.2. The Consumer. The consumer is modeled as a sequence of autonomous
selves. Each self controls consumption in the ‘present’ and cares about but does not
directly control consumption in the ‘future.’

In the standard discrete-time formulation of quasi-hyperbolic preferences, the
present consists only of the current (single) period. The future consists of all pe-
riods after the current period, and a period n > 1 steps into the future is discounted
with the overall discount factor £6" (Phelps and Pollak 1968, Laibson 1997).

This model can be extended to continuous-time and generalized in two ways.
First, the present can last for any duration 7" € (0,00). Second, the duration of
the present, T, can be random. We assume that self ¢ is “born” at time ¢;. Self ¢
retains control of the consumption decision from date ¢; to date t;,1 = t; + T}, where
T; is distributed exponentially with parameter A € [0,400) . Hence, A represents the
arrival rate of transitions from the present to the future. At time ¢;,1, self 1+ 1 takes
control of the consumption decision and this new self retains control of consumption
until the next transition date, ¢;10 = t;4.1 + Tj11.

In this continuous-time framework, the set of selves is countable. One new self
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is associated with each transition date ¢ € {ty = 0,t1,%,...}. For self ¢; the present
lasts from time ¢; to the stochastic transition time ¢, = t; +7T;. For self ¢; the future
begins at time t;,1 = t; + T; and lasts forever.

We assume that self ¢ values the future discretely less than the present. Specifi-

cally, self i’s preferences are given by

ti+T5 +o00
o { / =T (¢ (5)) ds + a / =T (¢ (5)) ds | | (1)
17 t

i+Ti

where v € (0,+00), o € (0,1], and U : (0,4+00) — R. Because the transition date
t; + T; is stochastic, self ¢ has a stochastic discount function,
Da(ti.s) = et if s € [t ti + Th)
e ) if s € [t 4 Ty, +00)
D\(t;, s) decays exponentially at rate v up to time ¢; + T;, drops discontinuously at
t; +T; to a fraction « of its level just prior to ¢; +T;, and decays exponentially at rate
v thereafter. Hence, self ¢; discounts all flows in the ‘future’ — i.e., flows that come
after time ¢, + T; — with an extra factor of «. This continuous-time formalization
is close to some of the deterministic discount functions used in Barro (1999) and
Luttmer and Mariotti (2000). However, we assume that the duration of the present,
T;, is stochastic. Figure 2 plots a single realization of this discount function, with
t;=0and T; = 3.4.
When A\ = 0 our discount function reduces to the standard exponential discount

function, namely
Do(ts, ) = 7767 for all s € [t;, +00) .

As A — oo the discount function converges to a deterministic jump function with a
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jump at s = t;, namely

Doo (t“ 8) =
ae 1) i s € (¢, 400)
Letting A go to infinity captures the special case in which the present is vanishingly
short. We shall return to this case below.

Figure 3 plots the expected value of the discount function for a set of A values:

A €{0,0.1,1,10,00}. Analytically, the expected value is given by,
E.Dj(ti,s) = e AMs—ti)g=(s—ti) 4 (1-— e*/\(S*ti))ae*W(S*ti)‘

2.3. Exponential Assumptions. We shall need the following assumptions for

the analysis of the model with finite A:

E1 U is three times continuously differentiable on (0, 400);
E2 U’ (¢) > 0 for all ¢ € (0,400);

E3 there exist 0 < p <p < 400 such that p < %(”C()C) < for all ¢ € (0,+00);

E4 v > max [, (1—=p) (1 — 3p0?).

Assumptions E1-E3 can be summarized by saying that the consumer has bounded
relative risk aversion, or BRRA for short. Assumption E4 is the natural integrability
condition for an exponential consumer with BRRA preferences: it ensures that the
expected payoff of such a consumer is well defined.

Assumptions E1-E4 can be dramatically simplified if U has constant relative risk

aversion p. In this case E1-E3 reduce to p > 0, and E4 reduces toy > (1 — p) (,u - %p02).
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2.4. Equilibrium. We confine attention to the set of perfect equilibria in sta-
tionary Markov strategies. More precisely, we focus on perfect equilibria in regular

consumption functions.

Definition 1. A consumption function C : [0, +00) — (0, +00) is regular iff C' (0) €

(0,y] and C' is Lipschitz continuous.

In other words: consumption must take place out of labor income when x = 0;
and there exists L € [0,400) such that, for all z,zy € [0,400), |C (z1) — C (x2)| <
L|zy — x5|.

Now suppose that C'is a regular consumption function. Then, for all z € [0, +00),

we may find the timepath X of wealth starting at = by solving the equation

dX$ () = (XS (t)+y—C (XS (1)) dt+oXS (t)dz(t),

X90) = =
We define the continuation-value function V' by the formula

Vi()=E { /0 e (0 (x€ 1) dt} .

The continuation-value function V' discounts utility flows exponentially, with discount

rate 7. We define the current-value function W by the formula
T
W(r)=E [ [ e (xE w)) dirac v (x¢ (T))] , @)
0

where T represents the next stochastic transition date. In the definition of W, the
continuation-value function V' is discounted by two multiplicative terms: the present-
future discount factor «, and the standard exponential expression e 7. The « factor

reflects the one-time discounting that arises during a transition between the “present”
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and the “future.” The two terms in the integral of equation (2) are directly compa-
rable to the two terms in equation (1), which describes the actor’s preferences.

Using this notation, we can define equilibrium as follows.
Definition 2. A regular consumption function C' is a regular equilibrium iff:

1. For all regular consumption functions C and all z € [0, +00), we have
T o _
W (z) > E { / ey (C (Xf (t))) dt + ae™TV (Xf (T))] .
0

2. For all x € [0, +00), we have V (z) > @

The first condition in our definition of equilibrium reflects our assumption that
the current self maintains control of the consumption decision for the duration of the
present — i.e., until the next stochastic transition date T periods in the future. Since
any single self controls consumption for a time interval with a strictly positive mea-
sure, the consumption strategy of the current self has a mathematically meaningful
impact on the discounted present value of total utility.®

The second condition in our definition of equilibrium requires that equilibrium
continuation-payoff functions must be bounded below by the payoft function asso-
ciated with the myopic policy “always consume deterministic labor income g”. This
requirement rules out equilibria supported by policy functions that generate expected
utility of —oo. Such infinitely bad policy functions can in general be equilibria since

no single self has an incentive to deviate.

3 Alternatively, we could have assumed that there exists a continuum of selves. In this formulation
each self, ¢, controls consumption for only an instant, dt. In addition, each self has its own stochastic
present, from ¢ to t + T;. Self ¢ applies the discount factor « to all utility flows after date t + T3.
This continuum-self model yields identical results to the countable-self model as long as we close
the continuum-self model with the heuristic equilibrium condition U’(c) = W’(x): marginal utility
of consumption equals the marginal value of wealth.
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2.5. Characterization of Equilibrium. In this subsection we formulate the
Bellman system that characterizes regular equilibria. We also formulate an existence
theorem for such equilibria. To conserve space, we state these motivating theorems
without providing formal proofs. Instead, we provide the basic intuitions behind the
results.

For all ¢ € (0, 400), put

f(¢) = argmax U (c) — c¢ and fy (¢) = argmax U (¢) — co.

c€(0,+00) ce(0,y]

Then:

Definition 3. The finite-\ Bellman system is

%U%QW" b (pzty—C)W =AW —A(W —aV) + U (C) =0, (3)
%a%ﬁv" b (pzty—C) V' — AV +U(C) =0, (@)
C=fWw) (5)
when z > 0, and
(y—CYW' =AW =X (W —aV)+ U (C) =0, (6)
(y—C)V' =4V +U(C) =0, (7)
C = fo(W) (8)

when x = 0.

Equation (3) can be understood in the usual way by applying Ito’s Lemma. Intu-
itively, %0’2$2W” represents the expected value of instantaneous changes in W arising

from Brownian volatility in the returns process; (ux +y — C) W’ represents the ex-
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pected value of instantaneous changes in W arising from expected changes in wealth;
—~W represents the expected value of instantaneous changes in W arising from ex-
ponential discounting at rate v; —A (W — aV) represents the expected value of in-
stantaneous changes in W arising from the stochastic arrival (with hazard rate ) of
a transition between the “present” with value W and the “future” with continuation
value aV'; U(C) represents the instantaneous value of the consumption flow. Equa-
tion (4) can be understood in the same way. The only difference is that there is no
longer a transition effect, since V' describes continuation payoffs after the future has
arrived. From the perspective of each self, the future only arrives once. Equations
(6) and (7) are analogous to equations (3) and (4). The only difference is that they
apply to the special case x = 0.

Equations (5) and (8) express the fact that consumption is chosen optimally.

When consumption is not constrained, equations (5) and (8) imply that
U'(C(z)) = W'(x).

Intuitively, the marginal utility of a unit of consumption is equal to the marginal
value of a unit of wealth.

We then have the following characterization theorem.

Theorem 4. Suppose that Assumptions (E1-E4) are satisfied. Then a regular con-
sumption function C' is a regular equilibrium iff: W and V are continuously differen-
tiable on [0, 400) and twice continuously differentiable on (0,+00); V (z) is bounded

below by @; and (W, V, () satisties the finite-\ Bellman system. R
We also have the following existence theorem.

Theorem 5. Suppose that Assumptions (E1-FE4) are satisfied. Then there exists a

regular equilibrium. B
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This theorem can be motivated as follows. The structure of the problem implies
that, for any Borel measurable strategies, the value functions W and V must be
bounded. The smooth noise associated with the asset returns implies that W and
V" must be bounded in the interior (z > 0). Optimization implies that U’'(C(x)) =
W'(z), so U"(C(z))C'(x) = W"(x). Hence, provided that consumption is not too
large, boundedness of W implies boundedness of C’. In other words, C' is Lipschitz
continuous. Finally, special arguments are required at the boundary (z = 0), where

the smooth noise vanishes since the diffusion process is scaled by .

Remark 6. It can in fact be shown that all equilibria are regular. We have not
formulated a theorem along these lines, because doing so would involve a major
digression. Among other things, we would have to explain what is meant by a solution
to the dynamics on the interior of (0,40c0) when the consumption function is only
Borel measurable; and we would have to explain how to normalize the dynamics when
the consumption function is not linearly bounded. Moreover the apparatus that we

would have to develop along the way would ultimately turn out to be redundant.

3. THE INSTANTANEOUS-GRATIFICATION MODEL

The continuous-time consumption model presented in the last subsection has an im-
mediate advantage over its discrete-time analogue: there exists an equilibrium con-
sumption function C' that is continuous everywhere on [0, +00). Indeed, it is possible
to show that for this model all equilibrium consumption functions are continuous
everywhere on [0, +00) . However, the principal pathology of the discrete-time hyper-
bolic consumption model remains: there may be intervals on which C’ < 0.

Fortunately, we need not be interested in the general case of the continuous-time
consumption model. The urge for “instantaneous gratification” suggests that the
present — i.e., the interval from ¢ to ¢t + T during which consumption is particularly

highly valued — is very short. These observations lead us to consider the limiting case
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in which A — 400, and hence the present becomes vanishingly short. Recall that A is
the arrival rate of transitions from the present to the future. We refer to the limiting
case, A = 400, as the instantaneous-gratification model since in this limit case the
highly rewarding present becomes instantaneously short. Before proceeding, it may
be helpful to emphasize that we will study the limit of the equilibria as A — +o00. In

this way we are led to a definition of the equilibrium of the limit problem.

3.1. Hyperbolic Assumptions. We shall also need the following further as-

sumptions, which are specific to the hyperbolic context:

7CU”’ (C)

H1 there exist —o0o < m <7 < +o00 such that 7 < T70)

<7 for all ¢ € (0, +00);
H2 a+p—1>0;
H3 (2_04)2—(1—04)%>0;

H4 v > max

e [ Z—a)p—(1—a)z’ @—a)p—(1—a)=

p(atp=1) plat=1) } (1=0p) (M - %100'2)~

Assumption H1 requires that the coefficient of relative prudence is bounded; Assump-
tions H2 and H3 ensure that equilibrium in the instantaneous-gratification model is
equivalent to maximization in an equivalent problem; and Assumption H4 is the
integrability condition for the equivalent problem.

Assumptions H1-H4 can be dramatically simplified if U has a constant coefficient
of relative risk aversion p. In this case H1-H3 reduce to a+p—1 > 0, and H4 reduces
to E4. In practice, calibrated models will usually satisfy this inequality: empirical
estimates of the coefficient of relative risk aversion typically lie between 1 and 5 (i.e.
1 < p < 5), and the short-run discount factor is typically thought to be at least 0.5

(i.e. @ > 0.5)." Hence, we can expect calibrated versions of the model to satisfy the

4See Laibson et al (1998) and Ainslie (1992).
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inequality a4+ p—1 > 0. However, for completeness, we discuss the case a+p—1 < 0

in Section 7.

3.2. The Bellman System of the Instantaneous-Gratification Model. In
this section, we characterize the limiting equilibrium obtained as A\ — +o0o. We first

define the instantaneous-gratification Bellman system.

Definition 7. The instantaneous-gratification Bellman system is

W =aV, 9)
%(72$2V”+ (hz+y—C)V =4V +U(C) =0, (10)
C=f (W) (11)
when z > 0; and
W =aV, (12)
(y—CO)V =4V +U(C) =0, (13)
C=fo (W) (14)

when x = 0.

It is easy to motivate this definition of the instantaneous-gratification Bellman
system: if we divide equations (3) and (6) of the finite-A Bellman system through
by A and let A\ — +o0, then we obtain equations (9) and (12) of the instantaneous-
gratification Bellman system; and equations (10), (11), (13) and (14) of the instantaneous-
gratification Bellman system are identical to equations (4), (5), (7) and (8) of the
finite-A Bellman system.

Equations (9) and (12) reflect the fact that as A — +oo the discount function

drops essentially immediately to a fraction « of its initial value, and that the current-
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value function W is therefore a times the continuation-value function V. Here V/
represents the exponentially discounted value of the stream of equilibrium utility
flows.  From the perspective of the current self, all of those future utility flows
are additionally discounted by factor «, so W = aV. Equations (10) and (13) can
be understood in the usual way by applying Ito’s Lemma. Equations (5) and (8)
express the fact that consumption is chosen optimally. When consumption is not
constrained, they imply that U’ (C(z)) = W' (x). Moreover equations (9) and (12)
imply that W (z) = oV’ (). Hence,

U (C(z)) =W'(z) = oV ().

Intuitively, the marginal utility of a unit of consumption is equal to the marginal
value of a unit of wealth, which is equal to oV’ (z).

Equations (9 - 14) are similar — although not identical — to the system of equa-
tions that would arise if a consumer were dynamically consistent. To simplify com-
parison, assume that the consumer is always in the interior of her state space and her
choice space. Then the Bellman system that would apply to a completely exponential
agent (i.e., with o = 1), is given by

SOV 4 (s 4y~ Cr) Vg~ 4V + U(Ts) =0, (15)

U (Cp(z)) = V(). (16)

Compare these equations to the analogous equations for the instantaneous-gratification

model (again assuming that the consumer is always in the interior of her state and
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choices spaces):

SV 4 (et y —C) V' =4V +0(CT) =0, (17)

U (C(z)) = oV (z). (18)

The only difference between Bellman system (15-16) and Bellman system (17-18) is
the o term that multiplies V' in the last equation. Since a < 1 and the utility function
is concave, this difference drives up consumption in the instantaneous-gratification
model relative to consumption in the exponential model. Naturally, this increase
in consumption also drives a wedge between the value functions, V and V, which
characterize the two problems.

Formal motivation for the definition of the instantaneous-gratification Bellman
system can be obtained as follows. Using equations (9) and (12), we may substitute
for W in equations (11) and (14). Similarly, using equations (11) and (14), we may
substitute for C' in equations (10) and (13). In this way, we obtain the system:

oV 4 (e ty— 1 (7)) -V 4 0(F (7)) =0 (19)

when x > 0; and
(y — (QV’)) V AV + U( fo (aV’) ) —0 (20)

when x = 0. We then have the following theorem, the proof of which is omitted to

conserve space.

Theorem 8. Suppose that Assumptions E1-E4 and H1-H4 are satisfied. Then, as

A — 400, V' converges uniformly on compact subsets of [0, +00) to a limit function
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V' which is the unique viscosity solution® of the system (19-20). B

The central difficulty in proving Theorem 8 relates to the fact that, while C' is
continuous on the whole of [0, +00), its limit C' may have an upward jump at 0. The
strategy for circumventing this difficulty can be explained as follows. Suppose, for

the sake of discussion, that:

1. There exists K € [0, +00) such that, for all A € [0, +00), C'(z) < K (1 + z).

2. There exist functions W,V : [0, +00) — R such that:

(a) W and V are twice continuously differentiable on [0, 4+-00);

b) W — W and V — V uniformly on compact subsets of [0,4+00) as A —
y
+00;
) W - W, W" - W,V -V and V' — V' uniformly on compact
subsets of (0, +00) as A — +o0.

(We emphasize that, while we assume that the bound K on C' is independent of A,
we do not assume that the Lipschitz constant L of C is independent of A. By the
same token, while we assume that W and V' converge uniformly on compact subsets
of the closed interval [0,4+00), we only assume that W', W” V' and V" converge
uniformly on compact subsets of the open interval (0,400). In this way, we allow for
the possibility that C' may have an upward jump at 0.)

We may then reason as follows. Put Z = W — aV. Multiplying equations (4) and
(7) by a and subtracting them from equations (3) and (6), we obtain

%JQxQZ”Jr(uery—C)Z’—(7+>\)Z+(1—a)U(C):0

5See Crandall et al (1992) for a “user’s guide” to viscosity solutions.
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when x > 0. In other words, Z is the expected present discounted value of the flow of
utility (1 — ) U (C) up to time T;. Hence Z — 0 as A — +oo, and W = aV. That
is, equations (9) and (12) hold.

Next, put C = f (W/) for x > 0 and C = f (W/) for x = 0. In other words,
choose C' in such a way as to ensure that equations (11) and (14) hold. Then, passing

to the limit in equation (4), we obtain
1 — — — — —
502:1:2‘/”4—(/w+y—C’)V,—’yV—|—U(C):0 (21)

when z > 0. That is, equation (10) holds. There are then two cases to consider.
In the first case, W (0) > U’(y). In this case, C (0) = C (0+) < y. We may

therefore pass to the limit in equation (21) to obtain
(y—CO)V =4V +U(C)=0

when z = 0. In other words, equation (13) holds in this case.
In the second case, W (0) < U’(y). In this case, C(0) = y < C(0+). In
particular, there is an upward jump in C at 0. We therefore proceed as follows. Let

20 be the time-path for assets starting at 0. Then we have

dz® (t) = (pa° (t) +y — C (2 (¢))) dt + o2® (t) dz (t)

and
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Let 7° be any limit point of z°. Since C' (0+) > y, 7° must remain trapped at 0 forever.
We can therefore find a timepath of mixed consumptions « : [0, +00) — P ([0, K])
such that

dfo(t):y—/cdn(c\t):()

for all ¢ > 0 and

V(0)=E Ueﬁ (/U(c)dm(c[t)) dt].

IN
<l

m (0) <E [/eWU (/cdn (c| t)) dt] =E UeWU(y) dt] = @

In particular, V (0) = @ Since C (0) = y, it follows that equation (13) holds in

this case too.

Remark 9. This derivation of the boundary condition for the Bellman system of the
instantaneous-gratification model highlights the importance of the requirement that

V> @ in the definition of equilibrium.

4. THE EQUIVALENCE RESULT

In the present section we show that, under appropriate assumptions, the value func-
tion V of the hyperbolic consumer in the instantaneous-gratification model is also
the value function of an exponential consumer with an appropriately chosen utility
function.

This result can be motivated by comparing the Bellman system with A = 0 with

the Bellman system of the instantaneous-gratification model. For all ¢ € (0, +00),
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put

B() = U (F (€)= £ (6) 6 and ho (¢) = max U (Jo (6)) = fo (6) 6.

Then, putting A = 0 in the Bellman system with finite A, we obtain:

1
SO W+ (x4 y) W =AW+ h (W) =0 (22)

when x > 0; and
yW' — AW + he (W) =0 (23)
when z = 0. Secondly, for all ¢ € (0,+00), put

h(¢) =U (f (ag)) — f (ag) ¢ and hy (¢) = U (fo (a9)) — fo (ag)) ¢.

Then the Bellman system of the instantaneous-gratification model can be written:

1 =/ — J— ~ f—
So%V + (pa+y)V —7V+h(V) —0 (24)

when x > 0; and
yV' =V + 1o (V) =0 (25)

when z = 0.

Now, provided that his decreasing and convex (which is guaranteed by Assump-
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tions H2 and H3), we can find a utility function U such that

h(¢)= max U(c)— co.
c€(0,+00)
Similarly, provided that /f\LO is decreasing and convex (which is again guaranteed by

Assumptions H2 and H3), we can find a utility function (70 such that

ho (¢) = max Uy (¢) — co.
c€(0,9]
However, unlike i and hy, h and ﬁo are not generated by the same utility function. On
the contrary, Up dominates U. In particular, we have Uo (y) > U (y). Hence, in order
to obtain the desired equivalence, the utility function of the exponential consumer
must be made to depend on her wealth as her consumption. Specifically, she must

use the utility function U when z > 0 and the utility function [70 when z = 0.

4.1. The Utility Function in the Interior. Recall that & (¢) =U(f (ag)) —
f (a@) ¢ for all ¢ € (0,+00), and put

—cU" ()

p(c):W’ T(e)=—0 7

for all ¢ € (0, +00). Then:
Lemma 10. Suppose that Assumptions E1-E4 and H1-H3 hold. Then:

1. W (¢) <0 for all ¢ € (0,400);

2. 1" (¢) > 0 for all ¢ € (0,+00);

3. there exist 0 < p. <pj < +oc such that p. < *%f"‘(';()d’) < p; for all ¢ € (0,+00).
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Proof. Note first that

h(¢) = U(f(ag))— f(ag)d
= U(f(ag) — af (a) ¢ — (1 —a) f (ad) ¢
= h(ag)— (1-a)f(ad)¢.

Hence

W(p) = all(ag) = (1—a)f(ag) = (1 —a)af (a) ¢
= —af(ad) — (1-a) f(ad) = (1 —a)af (ag) ¢

= —f(ad) = (1—a) [ (ad) ad

— —fla gy Ied)ad

= f(¢)<1+(1 ) f (a) )
o oy U (a9))

= —f(ag) <1+(1 )f<a¢) ur (f(a¢))>

= —f(ag) (1 - ﬁ)
f (a9)

Part 1 of the lemma therefore follows from Assumption H2.

Second, as shown above, we have

B (¢) = —f (ag) — (1 — a) f' (ad) ag.
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Hence

B'(¢) = —af (ad) —(1—a)f' (ad)a— (1 —a)af’ (ag)ad
= —af (ad) (1 + (1 — ) (1 + M))

[ (ag)
_ —a (1 U (@) U (f (ag))
T U (f (a9)) (H(l )<1 U (f (ag))* >>
_ WM(H(l—a)(l—@(ﬂacﬁ))))
_ WM(@—@—O—@)@U(M)))-

Part 2 of the lemma therefore follows from Assumption H3.

Third, using the final expressions obtained above for 7 (¢) and B (¢), we have

—oh" (¢) _ (2—a)—(1—a)0(f (a9))

W) — a+tp(flad) -1
Hence
oh" (9) _ _
55 e S
where
2-a)p-(1-o)7 nd 3 2-a)p-—(1—-—a)x
b= plat+p—1) and 77, = oy (a+p—1)

This establishes part 3 of the lemma. B
In view of Lemma 10, we may apply Fenchel’s Theorem to conclude that, if we

define the function U : (0, +00) — R by the formula

[/j A~ _ . /]’; ~
(©) Sonin (¢) +co,
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then

h(¢)= max U (@) —¢c

ce(0,+00)
for all ¢ € (0,+00).
Theorem 11. Suppose that Assumptions E1-E4 and H1-H3 hold. Then:

1. U is twice continuously differentiable;

2. U'(2) > 0 for all ¢ € (0,+00);

3. there exist 0 < Py < Py < +o0 such that Py < *CU({('%E) < pg for allc € (0,400).
Proof. Put
g(c) = ArgMin e (g 4 o0) 1 (¢) + co.
Then
0@ =56, 0"@)=——
b (g (¢))
and
—aU" @ _ W (GE©)
U’ (¢) —g () h" (g (<))
In particular, we may put
1 1
p~ =— and p5; = —.
Eo =5, U o

This completes the proof of the theorem. B
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4.2. The Utility Function at the Boundary. Recall that & (¢) =U (fo (ag))—
fo (@) ¢ for all ¢ € (0,400). Then:

Lemma 12. Suppose that Assumptions E1-E4 and H1-H3 hold. Then

~ Uly) —¢y if0<g¢<?W
h(g)  iFLY << 40

~ o
Moreover hy, ( Ciy

|
~
AN
=
=
—
<
S

+). In particular, TLO is strictly decreasing and

convex.

Proof.  The first statement is immediate from the definition of ?LO. It implies

that

2 (U@ N (U W\ _ UG , 3
(50 =1 (58) = s e e -y

() (),

This completes the proof of the lemma. B

In view of Lemma 10, we may apply Fenchel’s Theorem to conclude that, if we

define the function U : (0,y] — R by the formula

U (c) = S ho (¢) + o,

then

ho (¢) = max Uy (©) — e

ce(0,y]
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Now put

Then:

Theorem 13. Suppose that Assumptions E1-E4 and H1-H3 hold. Then

o U (@) if0<¢<qy
Uo(c) =4 - _ _ . _
Uvy) + =y U (vy) ify<c<y

Moreover U, (y) =U (y).

Proof. We have

o (6) Uly)—dy if0<¢< @
0 = ~ y
h(¢) if YW < ¢ < 4oo
and
=—y ifo<g< UT('”)
hy(9)3 € [—y,—vy] if ¢ = LW
=7 (¢) if YW < ¢ < +oo
Hence
min¢€(07+oo)ﬁ () +cop f0<c<yy
min o (6) + 66 = ﬁ(m)+aw iy <<y
¢€(0,400) @ @

—00 ify <ec< +oo

28
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Moreover

and

Finally,

Q@ Q@ Q@
This completes the proof of the theorem. B

4.3. The Equivalent Consumption Problem. The analysis of Sections 4.1 and
4.2 shows that V is the value function for the consumption problem of a consumer
whose wealth evolves according to the same dynamics as in the original problem, but

whose preferences are given by

In other words, the equivalent consumer uses a standard discount function that decays
exponentially at rate v, but uses a non-standard utility function that depends on her

wealth.

Remark 14. We denote consumption and wealth in the equivalent problem by ¢
and T in order to emphasize the fact that the equivalent consumer makes different

consumption choices from the original hyperbolic consumer. In other words, the
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equivalent problem is not observationally equivalent to the original problem.

Figure 4 plots an example of U and Uo for the special case in which U has a
constant coefficient of relative risk aversion p # 1. For this special case we have the

closed-form solutions

I
Ule)=--U()
and
U(c if0<¢
0y (0) = g Pise=w
U(wy)+a(c—¢y) if gy <c<y
where

5. SOME FEATURES OF THE INSTANTANEOUS-GRATIFICATION MODEL
In the present section, we exploit the partial equivalence result of Section 4 to inves-
tigate the instantaneous-gratification model. We establish the existence and unique-
ness of equilibrium, the continuity of the consumption function in the interior of the
wealth space, a sufficient condition for the monotonicity of the consumption func-
tion, a generalized Euler equation governing the evolution of the marginal utility of
consumption and a corresponding equation governing the evolution of consumption

itself. Assumptions E1-E4 and H1-H4 will be in force throughout the section.
5.1. Existence and Uniqueness of Equilibrium.

Theorem 15. The Bellman system of the instantaneous-gratification model has a

unique solution (7, C ) .
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Proof. The equivalence result of Section 4 shows that (V, 5) solves the Bell-
man system of the instantaneous-gratification model iff V' solves the Bellman equation
of the equivalent problem, C' = f (aV’) when z >0 and C = f; (aV’) when z = 0.
Moreover standard considerations show that the Bellman equation of the equivalent

problem possesses a unique solution. B
5.2. Continuity of the Consumption Function.

Theorem 16. We have:

1. C is continuous when = > 0;

2. there exists p,,;, € (—00,+00) such that C (0) < C (0+) for all u < p,,;, and

C(0) = C (0+) for all pt > pp;-

Proof. Note first that C is continuous in the interior because C' = f (V/)

there. Secondly, C'(0) = fo (avl (0)) =yAf (047/ (0)) <f (avl (0)) = C (0+4).
Hence C (0) < C (0+), with equality iff V' (0) > £%_ Thirdly, let V be the value

«

function of the restricted version of the equivalent consumption problem in which
the consumer has utility function U instead of (70 when her wealth is 0. It can be
shown that V' (0) > @ iff V (0) > @ Moreover: V (0) is strictly increasing in ;
V(0) = @ < @ for all  sufficiently small; and V (0) — +o00 as g — +oc. B

Remark 17. In the case p < ., the consumer dissaves when her wealth is low,
spends all her wealth in finite time, and experiences a discontinuous drop in consump-
tion when her wealth runs out. In the case p > p,,;,, asset returns are high enough

to induce the consumer to save when her wealth is low.

5.3. Monotonicity of the Consumption Function.

Theorem 18. Suppose that v > p. Then C' >0 when z > 0.
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Proof.  Note first that C' = f V’) in the interior. Hence C is continuously
differentiable there, and C = f (V/ V' Hence C' > 0iff V' < 0. Secondly,

differentiating equation (24) with respect to z, we obtain

1 . _ _ _ N
50V + (g 4+ y) V' =V + o2V ¥ + 1 (V) V' =0

or

V" = 2 ((v—u)vl—((u—l—oj)x—l—y—i-ﬁ'(v/))vﬂ).

02?2

In particular, if V' = 0, then

/! 2 —
V= (y=wV =0.

o232

Hence, if there exists 21 € (0,400) such that V' (z1) > 0, then V' > 0 on (21, +00).
Thirdly, if there exists z; € (0,+00) such that V" (z1) > 0 on (z,+00), then V
grows at least linearly; and this contradicts the assumption that p > p > 0. Overall,

then, we must have V' < 0 on (0,+00). W

Remark 19. Theorem 25 below shows that, if v < u, then a drop in consumption

may occur.

5.4. The Generalized Euler Equation. Since U ’(6) may have a discontinuity
at 0, we cannot use It6’s Lemma to study its dynamics. We can, however, use It0’s
Lemma to study the dynamics of M = V'. These dynamics are very closely related

to those of U’(@). Indeed, we have U’(ﬁ) = aM for x > 0. Moreover:

1. if C (0+) = C (0), then the dynamics of M are identical to those of U(C');
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2. if C(0+) > C (0) and z (0) € (0,+0c0), then the dynamics of M are identical
to those of U’(U) on the interval (0, 7), where 7 is the first time that z hits 0;

and

3. if C (04) > C (0) and z (0) = 0, then the dynamics of M are identical to those
of U’(U), in the sense that both are trivial.

The two dynamics only differ if C' (0+) > C (0) and z (0) € (0,+00), in which case
U’(U) jumps up at 7.

Theorem 20. We have:
dM _, aC — —\ aC
WZ(’y—ﬁH—a%(C’)%—l—(l—a)C)dt—ap(C’)%dz (26)
if either x > 0 or z = 0 and C (0+) = C (0); and

0
M

ifx =0 and C (0+) > C (0).

This theorem gives an exact expression for the rate of growth of M. The equation
includes deterministic terms (i.e. the terms which include dt) and a stochastic term
(i.e. the final term, which includes dz). The stochastic term captures the negative
effect that positive wealth shocks have on marginal utility.

The term ~dt implies that marginal utility rises more quickly the higher the long-
run discount rate v. The term —udt implies that marginal utility rises more slowly
the higher the rate of return . The term 02p(5) %ﬁdt captures two separate effects.
First, asset income uncertainty o2 affects the savings decision. Second, since marginal

utility is non-linear in consumption, asset income uncertainty affects the average value
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of future marginal utility. The net impact of these two effects is always positive. The
term (1 — a)?’dt captures the effect of hyperbolic discounting. Naturally, when
a = 1, this effect vanishes and the model coincides with the standard exponential
discounting case.

Proof. We begin by applying It6’s Lemma to M to obtain
1 —
dM = (50%21\4" + (pz+y—C) M') dt + oxM'dz. (27)

Next, we put C= f (aM). Then, differentiating equation (10) with respect to x, we

have

1 _ - o\~
SO M+ (/w by C) M' =AM + o*eM' + uM — C'M + U’ (0) C' =0

when z > (0. Moreover this equality extends by continuity to the case x = 0. Hence
1 — 1 ~ ~
§a"’xQM” + (pz+y—C)M = 502:52M” + (/w +y— C) M+ (C — C) M
=~yM — o*zM' — uM + C'M — U'(é) '+ (5—6) M’
=~M — o*xM' — uM + C'M — aMC' + (5 —6) M
= (’y—,u—l—(l—a)él)M— (02:10— (5—6)) M’

and

dM ~ 5 M ~ =\ M M’
W—(’y—u—l—(l—a)C—axM—l—(C’—C)M dt+axﬁdz.
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Next,

Hence

G- (e (0) - (0-0)(0) G )

—ap(a) xg’ dz. (28)

In particular, we have the first statement of the Theorem. As for the second state-
ment, note that if z = 0 and C (0+) > C (0) then C (0) = y and therefore it follows
directly from equation (27) that dM = 0. In particular, we have

!

~ -~ C -
(C—C)p(C) ~— =yt (1-a)C"
C
Le. the correction term in equation (28) exactly cancels the other terms. B

5.5. The Dynamics of Consumption. Since C' may have a discontinuity at 0,
we cannot use [t6’s Lemma to study its dynamics. We can, however, use It6’s Lemma
to study the dynamics of C = f(aM). Just as the dynamics of M were very closely
related to those of U ’(5), so the dynamics of C are very closely related to those of

C. Indeed, we have C =C for z > 0. Moreover:

1. if C' (0+) = C(0), then the dynamics of C are identical to those of C;

2. if C (0+) > C (0) and z (0) € (0, +00), then the dynamics of C are identical to
those of C' on the interval (0, 7), where 7 is the first time that z hits 0; and
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3. if C (04) > C (0) and z (0) € 0, then the dynamics of C' are identical to those

of C, in the sense that both are trivial.

The two dynamics only differ if C' (0+) > C (0) and z (0) € (0, +00), in which case
C jumps down at 7.

For all ¢ € (0,400), put 7 (¢) = —<%9 . Then:

U"(c) *
Theorem 21. We have:
~ ~ ~ ~ 2 ~
£ S —~,u +02I9 + (1= ?i) ¢ %a%r(é) (acg’ ) dt + Uﬁdz (29)
C p(o) C p(o) C C

if either x > 0 or z = 0 and C (0+) = C (0); and

ifx =0 and C (0+) > C (0).

Equation (29), which describes the evolution of consumption, compares closely
to equation (26), which describes the evolution of marginal utility. To underscore
the similarities, begin with equation (26), replace C' with 5’, and then divide by
p(é) There are only two differences between the resulting equation and equation
(29): a series of sign reversals; and the appearance of the new deterministic term
—%02 (5) (%6') ] dt. The sign reversals reflect the inverse relationship between con-
sumption and marginal utility. The new deterministic term reflects the effects of
prudence. The sign of the prudence effect depends on the sign of U"”': when U" < 0,

the prudence term raises the growth rate of consumption. (Cf. Kimball (1990).)
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Proof. We have

ac 1/, 1,, ) )

(applying 1t6’s Lemma to C=f (aM))

1{, M 1, oy (dMY?
:E(f (oaM)oaMﬁ—i-if (aM) oM (ﬁ))

(collecting terms)

37
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(substituting for 28 from equation (28))
~ ~ ~ 2 ~
(A e a0) (S ) - (D) G )
p((;) C C C
+0_x9’ dz
C

(simplifying). ®

6. THE DETERMINISTIC CASE
In the present section, we again exploit the equivalence result of Section 4 to take
the limit of the instantaneous-gratification model obtained as ¢ — 04. Recall that
o represents the standard deviation of asset returns. We show that, by viewing
the deterministic instantaneous-gratification model as a limiting case of the stochas-
tic instantaneous-gratification model, we are able to pinpoint a unique equilibrium
value function for the deterministic model. Furthermore, the Bellman system for the
deterministic value function turns out to be particularly tractable. For one thing,
while the Bellman system for the stochastic value function is a second-order non-
autonomous ordinary differential equation, the Bellman system for the deterministic
value function is a first-order non-autonomous ordinary differential equation. For an-
other, in the case in which U has constant relative risk aversion, the Bellman system
for the deterministic value function possesses a symmetry that allows us to transform
it into a first-order autonomous ordinary differential equation. We are therefore able
to provide a complete analysis of equilibrium in this case. In particular, we obtain an
example that shows that the condition v > p used in our proof of monotonicity of the
consumption function is necessary, at least in the deterministic case. Assumptions

E1-E4 and H1-H4 will be in force throughout the section.
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6.1. Derivation of the Deterministic Model. The following theorem describes
the sense in which the deterministic instantaneous-gratification model is the limit of

the stochastic instantaneous-gratification model. The proof of the theorem follows

standard lines and is omitted to conserve space.’

Theorem 22. We have:

1. there is a continuous function V : [0, +00) — R such that V — V uniformly

on compact subsets of [0, +00) as 0 — 0+;

2.V is the unique viscosity solution of
(uz +y) Vi — Vo + I (V’O) ~0 (30)
when x > 0 and
YV — Vo + ho (V’O) —0 (31)
when x =0. 1

In particular, we obtain an equilibrium-refinement result for the deterministic
model. By letting 0 — 04 we select a sensible equilibrium for the deterministic model
(0 =0). Krusell and Smith (2000) have shown that hyperbolic Markov equilibria are
not unique in a deterministic discrete-time setting. Our refinement provides a natural

method for selecting among these equilibria.

6.2. The Case of Constant Relative Risk Aversion. In this section we adopt

the following parametric assumptions:

6See Crandall et al (1992) for a “user’s guide” to viscosity solutions.
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P1 p is constant;

P2 > 0.

Under these assumptions, we can transform the non-autonomous system (30-31) into

an autonomous system.

Lemma 23. Suppose that assumptions P1-P2 hold, and that p # 1. Put

7. (eed-y
o (=)

l=log(pz+y) and v (l) = A=) 0 (@)

Then V satisfies equations (30-31) iff v satisfies

p((1=p)v+v) = +h(u((1-p)v+v)) =0 (32)

when | > log (y) and

max{é,u(a —p)v—l—v')} 4 (max{é,u(a —p)v+v')}> —0 (33

when | = log (y).

Proof.  We proceed in three steps. First, put

Vo (l’)
1—p)U(pz +y)

v (x) = (
Then (30) holds iff

0= (ua+y) (1 p) (U0 + Unh) — 7 (1 — p) Uvg +h (1 — p) (uU"vg + Uny))
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(because Vi, = (1 — p) (uU'vy + Uv}), and where we have suppressed the dependence
of U and vy on pz + y and x respectively)

~

h((1 = p) (pU'vo + Uvy))
(1=p)U

U/
0= (uz +y) (MUUO+1}6> — Yo +

(dividing through by (1 — p) U)

1—p) (MU’1)0+UU6)>

— — , X vg) — YU h (
& 0= ((1—p)pvo + (pz + y) ;) 70+h( ((1_p)U)FE_1

(because (uz +y)U' = (1 — p) U and h is homogeneous of degree 1 — %)

& 0=((1-p) oo+ (uz +y) vh) = yvo + A (1 = p) pvo + (pz +y) vp)  (34)

(because ((1 —p)U )?f_l = U’). Secondly, put

o= (22022,

Then (34) holds iff

0= ((1=p) pw + ') —yv + 1 (1 = p) pv + o)

because o, (z) = 208wz Thirdly, note that
0 (nz+y)

— U
Voz#ﬁ((l—p)uwrﬂv’)z

Rlr

The same chain of reasoning therefore shows that (31) holds iff

1 ~ 1
OZmaX{—,(l —p),uv—l—/w'} — v+ h (max{—,(l —p),uv—l—;w’}) N |
a a
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Lemma 24. Suppose that assumptions P1-P2 hold, and that p = 1. Put

_ (exp (1) — y) _ Ulexn (1))

l =log (pr +y) and v (l) =V,
Iz v

Then V satisfies equations (30-31) iff v satisfies

u(l—i—z)’) —yv—l—/l?j(u (l—i-v')) =0
Y Y

when [ > log (y) and

1 /1, ~ 1 /1,
max< —, u | —+v —yv—+h|max< — u|l—+wv =0
« ol « Y
when [ = log (y).

Proof. We proceed in three steps. First, put

vo () = Vo () — W

Then (30) holds iff

(ua:+y)7{]—770 +h (Vg) =0

U’ U ~ (U’
0=@x+w<“ +%>—7<—+w0+h(“ +%>
gl gl gl

42

(35)
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(because V:) = "TU/ + v, and where we have suppressed the dependence of U and vy

on pux + y and z respectively)

U ~ B+ (px +y)
@02(%+(um+y)v6>—'y<;+vo>+h<7 .

(pr +y)

(because (pz +y)U' = 1)
s0= (% - (u:c+y)v6> — 0o+ h (% + (pz +y) 06)

(because h (¢) = —log (a¢) — L and U =log (ux + y)). Secondly, put

v (1) =g <—exp (/i) — y) .

Then (37) holds iff

0= (H+/w’> —’yU—I—E(H—I—,U,U/)
g g

(because vj (x) = W) Thirdly, note that

1
a a

ngU(y)@Gﬂw’)z
gl

The same chain of reasoning therefore shows that (31) holds iff

1 ~ 1
O:max{—,ﬁ—l—,uv’} —'yv—l—h(max{—,ﬁ—l—,uv’}>.l
a7y a7y

Theorem 25. Suppose that assumptions P1-P2 hold. Then:

1. If p < v < 400, then C' > 0 on (0, +00).

)
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2. If app < v < p, then there exists x; € (0,+00) such that:

(a) C >0 on (0,2);
(b) C' >0 and C' =0 on (x1,+00); and

(c) C(z1+) < C (z1-).
3. If v < ap, then C >0 and C =0 on (0, +00).

Moreover, if ¥ > apu, then C (z) > px +y for all z € [0,+00). In particular, there is

always a unique solution to the wealth dynamics.

The three cases of Theorem 25 are illustrated in Figures 5, 6 and 7. These
figures are effectively phase portraits: although equations (32) and (35) are first-
order autonomous ordinary differential equations, jumps can occur in ', and it is
therefore helpful to include v’ in the portrait. It is possible for v' to jump up but
not down. Intuitively speaking, this is because v is the upper envelope of smooth
functions, and can therefore have convex kinks but not concave kinks.

The first element of the portraits is the graph of the Hamilton-Jacobi function
H, which consists of the locus of points (v/,v) satisfying equation (30). The second
element of the portraits is the horizontal line v = a. This corresponds to the value
that the consumer obtains if she has wealth 0 and consumes y forever. The third
element is the vertical line at v" = 0. The intersection of this line with the graph of
H yields the steady state (0,v (c0)), where v (c0) corresponds to the value that the
consumer obtains is she has very large wealth and consumes out of this wealth at a
constant rate forever. The fourth element is the horizontal line v = v (c0).

There are three possible positions for the steady state: between the left-hand
intersection (L, a) of v = a with the graph of H and the minimum of H (Figure 5);

between the minimum of H and the right-hand intersection (R,a) of v = a with the
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graph of H (Figure 6); and to the right of the right-hand intersection of v = a with
the graph of H (Figure 7). In Figure 5, the phase path begins at (L,a), and falls
smoothly to (0,v (c0)). In Figure 6, the phase path again begins at (L, a), but now
it falls smoothly to the level v = v (c0), at which point it jumps to (0,v (c0)). In
Figure 7, the phase path begins at (R,a) and remains there.

Proof. Put

(1—1/))7 if p 71
0 ifp=1

Then, in view of Lemmas 23 and 24, there exists a smooth function H : (—oo, +00) —

R such that:
1. v=H (v');
2. H" > 0;
3. H(¢) — +o0 as ¢ — o0
4. min H < a; and
5. if H' (0) <0 then H (0) < a.

Moreover, because v is a viscosity solution of the equation v = H (v'), any switches
that occur between the two values of v’ consistent with any given v must be from the

lower to the higher value of v'. There are therefore three possibilities:
1. If H'(0) <0, then: v (0) =a; v <0 on (0,+00); and v asymptotes to H (0).

2. If H' (0) > 0 and H (0) < a, then there exists 21 € (0, +00) such that: v (0) = a;
v < 0on (0,21); and v = H (0) on [z1,+00). In particular, v jumps from the

lower to the higher of the two values in H~' (H (0)) at z;.



INSTANTANEOUS GRATIFICATION 46
3. If H(0) > a, then: v = H (0) on [0, 4+00).

Moreover, it can be shown that

H'(0) = —#1"_[)), max H™ (H (a)) = Wa_,i:ﬂ .

Finally, it can be shown that C (z) > px + y iff v/ (1) < %’i Hence C (x) > px +y
for all z € [0,4+00) iff H (0) < a. In particular, while C fails to be unique at z; in
the second of our three cases, there is nonetheless a unique solution to the dynamics

even in that case. i

7. THE BELLMAN SYSTEM OF THE INSTANTANEOUS-GRATIFICATION MODEL
REVISITED
Theorem 8 covers the case in which U has constant relative risk aversion p > 1 — a.
It is also possible to prove a satisfactory limit theorem that covers the case in which
U has constant relative risk aversion p < 1 —a. In order to formulate such a theorem,

we introduce the following assumptions, which complement Assumptions H2 and H3:
H2 a+p—-1<0;

H3 2—a)p—(1—a)x<0.

The theorem, the proof of which is omitted, is then as follows.

Theorem 26. Suppose that Assumptions E1-E4, H1, H2, H3 and H4 hold. Then

W — %(y) and V — @ uniformly on compact subsets of [0, +00) as A — +o00. B

These limiting value functions reflect the fact that as A — 400 the consumption
rate also goes to +00. The infinite consumption rate arises because when p < 1 — a,

the utility function is not sufficiently bowed to dampen the feedback effects that arise
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in hyperbolic models. Indeed, the feedback effects drive consumption to infinity: e.g.,
“If the next self is going to consume at a high rate, then I should consume at an even

)

higher rate, etc...” An infinite consumption rate implies that wealth immediately

collapses to 0. So total utility is just the flow utility of consuming labor income each

period. Hence, W — %(y)

and V — @ Note that the instantaneous consumption
boom has no impact on total utility because the consumption boom is only of duration
dt and generates diminishing returns in utility.

Comparing Assumptions H2 and H3 with Assumptions H2' and H3', it is clear
that there is a knife-edge case in between, namely the case in which U has constant
relative risk aversion p = 1 — a. We have not analyzed this case. However, we would
expect it to resemble the case p < 1 — a covered by Theorem 26.

Finally, note that Theorem 8 continues to hold when Assumptions H2 and H3 are

replaced by the following, significantly weaker, assumptions:
H2" o+ liminf._. . p(c) — 1> 0;
H3" (2 - o)liminf, 1 p(c) — (1 — ) limsup,_,, 7 (c) > 0.

Assumptions H2” and H3” ensure that h is decreasing and convex near 0. This is
enough to ensure that consumption remains bounded as A — 4-o00. These assumptions
are, however, consistent with h being increasing or concave away from 0. In other
words, for some BRRA utility functions, the instantaneous-gratification problem is

not value-function equivalent to any exponential consumption problem.

8. CONCLUSIONS
We have described a continuous-time model of hyperbolic discounting. Our model
allows for a general class of preferences, includes liquidity constraints, and places
no restrictions on equilibrium policy functions. The model is also psychologically

relevant. We take the phrase “instantaneous gratification” literally. We analyze
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a model in which individuals prefer gratification in the present instant discretely
more than consumption in the momentarily delayed future. In this simple setting,
equilibrium is unique and the consumption function is continuous. When the long-
run discount rate weakly exceeds the interest rate, the consumption function is also
monotonic. All of the pathologies that characterize discrete-time hyperbolic models

vanish.
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