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The paper considers the repeated prisoner's dilemma in a large-population random-matching 
setting where players are unable to recognize their opponents. Despite the informational restrictions 
cooperation is still a sequential equilibrium supported by "contagious" punishments. The equilib- 
rium does not require excessive patience, and contrary to previous thought, need not be extraordin- 
arily fragile. It is robust to the introduction of small amounts of noise and remains nearly efficient. 
Extensions are discussed to models with heterogeneous rates of time preference and without public 
randomizations. 

1. INTRODUCTION 

Since the earliest work on the Folk Theorem, it has been well known that when two 
players face each other in a repeated prisoner's dilemma the "cooperative" outcome can 
be sustained as an equilibrium (Friedman (1971), Aumann and Shapley (1976)). A variety 
of extensions are possible. Given additional assumptions, the Folk Theorem has been 
shown to apply to N-player games, finite-horizon games of incomplete information, and 
games with imperfect observations (Fudenberg and Maskin (1986), Fudenberg, Levine, 
and Maskin (1993)). 

In models of social games in which a large population of players are randomly 
matched it is reasonable to assume that players have limited information about other 
players' actions, e.g. players may observe only the outcome of matches in which they are 
personally involved. The results cited above are then not applicable. This paper follows 
those of Kandori (1992), Harrington (1991), and Okuno-Fujiwara and Postlewaite (1990) 
in investigating the extent to which Folk Theorem-type results may be obtained despite 
the special information structures generated by random matching games. In particular, I 
consider a random matching version of the prisoner's dilemma under the most extreme 
informational restriction-that players not only do not observe the outcomes of games in 
which they are not involved, but also are completely anonymous in that they can neither 
recognize nor communicate the identity of any of their past opponents. The main conclu- 
sion of this paper is that cooperation is possible in equilibrium and that this cooperation 
is somewhat robust. I hope that the argument is interesting to game theorists as an 
illustration of the variety of dynamics which may emerge in equilibrium as a response to 
informational limitations. The existence of a cooperative equilibrium also has practical 
implications in relation to several areas of recent research. 
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With anonymous random matching, it is impossible to maintain cooperation in a 
repeated game simply by punishing players who deviate. This paper builds on the observa- 
tion of Kandori (1992) and Harrington (1991) that cooperation may nonetheless be pos- 
sible if players use strategies with "contagious" punishments. In such strategies, when one 
player cheats in period t, his period-t opponent cheats from period t + 1 on, infecting 
another player who cheats from period t + 2 on, etc. For any fixed population size, Kandori 
provides an example of a game in which cooperative repeated-game equilibria exist, show- 
ing that we can define payoffs for the prisoner's dilemma which allow cooperation in a 
sequential equilibrium. However, when the population is large the argument applies only 
to games with extreme payoffs. 

In this paper, I build on Kandori's arguments to study two main problems. First, for 
general payoffs in the prisoner's dilemma, is cooperation possible in a sequential equilib- 
rium? I find that the answer is yes for sufficiently patient players. The argument demon- 
strates the versatility of contagious punishments which lead to a breakdown of cooperation 
after a single deviation. I assume at first that a publicly observable random variable is 
available. The public randomization allows the severity of the punishments to be easily 
adjusted so that the players fear a breakdown enough that they will not deviate first and 
destroy cooperation, but do not fear the breakdown so much that they are unwilling to 
contribute to its spread once it has begun. At several points I emphasize that this 
cooperation does not require unduly patient players. 

The second problem is a study of the stability and efficiency of the equilibrium in a 
world with noise. Kandori observed that in the equilibrium he constructs a single deviation 
causes a permanent end to cooperation and comments that this fragility may make the 
equilibrium inappropriate as a model for trade. His observation reflects two quite distinct 
concerns. The first is a modeling issue I will refer to as stability. If we intend for the 
equilibrium to model cooperation in actual social settings and believe that in the real 
world punishments never last infinitely long we would like to construct an equilibrium 
with this property. Given public randomizations, this is not difficult. The second is a desire 
for a model which retains its efficiency in a world with noise. If we introduce noise by 
assuming that players either tremble and accidentally play the wrong strategy or misinter- 
pret the actions of others, the equilibrium Kandori gives will be inefficient. Because 
cooperation eventually breaks down, the expected payoff to very patient players will be 
near the non-cooperative level. In the standard repeated prisoner's dilemma with noise, 
the results of Fudenberg, Levine and Maskin (1993) imply that this inefficiency can be 
avoided. In the random-matching model here I am able to show that for sufficiently small 
probabilities of mistakes being made there is a sequential equilibrium in which players 
need not change their strategies in response to the presence of mistakes, and in which the 
inefficiency is small. While this is clearly a limiting result, we can conclude that the cooper- 
ative equilibrium with anonymous matching need not be as fragile as has been portrayed. 

While public randomizations are appropriate for many social situations, it is in the 
spirit of this paper to make do with as little information as possible. For this reason I 
also consider the problem of eliminating the reliance on public randomizations, finding 
that a cooperative equilibrium still exists. Interestingly, play in this equilibrium follows 
an unusual pattern with punishments scattered among intervening periods of cooperation. 
Payoffs in a model with noise are nearly efficient even though the equilibrium is no longer 
stable. 

The questions analyzed here may be of interest in connection with several lines of 
research. First, in experimental economics it is a well-recognized concern that subjects 
who are asked to play a game several times may treat the situation as a repeated game. 
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To avoid repeated-game effects it is common practice to randomly match the players in 
an anonymous setting so that pairs of players do not meet repeatedly. The results here 
suggest, however, that given moderate population sizes random matching may not solve 
the problem. 

Second, random-matching models have proven useful in recent studies of the economic 
institutions of trade. Greif (1989) discusses the Maghribi traders, a group of North African 
Jews who conducted trade in many Mediterranean countries in the 1 1th century. Milgrom 
et al. (1990) discuss trade in cities and fairs in Medieval Europe. In each case, the underly- 
ing model is one of a large number of traders who in each period are randomly paired 
with a trading partner. Each pair is presumed to play a game like the prisoner's dilemma 
with each party having both the opportunity and a private incentive to cheat the other 
by under-reporting sales on consignment, reneging on promises to make future payments 
or deliveries, supplying goods of inferior quality, etc. 

In this literature, institutions are seen as a way of avoiding the inefficiency of 
non-cooperative equilibria. Specifically, it is noted that the standard Folk Theorem 
equilibria of repeated games make informational demands which are unreasonable in 
a large society. Greif (1989) argues that the closeness of the Maghribi community did 
allow the necessary information exchange. He cites evidence that many traders main- 
tained ties to traders in other cities. Via this network of relationships they would 
quickly learn the identity of any cheaters, allowing the offending parties to be punished. 
Milgrom et al. (1990) argue that such closeness no longer existed with the development 
of larger towns and trade fairs, and that this problem was resolved by the development 
of the Law Merchant, a private legal code whereby disputes could be tried before a 
judge who often lacked the power of enforcement. That I find cooperation to be 
possible in equilibrium without any institutions implies that it is more difficult to 
justify any institution as the least costly method of avoiding inefficiency. Note that it 
is certainly not claimed here that we would have expected to see cooperation without 
institutions, nor even that the equilibrium described here was feasible in Medieval 
trade fairs. I claim only that a consideration of whether it was feasible is necessary, 
and should sharpen our understanding of the role of the observed institutions. 

Finally, several authors have explored the possibility that large population models 
may be used to reduce the multiplicity of equilibria in repeated games. Rosenthal (1979) 
discusses "rational Markovian hypotheses" in which all players react to steady-state con- 
jectures based only on their current opponent's play in the previous period, not on any 
further history. In the case of the prisoner's dilemma, both players cheating in every period 
is the only such equilibrium (except in one special case). Green (1980) and Sabourian 
(1990) discuss models with noisy observation of an aggregate statistic and show that as 
the number of players grows large the equilibrium set shrinks to the static Nash outcome. 
With an information structure like that of this paper, Milgrom et al. (1990) note that with 
infinite population and an extreme matching rule where no player can affect his future 
opponents' play in any way, cheating is the only Nash equilibrium outcome. Our results 
suggest that large populations may do little to reduce the equilibrium set unless special 
assumptions are made. 

The paper is organized as follows. Section 2 describes the model more precisely and 
exhibits a sequential equilibrium which sustains cooperation. Section 3 discusses the prob- 
lem of stability and also shows that after introducing noise into the model we can still 
construct an equilibrium whose payoff approaches the efficient level as the amount of 
noise tends to zero, even for very patient players. Section 4 discusses the extension of the 
results to a model without public randomizations. 
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2. THE RANDOM-MATCHING MODEL 

For the remainder of this paper, I analyze the model described below. The game has M 
players indexed by is { 1, 2, 3, ... , M} where M? 4 is an even number. In each time period 
t e {1, 2, 3, . . . }, the players are randomly matched into pairs with player i facing player 
oi(t). It is assumed that the pairings are independent over time and uniform so that 

Prob{o1(t) =jlh,l} = Vj] i 
M-1 

for all possible histories h,_l. At time t, each pair of players plays the prisoner's dilemma 
as shown below. The payoff g is taken to be positive with I non-negative so that each 
player has D as a dominant strategy in the stage game. All players have discount factor 
bec(0, 1) and their payoffs are the discounted sum of the payoffs in each stage game. At 
the end of period t, each player observes only the outcome of the prisoner's dilemma he 
and his opponent played. He does not observe the identity o,(t) of his opponent and does 
not observe the outcome of any of the games played by other pairs of players. 

C D 

c 191 -l,I+g 

D 1+g,-l f 0,0 

In addition, I will assume in this section and in the one which follows that before 
players choose their actions in period t, they observe a public random variable q, which 
is drawn independently from a uniform distribution on [0, 1]. In some situations, it seems 
reasonable to assume that such a randomization is available. For example, all traders at 
a market may have access to the same newspaper or hear the same government announce- 
ments. In any case, the use of public randomizations simplifies the exposition below. I will 
later discuss how many of the same results can be obtained without public randomizations. 

The first thing to note about this model is that we can not implement the types of 
strategies usually used to prove the Folk Theorem. For example, when a player is the first 
to deviate, there is no way of identifying him, so it will be impossible to punish one player 
more severely and reward others for carrying out the punishment. Also, there is no obvious 
way to convey any information about the precise time of the deviation so that players 
could coordinate on something like T-period punishments. 

Kandori (1992) shows that contagious punishments can be used to sustain collusion 
in some circumstances. Specifically, he shows that for any population size M, we can 
choose the payoff 1 so that cooperation is a sequential equilibrium for sufficiently patient 
players. The choice of 1 is used to give players an incentive to carry out the punishment 
which follows a deviation. Unfortunately, the value of 1 Kandori uses grows without 
bound as M increases and may be unreasonable for moderate values of M. 

The main result of this section is that cooperation is indeed a sequential equilibrium 
of the random-matching game for any payoffs g and 1. The equilibrium is supported by 
strategies like Kandori's which rely on contagious punishments. All subsequent results 
will rely on similar strategies. The following proposition gives the basic result. 

Proposition 1. Consider the random-natching model with public randomizations 
described above where M> 4 players play the prisioner's dilenmma with g>0, > 0. Then, 
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13 < 1 such that V3 e [3, 1) there is a sequential equilibrium s*(3) of the repeated game in 
which all players play C in every period along the equilibrium path. 

Before giving a formal proof, let me first discuss the strategies s*(3) which will 
support the equilibrium. The strategies described below employ a contagious process by 
which a deviation in period t will usually lead to two players playing D in period t+ 1, 
then four players playing D in period t+2, etc. The result is a breakdown of social 
cooperation which punishes all players after one deviates. Given a function q(6) to be 
defined below, the strategies are as follows. 

In period 1, all players begin play according to phase I. 

Phase I . Play C in period t. 
If (C, C) is the outcome for matched players i and j, both play according 
to phase I in period t + 1. 
If (C, D), (D, C), or (D, D) results in the game between players i and j, 
then at time t + 1 both play according to phase II if q,+ ? _ q(3 ) and accord- 
ing to phase I if q,+I>q(6). 

Phase II. Play D in period t. 
In period t + I play according to phase I if q,+I > q(6 ) and according to 
phase II if q, + Iq('). 

The public randomizations are being used to adjust the severity of the punishment 
phase so that it lasts 1/(1 - q(S)) periods on average. The basic idea of the proof is 
this. In a sequential equilibrium the continuation payoffs of the players must satisfy two 
constraints derived from players not having a profitable single-period deviation. First, 
players must not want to deviate and play D in phase I. When punishments are of infinite 
duration (i.e. for q(6) = 1), sufficiently patient players will not want to cause a breakdown 
of cooperation in phase I so this constraint is satisfied. Second, we must recognize that in 
phase II players might deviate and play C in hopes of slowing the spread of the contagious 
punishment. When punishments almost never continue (i.e. for q(6) 0) there is no poss- 
ible gain to deviating in phase II so this constraint will be satisfied. 

To prove the proposition, I show that there exists at least one value q(6) which is 
both large enough to prevent deviations in phase I and small enough to prevent deviations 
in phase II. The intuitive reason why this can be done is simple. In either phase I or phase II 
player i gets the same short-term gain of g from playing D when this opponent cooperates. 
However, starting a punishment by playing D in phase I causes a greater loss in continua- 
tion payoff than does spreading a punishment by playing D in phase Il. Once play is in 
phase II, cooperation is breaking down anyway so one extra deviation has limited impact. 
Choosing an appropriate punishment severity, the loss from starting a punishment deters 
playing D in phase I, but the loss from spreading a punishment does not deter playing D 
in phase lI. 

To formalize this argument let k be the number of players who are playing according 
to phase II at the start of period t. Let f(k, 6, q) be player i's (per period) continuation 
payoff from period t on when all players are playing the strategies above, and player i 
and k - I others are playing according to phase II. If player i deviates and plays D in 
phase I in period t, he gains g in period t but will have a lower continuation payoff from 
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period t + 1 on. To show that no deviation is profitable in phase I we must show that 

(1 -3)g?3q(3)(I -f(2, 3, q(3))). (1) 

We can also derive a similar sufficient condition for there to be no profitable deviation 
in phase II. If player i deviates and plays C in phase II at time t we have one of two 
possibilities. First, he could be matched with someone else who is playing according to 
phase II. In this case, the result in period t is (C, D) instead of (D, D), and continuation 
payoffs are unaffected. Clearly, player i is not better off because 1?0. Second, player i 
might be matched with someone who is playing according to phase I. The period t outcome 
is then (C, C) instead of (D, C) so player i loses g in period t. In the continuation game, 
however, one fewer player will be playing according to phase II. The deviation is not 
profitable if 

(1 -3)g>3q(3)Ej[f(j, 3, q(3))-f(]j 1, 3, q(3))] 

where the expectation reflects player i's beliefs over the number of players who will play 
according to phase II at time t+ 1. To show that this relation holds for beliefs of player 
i consistent with sequential equilibrium, a sufficient condition is to show that it holds 
pointwise, i.e. 

(1-35)g?3q(3)(f(j,3,q(3))-f(j+1, 3,q(3))) Vj>3. (2) 

(The beliefs must assign probability zero to j_2 because when player i is in phase II, his 
opponent when he first saw cheating and that player's period t opponent will also play 
according to phase II in period t +1.) When (1) and (2) hold, we have a sequential 
equilibrium. In establishing these relations, both the result and the intermediate calcula- 
tions of the following lemma will prove useful. 

Lemma 1. f(k, 3, q) is convex in k for k_ 1, i.e. 

f(k, 3, q) -f(k+ 1, 3, q) :f(k+s, 3, q)-f(k+s+ 1, 3, q) 

for all s_ 1. 

The lemma simply states that the loss in continuation payoff from having one extra 
player infected declines as the number of infected players grows. This is to be expected 
as, when many players are infected, the one extra player not infected in period t is likely 
to become infected in period t + 1 anyway and thus never have a chance to affect player 
i's payoff. The proof is straightforward once I introduce enough notation. 

Proof of Lemma 1. Note that 

f(k, 3, q) = Eg(k, 3, q, o), 

where o is the random variable whose realization is a pairing of all players in each period, 
and the function g gives player l's continuation payoff for a given matching when he and 
players 2, .. ., k are playing according to phase II. For expositional convenience I define 
h(k, 3, q, c) to be player i's continuation payoff when he and players 2,.. ,k and player 
M are playing according to phase II. Clearly 
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I show that 

E,>, [g(k, 6, q, (i) - h(kg 6 , q, i) E. ,[g(k + s, 6, q, (i) - h(k + s, 6, q, (i)) 

by showing that the inequality holds for every realization of w). 
Define the set C(t, k, o) by 

C(O,k, ))={k+1,k?2, ... ,M}, 

C(t+ 1, k, o))= {i c- t, k, o9)) Ii(t, o)) c- t, k, o))}* 

C(t, k, a) will be the set of players still playing according to phase I in period t when 
qS_ q for all s ? t and players 1, 2,.. ,k begin in phase II in period 0. 

Define the set D(t, a)) by 

D(O, ))= {M} 

D(t+ 1, a))=D(t, a)) u {iIoi(t, a))eD(t, a))). 

D(t, a)) gives the set of all players who will be playing according to Phase II in period t 
when q, < q for all s? t and player M begins in phase II in period 0. 

Note that the payoff to player 1 in period t differs between the situations of 
g(k, 6, q, a)) and h(k, 6, q, a)) only if qs_q for all s? t and only if his opponent oI(t, a)) 
plays C when players 1, 2, . . . , k start in phase II but plays D when players 1, 2, ... k, 
and player M start in phase II. Thus, 

g(k 3, q, ))-h(k 3, q, ))=Zo(1 -6)q'3'(1 +g)I(o1(t, ))eC(t, k, ) nD(t, o)). (3) 

(The notation I(E) indicates a function equal to one or zero depending on whether the 
deterministic condition E is true or false.) The definition of C clearly implies that 

C(t, k+s, a) c C(t, k, a) 

so 

C(t,k+s, a))fnD(t, ))cQC(t,k, a))fnD(t, a)) 

and the expansion (3) gives the desired result. 

We are now in a position to give 

Proof of Proposition 1. Let s*(3) be the strategy profile given above. It suffices to 
demonstrate the existence of a a < 1 such that (1) and (2) hold for all a E [6, 1). To establish 
the relation (1), we will simply define a and q(3) on [6,1) so that (1) holds with equality. 
To see that this is possible, note that for q(3) = 1, punishments are infinite so 

f(2, 6, 1) = (1-3 )Z,_063a, 

where a, is the expected payoff in the t-th period after phase II play begins. With probability 
1 all players will eventually be infected and start playing D so a,-. 0. We then have 

3 
lim (I -f(2, 6, 1)) = oo, 
3-i 1-3 

lim (1 -f(2, 6, 1))=0. 
ao 1-a 
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By continuity we can choose 6 e(0, 1) so that 

l f^(2, 6 1))=g. (4) 

Note that when (1) holds with equality, a player in phase I is exactly indifferent between 
playing C and D. The payoff to a player who plays D in period 1 is f(l, 6, q(3)). Thus, 
(1) holds with equality only if 

(f(l, 3, q(3))-f(2, 3, q()))=g. (5) 

The converse is also true. When (5) holds, a player in phase I is exactly indifferent between 
playing D in period t (and following the equilibrium strategies thereafter) and playing C 
in period t then deviating and playing D in period t+ 1. Applying the same indifference 
again, he is also indifferent between deviating in period t and playing C in periods t and 
t + 1 and then deviating in period t + 2. Repeating this process, he is indifferent between 
deviating in period t and cooperating in all future periods. This implies that (1) holds 
with equality. 

From expansion (3) we have 

q (f(k, 3, q)-f(k+ 1, 6, q)) 

=E 0o(8q)'+ (1 +g) Prob{ol(t,o))e C(t, k, ) n D(t,o)}) (6) 

As the right-hand side depends only on the product 3q, we simply define 

q(3) -6/. 

Then, for any 3e[3, 1) 3q(3)=S and 

lq(8) (f(1, 6, q(3))-f(2, 3, q(3)))=g 

as desired. 
The result of the lemma now immediately implies (2) and hence completes the 

proof. 11 

At this point, we may better understand the role of the prisoner's dilemma in the 
argument above. In the prisoner's dilemma, the maximum one-period gain from cheating 
is identical to the short-term loss a play incurs by not playing the static Nash equilibrium 
when he successfully slows a punishment. The convexity argument above establishes that 
the loss starting a punishment is greater than the gain from slowing a punishment, and 
therefore that the short-term loss/gain from following the equilibrium strategies in phase 
I/Il can be made to lie between these future effects. In general games, such an argument 
shows that the symmetric strategy profile A is an equilibrium if the payoff u(A, A) domi- 
nates the payoff u(s*, s*) of a Nash equilibrium and s* is a best response to A. (This, for 
example, gives a Folk Theorem for games with a dominant-strategy equilibrium.) In 
other games there may be a much more profitable deviation from cooperation, and hence 
strategies similar to those described above will sustain a Nash equilibrium only if there is 
a sufficient difference between the loss from starting a punishment and the gain from 
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TABLE I 

Discount factor sufficient to maintain cooperation 

g=0-01 g=l g= 10 

M=2 0-01 0-50 0-91 
M=4 0-03 0-68 0-95 
M= 10 0-08 0-79 0-97 
M= 100 0-35 0-89 0-985 
M= 1000 0-57 0-93 0-990 

slowing a punishment. To establish a more general Folk Theorem, we would need somehow 
to create punishments for which that difference could be made arbitrarily large. 

It should also be noted that the assumption that the random matching is uniform 
has been made largely for convenience. With this assumption the players have symmetric 
continuation payoffs and the analysis is simplified by the fact that these can be written as 
a function of the number of players in each phase. The idea that the long-term consequen- 
ces of a single deviation are smaller when some players are already in the punishment 
phase appears to be much more general, and might be applicable to populations with 
other matching rules such as the local matching rules discussed in Ellison (1993). The 
argument does rely, however, on the matching being sufficiently symmetric so that all 
players have the appropriate incentive to avoid or to spread punishments. 

In a full-information model, the "grim" strategies immediately punish a player who 
has cheated once. In contrast, the contagious punishment takes time to spread throughout 
the population so that a player may be able to cheat several opponents before he begins 
to suffer from the punishment phase he has brought on. This observation leads us to ask 
whether the equilibrium described in Proposition 1 requires undue patience on the part 
of the players. 

Table I gives the minium value of 8 which can sustain cooperation for several popula- 
tion sizes M and for several values of the gain g to deviation. For comparison, I have 
also listed under the heading M= 2 the discount factor necessary for the standard "grim" 
equilibrium in a two-player game. In a limiting sense, the behaviour of our model matches 
that of Green and Sabourian. For a fixed discount factor, cooperation will be impossible 
if the population size is sufficiently large. From the table, however, we can see that for 
reasonable population sizes patience is simply not a problem for our equilbrium. With the 
extreme gain (g= 10), cooperation is possible in a population of one thousand players if 
players meet one opponent per month and discount the future at a rate of 5% per year. 
For the more standard payoffs with g= 1, cooperation is possible in the same population 
even if players meet only one opponent per year. Moreover, a more detailed look at the 
numbers in the table suggests that (as would be expected given the exponential growth of 
contagious punishments) doubling the frequency with which players meet squares the size 
of the population for which a cooperative equilibrium exists. Although I have not done 
the calculation, this would imply that cooperation is possible in any population of fewer 
than a trillion players (with g= 1) if each player meets one opponent per quarter. 

To better appreciate the power of the contagious punishments in large populations, 
it is instructive to compare the discount factors of Table I to those necessary for another 
large population equilibrium. While this paper focusses on completely anonymous match- 
ing, for some applications it may be reasonable to make the less stringent assumption that 
identities can be observed but not communicated. In such a model, we could sustain 
cooperation via personal retaliation strategies where a deviation by player i in period t 
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causes his period t opponent oi(t) to play D whenever they are matched in the future. 
Note that this equilibrium requires frequent individual interactions, and thus requires far 
more patient players than does the equilibrium with contagious punishments. If player i 
cheats in period t, he gains g in period t and loses 1 in each future period in which he is 
again matched with oi(t). This gives a cooperative equilibrium only if 

Oat1 g(M-1) 
'= M-1 l+g(M-1) 

For g = 1 and M= 1000, for example, this requires a = 0 999, whereas a = 0 93 is sufficient 
for the equilibrium with contagious punishments. 

3. STABILITY AND EFFICIENCY WITH NOISE 

The cooperative equilibrium described in Section 2 exhibits the desirable property of 
global stability described by Kandori (1992). That is, after any finite history, the continua- 
tion payoffs of the players eventually return to the cooperative level (with probability 1). 
Obviously, this is a result of the introduction of public randomizations. The stability does 
suggest, though, that robustness in this sense is not a big problem for this model. 

A more interesting question is whether we can still sustain a nearly efficient outcome 
in a model with noise. Suppose we really believed that the model of Section 2 with its 
completely rational players and perfect observations were an accurate depiction of reality. 
Even if players follow the strategies of an equilibrium with infinite punishments, in equilib- 
rium the punishment never begins, so we have no reason to care about the behaviour of 
the continuation payoffs after a deviation. On the other hand, suppose that there is noise 
in the model, as players either act irrationally some fraction of the time, or try to cooperate 
but make mistakes and play the wrong strategy or misinterpret their opponent's action. 
Again, I would argue that whether an equilibrium is stable is not the appropriate question 
to ask. If we have a globally stable equilibrium in which the continuation payoffs return 
to the cooperative level so slowly so that with noise the equilibrium has an expected payoff 
near zero, stability is not comforting. Suppose we have two different equilibria which have 
the same loss of efficiency after any deviation. Should we care if one equilibrium has all 
the inefficiency right away and then returns to cooperation while the other spreads out 
the same inefficiency over an infinite time period? The answer, I think, is that all that 
matters is the degree of efficiency the equilibrium attains in a model with the noise explicitly 
modelled. 

- In the two-player repeated prisoner's dilemma complete efficiency can be attained in 
the limit 6-1 (Fudenberg, Levine, and Maskin (1993)). I will now introduce noise into 
the model of Section 2 by assuming that all players are constrained to play D with 
probability at least E > 0 at every possible history. In the trade example, this could corre- 
spond to players trying to supply a high-quality good but accidentally supplying one which 
proves defective. A similar result could be obtained if we assumed instead that there was 
only noise in observing opponents' actions. While the equilibrium of Section 2 is not 
robust to this noise (because of the exact indifference during phase I play), the proposition 
below shows that for a slightly longer punishment length we do in fact have an equilibrium 
robust to this noise. While the existence of a fully efficient equilibrium is still an open 
question, the equilibrium described is approximately efficient in the sense that it approaches 
efficiency as e-.0. 
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Proposition 2. Under the assumptions of Proposition 1, there exists 3' < 1 and a set 
of strategy profiles s*(3) for 6e [6', 1) of the random-matching game with the following 
three properties: 

1. In the game with discount factor 3, s*(3) is a sequential equilibrium with all players 
playing C on the path in every period. 

2. Define s*(6, ?) to be the strategy which at each history assigns probability ? to D 
and probability 1 -6 to the action given by s*(3). Then, there exists ? >0 such that 
V < ? s*(3, 6) is a sequential equilibrium of a perturbed game where all players are 
required to play D with probability at least 6 at each history. 

3. For ui defined to player i's expected per period payoff, 

lim lim ui(s*(3, ?))= 1. 
--O 3- I 

Outline of Proof. We will show that s*(3) can be taken to have the same form as 
the strategy profile in the proof of Proposition 1, but with a slightly larger probability 
q'(3) of continuing in a punishment phase. The proof requires attention to some tedious 
details, so I only outline the proof here and leave the rest to the Appendix. 

To begin, I give a slight extension of Lemma 1, showing that the continuation payoff 
function f is strictly convex. The strict convexity allows us to choose a slightly larger q'(6) 
so that the two inequalities which describe a player's loss from deviating in phase I or 
phase II of the model with no noise hold strictly. Formally, the Appendix shows that we 
can choose 8', q'(6) and q > 0 for which 3 ? 3' implies 

bq'(6 ) (f(O, 6, q'(8 )) -f (2, 6, q'(8)) > g + q (7) 

and 

Xq'( ) (f(k, 6, q'(3)) -f(k+ 1, 3, q'(3))) <g-iI Vk>2. (8) 

This immediately gives property 1. 
To show that these strategies give an equilibrium for all sufficiently small 6 requires 

two further steps. First, it must be shown that the left-hand side of each equation is 
uniformly continuous in 6 so that for small enough 6 the inequalities above still hold but 
with q replaced by ii/2. For f(k, 3, q, 6) defined to be the continuation payoff of the 
strategies s*(6, 6) the Appendix demonstrates the existence of an ? <0 such that for any 
6< ? 

8q(6 
(f( l, 6 , q'( 6 ) , ?c)-f (2, 6 , q ( 5 ) , E)) > g + q /2 ( 9) 

and 

3q'() (f(k, 3, q'(8), ?)-f(k+ 1, 6, q'(6), 6))<g- i/2 Vk?2. (10) 

Second, we have a new complication in that when a player is playing according to phase 
1, he can no longer believe with probability 1 that all other players are doing so. Again 
though, as ?-+0, this uncertainty also has an effect which vanishes so that the incentives 
to cooperate are maintained for sufficiently small 6. This completes the proof of 2. 
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Finally, the proof that we get efficiency in the limit is easy. The basic idea is that the 
punishment phases have a finite expected length bounded above by a constant independent 
of a for a close to 1. As ? - 0 a vanishing fraction of the periods is spent in a punishment 
phase, so the expected payoff tends to the efficient level. Again the details are in the 
Appendix. 11 

The results of Proposition 2 indicate that the equilibrium I have described is far less 
fragile than it might appear at first. The same strategies yield an equilibrium for all 
sufficiently small amounts of noise, so players can cooperate even if they do not know the 
precise frequency with which other players make mistakes. Further, the strategies are truly 
supporting cooperation in the sense of having nearly efficient payoffs with noise. 

The theoretical notion of stability established in Proposition 2 has practical signifi- 
cance, for example, in that it implies that a formal justification of institutions cannot rely 
on the simplest limiting notion of robustness. I should note, however, that in other ways 
contagious equilibria may be very non-robust. For example, if we wish to assess whether 
a cooperative equilibrium was possible in a particular population of traders, we would 
want to consider reasonable mistake probabilities. Population size then becomes a major 
concern, because the ? defined in Proposition 2 may be extremely small and is decreasing 
in M. If even one player is expected to tremble in each period then mistakes will be far 
too common for players to want to cooperate in order to avoid starting a punishment. 
While robustness to large trembles is undoubtedly a problem, it is interesting to note that 
there are ways to modify the model to accommodate more frequent mistakes. First, we 
might suppose as in Ellison (1993) that we have some type of local matching rule in which 
each player is likely to meet only say 50 opponents regardless of the population size. 
Because a player suffers soon after starting a punishment in his neighbourhood and cares 
mostly about whether a punishment phase is ongoing nearby, it might be possible to 
construct an equilibrium in which 5 and ? can be chosen independently of the population 
size and ? is not so extremely small. Second, even with uniform matching we might 
(following Milgrom et al. (1990)) modify the stage game so that a player who accidentally 
trembles has the opportunity to give back his excess payoff at a trial and avoid the start 
of a punishment. If mistakes result from independent trembles at each information set, 
accidental punishments would now be much less likely. While a bit far-fetched, this does 
provide an alternative justification for legal institutions. 

What is probably more important practically and harder to overcome is that the 
argument above deals only with trembles. If one player were "crazy" and always played 
D (or simply was unaware which equilibrium was being played) again the contagious 
strategies would not support cooperation. In large populations, the assumption that all 
players are rational and know their opponents' strategies may be both very important to 
the conclusions and fairly implausible. 

Returning to our standard model, the fact that each action in our equilibrium with 
contagious punishments is a strict best response also allows the further extension that 
follows. In a large population, we may want to allow for heterogeneity among the players. 
In particular, it is probably reasonable to assume that the players have different rates of 
time preference. In each of the first two propositions, the equilibrium strategy profile s*(6) 
is a function of the discount factor. For each discount factor 3, the equilibrium involves 
a different probabilty q(6) of continuing within the punishment phase. Hence, the strate- 
gies are only appropriate for a population of players all of whom share a common discount 
factor. As long as all of the players are sufficiently patient, however, we can eliminate this 
restriction. The proposition below guarantees the existence of a sequential equilibrium 



ELLISON COOPERATION IN THE PRISONER'S DILEMMA 579 

strategy profile s* which is not a function of S. This profile will then sustain cooperation 
regardless of whether the population shares a common discount factor. For convenience, 
I shall discuss only a model without noise although the arguments clearly extend to the 
results of Proposition 2 as well. The proof is similar to that of Proposition 2, but is less 
involved. 

Proposition 3. Under the assumptions of Proposition 1, there exists a strategy profile 
s* and a constant J" < 1 such that VS e[6", 1), s* is a sequential equilibrium of the repeated 
matching game and all players play C in every period on the path of s*. 

Proof. Once again, let s* be a strategy profile like the one described in the proof of 
Proposition 1, but this time with punishment probability q"-=im3,1 q'(S). (The function 
q'(S) is defined in the proof of Proposition 2. Note that q" a constant independent of S 
and that q" = 8', with 8' the value chosen in that proof.) Intuitively, s* is an equilibrium 
for S close to one because when S approaches one, q" approaches q'(S) and the strategy 
profile s* approaches the equilibrium s*(8) of Proposition 2. A formal proof along these 
lines is rather tedious and involves several limiting arguments like those given in the proof 
of Proposition 2. Instead, a simple constructive proof is given below. 

Let 5" = S/q", where S is as defined in (4). From (6) we know that (Sql 
1 - S)(f(l, S, q) -f(2, S, q)) depends only on the product Sq and is increasing in that 
expression. From 5? 5 " we have Sq" 5 and hence 

q (f(l, S, q")-f(2, , q"))?> (f(I, 5, 1)-f(2, 6, 1)) 

=g, 

with the final equality following from (4). As in the proof of Proposition 1, this implies 
that no player expects to gain from a single-period deviation in phase 1. 

For any SE[3", 1), we also have Sq" <q = a'. Hence, from (6), (8) and q I(?) =1 we 
know that 

Sq" (f(2, 6, q") -f(3, 5, q")) < 1-3' (f(2, bt" 1) -f(3, 6 1) 

<g. 

This equation, combined with the convexity off in its first argument implies that no player 
expects to gain from a single-period deviation from phase II play. 11 

A potentially disturbing aspect of the preceding proof is that because it involves 
another limit as -+ 1, the equilibrium with heterogeneous discount factors might require 
far more patient players than was previously necessary. From Table I we know that 
Propositions 1 and 2 do not require unreasonably patient players. Certainly, the equilib- 
rium described in Proposition 3 will sometimes require more patient players. This is par- 
ticularly true when the gain g from deviation is small so that it is hard to get players to 
carry out punishments. For example, for a population of 100 players, if we take g to be 
0-01 the equilibrium as constructed requires S = 0-96. Usually, though, we will think of g 
as being much larger. In the trade example, the payoff of 1 is the profit or consumer 
surplus from an honest transaction and g represent the additional profit from cheating 
(e.g. non-payment), which is liable to be at least as large as the profits from honest trade. 
For larger values of g, a cooperative equilibrium with heterogeneity often requires no 
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greater patience than was necessary for cooperation in the homogeneous population model. 
When the constraint that players be willing to carry out punishment is sufficiently far from 
binding, we can simply use infinite punishments for all Se [6, 1) to get an equilibrium. 
Numerical calculations show this to be the case for each of the population sizes given in 
Table Iforg=I org=10. 

4. COOPERATION WITHOUT PUBLIC RANDOMIZATIONS 

Throughout this paper, I have assumed that a public randomizing device is available. For 
many applications, including trade at a market, the assumption seems reasonable. When- 
ever all the players are present at the same physical location it seems likely that if the 
players looked hard enough they could find some random factor like the weather which 
everyone could observe and hence use to coordinate. Nonetheless, the focus of this paper 
is to describe how cooperation can be maintained with very little information available 
to the players. In this spirit then, I will discuss what can be done without public 
randomizations. 

In Fudenberg and Maskin's (1986) proof of the perfect Folk Theorem, public random- 
izations play a crucial role in allowing the adjustment of players continuation payoffs 
necessary for maintaining exact indifference. Fudenberg and Maskin (1991) show that 
public randomizations, are, in fact, not necessary for this purpose. The crucial insight is 
that payoffs in the convex hull of the set of feasible payoffs can be obtained instead from 
a deterministic sequence of play. 

In this paper, randomizations are playing two quite distinct roles. First, they are used 
as a coordinating device so that all players can simultaneously return to cooperation at 
the end of a punishment phase. The simultaneity is important because all players only 
slightly prefer cooperating when all others are doing so. If the probability that everyone 
else returns to cooperation in period t is not very close to one, no one will be willing to 
try returning to cooperative play. Coordination then allows the construction of a globally 
stable equilibrium. Whether global stability is possible without the public randomizations 
is unknown. 

The second role of the public randomizations in this paper is to adjust the expected 
duration, and hence the severity of the punishment. This is the property which enabled 
us to construct strategies where punishments deter cheating, but are not so severe that 
individuals would be unwilling to carry them out. In the argument below, I show that for 
large enough discount factors it is possible to adjust the severity of the punishments in a 
completely different way-spreading out the punishments over time. This will allow us to 
establish the most important results of the paper even without the availability of public 
randomizations. 

The ability to soften punishments by delaying them is at the heart of the following 
lemma. The lemma guarantees that any game which has a cooperative equilibrium for 
some interval of discount factors has a cooperative equilibrium for all discount factors 
near one as well. I hope that the very simple proof makes the lemma interesting in its own 
right. 

Lemma 2. Let G(S ) be any repeated game of complete information, and suppose that 
there is a non-empty interval (S0, S1) such that G(S) has a sequential equilibrium s*(8) 
with outcome afor all SE(S0, S1). Then, there exists 3 < 1 such that V8e (, I) we can also 
define a strategy profile s**(3) which is a sequential equilibrium of G(8) with outcome a. 
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Proof. The key observations here is that for S close enough to 1, we can simulate 
the situation of smaller discount factors by using slower responses. 

Take S = So/SI. For any Se(4, 1) there exists an integer N(S) for which 

SN(s)E(0, S1). 

When there is more than one such integer take N(S) to be as large as possible. Now, have 
the players treat the game G(S) as if it were N(S) separate games, the first taking place 
in periods 

1, N(S)+ 1, 2N(S)+ 1, 3N(S)+ 1 . ... 

the second in periods 

2, N(S)+2, 2N(S)+2, 3N(S)+2,..., 

etc. Just as is the case in finding Markov equilibria, if for some set T all other players 
play strategies in period t which do not depend on the outcomes in all periods t' e T, then 
the best response for player i can be taken to be independent of the outcomes in all periods 
t'E T as well. Hence, to show that we have an equilibrium s**(S) for G(S ) it suffices to 
show: 

1. The strategies s**(S) give play in period aN+ b which does not depend on play 
in period cN+ d if (b - d) is not a multiple of N. 

2. Restricting consideration to each "component" game played in periods 

b, N(S)+b, 2N(S;)+b, 3N(S)+b, ..., 

the restriction of the strategy profile s**(S) is a sequential equilibrium. 

The obvious choice of s**(S) is to play the equilibrium S*(SN (s)) in each of the N(S) 
component games described above. In our prisoner's dilemma example, this would mean 
that if player i or his opponent plays D in period aN(S ) + b, player i plays D in periods 

(a + 1)N(S ) + b, (a+ 2)N(S ) +b, . . . 

but does not change his planned play in any other period. Within these component games, 
players have discount factor 5N(S), So S*(SN(s)) satisfies the second condition. Clearly, we 
have a sequential equilibrium. 11 

Note that when q'(S) =1, the strategies described in the proof of Proposition 2 
prescribe infinite punishments, and hence do not require randomizations. In particular, 8' 
was defined so that taking q = 1 gives a sequential equilibrium. In order to apply Lemma 
2, we need only show that infinite punishments also yield a sequential equilibrium for a 
small interval of discount factors around 5'. This result is not hard. It is simply another 
application of the fact that each action is a strict best response. The resulting equilibrium 
of the game has a peculiar appearance with punishments being softened by being delayed 
into the future, spread among intervening periods of cooperation. In the trade example, 
this might mean that if a single deviation occurs on a Friday, eventually we will see all 
players cheating on every third Friday but cooperating on all other days. The punishments 
are of infinite duration so with noise, eventually all players will cheat in all periods. Despite 
this, the punishments are still no more severe than the punishments of the previous section. 
As players become more patient, the punishment periods become correspondingly further 
apart. The somewhat surprising result is that in the limit as the amount of noise vanishes, 
the equilibrium approaches efficiency. These results are summarized below. 
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Proposition 4. The results of Proposition 2 still hold in a model where no public random- 
izations are available. 

Proof. In order to establish the first two results of Proposition 2, that there is a 
sequential equilibrium which remains an equilibrium for sufficiently small amounts ? of 
noise, it will suffice to show that for a fixed range of discount factors the standard strategies 
with q = 1 give a sequential equilibrium. Just as in Proposition 3, we apply continuity of 
the payoff functions to show that a strict equilibrium for one discount factor implies that 
nearby discount factors also gives an equilibrium. 

Recall that in the proof of Proposition 2, 6' was defined so that the contagious 
strategies with parameter q'(6') = 1 give a sequential equilibrium. An important intermedi- 
ate step in the proof was to establish the existence of ti such that (9) and (10) held for 
all ?< ?1 and all 8e[ ', 1). Substituting 8' into these equations gives 

5 f,l, 6,9 , ?)-f(2, 6, 1, ?)) >g+ i/2 

and 

l- (f(k,', 1, ?) -f(k+ I, 3', ?))<g- /2 Vk>2. 

Restricting attention to values S c[6', (1 + 3')/2], we once again can easily establish 
bounds on the derivatives of the left-hand sides of the equations (11) and (12). For 
example, using expression (A3) from the proof of Proposition 2 we get 

;(_(f(k,g 81, ) -f(k +1,, 1, I))) 

=E,=0 (t+ 1)6'(1 +g) Prob {oi(t)e C(t, k) n D(t) n E(t)} 

< 1+g 
-(I 

_ 
8)2 

<4(1 +g) 
(1 0 3 )2' 

Hence, we can find a value 3, such that for all Se[6', S8] and all ?_ ?, we have 

l f(I _; (t I, l, c)-f(29 oS, l, 9 )) > g + ,/4 (13) 

and 

l , (f(kg , Is 1, c)-f(k + 1, 6, 1, 9)) < g - i/4 Vk > 2. (14) 

From here, the same steps as in the proof of Proposition 2 but with ii/2 in place of 'i 
show that for sufficiently small ?, the strategies with q= I give an equilibrium for all 
8e[6', 3,]. Now, the construction in Lemma 2 gives us an equilibrium without public 
randomizations for all 8e[6'/31, 1). 

A further consequence of Lemma 2 is that the per period payoff to a player with 
discount factor S of the no randomization equilibrium s**(8, ?) is exactly equal to the 
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TABLE II 

Discount factors with and without public randomizations 

g=00 g=l g=10 

a 0003 068 095 
M=4 51 003 100 100 

61E, 0-96 0-68 0-95 

3 0008 079 097 
M= 10 3, 0-08 1 00 1-00 

6/1, 0-96 0-79 0-97 
3 035 0-89 0-985 

M= 100 3, 0-36 1-00 1-00 
6181 0 96 0-89 0-985 

3 0-57 0-93 0990 
M= 1000 31 0-60 1-00 1-00 

3/3, 0-96 0-93 0-990 

per period payoff that the strategies with q =1 give a player with discount factor 
3N()f(0o 3N(3), 1, ?). The function f is continuous in its second argument and 3N(6) --*3 

as 3 --1, so for ui being player i's expected utility in the game with discount factor 3, 

lim lim u1(s**(3, e))=limf(0, 6', 1, ?). 
E- O t-+ cIEO 

This, however, is merely the limit of the expected payoff for a fixed discount factor as 
? - 0 so efficiency in the limit is easy. For any y >0, we can simply choose T so that 
( I-S')( 1 + S' + S"+ T)> 1- y/2 then pick e small enough so that with very high prob- 
ability there are no e-probability events in the first T periods, hence giving an expected 
payoff of at least 1 - y in the game with ? noise. 11 

If we had not worried about noise in this section, we could have found an equilibrium 
without public randomizations whenever 3e[d, 31] where S is defined by 

3(1 -f(2, 3, 1)) = (1 - 8)g 

and 31 is defined either by 

31(f(3, 3,, 1) -f(4 3,, 01)) = (1 - 3)g 

or by 31 =1 if the equation above has no solution. Table II gives S, 31 and 3/3, for a 
range of values of g and M. For 3 > 8 a cooperative sequential equilibrium exists with 
public randomizations, and for 3 > 3/3k one exists without them. Note that for many of 
the parameter values, 31 is in fact equal to one. In this case, eliminating public randomiza- 
tions does not require any additional patience on the part of the players. When g = 0 01, 
the difficulty in getting the players to carry out punishments results in much more patient 
play being necessary to support the equilibrium I have given. 

5. CONCLUSION 

In all of the results above, cooperation has been sustained in equilibrium by the use of 
"contagious" punishments which lead eventually to a breakdown of cooperation after a 
single deviation. The results illustrate the extent to which the convexity of the breakdown 
process can be exploited, and the interesting patterns of play which can arise in equilibrium. 
In addition, the contagious punishments are a fairly powerful tool for enforcing 
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cooperation. Besides the basic result that cooperation can be sustained despite a very large 
population of not unreasonably patient players with infrequent individual interactions, 
we have seen that cooperation is still possible with heterogeneity in time preferences or 
without public randomizations. 

I have also argued that these results can be made far more robust than Kandori's 
first example suggests. Global stability is not a problem if public randomizations are 
available. In a limiting sense, the possibility that players may tremble and cheat accidentally 
is also not a problem even if players do not know the exact frequency of these trembles. 
All the attention paid to robustness in this sense should not be taken to necessarily imply 
that the paper is intended to be a plausible explanation for why cooperation has been 
observed in some particular situation. The equilibrum has a number of problems as a 
practical model: the cooperative equilibrium is at best one of a multiplicity of equilibria 
and when mistakes are introduced we may need extremely restrictive assumptions on the 
frequency of mistakes and the size of the population. The equilibrium is also very depen- 
dent on the assumption that all players are rational. I nonetheless think that the robustness 
is not merely of game theoretic interest, because it suggests that further analysis of proper- 
ties other than the simplest notions of stability or limiting efficiency with noise is needed 
and may improve our understanding of behaviour in large populations. 

Finally, I should note that I have also left one major question of game-theoretic 
interest unanswered. The results of this paper rely heavily on the fact that the prisoner's 
dilemma has a dominant strategy equilibrium. In light of Kandori's Folk Theorem for 
games with a more complex information structure, it would be interesting to know whether 
the results of this paper extend to a more general class of games. If so, we would have a 
much more general Folk Theorem. If not, we would have a sharper picture of the type of 
information transmission which is necessary to maintain cooperation. 

APPENDIX 
Proof of Proposition 2. 1 begin by establishing equations (7) and (8) which are analagous to equations (1) 

and (2) from the proof of Proposition 1. I will writef(k, 3, q, ?) for the per period continuation payoff of player 
i when at the start of period t, k players (including player i if k > 0) are playing according to phase II of the 
strategies described in the proof of Proposition 1. I wish to show that there exists 6' < 1, q > 0 and a: function 
q': [3', 1) -. [0, 11 such that (7) and (8) hold for all 8E[6', 1). 

Note first that because I have not yet introduced noise,f(O, 3, q'(3), 0) = 1. I begin by establishing a degree 
of strict convexity of f From equation (3) in the proof of Lemma I we know that 

((f(l, 3, q, 0)-f(2, 6, q, 0)) - (f(2, 3, q, 0) -f(3, 3, q, 0))) 

=EJE[_ 0(1-3)q'8'(1 +g)I(ol(t,co)c-(C(t,l1, @)-C(t, 2, a))r) D(t,o@)))]. 

The second term of this sum is 

(I - 3)q6(l +g) Prob {ol(t, co)e(C(, 1, o) - C(l, 2, ai)) r) D(I, w)}. (Al) 

If player 2 is matched with player M in period 0 under o we have 

2eC(Q, 1, o) MeC(Q, 1, o) 

20 Q1, 2, () Mo QI, 2, () 

D(l, o)={2,M}. 

Together, these imply 

(C(l, 1, o))-C(l, 2, w)) r) D(l, o) = {2, M}. 
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From this, we know that the probability term in (Al) is at least the probability that players 2 and M are matched 
in period 0 and that player I subsequently is matched against one of 2 or M in period 1. This probability is 
2/(M- 1)2. 

Hence, for 8 as defined in Proposition 1, we have for any 3 > 8, 

X - ((f(l3, 1, 0) -f(2, 3, 1, 0))-( f(2, 3, 1, 0) -f(3, 3, 1, 0))) (2M-1)2)-g (A2) 

From equation (5) we know that 

l-6 (f(l, 6, 1, 0) -f(2, 8, 1, O))-g. 

From expansion (6) in the proof of Proposition I it is immediate that 

-9 (fil,3, 1,0) -f(2, 3, 1, 0))I->0. 
@3 

Thus for some q < y/2 we can choose 6'e(6, 1) so that 

45 
-f,f(l, 4', 1, 0) -f(2, 4', 1, 0)) = g+ 1. 

By (A2) we know 

X5 -a(f(2, 4', 1, 0) -f(3, 3', 1, 0)) <g -q. .1 

Now, we simply set 

q'(3 6') 3 

and note from (6) that V3e-[', 1) 

q )(f(k, 3, q(3), 0)-f(k 1, 3, q'(3), 0))= g (f(k, ', 1, 0) -f(k+ 1, 3', 1,0)). 

As q'( ) > q(3 ), players will not deviate in phase I of a model with no noise so 

f(O, 8, q( ), 0) >fil, 8, q'(8), ). 

This establishes (7) and (8) as desired. 
The next major step in the proof is to establish that the similar inequalities (9) and (10) hold for a model 

with sufficiently little noise. To do this, I extend expansion (3) to a model with noise. Note that 

f(k, 3, q, e)-f(k+ 1,3, q, ?) 

= EJX[t'= o (I - a )q'3'(1 + g)I(o 1 (t, m) c- t, k, as) f-) D(t, w) rn E(t, o)) I (A3) 

where a realization of co now includes also the set of players who "tremble" and play D accidentally in each 
period and E(t, co) is defined to be the set of players affected by an s-probability tremble up to and including 
time t. If T(t, a) is the set of players who tremble at time t for a realization of o, E(t, co) can be formally 
defined by 

E(O, a))= T(O, ao) 

E(t+ 1, co) =E(t, co) u T(t+ 1, co) u {iioi(t, co)eE(t, o)}. 

Using the expansions (3) and (A3) we get 

q(3) ((f(k, 3, q'(3 ), 0)-f(k + 1, 3, q'(6 ), 0))-(f(k, 6, q'(6 ), E)-f(k+ 1, 3, q'(3), ))) 
1-35 

=EJ , oqs()t+(1 at+ g.(o+g)I,(oE(t, o))e C(t,Ak,4o))D(t,o))r E(t,o))I 

;S E.[?t 6t+ '(I +g)I(ol(t, a))eE(t,o@))7]. (A4) 
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Given il > 0 as defined above, we can choose T such that 

3,T T 

1 -6' 4(1 +g) 

Next, choose E sufficiently small such that 

Prob {E(T, a)) 0} < + * 

Now, for any 3 E [6', 1) and any E < E the right-hand side of equation (A4) is bounded above by q/2. This and 
equations (7) and (8) gives 

lq (l( f (l, 6, q (6 ), E-f (2, 6, q (6 ),E)) > g + 11/2 

and 

(ff(2, 6, q (6 ), E-f (3, 6, q (6 ),E)) < g - i/2. 

The first equation is (9). Using the expansion (A3) in place of (3) it is easy to see that the result of Lemma I 
carries over to the model with E-noise. This and the second equation above gives us (10). 

Now that (9) and (10) have been established, I will proceed to show that there are no profitable deviations 
from either phase I or phase II play in the s-constrained game. The phase II case is easier so I'll start with that. 
Note that we can rewrite (10) to give Ve < El, a E [6', 1), and k > 2, 

3q'(3)(f(k, 6, q'(a), s)-f(k+ 1, 6, q'(a), e))<(I -6)g. 

As in the proof of Proposition 1, the right hand side of this expression is the short term loss when a player 
plays C instead of D in phase II and is matched with someone who plays C. The expectation over k of the left- 
hand side is the expected future gain. Clearly, the future gain is too small to make a deviation profitable. 

The discussion of phase I play is more complicated than before because a player in phase I must assign 
probability rk>O to the event that unbeknown to him, k other players are already playing according to phase 
II or will tremble and play D in the current period. Keep in mind that rk is a function both of s and of the 
history of the game. I will show, however, that for s sufficiently small this uncertainty is small regardless of the 
history of the game. 

To show that player 1's best response whenever he is in phase I in period t is to play C, I will not show 
directly that his expected payoff from playing C in period t and then following his equilibrium strategy is better 
than his expected payoff from playing D in period t then following his equilibrium strategy. Instead, I will 
compare the payoff from playing C in period t then switching to phase II play in period t + I to the payoff from 
playing D in period t and continuing according to phase II. Player 1's period t action has no affect on play after 
any period t +s in which q, +> q'(3). We have already seen that playing D in phase II is a best repsonse so that 
the latter strategy gives the greatest possible expected payoff to a player who plays D in period t. If the former 
is greater, the best response must involve playing C in period t. 

To compare the payoffs of the two strategies, look first at the period-t outcome. If player I plays D in 
period t he gains g whenever o (t) plays C and avoids a loss of I whenever o (t) plays D. Hence the short term 
gain is 

M-l {m-k- I k 1 z=0rk(M 1g+-k ) 
Y?k=o V M_ I M -IJ 

In the future, a player who plays D in period t can never be better off because both strategies prescribe the same 
play from period t + I on and there are always either the same number or more players in phase II in period 
t + 1. When k= 0 and there are also no s-probability trembles in period t + 1, the player who plays D in period 
t is worse off, obtaining a continuation payoff of f(2, 6, q'(6 ), s) instead of f(l, 6, q'(6 ), s). The discounted 
expected loss is then at least 

ro(1 - X)M -q'() (f(l, 3, q'(6)), s)-f(2, 6, q'(6), E)). 
I1-3 
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To show that playing C is better in period t is thus suffices to show that this loss outweighs the short-term gain. 
Using (9), it will suffice to show 

ro(I - s)M-(g+ q/2)>rog+(I -ro) max (g, 1). 

We can choose E2 such that 

(I- )M'-(g + i/2) >g+ i/4 

for all E < E2 . It then only remains to establish 

r owi/4 >(I - ro0) max (g, 1) (A5) 

for E sufficiently small. 
At first look one might think that if the game has been going on long enough then player I will be fairly 

sure that someone must have trembled. This reasoning suggests that the ro term might not dominate in (A5). 
However, it is important to keep in mind that ro is not an unconditional probability, but rather the conditional 
probability that no one has trembled since the last time s that q. >q'(6) occurred given that no opponent of 
player I has played D since that time. Write ro(t) for the probability that all other players are cooperating 
conditional on it having been t periods since q5>q'(6) and on cooperation only having been observed in that 
time. To show in fact that 

lim inf ro(t) = I (A6) 
-0 IO 

take any 4 >0. We can choose T1 so that 

Prob {Player I is still in phase It Some player was in phase II T, periods ago} < (1 - )( -/2) 
2 

Next choose E3 so that 

(I -E3)TM> I-C/2 
We now show by induction that for any E < E3 and any t we have ro(t) > I - C. First, for t < T1, the probability 
that there has been no tremble is at least I - C/2 and conditioning on not seeing a tremble only increases this 
probability. Next, if for some T> T, we have ro(t) > I - C for all t < T, then I - ro(T+ 1) is less than the sum of 
the probability that some player was in phase II in period T+ I - T, conditional on player I still being in phase 
1, and the probability that there has been a tremble in the last T1 periods. The first probability by Bayes' rule 
is less than 

(I - ro(T+ I - T1))(1 - 0)(1 - C/2)/2 
(I -ro(T+ I - T1))(1 - C)(1 - T/2)/2+ro(T+ I- T1)(1 - C/2) 

< (( - C(l - C/2) C 
2(1 - )(l - C/2) 2 

The second term is at most 4/2. Hence, by induction rO(t) > I - C for all t. Choosing E smaller than El, E2, and 
E3 we get the sufficient condition (A5) for no deviations in phase I. This concludes the proof that s*(6, E) is a 
sequential equilibrium of the E-constrained game. 

Finally, the proof of 3, that we get efficiency in the limit, is relatively easy. Consider the largest possible 
effect that a single tremble by player j in t period t can have on player i's total payoff anywhere on the path of 
the equilibrium with noise. This tremble can only affect player i's payoff in period t and in any future priod 
until the first time q, +< q'(6). Thus, the expected loss caused by this single tremble is at most 

a' E_ (I - 6 )6sq'( )s(1 +g+ l)= ( 1+g+l) 

Player i's expected per period payoff is equal to I minus the expected loss from each possible tremble times the 
probability of that tremble occurring. This gives 

f(O, a, q'(), E) > I?-(I- )f, 0 (I + g +l) ME 

1 (I +g+l)Ms 
I -a' 
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Clearly 

lim lim f(0, 3, q'(8), ?) = 1. 1I 
g-.O 6-1 
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