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Econometrica, Vol. 59, No. 6 (November, 1991), 1713-1733 

INFORMATION AND TIMING IN REPEATED PARTNERSHIPS 

BY DILIP ABREU, PAUL MILGROM, AND DAVID PEARCE1 

In a repeated partnership game with imperfect monitoring, we distinguish among the 
effects of (1) reducing the interest rate, (2) shortening the period over which actions are 
held fixed, and (3) shortening the lag with which accumulated information is reported. All 
three changes are equivalent in games with perfect monitoring. With imperfect monitor- 
ing, reducing the interest rate always increases the possibilities for cooperation, but the 
other two changes always have the reverse effect when the interest rate is small. 

KEYWORDS: Repeated games, partnerships, information, timing, inefficiency, folk theo- 
rem, likelihood ratio, reusable punishments. 

1. INTRODUCTION 

IN MANY ECONOMIC SETrINGS, the possibility of making efficient agreements is 
limited by the presence of imperfect monitoring: some agents cannot observe 
perfectly the actions of others. Often the economic problem of interest is 
modeled as involving the indefinite repetition of some fixed strategic situation. 
Examples include partnership problems,2 oligopolistic coordination,3 and princi- 
pal-agent problems.4 Because the incentives for cooperation in these repeated 
game models depend upon players' responding aggressively to indications that 
some participants are violating the agreement, anything that makes violations 
easier to detect and punish enlarges the set of equilibrium payoffs.5 There is 
some presumption, then, that possibilities for cooperation are also enhanced 
when information about the players' behavior can be observed without delay 
and when players can respond quickly to new information. While that is exactly 
what happens under perfect monitoring, the presumption is entirely misleading 
for games with imperfect monitoring, because it omits an important effect: 
When information reporting is delayed or periods of fixed action are increased, 
the players' abilities to devise profitable cheating strategies is diminished. 
Frequently, this second effect more than offsets the corresponding limits on the 
players' ability to detect and punish the defector quickly. 

We begin to model these issues in Section 2, where we develop our basic 
stochastic model of the Prisoners' Dilemma. There, we establish that the 
maximum symn7 etric equilibrium value is equal to the first-best value minus an 
incentive cost attributable to imperfect monitoring, where the incentive cost is 

1 We gratefully acknowledge the research support of the Sloan Foundation and the National 
Science Foundation. We also thank Michihiro Kandori for his research assistance and two anony- 
mous referees for helpful comments. 

2 See, for example, Fudenberg, Levine, and Maskin (1989), Radner (1986), and Radner, Myerson, 
and Maskin (1986). 

3See Green and Porter (1984), Porter (1983), and Abreu, Pearce, and Stacchetti (1986). 
4See Fudenberg, Holmstrom, and Milgrom (1990), Fudenberg, Levine, and Maskin (1989), 

Holmstrom and Milgrom (1987), Malcomson and Spinnewyn (1988), Radner (1981, 1983), Rogerson 
(1985), Rubinstein (1979a), and Spear and Srivastava (1987). 

5See Kandori (1991). 
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equal to a player's gain from defecting divided by a simple statistical measure of 
the power of the test used to detect and deter cheating. This formula sets the 
stage for our analysis of the roles of time and information in determining 
payoffs. 

In Section 3, we enrich our model of the Prisoners' Dilemma to one in which 
information arrives continuously over time, the interest rate is fixed with respect 
to actual time (rather than periods), and the period of fixed action is a 
parameter. Here we find a surprise: The effects of reducing the interest rate 
toward zero are very different from those of making the periods of fixed action 
short. In the traditional model of repeated games which is the basis of the Folk 
Theorem,6 it is assumed that at the end of each period of play, all the players 
can observe all the actions taken during that period. It then follows that both 
very patient players and very short periods of fixed action are represented in the 
model by an inter-period discount factor that is close to one, and the standard 
Folk Theorem correspondingly has two interpretations. To interpret the analo- 
gous limit theorem for games with imperfect monitoring in both these ways, 
however, would be wrong: Our analysis demonstrates that reducing the interest 
rates and shortening the period of fixed action always lead to different limits for 
these games. For some parameters, reducing the interest rate to zero allows 
asymptotically efficient equilibria, but shortening the period of fixed action 
destroys any possibility of cooperation. 

In Section 4, we build a model of the Prisoners' Dilemma in which informa- 
tion arrives not continuously or every period, but only once every several 
periods. In the standard repeated game model in which any information that is 
reported is perfect, any increase in the number of periods over which informa- 
tion is withheld can only shrink the set of equilibrium possibilities. Once again, 
however, the analogy with the complete information case proves to be treacher- 
ous: When the underlying information is imperfect, delaying the release of 
information can allow a higher equilibrium payoff for all the players. Perhaps 
more surprisingly, the gains that can be achieved by delaying information are 
sometimes quite large: A t-period delay in revealing information multiplies the 
cost attributable to imperfect monitoring by a factor of 1/t, provided the 
interest rate is sufficiently low. That is, if information is revealed only every four 
periods, then the cost is reduced to 25% of its original level. 

The conclusions in Sections 2-4 were drawn in the context of Prisoners' 
Dilemma games. The simple two-strategy model of the Prisoners' Dilemma 
makes the statistical problem of detecting cheating straightforward. In Section 
5, we tackle the harder technical problem of evaluating equilibrium values when 
there are several players each with many ways to cheat in a symmetric "partner- 
ship game." We find that the main conclusions of Section 4 as well as the 
supporting logic have appropriate generalizations. In particular, for a general 
n-player symmetric game with imperfect information, when the interest rate is 
sufficiently low, the equilibrium value is higher for the case with some delays in 

6 See Aumann and Shapley (1976), Rubinstein (1979b), and Fudenberg and Maskin (1986). 
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the release of performance information than for the case in which performance 
information is released as soon as it becomes available. Also, for low interest 
rates, a t-period delay multiplies the cost of imperfect information by a factor 
on the order of 1/t. 

In Section 6, we comment on the significance of these results in light of some 
recent developments in the theory of repeated partnerships. 

2. INEFFICIENCY AND IMPERFECT MONITORING 

We consider a Prisoners' Dilemma game with the following payoff matrix: 

C D 

C 7, 7 | -b,w+g 

D w+g,-b 0,0 

A defector from mutual cooperation "gains" g. We assume that w, g, and b are 
all strictly positive and that v > g - b. Then, (i) defection is a dominant strategy 
and (ii) the best symmetric outcome is (C, C) rather than a randomization 
between (C, D) and (D, C). 

We suppose that this Prisoners' Dilemma game is played continuously over 
the time interval [0, oo) and interpret the payoffs in the matrix above as flow 
rates of payoff. If the payoff at time t is ut, then the net present value of payoffs 
for the whole game is NPV= fe-rtUt dt or, in the equivalent mean flow terms 
that are customarily used in repeated game theory, r * NPV. For example, if the 
cooperative strategies (C, C) are always played, then ut - v and each player's 
(mean flow) payoff is v as well. 

Now, suppose that information is perfect and instantaneous and that the 
players can adjust their actions at the end of each period of length t. It is well 
known that if any strategy can maintain cooperation as a perfect equilibrium 
outcome in this game, then the "trigger strategy" (according to which each 
player plays C until his competitor first defects, after which he plays D) can. 
Against that strategy by the other player, a player who considers defecting in 
some period can then expect to obtain a payoff of (w + g)(1 - e-rt) over the 
infinite horizon, as compared to v that can be obtained by cooperating forever. 
The existence of a-n equilibrium with cooperation hinges on the comparison. 
The equilibrium exists if 

(1) (r + g)(1 e-rt) v 

but not otherwise. Thus, the equilibrium with cooperative play exists if and only 
if rt < ln (1 + 7r/g). Notice that t and r enter symmetrically in this complete 
information analysis. 

Similarly, if information about behavior is reported to the players with a lag 
of t, or if performance information is reported to players only at the dates 
t, 2t, 3t, and so on, then continual cooperation is an equilibrium outcome if and 
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only if (1) holds. Long reporting lags and long periods of fixed action have the 
effect of allowing a defector to profit for a considerable period of time before 
suffering retaliation. In repeated games with perfect monitoring, longer infor- 
mation reporting lags and periods of fixed actions can only inhibit cooperation. 

Next, suppose that information may be imperfect. We assume that the players 
cannot observe past behavior directly, but instead observe a signal in each 
period whose distribution depends on behavior in that period. In particular, 
suppose that in the game in which actions are held fixed for a length of time t, 
the probability that the kth possible signal is realized depends on the actions 
taken: The probability is pk(t) if both players cooperate and qk(t) if one player 
defects. (The signal probabilities when both defect will be irrelevant in our 
analysis).7 We assume that p is a strictly positive vector to ensure that the 
incentive problem is always nontrivial.8 

With imperfect information, it may often be impossible to find any strategies 
that support cooperation at every stage as an equilibrium outcome, so we set 
about to find the symmetric pure strategy equilibrium with the highest payoff for 
the two players. (Throughout we use "symmetric" in the following strong sense: 
The equilibrium specifies symmetric actions after all histories.) If the players 
can jointly observe a public signal to use for randomizations, then there are just 
two possibilities. The first is that there is a unique equilibrium at which the 
players always play Defect and each earns an equilibrium payoff of zero. The 
second possibility is that the best equilibrium entails a trigger strategy as 
follows. The players initially play Cooperate, but after each round they random- 
ize, switching permanently to the (D, D)-equilibrium with some probability ak 

that depends on the signal realization k. Notice (i) that the (conditional) 
probability ak that players who are cooperating at some date switch to the 
(D, D)-equilibrium at the next date depends only on the signal k observed at 
that one date and (ii) that once the players have switched to (D, D), they remain 
switched forever. 

Trigger strategies, then, are described by a vector of probabilities a= 
(a1, ..., K), where K < oo is the number of possible signals. When does a vector 
a define an equilibrium trigger strategy with value v? In standard dynamic 
programming fashion, the value v is determined by a recursion: It is equal to 
1 - e -t times the payoff earned during the initial period plus e -t times the 
expected continuation payoff after the initial period, both computed on the 
assumption that each player adopts the equilibrium strategy. For the model we 
have just described, the value recursion equation is: 

K 

(2) v = (1 - ert)Tr + e`t E Pk(' - ak)V. 
k=1 

7Although we have modeled the payoffs separately from the stochastic information, our model 
also encompasses the case in which the stochastic signal affects players' payoffs directly. In that case, 
the 7r's are to be interpreted as expected stage game payoffs. Analytically, our formulation helps to 
distinguish the separate effects of assumptions about information and payoffs. 

8 This shows up below in the conclusion that, at the best equilibrium, players are just indifferent 
between cheating and being honest. 
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What about incentives? According to the Optimality Principle of Dynamic 
Programming, a player has no incentive to deviate from a proposed strategy if 
there is no circumstance in which a one-step deviation would be profitable. 
Plainly, it is never profitable for the player to deviate unilaterally from the 
trigger strategy when that strategy calls for a play of D. It is not profitable to 
deviate on other occasions if 

K 

(3) (7r+g)(1 -e rt) + e rt E qk(l -C a)V -< V' 
k=1 

The left-hand side of (3) is the expected payoff to a player who plans to defect 
once and then adhere to the equilibrium strategy, while the right-hand side is 
the equilibrium value. 

Substituting (2) into (3), we obtain 
K 

(3') g(1 -e rt) < ert E vak(qk -Pk), 
k=1 

a reformulation which is sometimes convenient. 
The analysis to this point has been routine. We summarize it with a Proposi- 

tion. 

PROPOSITION 1: The trigger strategy characterized by a is a symmetric equilib- 
rium strategy with value v if and only if (2) and (3) hold and a satisfies: 

(4) O< ak l for all k. 

Moreover, if the maximal value of a symmetric pure strategy equilibrium is 
positive, then it is achieved by a trigger strategy equilibrium of this form. 

In view of the Proposition, the maximum symmetric equilibrium payoff v and 
the associated trigger strategy a can be determined from the optimal solution of 
the following linear programming problem: 

(LP) Max v subject to (2), (3'), and 
v, va 

(4') O < v ak < V. 

Notice that we have written the problem with choice variables v and va, rather 
than the more natural v and a. This change of variables makes the constraints 
(2), (3'), and (4') linear in the choice variables, so that the program (LP) is a 
linear program and can be analyzed or numerically solved by linear program- 
ming methods. Notice, too, the feasible set (that is, the set of (v,va) pairs 
satisfying the constraints) for this LP can be empty. In that case, according to 
Proposition 1, the only equilibrium of the game is the one in which the players 
always defect and earn payoffs of zero. 

From our assumption that the probabilities p are all nonzero, we may 
conclude that there is no equilibrium of the game with value v = 7r. So, the 
incentive constraint (3') in (LP) must be binding, that is, it must hold with 
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equality at the optimal solution of (LP). This fact will prove useful in the next 
Proposition. 

Given any feasible solution (v, va) of (LP), we can determine a trigger 
strategy a and an associated likelihood ratio 1 defined as follows: 

(5) 1= [Eqkak]/[ EPkak]. 

PROPOSITION 2: Suppose that (LP) has a nonempty feasible set. If (v, va) is a 
feasible solution for which the incentive constraint (3') holds with equality, then 

(6) v = T- g/( - 1) >0. 

In particular, the payoff maximizing symmetric equilibrium satisfies (6). 

PROOF: We may rewrite the definition of 1 in the following form: 

(7) lEPkakv = EqkakV. 

Then, substituting into (7) from (2) (for EpkakV) and from (3) (for Eqkakv) and 
then simplifying yields equation (6). From (3'), it is clear that v > 0. From 
Proposition 1, the optimal solution of (LP) defines a payoff maximizing symme- 
tric equilibrium and, as discussed above, (3') is binding at the optimal solution. 

Q.E.D. 

There are two aspects of Proposition 2 that we wish to emphasize. First, the 
Proposition establishes that the problem of finding a payoff maximizing equili- 
brium is equivalent to the statistical problem of finding the maximum likelihood 
test which is just sufficient to deter defection, that is, which satisfies (3') with 
equality. Moreover, any test which is just sufficient to deter defections and 
which maximizes the likelihood function corresponds to a payoff maximizing 
equilibrium. 

Second, the Proposition provides a remarkably simple and intuitive character- 
ization of the optimal value itself. Equation (6) expresses the optimal value as 
the payoff from always cooperating minus a cost c incurred even though the 
players behave honestly at equilibrium. Given the trigger strategy, the corre- 
sponding cost that a defector would incur is lc. The Proposition considers the 
situation where the extra cost (1 - 1)c is equal to the gain g that a defector 
enjoys, so that c = g/(l - 1). The extreme cases make the interpretation of this 
formula clear. If there is a test to deter defections that never falsely accuses 
nondefectors, then 1 = oo and the deterrence cost at the associated trigger 
strategy equilibrium is zero. If defecting is statistically indistinguishable from 
honest behavior, then 1 = 1, and regardless of the interest rate, the gains from 
cooperating, or the gains from cheating (provided g > 0), there can never be a 
feasible solution to the (LP) nor can there be any equilibrium involving coopera- 
tion. 

Let us now regard (LP) as being parameterized by the interest rate r and the 
time interval of fixed action t > 0. Let T = v(t, r) be the optimal value of the 
(LP) and let 1 = l(t, r) be the corresponding likelihood ratio. In this section, we 
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consider how changes in r affect the optimal value. Section 3 introduces an 
information structure that yields useful comparative statics in t. 

To study the limiting cases which are the subject of extensions of the Folk 
Theorem, it is helpful to examine the maximized likelihood ratio defined by 
I(t) = maXk qk(t)/pk(t). In view of Proposition 2, it is clear that, regardless of 
the interest rate r, we must have -v(t, r) < w - g/(l(t) - 1), a result which is 
reminiscent of the asymptotic inefficiency results reported by Radner, Myerson, 
and Maskin (1986) and Fudenberg, Levine, and Maskin (1989). However, the 
role of low interest rates can be characterized more precisely. 

PROPOSITION 3: For r > 0, -v(t, r) is monotonically decreasing in r. Further- 
more, 

(8) limv-(t,r) =r-g/[i(t)-1] if l(t) > 1 +g/wr. 

If l(t) < 1 + g/l, then v(t, r) = 0 for all r> 0; only defection can occur at 
equilibrium regardless of the interest rate. 

PROOF: Let (v', a ) be feasible for (LP) when r = r1. Consider r2 < r1 and 
a2 = Oa', where 

e rlt/ ( 1 - e-rl t 

e r2/ ( --r2t 

It may be directly checked that (v ', 2vl) is feasible for (LP) for r = r2. This 
establishes monotonicity. 

It is clear from Propositions 1 and 2 that -v(t, r) < max(O, v - g/[l(t) - 1]) 
and that, for all r, -v(t, r) > 0. So we need only show that limr, O -(t, r) > ir - g/ 
(1(t) - 1) if the right-hand-side is strictly positive, as we shall henceforth 
assume. That is, we henceforth assume that l(t) > (r + g)/rr. 

By the definition of l(t), for any sufficiently small positive E there exists a k 
such that qk(t)/pk(t) > I(t) - E > (r + g)/rr. Define 1k = qk(t)/pk(t), v = 

nr - g/(lk -1) > O, and aj = 0 for j s k, and set ak(t, r) to make (3) hold with 
equality. It is clear that as r 0, ak k 0. In particular, for r sufficiently small, 
0 < ak < 1 and then, by Proposition 1, the values we have described are 
equilibrium values. Since -v(t, r) is the maximal equilibrium value, we have 
proved that limr 4 0 -v(t, r) > SUpk [I - g/(lk - 1)] = - g/(l(t) - 1) as required. 

Q.E.D. 

In games with imperfect monitoring, lower interest rates work essentially by 
allowing scaled-up punishments to be used to deter cheating. This serves both 
to make it more likely that the feasible set is nonempty and, when interest rates 
are sufficiently small, to allow defection to be deterred with a test with the 
highest possible likelihood ratio. Nevertheless, even with very low interest rates, 
Proposition 2 makes clear that the efficiency of equilibrium is inevitably limited 
by the power of the best statistical test available to deter deviations. So long as 
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the best test has finite power (/(t) < oo), the efficiency cost of deterrence is 
bounded away from zero, uniformly in the interest rate r. 

3. VARYING ACTION FREQUENCY 

In order to vary the period of fixed action continuously in a model where the 
arrival of information is exogenously fixed, we must specify some "infinitely 
divisible" distribution for the information process. The simplest such specifica- 
tion, and the one we adopt, is the Poisson process. Thus, we suppose that when 
the players are cooperating, signals of a certain type arrive stochastically over 
time at rate A; while one player is cheating, the arrival rate is ,u-. We assume 
that A and ,ut are both strictly positive and we disregard the precise arrival times 
of signals within a period.9 Thus, pk(t) = e-At(At)k/k! and qk(t) = 

e-At (Itt)k Ik!. 
It may be that ,ut > A, as, for example, when the events are customer 

complaints, product failures, or industrial accidents, which are less frequent 
when team members work hard and incur personal costs. Alternatively, it may 
be that A > ,ut, as when the events observed are sales of a product or discoveries 
in a laboratory which are more frequent when members of the team are working 
hard. 

According to Proposition 3, we can identify the limiting values of these games 
when the interest rate is small by finding l(t). Thus, 

(9) I(t) = Supe /t/A) e(A- )t if AA. 

Applying Proposition 3, an immediate corollary is the following proposition: 

PROPOSITION 4: For the Poisson model, 

(iT if1, > A, 

limv(t, r)= 0 if/, = A, 
r I0 Max (O, v-gl[e(Aky)t- 1) if A > /,. 

Notice the contrast between the efficiency obtainable for low interest rates in 
the "bad news" case where ,ut > A, as compared to the limited efficiency 
obtainable even for low interest rates when A > ,ut. In the "bad news" case, the 
efficient equilibria entail triggering punishments only when several signals 
(accidents, complaints, etc.) are observed in a period-something which is very 
much more likely to occur when players cheat than when they play honestly. 
Such a test can deter cheating while only rarely triggering punishment when 
players are honest: This is what makes limiting efficiency possible. In the "good 
news"' case when A > ,t, no such powerful statistical tests are available. Low 
sales, for example, are not infinitely more likely when the other team members 
are shirking than when they are working hard. Because no strong evidence of 

9 This is justified because the number of signals is a sufficient statistic for the Poisson parameter. 
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cheating can be identified in this case, payoffs are bounded away from the 
efficient payoff 7r uniformly in r. 

Next, let us fix the interest rate r to see what happens when the period of 
fixed action t is varied. As noted in the introduction, varying r and t are 
equivalent exercises in the case of perfect information (that is, when l(t, r) - 
+ oo). However, with imperfect monitoring, varying t changes l(t, r), which 
introduces an effect that was absent in the perfect information case. 

When r is fixed and t is small, the game may (with one minor exception) be 
analyzed using first-order approximations. The only events with probability of 
order t or greater in any period of fixed action are the event that no signal is 
observed and the event that one signal is observed. These occur with probabili- 
ties of approximately 1 - At and At, respectively, when no player cheats, and 
with probabilities 1 - ,tt and At when one player cheats. Using these probabili- 
ties, I(t) = Max[,u /A, (1 - ,ut)/(1 - At)] which is approximately Max[ AL/A, 1]. It 
then follows from Proposition 3 that when A > ,t, v(t, r) = 0 for small t, so we 
turn our attention to the case u> A. Let a1 denote the probability that 
punishment is triggered when a single failure occurs. If all players adopt this 
trigger strategy, then the mean flow payoff is approximately 

00 r *|7T * e- rt e-l,Atdt = rrr/( r + a,A). 

Cheating is therefore deterred if rg < al(p - A)wr/(r + a,A), that is, if the gain 
(in mean flow terms) is less than the cost of the extra probability of punishment 
al(, - A). Equilibrium is possible for some a1 < 1 if g < (,L - A)7T/(r + A) but 
not if g > (A - A)w/(r + A).'0 When equilibrium does exist, we may use the 
approximation l(t, r) j ,/A and Proposition 2 to estimate the payoff function. 
The upshot is the following proposition. 

PROPOSITION 5: For the Poisson model, lim, I O v(t, r) = Tr-g/l(QIA-1) if 
g <Q.t - A)7T/(r + A)."1 Conversely, if g > ( - A)Ir/(r + A), then there exists 
T > O such that v(t, r) = O for all tE (O, T]. 

A full proof of Proposition 5 can be found in the Appendix. 
Notice that r helps determine the possibility of cooperation as t grows small, 

but not the limit equilibrium value. It is particularly instructive to study the case 
where ,t > A but g > (A - A)7r/(r' + A). In that case, lim, I 0 v(t, P) = 0 but 
limr I Ov(t, r) = r. Qualitatively, shortening the period of fixed action and 
reducing the discount rates have precisely opposite effects: Reducing t makes it 

'0The boundary case where g = (, - A)r/(r + A) cannot be resolved by examining first-order 
terms alone. An examination of higher order terms shows that deterrence in this boundary case 
would require setting a, slightly greater than unity for small t, which is impossible because a1 is a 
probability. Hence, cooperation cannot be achieved at equilibrium for small t in this case. 

11 One can further show that in this case, the sign of the partial derivative vt(O, r) is the same as 
that of (0, r)[Kg - A)/r] - 2g. Thus, when (A - A)/r is large, shorter periods of fixed action 
inhibit cooperation. 
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impossible to provide any incentive at all for cooperation while reducing r 
drives the cost of such incentives to zero! 

More generally, for the case where u > A, reducing r always makes full 
cooperation possible in the limit, but reducing the period of fixed action t never 
does. For the case where A < A, reducing r permits some (possibly substantial) 
cooperation for a range of parameters, but reducing t always destroys all 
possibility of cooperation at equilibrium. Taken together, these examples demol- 
ish the presumption that shorter periods of action are somehow similar to lower 
interest rates in a repeated game model, at least when what is being held fixed 
are the other real aspects of the environment (observability of outcomes and the 
flow payoff matrix). 

4. REPORTING DELAYS IN A PRISONERS' DILEMMA MODEL 

In the remainder of this paper, we develop the idea that delayed performance 
reports can increase the equilibrium value, provided that the interest rate is 
small. First, this section explores a Prisoners' Dilemma Model with a special 
information structure in which the equilibrium strategies and analysis take a 
simple form. No proofs appear here. In Section 5 we employ the same ideas to 
prove theorems applicable to general symmetric games. 

In the present model, there is a fundamental unit of time, called a period, 
during which actions cannot be changed. Information signals are generated 
every period based on that period's actions, but they are revealed to the players 
only at the ends of periods t, 2t, 3t, .... For example, in periods 2t + 1 through 
3t, the players know the history of signals generated through period 2t only. 
The standard imperfect monitoring model in which signals are observed at the 
end of each period corresponds to the case where t = 1. 

We assume that the signals observed in each period can be of only two types, 
labeled "success" and "failure." Let A be the probability of failure if both 
players cooperate, and A the probability if exactly one player cooperates. We 
assume ,u > A > 0: Failure is more likely if one of the partners defects. The 
discount factor that applies between periods is denoted by 8. 

For any fixed value of t, this set-up defines a new repeated game in which, at 
each "stage," t repetitions of the Prisoners' Dilemma game are played. If 8 is 
close to one-and given certain restrictions described below on the other 
parameters that are necessary for some cooperation to be possible-the best 
symmetric equilibrium is a trigger strategy equilibrium in which there is coopera- 
tion in each of the t periods that make up the first stage of the repeated game. 
The optimal equilibrium strategy, as we will show, triggers noncooperation with 
probability a only when a "failure" occurs in all t periods of the stage; when 
there is a "success" in any of the t periods, the players continue to cooperate at 
the next stage. The number a is chosen to make the players just indifferent 
between defecting in the first period of the t-period stage and not defecting at 
all: 

(10) (1-8)g = StQ -A)A` aTI(t, ). 
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The left-hand side of equation (10) is the gain enjoyed from cheating for a 
single period, expressed in the same mean flow units as the equilibrium value v. 
The right-hand side is the increased chance of triggering a punishment by 
defecting once (rather than not defecting), multiplied by the payoff lost when a 
punishment is triggered. We shall assume for now that there exists some 
a E (0, 1] satisfying (10); a sufficient condition for this is given in Proposition 6 
below. 

Notice that if a player defects during any X of the first t periods, the 
likelihood that a punishment will be triggered is 1JAt'Ta. The ratio of this 
likelihood to the one when there are no defections (Ata) is (,u/A)T. This ratio is 
also the maximum likelihood ratio that could be obtained in any test of the 
hypothesis that the player defected in X specified periods against the alternative 
hypothesis of no defections. So, this strategy has the remarkable property that 
the test it uses maximizes the likelihood ratio simultaneously against all possible 
single period and multi-period deviations- by the players. 

We shall now show that this strategy, which by construction deters a single 
deviation in just the first period of the stage, actually deters all r-period 
deviations, where 1 < X < t. Notice that, due to discounting, the gain in immedi- 
ate payoff to a r-period deviation, expressed in mean flow payoff terms, is at 
most (1 - 8)rg. The extra cost incurred by a r-period deviation, in terms of 
increased probability of punishment, is (ATAtT- - At)a7T, which is at least 
r(li- A)A -la T.12 Hence, a sufficient condition for all deviations to be deterred 
is that (1 - 8)g < (/ut - A)At-la , which is implied by (10). 

By triggering noncooperation only when there are failures in each period, we 
have converted the punishment for defecting in the first period into a lottery 
with sufficient expected value to deter that defection. It is true that a player can 
affect the relevant lottery probabilities, but only adversely for himself. Conse- 
quently, the test and punishments that are used to keep players in line in period 
1-and that impose welfare losses on the players-can be "reused" at no extra 
cost to deter defections in periods 2 through t. 

As we argued in the discussion of Proposition 2 (for the case t = 1), the cost 
of deterring a single deviation in the first period is g/(l - 1),13 so the mean flow 
cost of deterring a deviation in each period is also g/(l - 1). As we have seen, 
however, for general t and 8 close to one, only the incentive constraints in 
periods 1, t + 1,2 t + 1, . . . are binding, so the mean flow cost of deterrence is 
(1 - 8)Ek=i8tk[g/(l - 1)]. Summing this series leads to the following Proposi- 
tion. 

PROPOSITION 6: Let 1= ,u/A. For t < g/(l - 1)nr, v(t, 8) = 0 for all 8 E (0, 1). 
For any t > g/(l - 1)nr, there exists Qt E (0, 1) such that for all 8 > t,, 

V(t, 5) = 7T - [5/(a + +,6 )] [ g/(l - 1)]. 
In this second case, lim, 1 v(t, 8) =T - (1/t)g/(l - 1). 

12 Since (A/A) > 1, it follows that (A/A) - 1 > r[(4/A) - 1], from which our conclusion follows. 
13 Here, 1= ,u/A. 
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Proposition 6 establishes that longer information lags t lead to better equili- 
brium outcomes, provided that 8 is close enough to unity, and that lags may be 
necessary to achieve any cooperation at all. If we regard t as a choice variable, 
then the Proposition implies that for any fixed value of 8, there will be some 
finite optimal information lag t*(8), and that t*(8) tends to infinity as 8 tends 
to one. 

The benefits of delaying the release of information and the trigger strategy 
that achieves those benefits by looking for evidence of defection in each period 
are not special features of the Prisoners' Dilemma example. They are general 
properties of symmetric repeated games, as we show below. 

5. SYMMETRIC GAMES WITH MULTIPLE ACTIONS AND SIGNALS 

Suppose that in every period, each of n players privately chooses an action 
from the set {a1, ... ., aH}. The action profile determines a probability distribu- 
tion over the finite signal space. We assume that all signal realizations have 
positive probability, regardless of the profile of actions played. A player's payoff 
in period s is the expected value of a realized reward that depends on the 
action he takes and possibly on the signal realization or other random variables. 
However, a player's only information is the public signal together with know- 
ledge of his own past play. The game is symmetric, and we restrict attention to 
symmetric equilibria (that is, equilibria which specify identical behavior for all 
players after all histories, even off the equilibrium path). Let 

n1ij= the single period (expected) payoff to a player who chooses 

action ai when all other players choose a1. 

Pijk = the probability of signal k when one player chooses ai and 

everyone else chooses a1. 

A stage game of length t, where t is a positive integer, is comprised of t of 
the period games just described, but with the following information structure: 
Players remain ignorant of signal realizations within a stage until the stage ends. 
Thus, a pure strategy for any player specifies how to behave at each date as a 
function of the signals observed at the ends of the various completed past 
stages. It is convenient to convexify the (symmetric equilibrium) value set of the 
supergame G'(t, 8) with stage game of length t, by including at the beginning of 
each stage a publicly observed random drawing from the uniform distribution 
on [0, 1], on which all subsequent choices by players can be conditioned. 

We assume for simplicity that the stage game has a symmetric equilibrium 
(ab,.. .,ab) whose payoff is normalized to zero, and consider equilibria in which 
play can be characterized as being in one of two states: In the "good" state 
players use some action ai and in the "bad" state they use action ab, where 

ij > 'rbb = 0. Given that (ab, .. ,ab) is a Nash equilibrium, the bad state can be 
taken to be absorbing. We limit our attention to repeated game equilibria of 
this kind. 
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We seek to compute the maximal value among equilibria of this kind along 
with the strategies and implicit statistical tests that support the equilibrium. 
Recall from Section 2 that the continuation values of the equilibrium that 
implements cooperation most efficiently can be obtained as the solution of a 
linear program with three kinds of constraints: A value recursion equation, 
incentive constraints, and self-generation constraints (see Abreu, Pearce, and 
Stacchetti (1986)). The analogous program for the present model is LP#1 
below, where the choice variables w(k) are continuation values following 
alternative t-period signal histories k = (k1,..., kt). 

LP#1: Maxv subject to 
v,w 

(i) value recursion: 

kl@ ... kt s 

(ii) incentive compatibility: 
1 -8 

V ,7(riIj + 52Ti2ji+ * * +6 ij 

+86 E (17PiJk,)w(kl*...* kt) for all (i1, i2, ... ,it); 
k1, k s 

(iii) self-generation: 

< w(kl,..., kt) SV. 

Let v(j, t, 8) denote the maximized value of LP#1. 
Given any feasible solution (v, w) of LP#1, there is a corresponding station- 

ary symmetric trigger strategy equilibrium of G'(t, 8) in which the players 
randomize after outcome k, continuing in the "good" state (playing j) after 
period t with probability w(k)/v and otherwise switching to the "bad" state 
(playing b) where play remains forever. Similarly, any such equilibrium corre- 
sponds to a feasible solution of LP#1. 

The heart of our analysis of information lags in the Prisoners' Dilemma 
example was our assertion that, for 8 close to unity, only the first-period 
incentive-constraint is binding. That result was established by examining a very 
particular strategy that triggers punishment only if there is evidence of cheating 
in every period. A related proposition will be proved using a similar strategy in 
this more general framework. The connection is made using the following two 
linear programs. The first is obtained from LP#1 by omitting all but the 
first-period incentive constraints and adding "Separation Constraints:" 

LP#2 max T subject to 
v , x 1 , * Xk 

(i') value recursion: 

T = (1 - 8t)7Tjj + atEpIjkXk; 
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(ii') period one incentive compatibility: 

v > (1-)7rij + (8- 8t)nr-1 + 8tEPijkXk for all i; 
k 

(iii') separation constraints: 

EIPjjkXk > EmPijkXk for all i; 
k k 

(iv') one-sided self-generation constraints: 

Xk < v for all k. 

Notice that (iii') is never a binding constraint in games like the Prisoners' 
Dilemma in which -ij > rjj for all i, that is, in which all single period deviations 
increase short-run payoffs. For those games, (iii') is implied by (i') and (ii'). 

Let v2(j, t, 8) denote the optimized value of LP#2. 
Substituting (i') into (ii'), we may express the period one incentive compatibil- 

ity constraint as 

8t 
Tji jj < 18 (Pjjk Pijk)Xk for all i 1 k 

One can view the discrepancies between the continuation values and 2(j, t, 8) 

in LP#2 as fines whose expectation should be minimized subject to the incen- 
tive and separation constraints. In terms of the simple model of Section 2, the 
expected fine paid by an honest player is g/(l - 1) while that paid by a defector 
is lg/(l - 1). For this general model, the "fine" payable after signal k may be 
denoted by fk and the expected fine paid by a player who chooses action i by 
Fi. The problem can then be stated as one of minimizing the expected fine paid 
by an honest player, subject to appropriate constraints. 

LP#3 Min EP1jjkfk subject to 
fl, ---tk k 

(ii") incentive constraints: 

ij Tjj < E Pijkfk - Pjjkfk for all i; 
k k 

(iii") separation constraints: 

E1Pjjkfk < EPijkfk for all i, 
k k 

(iv") nonnegativity constraints: 

fk 0 for all k. 
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Let (ffk,...*,ft) solve LP#3 and define 

Fi = E Pijk fk*, when LP#3 is feasible. 
k 

Then, the formal relationship between LP#2 and LP#3 is given by the next 
proposition. 

PROPOSITION 7: LP#2 is feasible if and only if LP#3 is feasible. When both are 
feasible, their optimal values are related as follows: 

-V( ,t, bi) = 7rij _S+ ... + Fj for all 8 E (0, 1). 

PROOF: Suppose that f * is an optimal solution of LP#3, and Fj = EkPjjk fk* 

Let 

v = 7T.. - ,F, 

and 

1-8 
Xk=V- St fk b 

Noting that f* satisfies (ii"), (iii") and (iv"), and recalling the identity 

1-8 8 

1 -a at + ..+at' 

we see that (v, x) as defined here is feasible for LP#2. Hence 

v2( j, t, 5i) > arj,+.. ,F 

Now consider an optimal solution (v*, x*) of LP#2, and define 

fk= 1-8 (v * ). 

It may be checked that the fk's so defined are feasible for LP#3. Also 

V2(j, t, 5) = v = (1- 8t)7jj + 8EPjjkXk4 
k 

= (1 St)7jj + tE Pjjkt U at fk) 

< (1 - t)7rjj + tv* -(1 - )Fj 

or 

-v2(,t, _ 7 rjj- _5+ +5 Q. E. D. 
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In our Prisoners' Dilemma example, we assumed that A > A, that is, there 
exists some statistical test that can detect a single-period deviation, even though 
the test might have little power. For this more general analysis, we require that 
the following condition hold: 

Distinguishability Condition: The probability vector pjj does not lie in the 
convex hull of the set of probability vectors {pij; i #j}. 

The Distinguishability Condition says that no player has a mixed strategy 
deviation from the strategy j that exactly duplicates the distribution of signals 
associated with playing j. If such a deviation did exist, then it would of course 
be statistically indistinguishable from honest behavior, and therefore impossible 
to detect and deter.14 So, the Distinguishability Condition is a minimally 
necessary one for our analysis. 

PROPOSITION 8: If the Distinguishability Condition is satisfied, then LP#3 is 
feasible. 

PROOF: If j satisfies the assumption, there exists a vector f which strictly 
separates pjj from the vectors pij, i #j, that is, 

EPI]kfk < EPijkfk for all i. 
k k 

Since the pij's are probability vectors, f may be taken to be positive in all 
components;15 furthermore, f may be scaled up so that (ii") is satisfied. Such an 
f is feasible for LP#3. Q.E.D. 

The main result of this section is Proposition 9, which provides a lower bound 
on the value of equilibria using action j, when the players are sufficiently 
patient. The bound may not be tight, because it is not always necessary to 
impose the separation constraints. 

PROPOSITION 9: Suppose LP#3 is feasible and that rrjj > Fj/t. Then there exists 
at E (0, 1) such that for all 8 > at a trigger strategy equilibrium using action j exists 
and 

v (j, t, 8) > TV2(j, t, 8) = -rjj _ t Fj. 

PROOF: We use the solutions of LP#2 and LP#3 to construct a trigger 
strategy that is feasible for LP#1 and achieves the value specified in the 
Proposition. 

14 There do exist joint restrictions on payoffs and statistical information that are sufficient for our 
conclusions and weaker than the Distinguishability Assumption, but the distinguishability is the 
weakest statistical assumption that implies our conclusion. Distinguishability is implied, for exam- 
ple, by the individual full rank condition used by Fudenberg, Levine, and Maskin (1989), but does 
not imply that condition. 

15 Given any separating vector f, the vector f + re (where e is a vector of ones) is also separating 
and is positive for a sufficiently large. 
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Let (v*, x*) be the optimal solution of LP#2 and let f* be the optimal 
solution of LP#3 with corresponding "expected fines" Fi, as defined above. 
Following a t-period outcome (k1,..., k,), a switch to the punishment state is 
triggered with probability a^ = E Ht= 1 fk where E = (1 - 8)8-t/(vFjt- 1). That 
is, w(k1,.. ., kt) = [1 - a]v, where v is the value associated with the proposed 
trigger strategy. Note that a^ is a probability for 8 close to one, because it is 
nonnegative for all 8 and converges to zero as 8 is increased toward one. 
Consequently, the self-generation constraint (iii) of LP#1 is satisfied. 

By the value recursion equation (i), 

v = (1 -8t) k +,8.kE, (s-fi1P 5k) (i 5- lfk5) v 

= (1 - 8t) 1jj + 8tv - (Fj)V. 

Substituting for E and solving for v, we obtain v = v* = v2(j, t, 8) = rjj - Fj?/ 
(8 + .. +8t), as required. 

Finally, we must verify the incentive compatibility constraint (ii) of LP#1, that 
is, that a player cannot gain by deviating from action sequence (j, ... , j) to any 
action sequence (i1,.. ., it) in the first t periods. The change in payoff resulting 
from such a deviation is: 

t t 
(16) E 16S(11ij, - ,j) -6ni jv 

s=1 s s= 
t t 

< (1- 6) E Max(O,v7ij - r7jj) -tEitv*Fjt r1 (FiS/Fj)- 1 
s=1 [s=i 

t t 
< (1- 8 ) E Max (o , Tri j - Tjj ) -tEii v* Fjt E ( FislFj - 1 ) 

s =1 _s= 1 

- (1-) E [Max(O,,ijs 7jj) - (Fis-Fj)] 
s=1 

?0. 
The first inequality follows from replacing the short-run gain to cheating by the 
maximum of itself and zero, and then removing the discounting. The second 
follows from the fact that, according to the separation constraint, Fi1/Fj exceeds 
unity. The equality on the next-to-last line follows from the definition of 8. The 
incentive constraint in LP#3 ensures that each summand in that line is nonposi- 
tive when nrji- - njj is positive, while the separation constraint implies that the 
other terms are nonpositive. Together, these facts establish the final inequality. 

This verifies that the proposed strategy satisfies (i)-(iii) and attains the 
desired value. Q.E.D. 

Notice the similarities among Propositions 2, 6, and 9. In each case, the value 
is expressed as the flow payoff from cooperation minus a cost of deterring 
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defections. In Proposition 2, the cost is the gain from cheating divided by the 
measure of statistical power: (1 - 1). In Proposition 6, we found that the cost is 
the same expression multiplied by a factor of 5/(0 + ... + 5t), because the cost 
of deterring deviations is incurred only once in each t periods. In Proposition 9, 
the cost is Fj8/(5 + + 5), where the cost Fj of deterring a first period 
deviation while satisfying the separation constraint is obtained from the con- 
tracting problem LP#3. 

The proof of Proposition 9 uses the solutions to LP#2 and LP#3 to construct 
a trigger strategy that deters all possible single period and multiperiod devia- 
tions in the t-period stage game. We have already seen how deterring single 
period deviations in the first period can deter all single period deviations and 
certain multiperiod deviations. Indeed, one can infer from Proposition 9 that 
when a player has only profitable deviations, it is never more costly to deter 
multiperiod deviations than to deter single period deviations-the separation 
constraints are never binding in that case and can be omitted. However, when a 
player has some unprofitable single period deviations, it may still be necessary 
to consider how their play affects the probability of punishment, because they 
could otherwise be played as part of some multiperiod deviation that is 
profitable in total but that uses the unprofitable deviations to reduce the 
probability of triggering a punishment. The separation constraints preclude this 
by ensuring that there is no single period deviation that can ever reduce the 
probability of punishment. 

The following Corollary is a straightforward implication of Proposition 9. 
Note that when action ai is Pareto efficient, the Corollary is an asymptotic 
efficiency result. 

COROLLARY: Suppose that -rjj > 0 and the Distinguishability Condition holds. 
Then for any E > 0, there exist t and 8E E (0, 1) such that, for all 8 >8, 

vt6j) > 7jji- ? 

6. DISCUSSION 

According to one standard interpretation of the Folk Theorem, if players can 
react quickly to one another's choices, then the possibilities for cooperation are 
improved, because the discounting between periods becomes small. Our conclu- 
sions expose the limits of this sort of reasoning, showing that when monitoring is 
imperfect, short periods can make it costly or even impossible to provide 
effective incentives. Intuitively, shorter periods of fixed action and frequent 
performance reports multiply the ways that players can deviate from the 
equilibrium strategies. The need to deter these extra deviations raises the cost 
of deterrence. To draw an analogy to principal-agent theory, frequent perfor- 
mance reports in a repeated game is like performance information that arrives 
during a period in a principal-agent model: It helps the agent to find more 
effective cheating strategies but serves no beneficial purpose for the principal 
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(see Holmstrom and Milgrom (1988)). The mathematical connection between 
principal-agent models and repeated partnership games is established in Propo- 
sitions 7 and 9. 

We have performed our analysis in the context of the symmetric equilibria of 
a repeated partnership game. Subsequent papers (Fudenberg, Levine, and 
Maskin (1989), Matsushima (1989))16 have shown that the results for low 
interest rates and symmetric equilibria in these games may be misleading for a 
different reason: It may be possible to construct asymmetric equilibria in which 
the cost of punishments is much lower than at any symmetric equilibrium. 
Again, the powerful theorems in these papers should be interpreted as ensuring 
asymptotic efficiency as interest rates decline to zero, but not necessarily as 
periods of fixed action or information lags grow short. 

Our examples and propositions clearly demonstrate several points. First, low 
interest rates, short reporting lags, and short periods of fixed action are distinct 
assumptions that merit distinct treatment in games with imperfect monitoring. 
Second, when monitoring is imperfect, short reporting lags and short periods of 
fixed action are not generally conducive to cooperation. Finally, when modeling 
a given partnership or oligopoly as a repeated game, one ought to consider not 
only the players' abilities to adjust their actions but also the timing of their 
information flows. An artificial identification of the periods of fixed action and 
fixed information can produce seriously misleading results. 
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APPENDIX 

PROOF OF PROPOSITION 5: Consider any sequence {ak(t)). If it defines an equilibrium, then by 
Proposition 1, 

g(e - 1) < (Q - P)V 

where Q = Ekak(t)qk(t) and P = Ekak(t)pk(t). Equation (ii') of LP#2 and (iii) of LP#1 imply 

gP 

Q -P 

Together with the earlier inequality this yields 

g(er -b1) <Wa a(Q - P) - g Pi 

16An early paper by Williams and Radner (1987) makes a related point in a static model. 
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Expanding terms and dividing through by t, 

( r+ + ) 7[ t (e L -e At) +aj(t)(e -Ata -e-AtA) 

2 
_,yt -At A2t) +a2(t)(e/Lt' ~-eA- + 

a,"(t) AtA A2t 

e [t + al(t )e AtA + a2(t )e A -t_ + * ] 

By Proposition 1, a defines an equilibrium if and only if a satisfies (*) and (4) 0 < ak(t) < 1 for all 
k. First, note that if A > bt, there exist no a which satisfies (*) and (4) for small t. Assume that 
bt > A. Then, there exists T' > 0 such that for all t E (0, T'], if a satisfies (4) it satisfies (*) only if 
al(t) > 0. For a* which defines a payoff maximal equilibrium this implies that (see Proposition 2) 
a*(t) = 0 and a4(t) = 1, k = 2,3 .... Hence a*(t) is determined by: 

r+2 ) - 
<Tr [a((t)(eLtbt _e-A'tA) 

+(e-'uIt -e-A t) + 

9 [al1(t )e -AA + e -At - +*** 

If (A - A) < (r + A)g, it is clear that for small enough t, a' (t) as determined by (* *) exceeds 1. 
Except for the case (a - A)7r = (r + A)g, this establishes the second half of Proposition 5. In the 
case of strict equality, c (O) = 1. Differentiating (* *), evaluating right-hand derivatives at t = 0, 
substituting c (O) = 1 and simplifying, we obtain 

2i7(o)(At -A) 
da 

= gr2 + (bt -A)(A, v(o) + bT7), dt t=o 

where 

gA 

j -A 

if ( - A)iT > (r + A)g. It follows that if (At - A)IT < (r + A)g, there exists T > 0 such that ac(t) > 1 
for all t E (O, T]. 

Conversely, if (At - A)7 > (r + A)g, then for small enough t, a*(t) E (0, 1) as required for an 
equilibrium. Also, 

zoo z.O.oo P(t) t T At A 

This establishes Proposition 5. Q.E.D. 
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