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Abstract

We consider the implementation of social choice functions under complete information in

rationalizable strategies. A strict (and thus stronger) version of the monotonicity condition

introduced by Maskin (1999) is necessary under the solution concept of rationalizability. As-

suming the social choice function is responsive (i.e., it never selects the same outcome in two

distinct states), we show that it is also su¢ cient under a mild �no worst alternative�condition.

In particular, no economic condition is required. We also discuss how our results extend when

the social choice function is not responsive.
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1 Introduction

We consider the implementation of social choice functions under complete information in rational-

izable strategies. We say that a social choice function f is rationalizably implemented if there

exists a mechanism such that every rationalizable strategy pro�le leads to the realization of the

social choice function f . A priori, implementation in rationalizable strategies does not require the

existence of a (pure or mixed) Nash equilibrium that leads to the realization of f , and hence this

implementation notion is neither stronger nor weaker than that of Nash implementation. How-

ever, we establish that a strict (and thus stronger) version of the monotonicity condition shown

by Maskin (1999) to be necessary for Nash implementation is necessary under the more stringent

solution concept of rationalizability. Assuming the social choice function is responsive (i.e., it never

picks the same outcome in two distinct states), we show that it is also su¢ cient under a �no worst

alternative�(NWA) condition. In particular, no economic condition is required.

We are able to obtain this strong result because - like much of the classical implementation

literature - we allow in�nite mechanisms (including �integer games�); and - unlike the classical

implementation literature - we allow for stochastic mechanisms.

In earlier work (Bergemann and Morris (2008), (2009)), two of us established necessary and

su¢ cient conditions for �robust implementation� in incomplete information environments. There

we showed that a social choice function f can be Bayesian equilibrium implemented for all possible

beliefs and higher order beliefs if and only if f is implementable under an incomplete information

version of rationalizability. The results here are obtained by re�ning and further developing the

rationalizability arguments for the complete information environment. We can establish stronger

necessary and su¢ cient conditions than in the incomplete information environment. We can also

dispense with an economic condition on the environment. In turn, we establish necessary con-

ditions and su¢ cient conditions almost equivalent to Nash equilibrium implementation when the

social choice function is responsive. The augmented mechanism which establishes the su¢ ciency

result permits each agent to propose a menu of allocations. This construction already appeared in

Maskin (1999) and Maskin and Sjostrom (2004) to establish complete information implementation

in the presence of mixed strategies. The su¢ ciency arguments for Nash equilibrium implementa-

tion typically rely on a no-veto property of the social choice function. In contrast, we use a weak

condition, introduced as �no worst alternative�by Cabrales and Serrano (2008), to establish the

su¢ ciency argument. This condition requires that in state � and for every agent i, the social choice

f (�) is not the worst alternative among all possible allocations. The no worst alternative property

plays a role in our proof that is quite distinct from the no veto property in the classic Nash equilib-

rium results. The no worst alternative property guarantees that in the augmented mechanism, any
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report in state � in which an agent expresses his disagreement with the remaining agents cannot

be a rationalizable report. By contrast, the no veto property guaranteed that if an agent were

to express his disagreement, then further disagreement by other agents would only be possible in

equilibrium if it would lead to the same equilibrium allocation as prescribed by f (�).

These results narrow an open question in the literature. The existing literature shows that

Maskin monotonicity is necessary for Nash implementation in any mechanism (even if stochastic

mechanisms are allowed1). Abreu and Matsushima (1992) shows that if implementation is made

easier by (i) requiring only virtual implementation; and (ii) imposing a weak domain restriction

ruling out identical preferences; then implementation is always possible even if it is made harder by

(iii) requiring �nite mechanisms; and (iv) requiring the stronger solution concept of rationalizability.

Our result shows that it is possible to exactly implement a social choice function, in rationalizable

strategies, even if domain restriction (ii) fails, as long as in�nite, stochastic, mechanisms are allowed.

2 Setup

The environment consists of a collection of I agents (we write I for the set of agents); a �nite
set of possible states �; a countable set of pure allocations Z (we write Y � �(Z) for the set

of lotteries on Z); and, to each state, we associate for each player i a von Neumann-Morgenstern

utility function ui : Z ��! R, extended to lotteries as ui : Y ��! R with

ui (y; �) =
X
z2Z

yzui (z; �) .

Thus at two distinct states � and �0, all agents can have the same ordinal preferences; this contrasts

with some of the literature that associates a state with a pro�le of ordinal preferences (e.g. Maskin

(1999)). A mechanism M is given by M =
�
(Mi)

I
i=1 ; g

�
, where each Mi is countable, M =

M1 � � � � �MI and g :M ! Y .

The environment and the mechanism together describe a game of complete information for each

� 2 �. We will use (correlated) rationalizability as a solution concept.2 Our formal de�nition will

coincide with the standard de�nition with �nite or compact message spaces. But we will also allow

in�nite, non-compact, message spaces; in this case, our de�nition is equivalent to one introduced
1 In such a case, Maskin monotonicity (that is usually de�ned on the set of pure allocations) has to be stated on

the set of lotteries on pure allocations.
2The original de�nition of rationalizability of Bernheim (1984) and Pearce (1984) required agents�conjectures over

their opponents�play to be independent. We follow the convention of some of the recent literature (e.g., Osborne

and Rubinstein (1994)) in using �rationalizability� for the correlated version of rationalizability (see Brandenburger

and Dekel (1987) for an early de�nition and discussion). Our results do not rely on the use of the correlated version

of rationalizability.
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in Lipman (1994). Let a message set pro�le S = (S1; :::; SI), where each Si 2 2Mi , and we write S
for the collection of message set pro�les. The collection S is a lattice with the natural ordering of
set inclusion: S � S0 if Si � S0i for all i. The largest element is S = (M1; :::;MI). The smallest

element is S = (?;?; :::;?).
We de�ne an operator b� : S ! S to iteratively eliminate never best responses with b� =�

b�1; :::b
�
i ; :::; b

�
I

�
and b�i is de�ned by:

b�i (S) =

8>>>><>>>>:mi 2Mi

����������
there exists �i 2 �(M�i) such that

(1) �i (m�i) > 0) mj 2 Sj for each j 6= i;
(2) mi 2 argmax

m0
i2Mi

X
m�i2M�i

�i (m�i)ui (g (m0
i;m�i) ; �) ;

9>>>>=>>>>; :
We observe that b� is increasing by de�nition: i.e., S � S0 ) b� (S) � b� (S0). By Tarski�s �xed

point theorem, there is a largest �xed point of b�, which we label SM;�. Thus (i) b�
�
SM;�

�
= SM;�

and (ii) b� (S) = S ) S � SM;�. If mi 2 SM;�
i , we say that message mi is rationalizable in (the

complete information game parameterized by) state �.

We can also construct the �xed point SM;� by starting with S - the largest element of the lattice

- and iteratively applying the operator b�. If the message sets are �nite, we have

SM;�
i ,

\
n�0

b�i

�h
b�
in �

S
��
.

In this case, the solution concept is equivalent to iterated deletion of strictly dominated strategies

(see Brandenburger and Dekel (1987)). But if the mechanism M is in�nite, trans�nite induction

may be necessary to reach the �xed point.3 We will also sometimes use the following notation

SM;�
i;k , b�i

�h
b�
ik�1 �

S
��
;

again using trans�nite induction if necessary. Thus SM;�
i is the set of messages surviving (trans-

�nite) iterated deletion of never best responses. It is possible to show formally that SM;�
i is the

set of messages that agent i might send consistent with common certainty of rationality and the

fact that payo¤s are given by � (Lipman (1994)). Finally, we will say that a message set pro�le

S = (S1; :::; SI) has the best response property in state � if S � b�(S), or equivalently, if for each
player i and message mi 2 Si; there exists �i 2 �(M�i) such that �i (m�i) > 0 ) mj 2 Sj for
each j 6= i; and

mi 2 argmax
m0
i2Mi

X
m�i2M�i

�i (m�i)ui
�
g
�
m0
i;m�i

�
; �
�
:

3Lipman (1994) contains a formal description of the trans�nite induction required. As he notes �we remove

strategies which are never a best reply, taking limits where needed�.
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It is easy to check that if S has the best response property in state �, then S � SM;�.

Now a social choice function (SCF) f is given by f : �! Y . MechanismM implements f in

rationalizable strategies if there existsM such that, for all �, SM;� 6= ? and m 2 SM;� ) g (m) =

f (�). SCF f is implementable in rationalizable strategies if there existsM such thatM implements

f in rationalizable strategies. The de�nition of rationalizable implementation does not require the

existence of a (pure or mixed) Nash equilibrium that leads the realization of the social choice

function f . Hence, a priori, rationalizable implementation need not be stronger (neither weaker)

than Nash implementation. However, in the next Section, we provide necessary conditions and

su¢ cient conditions for rationalizable implementation almost equivalent to Nash implementation.

3 Main Result

We �rst recall the de�nition of Maskin monotonicity restricted to social choice functions:

De�nition 1 (Maskin Monotonicity)

Social choice function f satis�es Maskin monotonicity if

1. f (�) = f
�
�0
�
whenever

ui (f (�) ; �) � ui (y; �)) ui
�
f (�) ; �0

�
� ui

�
y; �0

�
for all i and y;

or, equivalently,

2. f (�) 6= f
�
�0
�
implies

ui (f (�) ; �) � ui (y; �) and ui
�
y; �0

�
> ui

�
f (�) ; �0

�
for some i and y.

The latter condition states that in case the desired alternative di¤ers at state � and �0, there

must exist at least one agent who, if the true state were �0 and she expected other agents to claim

the state is �, could be o¤ered a reward y that would give her a strict incentive to �report� the

deviation of other agents, where the reward y would not tempt her if the true state was in fact

� i.e. she would have a (weak) incentive to �report truthfully�. The strengthening of Maskin

monotonicity we will use, reinforces the latter statement, requiring that the reward y gives a strict

incentive to �report truthfully�if the true state were �.
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De�nition 2 (Strict Maskin Monotonicity)

Social choice function f satis�es strict Maskin monotonicity if

1. f (�) = f
�
�0
�
whenever

ui (f (�) ; �) > ui (y; �)) ui
�
f (�) ; �0

�
� ui

�
y; �0

�
for all i and y; (1)

or, equivalently,

2. f (�) 6= f
�
�0
�
implies

ui (f (�) ; �) > ui (y; �) and ui
�
y; �0

�
> ui

�
f (�) ; �0

�
for some i and y. (2)

Maskin monotonicity, which is necessary for Nash implementation, is weaker than strict Maskin

monotonicity. We show in the following proposition that strict Maskin monotonicity (and hence

Maskin monotonicity) is necessary for rationalizable implementation.

Proposition 1 (Necessary Conditions)

If f is implementable in rationalizable strategies, then f satis�es strict Maskin monotonicity.

Proposition 1 is a consequence of the following Lemma. In words, it states that, given a social

choice function f , if � and �0 satisfy condition (1) in the de�nition of strict Maskin monotonicity

and, in addition, f is implementable by a mechanism M, then the set of rationalizable message

pro�les must be the same in state � and �0.

Lemma 1

Pick � and �0 satisfying condition (1). If mechanismM =
�
(Mi)

I
i=1 ; g

�
implements f in rational-

izable strategies, then we have SM;� = SM;�0.

Proof. Pick � and �0 satisfying condition (1) and �x any mechanism M =
�
(Mi)

I
i=1 ; g

�
that

implements f in rationalizable strategies.

We �rst show that SM;� � SM;�0 . Because b�
�
SM;�

�
= SM;�, SM;� has the best response

property in state � (i.e., for each player i and all mi 2 SM;�
i , there exists �mi;�

i 2 �(M�i) such

that �mi;�
i (m�i) > 0) mj 2 SM;�

j for each j 6= i), andX
m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i); �) �

X
m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i); �) (3)

for all m0
i 2 Mi. We want to show that mi is also a best response against �

mi;�
i in state �0.

Since i and mi 2 SM;�
i have been �xed arbitrarily, this will prove that SM;� has the best response
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property in state �0 and so that SM;� � SM;�0 as claimed. Note �rst that for any m�i such that

�mi;�
i (m�i) > 0; m�i 2 SM;�

�i and so because mi 2 SM;�
i , we have g(mi;m�i) = f (�). Thus,X

m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i); �

0) = ui(f(�); �
0) =

X
m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i); �

0) (4)

for all m0
i 2 S

M;�
i . In addition, we claim thatX

m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i); �) = ui(f(�); �) >

X
m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i); �)

for anym0
i =2 S

M;�
i . By (3), the above is true with a weak inequality. Now if an equality were to hold,

somem0
i =2 S

M;�
i would be a best response against �mi;�

i in state � and so (fm0
ig[S

M;�
i )�SM;�

�i would

have the best response property in state � implying that m0
i 2 S

M;�
i which is false by assumption.

Now we know that

ui(f(�); �) > ui(y; �)) ui(f(�); �
0) � ui(y; �0) for all i and y;

and so applying this to the lotteries y ,
X
m�i

�mi;�
i (m�i)g(m

0
i;m�i), we get that

X
m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i); �

0) = ui(f(�); �
0) �

X
m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i); �

0) (5)

for any m0
i =2 S

M;�
i . Finally, (4) and (5) ensure that mi is also a best response against �

mi;�
i in

state �0.

Now, let us show that SM;� � SM;�0 . Since f is implementable in rationalizable strategies by

M and SM;� � SM;�0 , we have f (�) = f
�
�0
�
. Take any player i and any m�

i 2 S
M;�0

i we show that

m�
i 2 S

M;�
i . Pick any mi 2 SM;�

i and �mi;�
i 2 �(M�i) satisfying �

mi;�
i (m�i) > 0) mj 2 SM;�

j for

all j 6= i; and

ui (f (�) ; �) =
X
m�i

�mi;�
i (m�i)ui (g (mi;m�i) ; �) �

X
m�i

�mi;�
i (m�i)ui

�
g
�
m0
i;m�i

�
; �
�

(6)

for any m0
i 2 Mi. Note that since SM;� � SM;�0 , we have that �mi;�

i (m�i) > 0 ) mj 2 SM;�0

j for

all j 6= i; in addition, m�
i 2 SM;�0

i and so g (m�
i ;m�i) = f(�0) = f(�) for any m�i such that

�mi;�
i (m�i) > 0. HenceX

m�i

�mi;�
i (m�i)ui (g (m

�
i ;m�i) ; �) = ui (f (�) ; �) =

X
m�i

�mi;�
i (m�i)ui (g (mi;m�i) ; �) ; (7)

and thus (6) and (7) together show that m�
i is a best response against �

mi;�
i in state � which proves

that m�
i 2 S

M;�
i , as claimed.
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It is clear that Proposition 1 is obtained as a corollary of Lemma 1.

Oury and Tercieux (2009) have shown that Maskin monotonicity is a necessary condition for

�continuous� partial implementation of a social choice function, where �continuous�means that

the direct mechanism itself must work for types that are close to the complete information types

in the product topology. They also show that full implementation in rationalizable strategies is

necessary. Hence, an alternative way to prove the necessity of Maskin monotonicity would be to

use this latter result and Proposition 1.

We need two extra conditions for the su¢ ciency result.

De�nition 3 (Responsive Social Choice Function)

Social choice function f is responsive if � 6= �0 ) f(�) 6= f(�0).

The notion of responsiveness requires that the social choice function �responds�to a change in

the state with a change in the social allocation.

De�nition 4 (No Worst Alternative)

Social choice function f satis�es �no worst alternative� (NWA) if, for each i and �, there exists

y
i
(�) such that

ui (f (�) ; �) > ui

�
y
i
(�) ; �

�
: (8)

Property NWA requires that an agent never gets his worst outcome under the social choice

function. The NWA property appears in Cabrales and Serrano (2008) as a su¢ cient condition to

guarantee implementation in best-response dynamics. Given the set of allocations fy
i
(�)g�2�, we

de�ne the average allocation y
i
of this set by setting

y
i
, 1

#�

X
�2�

y
i
(�) : (9)

Note that under NWA, for all � and all i, there exists yi(�) such that

ui(yi(�); �) > ui(yi; �); (10)

this can be established by de�ning yi(�) as follows:

yi(�) ,
1

#�

X
�̂ 6=�

y
i
(�̂) +

1

#�
f(�):

We also de�ne the average allocation y of the set fy
i
gi2I by setting

y , 1

I

X
i2I

y
i
:
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Here again, we note that under NWA, for all � and all i, there exists y�i (�) such that

ui(y
�
i (�); �) > ui(y; �); (11)

where the above inequality clearly holds after de�ning y�i (�) as follows:

y�i (�) ,
1

I

X
j 6=i

y
j
+
1

I
yi(�):

We now construct an auxiliary set of allocations, denoted by fzi
�
�; �0

�
g�;�0 , which uses the existence

of the allocations fy
i
(�)g�2�. The allocations fzi

�
�; �0

�
g�;�0 are going to appear in the canonical

mechanism to be de�ned shortly where they guarantee the existence of better response for agent i

should the remaining agents choose to misreport the true state. In particular, the following Lemma

establishes that for agent i the allocation zi
�
�; �0

�
represents an improvement if the true state is �

but the other agents misreport it to be �0. It also establishes that zi
�
�; �0

�
would not constitute an

improvement relative to f
�
�0
�
if the true state were indeed �0.

Lemma 2

If social choice function f satis�es �no worst alternative� (NWA) then for each player i, there

exists a collection of lotteries
�
zi
�
�; �0

�	
�;�0

such that for all �; �0 :

ui
�
f
�
�0
�
; �0
�
> ui

�
zi
�
�; �0

�
; �0
�
; (12)

and for � 6= �0 :
ui
�
zi
�
�; �0

�
; �
�
> ui

�
zi
�
�0; �0

�
; �
�
. (13)

Proof. Based on the allocations fy
i
(�)g�2� from De�nition 4, we de�ne our collection of

lotteries as follows. First, for all �0:

zi
�
�0; �0

�
, (1� ") y

i

�
�0
�
+ "y

i
,

with y
i
as de�ned in (9), and for all �; �0 with � 6= �0:

zi
�
�; �0

�
, (1� ") y

i

�
�0
�
+

"

#�

0@X
�̂ 6=�

y
i
(�̂) + f (�)

1A :
By NWA and the �niteness of the state space �, we can �nd a su¢ ciently small, but positive, " > 0

such that for all � and �0: ui
�
f
�
�0
�
; �0
�
> ui

�
zi
�
�; �0

�
; �0
�
which establishes inequality (12). Now

we observe that the only di¤erence between zi
�
�0; �0

�
and zi

�
�; �0

�
is the fact that the lottery y

i
(�)

9



is replaced by the lottery f (�). But now by NWA, this is clearly increasing the expected utility of

agent i in state �, and hence we have for all �; �0 with � 6= �0 :

ui
�
zi
�
�; �0

�
; �
�
> ui

�
zi
�
�0; �0

�
; �
�
,

which establishes the strict inequality (13).

We establish the su¢ cient conditions for implementation in rationalizable strategies by means

of a canonical mechanism. The canonical mechanism shares many basic features with the imple-

mentation mechanism suggested by Maskin and Sjostrom (2004) to establish complete information

implementation in the presence of mixed strategies, and is a modi�cation of the original mechanism

suggested by Maskin (1999). The aforementioned allocations
�
zi
�
�; �0

�	
�;�0

appear in the mech-

anism if agent i reports a state � di¤erent from the reported state �0 by all the other agents. In

this case, the allocation zi
�
�0; �0

�
is chosen with positive probability, yet this probability can be

lowered by a suitable message of agent i and be replaced by a more favorable allocation zi
�
�; �0

�
.

In the Proposition below, we show that Maskin monotonicity together with NWA are su¢ cient

for rationalizable implementation. The fact that we do not refer to strict Maskin monotonicity

in this statement may seem surprising given that in Proposition 1 we showed that strict Maskin

monotonicity is a necessary condition for rationalizable implementation. This is due to the simple

fact that under NWA, strict Maskin monotonicity and Maskin monotonicity are equivalent.4

Proposition 2 (Su¢ cient Conditions)

If I � 3, f is responsive, satis�es Maskin monotonicity and NWA, then f is implementable in

rationalizable strategies.

Proof. We establish the result by constructing an implementing mechanism M = (M; g).

First, recall that by de�nition of Maskin monotonicity, for all � and �0 such that f (�) 6= f
�
�0
�
,

there exist i and y(�; �0) 2 Y with ui (f (�) ; �) � ui
�
y(�; �0); �

�
and ui

�
y(�; �0); �0

�
> ui

�
f (�) ; �0

�
.

We de�ne the following �nite set of lotteries:

Y =
�
zi
�
�; �0

�	
i;�;�0

[
�
y
�
�; �0

�	
f�;�0jf(�) 6=f(�0)g [ fy

�
i (�)gi;�;

where the collection
�
zi
�
�; �0

�	
i;�;�0

has been de�ned in Lemma 2 while the collection fy�i (�)gi;�
has been established in (11).

4To see this just note that if f is Maskin monotonic then f(�) 6= f(�0) implies the existence of some i and

y satisfying ui (f (�) ; �) � ui (y; �) and ui (y; �0) > ui (f (�) ; �
0). Now, under NWA, there exists y

i
(�) such that

ui (f (�) ; �) > ui
�
y
i
(�) ; �

�
. Now if one sets ~y = "y

i
(�) + (1� ")y, for " small enough we get ui (f (�) ; �) > ui (~y; �)

and ui (y; �0) > ui (f (�) ; �0), showing that f is strict Maskin monotonic.
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Each agent i sends a message mi =
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
, where m1

i 2 �, m2
i 2 Z+, m3

i : � !
Y;m4

i 2 Y. The third component of the message pro�le will allow agent i to suggest an allocation
m3
i (�) contingent on all the other agents j 6= i reporting m1

j = �. The outcome function will make

use of the �uniformly worse outcome�de�ned earlier by y. Now the outcome g (m) is determined

by the following rules:

Rule 1: If m1
i = � and m

2
i = 1 for all i, pick f (�).

Rule 2: If there exists i 2 I �called the deviating player �such that
�
m1
j ;m

2
j

�
= (�; 1) for all j 6= i

and
�
m1
i ;m

2
i

�
6= (�; 1), then we go to two subrules:

(i): if ui (f (�) ; �) � ui
�
m3
i (�) ; �

�
, pick m3

i (�) with probability 1 � 1=(m2
i + 1) and zi (�; �) with

probability 1=(m2
i + 1);

(ii): if ui (f (�) ; �) < ui
�
m3
i (�) ; �

�
, pick zi (�; �) with probability 1.

Rule 3: In all other cases, we identify a pivotal agent i by requiring that m2
i � m2

j for all j 2 I and
that if for j 6= i; m2

i = m
2
j , then i < j. The rule then requires that with probability 1� 1=(m2

i +1)

we pick m4
i , and with probability 1=(m

2
i + 1) we pick y.

Claim 1. It is never a best reply for agent i to send a message with m2
i > 1 (i.e., mi 2 b�i

�
S
�
)

m2
i = 1).

Proof of Claim 1. We proceed by contradiction and suppose that mi =
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
2 SM;�

i

and m2
i > 1. Then for any pro�le of messages m�i that player i�s opponents may play, (mi;m�i)

will trigger either Rule 2 or Rule 3. But in this case, whatever agent i�s beliefs �i 2 �(M�i)

about the other agents�messages, his payo¤ can be increased by modifying mi appropriately, in

particular by increasing the integer choice from m2
i . To see this, denote the set of messages of all

agents excluding i in which Rule 2 is triggered by:

M2
�i ,

�
m�i 2M�i

��m1
j = �

0 and m2
j = 1 for some �

0 for all j 6= i
	
; (14)

and the set of messages of all agents excluding i in which Rule 3 is triggered as the complement

set:

M3
�i ,M�i n M2

�i: (15)

Suppose �rst that agent i has a belief �i 2 �(M�i) under which Rule 3 is triggered with positive

probability, so that �i
�
M3
�i
�
> 0. Note that if agent i plays mi; with strictly positive probability

y is provided. Hence, because from (11), y�i (�) 2 Y is such that ui(y�i (�); �) > ui(y; �), i�s expected
utility conditional on Rule 3 satis�es:X

m�i2M3
�i

�i (m�i)ui(g(mi;m�i); �) <
X

m�i2M3
�i

�i(m�i)max
y2Y

ui(y; �):

11



Now, if i deviates to bmi = (bm1
i ; bm2

i ; bm3
i ; bm4

i ) where bm4
i 2 argmaxy2Y ui(y; �), it is easily checked

that i�s expected utility conditional on Rule 3 tends toX
m�i2M3

�i

�i(m�i)max
y2Y

ui(y; �)

as bm2
i tends to in�nity. Thus, player i can always improve his expected payo¤ conditional on Rule

3 by deviating from mi to bmi and announcing bm2
i large enough.

Now suppose that agent i believes that Rule 2 will be triggered with positive probability, so

that �i
�
M2
�i
�
> 0. We again consider a deviation to bmi = (bm1

i ; bm2
i ; bm3

i ; bm4
i ) and observe that the

choice of bm4
i does not a¤ect the outcome of the mechanism conditional on Rule 2. We also note

that for any m�i 2 M2
�i such that �i (m�i) > 0, (mi;m�i) does not trigger Rule 2(ii). Indeed, if

it were the case, we would have ui(g(mi;m�i); �) = ui(zi(m
1
�i;m

1
�i); �). We have to distinguish

two cases: whether players j 6= i send message � or not. First, consider the case where m1
�i 6= �.5

Now, player i could change mi to bmi having bm3
i (m

1
�i) = zi(�;m

1
�i) and keeping mi unchanged

otherwise. By Lemma 2, ui
�
f
�
m1
�i
�
;m1

�i
�
> ui(zi(�;m

1
�i);m

1
�i) = ui

� bm3
i

�
m1
�i
�
;m1

�i
�
, and so by

construction of the mechanism, (bmi;m�i) now triggers Rule 2(i). Again using Lemma 2 and the

fact that m1
�i 6= �, we get

ui(g(mi;m�i); �) = ui(zi(m
1
�i;m

1
�i); �)

<
�
1� 1=(m2

i + 1)
�
ui(zi(�;m

1
�i); �) +

�
1=(m2

i + 1)
�
ui(zi(m

1
�i;m

1
�i); �) = ui(g(bmi;m�i); �):

Hence, the expected utility of player i would strictly increase, which yields the contradiction.

Consider the second case where m1
�i = �, player i could change mi to bmi having bmi(m

1
�i) = f(�)

and keeping mi unchanged otherwise. It is clear that by construction of the mechanism, (bmi;m�i)

now triggers Rule 2(i). Since Lemma 2 gives us

ui(g(mi;m�i); �) = ui(zi(m
1
�i;m

1
�i); �)

<
�
1� 1=(m2

i + 1)
�
ui(f(�); �) +

�
1=(m2

i + 1)
�
ui(zi (�; �) ; �) = ui(g(bmi;m�i); �);

the expected utility of player i would strictly increase, which here again yields a contradiction. So

now we know that for any m�i 2 M2
�i such that �i (m�i) > 0, (mi;m�i) does not trigger Rule 2

(ii). Using a similar reasoning, it is easily shown that for any m�i 2M2
�i such that �i (m�i) > 0,

we must have ui(m3
i (m

1
�i); �) > ui(zi(m

1
�i;m

1
�i); �); hence the expected payo¤ conditional on Rule

2 from mi :X
m�i2M2

�i

�i (m�i)
��
1� 1=(m2

i + 1)
�
ui(m

3
i (m

1
�i); �) + (1=(m

2
i + 1))ui(zi(m

1
�i;m

1
�i); �)

�
5We sometimes abuse notations and write m1

�i = � whenever m
1
j = � for all j 6= i.
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is strictly increasing inm2
i . It follows that the choice of bmi with bm2

i large and strictly larger thanm
2
i

strictly improves the expected utility of agent i if either Rule 2 or 3 is triggered, which yields the

desired contradiction.

Claim 2.
�
�; 1;m3

i ;m
4
i

�
2 SM;�

i for all i, �, m3
i , m

4
i .

Proof of Claim 2. Suppose that player i in state � puts probability 1 on each other agent j sending

a message of the form (�; 1;m3
j ;m

4
j ). If player i announces a message of the form

�
�; 1;m3

i ;m
4
i

�
,

he gets payo¤ ui (f (�) ; �). If he announces a message not of this form, the outcome is determined

by Rule 2. Since by Lemma 2, ui(zi(�; �); �) < ui(f(�); �), it is clear that by construction of the

mechanism, his payo¤ from invoking Rule 2 is bounded above by ui (f (�) ; �).

Claim 3. If mi =
�
�0; 1;m3

i ;m
4
i

�
2 SM;�

i , then �0 = �.

Proof of Claim 3. Suppose mi =
�
�0; 1;m3

i ;m
4
i

�
2 SM;�

i . Given the message mi, we can de�ne the

set of messages of the remaining agents which trigger Rule 1, 2 or 3, respectively. In particular, we

de�ne M1
�i as the set of m�i 2M�i such that (mi;m�i) triggers Rule 1. Similarly, M

2;i
�i is de�ned

as the set of m�i 2M�i such that (mi;m�i) triggers Rule 2 where player i is the deviating player.

Now consider a given belief �i of agent i. If �i
��
m�i 2M1

�i (mi)
	�
= 0, then Rule 2 or 3 will be

triggered with probability one. Although, Rule 2 can now be triggered with a �deviating player�

being di¤erent of i, it is easily checked that a similar argument as in Claim 1 applies and so the

message mi cannot be a best reply by agent i. Suppose now that the belief �i of agent i is such

that:

0 < �i
��
m�i 2M1

�i
	�
< 1. (16)

While we still argue that agent i can strictly increase his expected utility by selecting an integerbm2
i > 1, we observe that a complication arises as with �i given by (16), a choice of bm2

i > 1 leads

from an allocation determined by Rule 1 to an allocation determined by Rule 2, and hence the

realization of an unfavorable allocation y with positive probability. But now we observe that by

selecting bmi such that:

bm3
i

�
�̂
�
=

8<: f
�
�0
�
; if �̂ = �0,

m3
i

�
�̂
�
; if otherwise,

bm4
i 2 argmaxy2Y ui(y; �) and by choosing an integer bm2

i su¢ ciently large, the small loss in Rule 2

can always be o¤set by a gain in Rule 3 relative to the allocation achieved under g (mi;m�i). More

formally, for mi =
�
�0; 1;m3

i ;m
4
i

�
; since 0 < �i

��
m�i 2M1

�i
	�
< 1 and since �as claimed before �

for all m�i 2M2;i
�i such that �i(m�i) > 0, ui(m3

i (m
1
�i); �) > ui(zi(m

1
�i;m

1
�i); �), i�s expected payo¤

from playing mi is strictly lower thanX
m�i2M1

�i

�i (m�i)ui(f(�
0); �)+

X
m�i2M2;i

�i

�i (m�i)ui(m
3
i (m

1
�i); �)+

X
m�i =2M1

�i[M
2;i
�i

�i (m�i)max
y2Y

ui(y; �)

13



while for bmi = (�
0; bm2

i ; bm3
i ; bm4

i ); it is easily checked that as bm2
i tends to in�nity, i�s expected payo¤s

tend toward the expression above. Hence, choosing bm2
i large enough, bmi is a better response against

�i for player i than mi, a contradiction.

So if mi =
�
�0; 1;m3

i ;m
4
i

�
2 SM;�

i , it follows player i must be convinced that each other player

must be choosing a message of the form
�
�0; 1;m3

j ;m
4
j

�
, and hence �i

��
m�i 2M1

�i
	�
= 1. Thus

there must exist a message of the form mj =
�
�0; 1;m3

j ;m
4
j

�
2 SM;�

j for all j. Now, proceed by

contradiction and assume that f(�0) 6= f(�). By Maskin monotonicity, we know that there exist j
with uj

�
f
�
�0
�
; �0
�
� uj

�
y(�0; �); �0

�
and uj

�
y(�0; �); �

�
> uj

�
f
�
�0
�
; �
�
. By the above argument,

we know that player j�s belief against which mj =
�
�0; 1;m3

j ;m
4
j

�
is a best reply assigns probability

one to each player l 6= j sending a message of the form ml =
�
�0; 1;m3

l ;m
4
l

�
. Hence, player j�s

expected payo¤ from playing mj is uj(f(�0); �); while if j deviates to m̂j =
�
�0; m̂2

j ; m̂
3
j ;m

4
j

�
; where

m̂2
j > 1 and

m̂3
j (�̂) =

8<: y(�0; �); if �̂ = �0,

m3
i

�
�̂
�
; if otherwise,

player j believes with probability one that Rule 2(i) will be triggered. Hence, player j�s expected

payo¤ would be �
1� 1=(bm2

j + 1)
�
uj(y(�

0; �); �) + (1=(bm2
j + 1))uj(zj(�

0; �0); �):

Note that as m̂2
j tends to in�nity, this expression tends to uj(y(�

0; �); �) which is strictly larger than

uj
�
f
�
�0
�
; �
�
. Hence for m̂2

j large enough, m̂j is better response for player j than
�
�0; 1;m3

j ;m
4
j

�
,

a contradiction. Thus f
�
�0
�
= f (�). Since the social choice function has been assumed to be

responsive, we get �0 = � as claimed.

Completion of proof. Claims 1, 2 and 3 together imply that for each � : SM;�
i 6= ? and mi 2

SM;�
i ) m2

i = 1 and m
1
i = �. Thus S

M;� 6= ? and m 2 SM;� ) g (m) = f (�).

The mechanismM used here allows each agent to propose a menu of choicesm3
i =

�
m3
i (�)

	
�2�.

The menu m3
i gives agent i the opportunity to select an appropriate allocation in case that Rule 2

is triggered. In our su¢ ciency argument, the NWA property replaces the no veto property which

commonly appears in the su¢ ciency argument for implementation in Nash equilibrium. Yet, in

terms of the proof, the role of the NWA property is quite distinct from the no veto property. The

NWA property guarantees that in the augmented mechanism, any report in state � in which an

agent expresses his disagreement with the remaining agents (i.e. m2
i > 1) cannot be a rational-

izable report. By contrast, the no veto property guaranteed that if an agent were to express his

disagreement, then further disagreement by other agents would only be possible in equilibrium if

it would lead to the same equilibrium allocation as prescribed f (�).
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We note that our mechanism not only implements in rationalizable messages but also implements

in Nash equilibrium (the proof of Claim 2 above indeed establishes the existence of a pure Nash

equilibrium at each state). In recent work, Bochet (2007) and Benoit and Ok (2008) report su¢ cient

conditions for implementation in Nash equilibrium strategies using stochastic mechanisms. Their

conditions, the top strict di¤erence condition and the top coincidence condition, respectively, do

not imply nor are they implied by the NWA property required for su¢ ciency. In related work,

Serrano and Vohra (2007) have used stochastic implementing mechanisms to provide weak su¢ cient

conditions for Bayesian implementation in mixed strategy Bayes Nash equilibrium.

4 The Non-Responsive Case

In this section, we discuss extensions of our results to the cases when the social choice function is

not responsive. We will provide a strengthening of strict Maskin monotonicity that can be shown

to be su¢ cient (together with a strengthening of the NWA) even if the social choice function is

not responsive. We also show that the strengthening of strict Maskin monotonicity is actually

necessary for rationalizable implementation given a weak condition on the class of mechanisms to

be considered. This weak condition is trivially satis�ed when the social choice function is responsive.

Now, given a social choice function f , let us consider the unique partition of� : Pf = f�zgz2f(�)
such that

�z = f� 2 � jf (�) = z g . (17)

We now introduce the following notion which reduces to strict Maskin monotonicity in case f is

responsive.

De�nition 5 (Strict Maskin Monotonicity�)

Social choice function f satis�es strict Maskin monotonicity� if there exists a partition P of � �ner
than Pf s.t. for any � :

1. �0 2 P(�) whenever for all i and yh
for all b� 2 P(�) : ui �f (�) ;b�� > ui �y;b��i) �

ui
�
f (�) ; �0

�
� ui

�
y; �0

��
; (18)

or, equivalently,

2. �0 =2 P(�) implies for some i and y

ui
�
y; �0

�
> ui

�
f (�) ; �0

�
and ui

�
f (�) ;b�� > ui �y;b�� for all b� 2 P(�). (19)
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Before we establish the necessary and su¢ cient conditions, we brie�y describe the complications

that arise with a non-responsive social choice function. By de�nition, under a non-responsive

social choice function there are at least two states, � and �0, that lead to the same social choice:

f (�) = f
�
�0
�
= z. Now, a priori, the principal would not need to know whether it is the state �

or �0 which leads to the realization of the social choice z. In fact, it would appear that it would

be su¢ cient to learn that the realized state belongs to the set �z of states which lead to the social

choice z. Now, such a coarse reporting protocol as suggested by the above partition Pf would
be su¢ cient if the agents were known to report truthfully, yet a problem arises if they might

not report truthfully. For, if an agent now alleges collusive behavior of the remaining agents, the

principal may lack the information to verify whether the whistle-blower himself is behaving in an

incentive compatible manner. After all, the principal would merely know that the reported state

is in some set �z but would not know the identity of the state itself. Thus, while it might not be

useful to distinguish between any two states �; �0 2 �z if the agents were to report truthfully, it
might be critical to distinguish between � and �0 in order to fend o¤ undesirable equilibrium play

by the agents. This discussion might therefore suggest that the inequalities (18), or alternatively

(19), should be satis�ed for the �nest possible partition of states. But, as we argue next, such a

condition would (i) require too much to constitute a necessary condition, and (ii) be impossible to

satisfy by any implementing mechanism.

The �rst observation is straightforward to establish. Consider for the moment the strict Maskin

monotonicity� condition in the version of (19), which we might refer to as the whistle-blower

inequality. Now suppose that the social choice problem is such that the inequalities (19) are

satis�ed even for the coarse partition Pf itself. In this case, we would �nd that the principal would
not need to distinguish between any two states �; �0 2 �z, either for truthtelling or, by condition
(19), for whistle-blowing behavior.

The second observation stems from an earlier result. Lemma 1 gave a su¢ cient condition under

which the set of rationalizable actions for any pair of states, � and �0, have to be identical for all

agents. For the purpose here we can restrict attention to any two states with �; �0 2 �z. In this
case, the condition (1) reads as follows:

ui (z; �) > ui (y; �)) ui
�
z; �0

�
� ui

�
y; �0

�
for all i and y.

In words, if for every agent i, the upper contour set (relative to the allocation f (�) = f
�
�0
�
= z),

at one state, say �0, is included in the upper contour set of the other state, say �, then the sets of

rationalizable actions have to coincide. But of course, once the sets of rationalizable actions have

to agree, it will be impossible to distinguish behavior in state � from behavior in state �0. The

inclusion property of the upper contour sets, given by condition (1), thus imposes an upper bound
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on how �ne the partition P can be chosen while remaining compatible with rationalizable behavior.
We �nally observe that the partition P may yet have to be coarser than is indicated by the pairwise
inclusion property. To see this, consider �; �0; �00 2 �z, and suppose that the upper contour sets
(relative to the allocation z) in state �0 as well as in state �00 are included in the upper contour

sets in state �, but that the upper contour sets in the state �0 and �00 themselves do not display an

inclusive relationship. Now, Lemma 1 tells us that SM;� = SM;�0 and that SM;� = SM;�00 which of

course implies that SM;�0 = SM;�00 even though the condition (1) does not apply to the states �0

and �00 themselves.

As we already stated, we can prove that strict Maskin monotonicity� is necessary under a weak

condition on the class of mechanisms we consider. This condition states that for any state � and

any rationalizable message mi of any player i in this state, the message mi is also best-response to

some belief with support in the set of rationalizable actions of the other players and for any stateb� such that SM;b� = SM;�, best responses against this belief are non-empty.

De�nition 6 (Best Response Property)

Given a social choice function f , a mechanism M has the best-response property if for all � and

all mi 2 SM;�
i , there exists �mi;�

i 2 �(M�i) satisfying �
mi;�
i (m�i) > 0 ) mj 2 SM;�

j for each

j 6= i; and such that mi is a best response against �
mi;�
i in state � and

argmax
m0
i

X
m�i

�mi;�
i (m�i)ui(g(m

0
i;m�i);b�) 6= ;

for all b� such that SM;b� = SM;�.

Note that if f is responsive then any implementing mechanism must satisfy SM;b� = SM;� )b� = � and so any implementing mechanism must have the best-response property. Moreover, the

best-response property also holds for any pair �; �0 which are directly related through the inclusion

property (1). The best-response property then secures that it applies also to pro�les which are

indirectly related as in the example of �; �0; �00 2 �z discussed above. Hence, the subsequent

Proposition 3 generalizes Proposition 1 above.

Proposition 3 (Necessary Conditions)

If f is implementable in rationalizable strategies by a mechanismM having the best-response prop-

erty, then f satis�es strict Maskin monotonicity�.

In order to show this, we prove the following Lemma that generalizes Lemma 1.
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Lemma 3

Assume the existence of a mechanism M =
�
(Mi)

I
i=1 ; g

�
, that has the best-response property and

that implements f in rationalizable strategies. Pick � and �0 satisfying condition (18) where the

partition P is assumed to be P(�00) =
n
~� 2 �

���SM;�00 = SM;~�
o
for any �00. We have SM;� = SM;�0.

Proof. Fix any mechanism M =
�
(Mi)

I
i=1 ; g

�
that has the best-response property and that

implements f and pick � and �0 satisfying condition (18) for P(�00) =
n
~� 2 �

���SM;�00 = SM;~�
o
i.e.

for all i and yh
for all b� 2 P(�) : ui �f (�) ;b�� > ui �y;b��i) �

ui
�
f (�) ; �0

�
� ui

�
y; �0

��
.

Note that by construction, b� 2 P(�) ) SM;b� = SM;�. In addition, since M implements f in

rationalizable strategies, for any state in P(�00), f picks the outcome f(�00) and so P is �ner than

Pf .
We �rst show that SM;� � SM;�0 . Because b�

�
SM;�

�
= SM;�, SM;� has the best response

property in state � i.e. for all player i and all mi 2 SM;�
i ; there exists �mi;�

i 2 �(M�i) such that

�mi;�
i (m�i) > 0) mj 2 SM;�

j for each j 6= i; andX
m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i); �) �

X
m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i); �)

for all m0
i 2Mi. In addition, sinceM has the best response property, �mi;�

i can be chosen so that:

argmax
m0
i

X
m�i

�mi;�
i (m�i)ui(g(m

0
i;m�i);b�) 6= ;;

for all b� 2 P(�). This in turn implies that for all b� 2 P(�) :X
m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i);b�) � X

m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i);b�) (20)

for all m0
i 2Mi. To see this, observe that if it were not true, we would have for some b� 2 P(�) :X

m�i

�mi;�
i (m�i)ui(g(m

�
i ;m�i);b�) > X

m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i);b�) = ui(f(�);b�)

wherem�
i denotes a best response to �

mi;�
i in state b� and so g(m�

i ;m�i) 6= f(�) for some (m�
i ;m�i) 2

SM;�̂ which contradicts the fact thatM =
�
(Mi)

I
i=1 ; g

�
implements f .

Now, we want to show that mi is also a best response against �
mi;�
i in state �0. Since i and

mi 2 SM;�
i have been �xed arbitrarily, this will prove that SM;� has the best response property in
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state �0 and so that SM;� � SM;�0 as claimed. Note �rst that for anym�i such that �
mi;�
i (m�i) > 0;

m�i 2 SM;�
�i and so because mi 2 SM;�

i , we have g(mi;m�i) = f (�). Thus,X
m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i); �

0) = ui(f(�); �
0) =

X
m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i); �

0) (21)

for all m0
i 2 S

M;�
i . In addition, we claim that for all b� 2 P(�) :X

m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i);b�) = ui(f(�);b�) > X

m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i);b�) (22)

for any m0
i =2 S

M;�
i . Indeed, by (20), the above is true with a weak inequality. Now if an equality

were to hold, some m0
i =2 S

M;�
i would be a best response against �mi;�

i in some state b�. Thus the set�
fm0

ig [ S
M;b�
i

�
� SM;b�

�i =
�
fm0

ig [ S
M;�
i

�
� SM;�

�i would have the best response property in stateb� implying that m0
i 2 S

M;b�
i = SM;�

i which is false by assumption.

Now, by assumption, we know thathb� 2 P(�) : ui �f (�) ;b�� > ui �y;b��i) �
ui
�
f (�) ; �0

�
� ui

�
y; �0

��
for all i and y

and so applying this to the lotteries y ,
X
m�i

�mi;�
i (m�i)g(m

0
i;m�i), equation (22) yields

X
m�i2M�i

�mi;�
i (m�i)ui(g(mi;m�i); �

0) = ui(f(�); �
0) �

X
m�i2M�i

�mi;�
i (m�i)ui(g(m

0
i;m�i); �

0) (23)

for any m0
i =2 S

M;�
i . Finally, (21) and (23) ensure that mi is also a best response against �

mi;�
i in

state �0. Hence, SM;� � SM;�0 as claimed.

To complete the proof, we have to show that SM;� � SM;�0 . The argument is the same as in

Lemma 1.

Note that if f is implementable by a mechanismM that has the best response property, then

if one were to pick the partition P given by P(�00) =
n
~� 2 �

���SM;�00 = SM;~�
o
for any �00, then

whenever � and �0 satisfy condition (18), by Lemma 3, we must have SM;� = SM;�0 and so, by

de�nition, �0 2 P(�). Hence, Proposition 3 is obtained as a corollary of Lemma 3.
As mentioned earlier, it is easily checked that our su¢ ciency argument can be extended to this

setting provided that a strengthening of NWA is used. To be more speci�c, if one assumes that f

is (strict) Maskin monotonic and that for any state �, there exists some outcome that is worse than

the outcome selected by f at any state in the partition cell P(�), then we can build a mechanism
similar to the one built in the proof of Proposition 2.6 In the revised mechanism each player is

6As for Proposition 2, the proof would go through if we just considered Maskin monotonicity� instead of strict

Maskin monotonicity�.
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asked to report a partition cell P in P, an integer, a mapping from P to Y and a lottery in Y.
Essentially, everything would go as if we were replacing each state � by the partition cell containing

�. In particular, as in the responsive case, we can show that for any rationalizable message, using

condition (19) in the de�nition of Maskin monotonicity�, each agent will report truthfully, i.e., will

report P(�) whenever the true state is � and announce an integer equal to 1. The modi�ed notions
of strict Maskin monotonicity and NWA as well as the su¢ ciency argument itself are presented in

detail in the appendix.

5 Concluding Remarks

We conclude with a few observations. First, this paper focused on social choice functions, let us

brie�y discuss the case of social choice correspondences. In Proposition 1 and 2 we reported results

for social choice functions only. A social choice correspondence de�nes a set of permissible alloca-

tions and rationalizability is a set-based solution concept. Thus, there are a number of plausible

extensions of the de�nition of rationalizable implementation to social choice correspondences. The

extensions basically vary to the extent that one wishes to restrict attention to selections in the

set of outcome pro�les.7 We now show that Maskin monotonicity may not even be a necessary

condition for implementation in rationalizable strategies (according to at least one natural de�ni-

tion of these terms).8 We describe the di¢ culty of social choice correspondences with the following

approach (and subsequent example). A (pure outcome) social choice correspondence (SCC) is a

mapping F : � ! 2Z
�
?. A social choice correspondence F is implementable in rationalizable

strategies if there exists a mechanismM with g
�
SM;�

�
= F (�) for all � 2 �. A SCC F is Maskin

monotonic if: whenever z� 2 F (�) and ui (z�; �) � ui (z; �) ) ui
�
z�; �0

�
� ui

�
z; �0

�
for all i and

z; then z� 2 F
�
�0
�
. Note that this de�nition is given in terms of pure outcomes. Now consider

the following example. There are 2 agents; � = f�; �g; Z = fa; b; c; dg; payo¤s are given by the
following table:

u (�; �) a b c d

� 1 + "; 0 0; 1 + " 1; 1 1 + 2"; 1 + 2"

� 1 + "; 0 0; " 1; 1 1 + 2"; 1 + 2"

The social choice correspondence is F � (�) = fa; b; c; dg and F � (�) = fdg. Now we demonstrate

that F � is not Maskin monotonic. To see why, note that a 2 F � (�) and that ui (a; �) � ui (z; �))
7The issue already appears in incomplete information implementation literature, where it is common to use a

social choice set, a selection, rather than the social choice correspondence.
8As shown in Mezzetti and Renou (2009), a similar issue appears when one considers implementation in mixed

Nash equilibrium where �contrary to the usual requirement � implementation does not ask for each alternative in

the set of desired alternatives to be the outcome of a pure Nash equilibrium.
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ui (a; �) � ui (z; �) for all i and z. So Maskin monotonicity would require a 2 F � (�). But F � is
implementable in rationalizable strategies. Consider the mechanismM with Mi =

�
m1
i ;m

2
i ;m

3
i

	
and deterministic g given by the following matrix:

g (�) m1
2 m2

2 m3
2

m1
1 a b c

m2
1 b a c

m3
1 c c d

Now, for each i, SM;�
i;k = Mi for all k and thus S

M;�
i = Mi. Thus g[SM;�] = fa; b; c; dg = F � (�).

But in state �, we have in subsequent rounds of elimination:

SM;�
1;0 =

�
m1
1;m

2
1;m

3
1

	
and SM;�

2;0 =
�
m1
2;m

2
2;m

3
2

	
;

SM;�
1;1 =

�
m1
1;m

2
1;m

3
1

	
and SM;�

2;1 =
�
m3
2

	
;

SM;�
1;2 =

�
m3
1

	
and SM;�

2;2 =
�
m3
2

	
;

and thus g[SM;� ] = fdg = F � (�). We thus showed that F � is implementable in rationalizable

strategies, yet did not satisfy Maskin monotonicity.

Second, Proposition 1 exhibits a necessary condition for rationalizable implementation that is

strictly stronger than the usual one for Nash implementation. Here we provide an example of a

social choice function that is not rationalizable implementable but which is Nash-implementable.

There are 3 agents; � = f�; �g; Z = fa; b; c; dg; payo¤s are given by the following table:

u (�; �) a b c d

� 0; 0; 0 0; 1; 0 1; 0; 0 0; 0; 1

� 0; 0; 0 1; 1; 1 0; 0; 0 0; 0; 0

The social choice correspondence is f (�) = a and f (�) = b. It is easily checked that f is Maskin

monotonic (u1(f (�) ; �) = u1(b; �) but u1(f (�) ; �) < u1(b; �); similarly, u1(f (�) ; �) > u1(c; �)

but u1(f (�) ; �) < u1(c; �)) and satis�es no-veto-power. Hence, standard arguments (see Maskin

(1999) and Maskin and Sjostrom (2004)) show that f is implementable in (pure or mixed) Nash

equilibrium. However, for any player i and y 2 �(Z) : ui(f (�) ; �) � ui(y; �) and so this social

choice function cannot be strict Maskin monotonic, and so it is not implementable in rationalizable

strategies.

Finally, from a purely game-theoretic point of view, the results presented in Proposition 1

and 2 may appear surprisingly strong. Given that we are investigating a social choice function,
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the notion of full implementation is akin to requiring that the game has a unique equilibrium

(outcome). The present implementation results then say that � provided that the social choice

function is responsive �a unique rationalizable outcome arises under (almost) the same conditions

as a unique Nash equilibrium outcome. This is noteworthy as the necessary and almost su¢ cient

condition of Maskin monotonicity is much weaker than the well-known conditions under which

there are close connections between Nash equilibrium and rationalizability, such as supermodular or

concave games. The Nash equilibrium results indicate the strength of the implementation approach

to reduce the number of equilibria. The arguments presented here complement and extend these

results. By using in�nite message spaces and stochastic allocations, we strengthen the positive

implementation results to the weaker solution concept of rationalizability.
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6 Appendix

In the appendix we provide a proof of our su¢ ciency result for the case that the social choice

function is not responsive. Assume that f satis�es strict Maskin monotonicity� with partition P.
We say that f satis�es the �no worst alternative��, not only when agents never get their worst

outcome under the social choice function but if for any state �, there is some outcome that is worst

than the outcome selected by f at any state in the element P(�) of the partition P. In the sequel,
we will write [�] for P(�) and sometimes abuse notations writing f ([�]) for f(�).

De�nition 7

Social choice function f satis�es �no worst alternative��(NWA�) if, for each i and [�], there exists

y
i
([�]) such that

ui

�
f (�) ;b�� > ui �yi([�]);b��

for each b� 2 [�].
Given a set of allocations fy

i
([�])g�2�, it is useful to de�ne the average allocation yi of this set

by setting

y
i
, 1

#P
X
[�]2P

y
i
([�]) :

Note that under NWA�, for all [�] and all i, there exists a yi([�]) such that

ui(y(i; [�]); �̂) > ui(yi; �̂); (24)

for all �̂ 2 [�], it is indeed easily checked that this is true for yi([�]) = 1
#P

P
[~�]2Pn[�] yi([

~�])+ 1
#P f(�).

It will also be useful to de�ne the average allocation y of the set fy
i
gi2I by setting

y , 1

I

X
i2I

y
i
:

Here again, we note that under NWA�, for all [�] and all i, there exists a y�(i; [�]) such that

ui(y
�(i; [�]); �̂) > ui(y; �̂); (25)

for all �̂ 2 [�]. It is indeed easily checked that this is true for y�i ([�]) = 1
I

P
j 6=i yj +

1
I yi([�]).

We now construct an auxiliary set of allocations, denoted by fzi
�
[�]; [�0]

�
g�;�0 , which uses the

existence of the allocations fy
i
([�])g�2�. Here is an analogous lemma to Lemma 2.
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Lemma 4

If social choice function f satis�es NWA�, then for each player i, there exists a collection of lotteries

fzi
�
[�]; [�0]

�
g�;�0 such that for all [�]; [�0] :

ui

�
f
�
�0
�
; �̂
�
> ui

�
zi
�
[�]; [�0]

�
; �̂
�
for all �̂ 2 [�0] (26)

and for [�] 6= [�0] :
ui
�
zi
�
[�]; [�0]

�
; �
�
> ui

�
zi
�
[�0]; [�0]

�
; �
�
. (27)

Proof. Based on the allocations fy
i
([�])g�2�, we de�ne our collection of lotteries as follows.

First, for all [�0]:

zi
�
[�0]; [�0]

�
, (1� ") y

i

�
[�0]
�
+ "y

i
,

with y
i
as de�ned in (24). In addition, for all [�]; [�0] with [�] 6= [�0] :

zi
�
[�]; [�0]

�
, (1� ") y

i

�
[�0]
�
+ "

0@ 1

#P
X

[�̂]2Pn[�]

y
i
([�̂]) +

1

#P f (�)

1A :
By NWA� and the �niteness of the state space �, we can �nd a su¢ ciently small, but positive, " > 0

such that for all [�] and [�0] : ui
�
f
�
�0
�
; �̂
�
> ui

�
zi
�
[�]; [�0]

�
; �̂
�
for all �̂ 2 [�0] which establishes

inequality (26). Now we observe that the only di¤erence between zi
�
[�0]; [�0]

�
and zi

�
[�]; [�0]

�
is the

fact that the lottery y
i
([�]) is replaced by the lottery f (�). But now by NWA�, this is clearly

increasing the expected utility of agent i in state �, and hence we have for all [�]; [�0] with [�] 6= [�0] :

ui
�
zi
�
[�]; [�0]

�
; �
�
> ui

�
zi
�
[�0]; [�0]

�
; �
�
,

which establishes the strict inequality (27).

We are now in a position to prove our su¢ ciency result.

Proposition 4 (Su¢ cient Conditions)

If I � 3 and f satis�es strict Maskin monotonicity� and NWA�, then f is implementable in

rationalizable strategies.

Proof. We establish the result by constructing an implementing mechanism M = (M; g).

First, recall that by de�nition of strict Maskin monotonicity�, for all � and �0 such that [�0] 6=
[�], there exists i and y([�]; �0) 2 Y with ui

�
y([�]; �0); �0

�
> ui

�
f (�) ; �0

�
and for all b� 2 [�] :

ui

�
f (�) ;b�� > ui �y([�]; �0);b��. We de�ne the following �nite set of lotteries:

Y =
�
zi
�
[�]; [�0]

�	
i;�;�0

[
�
y
�
[�]; �0

�	
�;�0:[�] 6=[�0] [ fy

�(i; [�])gi;�
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where the collection
�
zi
�
[�]; [�0]

�	
i;�;�0

has been de�ned in Lemma 4 while the collection fy�(i; [�])gi;�
has been established in (25).

Each agent i sends a message mi =
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
, where m1

i 2 P, m2
i 2 Z+, m3

i : P !
Y;m4

i 2 Y. The third component of the message pro�le will allow agent i to suggest an allocation
m3
i ([�]) contingent on all the other agents j 6= i reporting m1

j = [�]. The outcome function

will make use of the �uniformly worst outcome�de�ned earlier by y. Now the outcome g (m) is

determined by the following rules:

Rule 1: If m1
i = [�] and m

2
i = 1 for all i, pick f (�).

9

Rule 2: If there exists i 2 I �called the deviating player �such that
�
m1
j ;m

2
j

�
= ([�]; 1) for all

j 6= i and
�
m1
i ;m

2
i

�
6= ([�]; 1), then we go to two subrules:

(i): if for all b� 2 [�] : ui �f (�) ;b�� � ui �m3
i ([�]) ;

b��, pick m3
i ([�]) with probability 1� 1=(m2

i + 1)

and zi ([�]; [�]) with probability 1=(m2
i + 1);

(ii): if for some b� 2 [�] : ui �f (�) ;b�� < ui �m3
i ([�]) ;

b��, pick zi ([�]; [�]) with probability 1.
Rule 3: In all other cases, we identify a pivotal agent i by requiring that m2

i � m2
j for all j 2 I and

that if for j 6= i; m2
i = m

2
j , then i < j. The rule then requires that with probability 1� 1=(m2

i +1)

we pick m4
i , and with probability 1=(m

2
i + 1) we pick y.

Claim 1. It is never a best reply for agent i to send a message with m2
i > 1 (i.e., mi 2 b�i

�
S
�
)

m2
i = 1).

Proof for Claim 1. Proceed by contradiction and suppose mi =
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
2 SM;�

i and

m2
i > 1. Then for any pro�le of messages m�i player i�s opponents may play, (mi;m�i) will

trigger either Rule 2 or Rule 3. But in this case, whatever agent i�s beliefs �i 2 �(M�i) about the

other agents�messages, his payo¤ can be increased by modifying mi appropriately, in particular

by increasing the integer choice from m2
i . To see this, denote the set of messages of the remaining

agents in which Rule 2 is triggered by:

M2
�i ,

�
m�i 2M�i

��m1
j = [�

0] and m2
j = 1 for some [�

0] for all j 6= i
	
;

and the set of messages of the remaining agents in which Rule 3 is triggered is the complement set,

de�ned by:

M3
�i ,M�i n M2

�i:

Suppose �rst that agent i has a belief �i 2 �(M�i) under which Rule 3 is triggered with positive

probability, so that �i
�
M3
�i
�
> 0. Note that if agent i plays mi; with strictly positive probability

y is provided. Hence, because from (25), y�(i; [�]) 2 Y is such that ui(y�(i; [�]); �) > ui(y; �), i�s

expected utility conditional on Rule 3 i.e.,
P
m�i2M3

�i
�i (m�i)ui(g(mi;m�i); �); is strictly smaller

9This rule is well-de�ned because P is �ner than Pf .
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than
X

m�i2M3
�i

�i(m�i)maxy2Y ui(y; �). Now, if i deviates to bmi = (bm1
i ; bm2

i ; bm3
i ; bm4

i ) where bm4
i 2

argmaxy2Y ui(y; �), it is easily checked that i�s expected utility conditional on Rule 3 tends toX
m�i2M3

�i

�i(m�i)max
y2Y

ui(y; �)

as bm2
i tends to in�nity. Thus, player i can always improve his expected payo¤ conditional on Rule

3 deviating from mi to bmi and announcing bm2
i large enough.

Now suppose that agent i believes that Rule 2 will be triggered with positive probability, so

that �i
�
M2
�i
�
> 0. We again consider a deviation to bmi = (bm1

i ; bm2
i ; bm3

i ; bm4
i ) and observe that the

choice of bm4
i does not a¤ect the outcome of the mechanism conditional on Rule 2. We also note

that for any m�i 2M2
�i such that �i (m�i) > 0, (mi;m�i) does not trigger Rule 2(ii). Indeed, if it

were the case, we would have ui(g(mi;m�i); �) = ui(zi(m1
�i;m

1
�i); �). We have to distinguish two

cases: whether players j 6= i send message [�] or not. First, consider the case where10 m1
�i 6= [�],

player i could changemi to bmi having bm3
i (m

1
�i) = zi([�];m

1
�i) and keepingmi unchanged otherwise.

By Lemma 4, ui
�
f
�
m1
�i
�
;b�� > ui(zi([�];m1

�i);
b�) = ui �bm3

i

�
m1
�i
�
;b�� for all b� 2 m1

�i, and so by

construction of the mechanism, (bmi;m�i) now triggers Rule 2(i). Again using Lemma 4 and the

fact that m1
�i 6= [�], we get

ui(g(mi;m�i); �) = ui(zi(m
1
�i;m

1
�i); �)

<
�
1� 1=(m2

i + 1)
�
ui(zi([�];m

1
�i); �) +

�
1=(m2

i + 1)
�
ui(zi(m

1
�i;m

1
�i); �) = ui(g(bmi;m�i); �):

Hence, the expected utility of player i would strictly increase, which yields contradiction. Consider

the second case wherem1
�i = [�], player i could changemi to bmi having bmi(m

1
�i) = f(�) and keeping

mi unchanged otherwise. It is clear that by construction of the mechanism, (bmi;m�i) now triggers

Rule 2(i). Since Lemma 4 gives us

ui(g(mi;m�i); �) = ui(zi(m
1
�i;m

1
�i); �)

<
�
1� 1=(m2

i + 1)
�
ui(f(�); �) +

�
1=(m2

i + 1)
�
ui(zi ([�]; [�]) ; �) = ui(g(bmi;m�i); �)

the expected utility of player i would strictly increase, which here again yields a contradiction. So

now we know that for any m�i 2 M2
�i such that �i (m�i) > 0, (mi;m�i) does not trigger Rule

2(ii). Using a similar reasoning, it is easily shown that for any m�i 2M2
�i such that �i (m�i) > 0,

we must have ui(m3
i (m

1
�i); �) > ui(zi(m

1
�i;m

1
�i); �); hence the expected payo¤ conditional on Rule

2 from miX
m�i2M2

�i

�i (m�i)
��
1� 1=(m2

i + 1)
�
ui(m

3
i (m

1
�i); �) + (1=(m

2
i + 1))ui(zi(m

1
�i;m

1
�i); �)

�
10Whenever m1

j = [�] for all j 6= i, we sometimes abuse notations and write m1
�i = [�].
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is strictly increasing inm2
i . It follows that the choice of bmi with bm2

i large and strictly larger thanm
2
i

strictly improves the expected utility of agent i in case Rule 2 or 3 is triggered, which yields the

desired contradiction.

Claim 2.
�
[�]; 1;m3

i ;m
4
i

�
2 SM;�

i for all i, �, m3
i , m

4
i .

Proof of Claim 2. Suppose that player i in state � puts probability 1 on each other agent j sending

a message of the form ([�]; 1;m3
j ;m

4
j ). If player i announces a message of the form

�
[�]; 1;m3

i ;m
4
i

�
,

he gets payo¤ ui (f (�) ; �). If he announces a message not of this form, the outcome is determined

by Rule 2. Since by Lemma 4, ui(zi([�]; [�]); �) < ui(f(�); �), it is clear that by construction of the

mechanism, his payo¤ from invoking Rule 2 is bounded above by ui (f (�) ; �).

Claim 3. If mi =
�
[�0]; 1;m3

i ;m
4
i

�
2 SM;�

i , then [�0] = [�].

Proof of Claim 3. Suppose mi =
�
[�0]; 1;m3

i ;m
4
i

�
2 SM;�

i . Given the message mi, we can de�ne

the set of messages of the remaining agents which trigger Rule 1, 2 or 3, respectively. In particular,

we de�ne M1
�i for the set of m�i 2 M�i such that (mi;m�i) triggers Rule 1. Similarly, M2;i

�i is

de�ned as the set of m�i 2M�i such that (mi;m�i) triggers Rule 2 where player i is the deviating

player. Now consider a given belief �i of agent i. If �i
��
m�i 2M1

�i (mi)
	�
= 0, then Rule 2 or

3 will be triggered with probability one. Although, Rule 2 can now be triggered with a "deviating

player" being di¤erent of i, it is easily checked that a similar argument as in Claim 1 applies and

so the message mi cannot be a best reply by agent i. Suppose now that the belief �i of agent i is

such that:

0 < �i
��
m�i 2M1

�i
	�
< 1. (28)

While we still argue that agent i can strictly increase his expected utility by selecting an integerbm2
i > 1, we observe that a complication arises as with �i given by (28), a choice of bm2

i > 1 leads

from an allocation determined by Rule 1 to an allocation determined by Rule 2, and hence the

realization of an unfavorable allocation y with positive probability. But now we observe that by

selecting bmi such that:

bm3
i

�
[�̂]
�
=

8<: f
�
�0
�
if [�̂] = [�0]

m3
i

�
[�̂]
�
otherwise,

bm4
i 2 argmaxy2Y ui(y; �) and by choosing an integer bm2

i su¢ ciently large, the small loss in Rule 2

can always be o¤set by a gain in Rule 3 relative to the allocation achieved under g (mi;m�i). More

formally, for mi =
�
[�0]; 1;m3

i ;m
4
i

�
; since 0 < �i

��
m�i 2M1

�i
	�
< 1 and since �as claimed before

� for all m�i 2 M2;i
�i such that �i(m�i) > 0, ui(m3

i (m
1
�i); �) > ui(zi(m

1
�i;m

1
�i); �), i�s expected

payo¤ from playing mi is strictly lower thanX
m�i2M1

�i

�i (m�i)ui(f(�
0); �)+

X
m�i2M2;i

�i

�i (m�i)ui(m
3
i (m

1
�i); �)+

X
m�i =2M1

�i[M
2;i
�i

�i (m�i)max
y2Y

ui(y; �)
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while for bmi = ([�
0]; bm2

i ; bm3
i ; bm4

i ); it is easily checked that as bm2
i tends to in�nity, i�s expected payo¤s

tend toward the expression above. Hence, choosing bm2
i large enough, bmi is a better response against

�i for player i than mi, a contradiction.

So if mi =
�
[�0]; 1;m3

i ;m
4
i

�
2 SM;�

i , it follows player i must be convinced that each other player

must be choosing a message of the form
�
[�0]; 1;m3

j ;m
4
j

�
, and hence

�i
��
m�i 2M1

�i
	�
= 1.

Thus there must exist a message of the form mj =
�
[�0]; 1;m3

j ;m
4
j

�
2 SM;�

j for all j. Now,

proceed by contradiction and assume that [�0] 6= [�] and so that � =2 [�0]. By strict Maskin

monotonicity�, we know that there exist j such that for all b� 2 [�0] : uj �f ��0� ;b�� > uj �y([�0]; �);b��
and uj

�
y([�0]; �); �

�
> uj

�
f
�
�0
�
; �
�
. By the above argument, we know that player j�s belief against

which mj =
�
[�0]; 1;m3

j ;m
4
j

�
is a best reply assigns probability one to each player l 6= j sending a

message of the form ml =
�
[�0]; 1;m3

l ;m
4
l

�
. Hence, player j�s expected payo¤ from playing mj is

uj(f(�
0); �) while if j deviates to m̂j =

�
[�0]; m̂2

j ; m̂
3
j ;m

4
j

�
where m̂2

j > 1 and

m̂3
j ([�̂]) =

8<: y([�0]; �) if [�̂] = [�0]

m3
i

�
[�̂]
�
otherwise,

player j believes with probability one that Rule 2 (i) will be triggered. Hence, player j�s expected

payo¤ would be �
1� 1=(bm2

j + 1)
�
uj(y([�

0]; �); �) + (1=(bm2
j + 1))uj(zj([�

0]; [�0]); �):

Note that as m̂2
j tends to in�nity, this expression tends to uj(y([�

0]; �); �) which is strictly larger than

uj
�
f
�
�0
�
; �
�
. Hence for m̂2

j large enough, m̂j is better response for player j than
�
[�0]; 1;m3

j ;m
4
j

�
,

a contradiction. Thus [�0] = [�] as claimed.

Completion of proof. Claims 1, 2 and 3 together imply that for each � : SM;�
i 6= ? and mi 2

SM;�
i ) m2

i = 1 and m
1
i = [�]. Thus S

M;� 6= ? and m 2 SM;� ) g (m) = f (�).
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