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Abstract Much of the lending in modern economies is secured by some

form of collateral: residential and commercial mortgages, corporate bonds,

mortgage-backed securities, and collateralized debt obligations are familiar

examples. This paper builds an extension of general equilibrium theory that

incorporates durable goods, collateralized securities and the possibility of

default to argue that the reliance on collateral to secure loans, the particular

collateral requirements (chosen by the social planner or by the market), and

the scarcity of collateral have a profound impact on prices, on allocations, on

the structure of markets, and especially on the efficiency of market outcomes.

Some of these findings provide useful insights into housing and mortgage

markets, and into the sub-prime mortgage market in particular.
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1 Introduction

Recent events in financial markets provide a sharp reminder that much of the

lending in modern economies is secured by some form of collateral: residential

and commercial mortgages are secured by the mortgaged property itself,

corporate bonds are secured by the physical assets of the firm, collateralized

mortgage obligations and debt obligations and other similar instruments are

secured by pools of loans that are in turn secured by physical property. The

total of such collateralized lending is enormous: in 2007, the value of U.S.

residential mortgages alone was roughly $10 trillion and the (notional) value

of collateralized debt obligations was estimated to exceed $50 trillion. The

reliance on collateral to secure loans is so familiar that it might be easy

to forget that it is a relatively recent innovation: extra-economic penalties

such as debtor’s prisons, indentured servitude, and even execution were in

widespread use in Western societies into the middle of the 19th Century.

Reliance on collateral to secure loans — rather than on extra-economic

penalties — avoids the moral and ethical issues of imposing penalties in the

event of bad luck, the cost of imposing penalties, and the difficulty of finding

the defaulter in order to impose penalties at all. Such penalties represent a

pure deadweight loss – to the borrower who defaults, to the lender who suffers

the default, and to society as a whole (and are often triggered by miscalcu-

lation rather than by deliberate effort). Collateral, which simply transfers

resources from one owner to another, is intended to avoid this deadweight

loss. (In practice, seizure of collateral may involve deadweight losses of its

own.) This paper argues that the reliance on collateral to secure loans and

the particular levels of collateral chosen (by the government or by the mar-

ket) have a profound impact on prices, on allocations, on the structure of

financial institutions, and especially on the efficiency of market outcomes.

Several effects of collateral are perhaps the most important. The first

and most obvious effect is that collateral requirements limit borrowing. The

second, and more subtle effect is that collateral requirements distort both

choices and prices. This distortion is reflected in the existence of some good

used as collateral and some buyer of that good who pays a price strictly



above his/her marginal utility for consuming that good – so prices do not

equate marginal utilities of consumption. Thus, the equilibrium price of

each collateral good reflects both a consumption value and a collateral value,

reflecting what Fostel and Geanakoplos (2008) term a liquidity wedge. (When

this distortion and liquidity wedge are absent, collateral equilibrium coincides

with general equilibrium with incomplete markets.) The third effect is that

collateral requirements make it easier to borrow to buy goods but also increase

competition between borrowers for the very same goods; the net welfare effects

are ambiguous.

Because different collateral requirements may lead to different equilibria,

it is natural to ask about optimal collateral requirements. It might seem that

society – or at least lenders – would prefer to set collateral requirements suf-

ficiently high that there will be no default. However, although high collateral

requirements make loans safer, they also inhibit borrowing – which may be

bad for lenders as well as for borrowers. As we show, collateral requirements

that lead to equilibrium default – even to crashes – with positive probabil-

ity may be Pareto optimal, and so might be chosen by a benevolent social

planner. Put differently: sub-prime mortgages may be socially optimal.

When all lending must be collateralized, the supply of collateral becomes

an important financial constraint. If collateral is in short supply the necessity

of using collateral to back promises creates incentives to create collateral and

to stretch existing collateral. The state can (effectively) create collateral by

issuing bonds that can be used as collateral and by promulgating law and reg-

ulation that make it easier to seize goods used as collateral.1,2 The market’s

1The home mortgage market in Israel provides a good example. Historically, govern-
ment regulation made it easy to seize owner-occupied homes on which the mortgage was in
default, but difficult to seize renter-occupied homes. This asymmetry provided an incen-
tive for owners near default to rent their homes to close relatives at below-market prices.
As a consequence, down payment requirements frequently exceeded 50% of the sale price
and mortgages were difficult to obtain. In the 1980’s, changes in government regulations
made it easier to seize renter-occupied homes. As a consequence, down payment require-
ments fell to levels comparable to the U.S. mortgage market and mortgages became much
easier to obtain.

2Similarly, state regulations concerning seizure can have an enormous influence on
bankruptcies; see Lin and White (2001) and Fay, Hurst, and White (2002) for instance.
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attempts to stretch collateral have driven much of the financial engineering

that has rapidly accelerated over the last three-and-a-half decades (beginning

with the introduction of mortgage-backed securities in the early 1970’s) and

that has been designed specifically to stretch collateral by making it possible

for the same collateral to be used several times: allowing agents to collater-

alize their promises with other agents’ promises (pyramiding) and allowing

the same collateral to back many different promises (tranching). These two

innovations are at the bottom of the securitization and derivatives boom on

Wall Street, and have greatly expanded the scope of financial markets.

To make these points and others, we formulate an extension of intertem-

poral general equilibrium theory that incorporates durable goods, collateral

and the possibility of default. To focus the discussion, we restrict attention

to a pure exchange framework with two dates but many possible states of

nature (representing the uncertainty at time 0 about exogenous shocks at

time 1). As is usual in general equilibrium theory, we view individuals as

anonymous price-takers.3 For simplicity, we use a framework with a finite

number of agents and divisible loans.4

Central to the model is that the definition of a security must now include

not just its promised deliveries but also the collateral required to back that

promise. The same promise backed by a different collateral constitutes a

different security and might trade for a different price. We assume that

collateral is held and used by the borrower and that forfeiture of collateral

is the only consequence of default; in particular, there are no penalties for

default other than forfeiture of the collateral, and there is no destruction of

property in the seizure of collateral. As a result, borrowers will always deliver

the minimum of what is promised and the value of the collateral. Lenders,

3Anonymity and price-taking might appear strange in an environment in which indi-
viduals might default. In our context, however, individuals will default when the value of
promises exceeds the value of collateral and not otherwise; thus lenders do not care about
the identity of borrowers, but only about the collateral they bring.

4The assumptions of anonymity and price-taking might be made more convincing by
building a model that incorporates a continuum of individuals, and the realism of the
model might be enhanced by allowing for indivisible loans, but doing so would complicate
the model without qualitatively changing the conclusions.
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knowing this, need not worry about the identity of the borrowers but only

about the value of the collateral. Our basic model requires that each security

be collateralized by a distinct bundle of physical goods; residential mortgages

provide the canonical example of such securities.

Although default is suggestive of disequilibrium, our model passes the ba-

sic test of consistency: under the hypotheses on agent behavior and foresight

that are standard in the general equilibrium literature, equilibrium always

exists (Theorem 1). As we show, the existence of equilibrium rests on the fact

that collateral requirements place an endogenous bound on short sales. (The

reader will recall that it is the possibility of unbounded short sales that leads

to non-existence of equilibrium in the standard model of general equilibrium

with incomplete markets.)

The familiar models of Walrasian equilibrium (WE) and of general equi-

librium with incomplete markets (GEI) tacitly assume that all agents keep

all their promises, but ignore the question of why agents should keep their

promises; implicitly the familiar models assume that there are infinite penal-

ties for breaking promises – so that agents never intentionally fail to keep

their promises – and that agents never make mistakes – so that agents never

accidentally fail to keep their promises. We compare Collateral Equilibrium

(CE) to WE and GEI as a way of investigating how equilibrium changes

when we make the opposite assumption: that borrowers have no incentive

to repay and that the only recourse for the lender is to confiscate collateral.

As we show, modulo some technical assumptions, there are two sharp di-

chotomies. First: either CE is equivalent to GEI or there is distortion and

a non-zero liquidity wedge (Theorem 2). Second: either CE is equivalent

to WE and hence efficient (Pareto optimal) or it is inefficient (Theorem 3).

To illustrate these ideas, we describe a simple mortgage market (Example

1) in an environment with no uncertainty, and compute equilibrium as a

function of the wealth distribution and down payment requirements. We

identify parameter regions where CE is or is not Pareto optimal. We also

compute individual and social welfare, and show (as noted above) that the

welfare impact of collateral requirements is ambiguous: lower collateral re-

quirements make it possible for buyers to hold more houses but create more
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competition for the same houses, thereby driving up the prices. The last

point suggests an important parallel with U.S. lending institutions and hous-

ing prices over the last hundred years. Before and shortly after World War

I, mortgage down payment requirements were typically on the order of 50%.

However, the rise of Savings and Loan institutions, later the VHA and FHA,

and most recently the sub-prime mortgage market, have all made it easier

for (some) consumers to obtain mortgages with much lower down payment

requirements. Lower down payment requirements increase competition and

drive up housing prices, so some (perhaps very substantial) portion of the

boom in housing prices may have over this period should presumably be as-

cribed to these institutional changes in mortgage markets, rather than to a

change in fundamentals. (Contrast Mankiw and Weil (1989).)

An extension of our simple mortgage market to an environment with un-

certainty (Examples 2, 3) allows us to make a number of additional points.

Perhaps the most striking of these is that collateral requirements that lead

to default (with positive probability) in equilibrium may be ex ante Pareto

optimal although ex post suboptimal (with positive probability). Moreover, if

securities offering the same promise but backed by different collateral require-

ments are offered, the market may choose a collateral requirement that leads

to default (with positive probability). This suggests an important implica-

tion for the subprime mortgage market which seems to have been ignored:

even if it is true that defaults on subprime mortgages led to a crash ex post,

such mortgages might well have been Pareto improving ex ante. Whether

the market always chooses efficient collateral requirements or whether it can

sometimes be welfare improving for government to restrict collateral require-

ments is a question to which we do not have an answer. We do show, however,

that government action can improve social welfare only if it alters terminal

prices (Theorem 4). Hence any valid welfare-based argument for regulation

of down-payment requirements would seem to require that regulators can

correctly forecast the price changes that would accompany such regulation.

To address the way the market stretches collateral we expand our model

to include securities that are collateralized by bundles of commodities and

bundles of other securities (pooling and pyramiding) and offer multiple pay-
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ment streams (tranching). As in our basic model, the requirement that bor-

rowing be collateralized implies an endogenous bound on short sales, so that

equilibrium always exists (Theorem 5). Although the existence of more com-

plicated securities expands the set of possible market outcomes, it may still

fail to yield Walrasian allocations. In particular, no collateral equilibrium

can ever achieve an allocation in which some agent’s consumption in some

terminal state has less value than his/her initial (unpledgeable) endowment

in that state (Theorem 6). As a consequence, even with pooling, pyramid-

ing and tranching, collateral equilibrium is robustly inefficient: given any

array of consumer preferences and any social endowment, there is always an

open set of distributions of that endowment with the property that collateral

equilibrium from those endowments fails to be Pareto optimal (Theorem 7)

– no matter what securities are available for trade. On the other hand, any

Walrasian equilibrium in which every agent’s consumption in each terminal

state has greater value than his/her initial (unpledgeable) endowment in that

state can be obtained as a collateral equilibrium whenever a complete set of

tranched Arrow securities is available (Theorem 8). Absent tranching, this

conclusion does not hold (Example 4); thus, tranching serves an important

role in furthering social welfare. (As we will discuss, in our framework of per-

fect information, perfectly divisible goods and loans, and frictionless markets,

pooling and pyramiding serve no function when a complete set of tranched

Arrow securities is available, but will generally serve a useful function when

fewer securities are available.)

Following a brief discussion of the literature below, Section 2 presents

the basic model and Section 3 demonstrates that equilibrium exists in that

model. Section 4 describes a simple mortgage market that illustrates the

workings of the basic model and many of the points we want to make in-

cluding some of the sources of inefficiency. Section 5 discusses distortion,

efficiency and the liquidity wedge. Section 6 expands the first example to an

uncertain environment to show that both the social planner and the market

may choose collateral requirements that lead to default and that, at least

in some circumstances, the market always chooses efficiently. Section 7 ex-

pands the basic model to allow for pooling, pyramiding and tranching and

demonstrates that equilibrium exists in the expanded model as well. Section
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8 shows what pooling pyramiding and tranching can accomplish and what

they cannot. All proofs are collected in the Appendix.

Literature

Hellwig (1981) provides the first theoretical treatment of collateral and de-

fault in a market setting; the focus of that work is on the extent to which

the Modigliani–Miller irrelevance theorem survives the possibility of default.

Dubey, Geanakoplos, and Zame (1995) and Geanakoplos and Zame (1997,

2002), which are forerunners of the present work, provide the first general

treatments of a market in which deliveries on financial securities are guaran-

teed by collateral requirements. Araujo, Pascoa, and Torres-Martinez (2002)

use a version of the same basic model to show that collateral requirements

rule out the possibility of Ponzi schemes in infinite-horizon models, and hence

eliminate the need for the transversality requirements that are frequently im-

posed (Magill and Quinzii, 1994; Hernandez and Santos, 1996; Levine and

Zame, 1996). Araujo, Fajardo, and Pascoa (2005) expand the model to allow

borrowers to set their own collateral levels, and Steinert and Torres-Martinez

(2007) expand the model to accommodate security pools and tranching.

Dubey, Geanakoplos, and Shubik (2005) is a seminal work in a somewhat

different literature, which treats extra-economic penalties for default. (In

that particular paper, extra-economic penalties are modeled as direct util-

ity penalties; when penalties are sufficiently severe, that model reduces to

the standard model in which enforcement is perfect — and costless, because

penalties are never imposed in equilibrium). One of the central points of that

paper, and of Zame (1993), which uses a very similar model, is that the pos-

sibility of default may promote efficiency (a point that is made here, in a dif-

ferent way, in Example 2). Kehoe and Levine (1993) builds a model in which

the consequences of default are exclusion from trade in subsequent financial

markets, but these penalties constrain borrowing in such a way that there

is no equilibrium default. Sabarwal (2003) builds a model which combines

many of these features: securities are collateralized, but the consequences of

default may involve seizure of other goods, exclusion from subsequent finan-
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cial markets and extra-economic penalties, as well as forfeiture of collateral.

Kau, Keenan, and Kim (1994) provide a dynamic model of mortgages as op-

tions, but ignore the general equilibrium interrelationship between mortgages

and housing prices.

A substantial empirical literature examines the effect of bankruptcy and

default rules (especially with respect to mortgage markets) on consumption

patterns and security prices. Lin and White (2001), Fay, Hurst, and White

(2002), Lustig and Nieuwerburgh (2005) and Girardi, Shapiro, and Willen

(2008) are closest to the present work.
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2 Basic Model

As in the canonical model of securities trading, we consider a world with two

dates; agents know the present but face an uncertain future. At date 0 (the

present) agents trade a finite set of commodities and securities. Between date

0 and date 1 (the future) the state of nature is revealed. At date 1 securities

pay off and commodities are traded again.

2.1 Time & Uncertainty

There are two dates, 0 and 1, and S possible states of nature at date 1. We

frequently refer to 0, 1, . . . , S as spots.

2.2 Commodities, Markets & Prices

There are L ≥ 1 commodities available for consumption and trade in spot

markets at each date and state of nature; the commodity space is RL(1+S) =

RL × RLS. We interpret x ∈ RL(1+S) as a claim to consumption at each

date and state of the world. For a bundle x ∈ RL(1+S) and indices s, `,

we write xs for the vector of spot s consumption specified by x, and xs`

for the quantity of commodity ` specified in spot s. We abuse notation

and view RL as the subspace of RL(1+S) consisting of those vectors which

are 0 in the last LS coordinates; thus we identify a vector x ∈ RL with

(x, 0, . . . , 0) ∈ RL(1+S). Similarly we view RLS as the subspace of RL(1+S)

consisting of those vectors which are 0 in the first L coordinates. We write

δs` ∈ RL(1+S) for the commodity bundle consisting of one unit of commodity

` in spot s and nothing else. We write x ≥ y to mean that xs` ≥ ys` for each

s, `; x > y to mean that x ≥ y and x 6= y; and x� y to mean that xs` > ys`

for each s, `.

We depart from the usual intertemporal models by allowing for the pos-

sibility that goods are durable. If x0 ∈ RL is consumed (used) at date 0

we write Fs(x0) for what remains in state s at date 1. We assume the map
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F : S × RL → RL is continuous and is linear and positive in consumption.

The commodity 0` is perishable if F (δ0`) ≡ 0 and durable otherwise. It may

be helpful to think of F as like a production function — except that inputs

to production can also be consumed.

For each s, there is a spot market for consumption at spot s. Prices

at each spot lie in RL
++, so RL(1+S)

++ is the space of spot price vectors. For

p ∈ RL(1+S), ps are the prices in spot s and ps` is the price of commodity `

in spot s.

2.3 Consumers

There are I consumers (or types of consumers). Consumer i is described by

a consumption set, which we take to be RL(1+S)
+ , an endowment ei ∈ RL(1+S)

+ ,

and a utility function ui : RL(1+S)
+ → R.

2.4 Collateralized Securities

A collateralized security (security for short) is a pair A = (A, c), where

A : S × RL
++ × RL

++ → R+ is the promise or face value, and c ∈ RL
+ is the

collateral requirement. We allow for the possibility that the amount promised

in each state depends on spot prices in that state and at date 0; hence A

is a function (assumed continuous) of the state and of prices at date 0 and

in that state at date 1. The collateral requirement c is a bundle of date

0 commodities; an agent wishing to sell one share of (A, c) must hold the

commodity bundle c. (Recall that selling a security is borrowing.)

In our framework, the collateral requirement is the only means of enforc-

ing promises. Hence, if agents optimize, the delivery per share of security

(A, c) in state s will not be the face value As(p0, ps) but rather the minimum

of the face value and the value of the collateral in state s:

Del((A, c), s, p) = min{As(p0, ps), ps · Fs(c)}
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The delivery on a portfolio θ = (θ1, . . . , θJ) ∈ RJ is

Del(θ, s, p) =
∑

j

θjDel((Aj, cj); s, p)

We take as given a finite (but perhaps very large) set of securities A =

{(A1, c1), . . . , (AJ , cJ)}. Because deliveries never exceed the value of col-

lateral, we assume without loss of generality that Fs(c
j) 6= 0 for some s.

(Securities that fail this requirement will deliver nothing; in equilibrium such

securities will have 0 price and purchases or sales of such securities will be

irrelevant.) We find it convenient to distinguish between security purchases

and sales; we typically write ϕ, ψ ∈ RJ
+ for portfolios of security purchases

and sales, respectively. We assume that buying and selling prices for secu-

rities are identical; we write q ∈ RJ
+ for the vector of security prices. An

agent who sells the portfolio ψ ∈ RJ
+ will have to hold (and will enjoy) the

collateral bundle Coll(ψ) =
∑
ψjcj.

Our formulation allows for nominal securities, for real securities, for op-

tions and for complicated derivatives. For ease of exposition, our examples

focus on real securities.

2.5 The Economy

An economy (with collateralized securities) is a tuple E = 〈(ei, ui),A〉, where

(ei, ui) is a finite family of consumers and A = {(Aj, cj)} is a family of

collateralized securities. (The set of commodities and the durable goods

technology are fixed, so are suppressed in the notation.) Write e =
∑
ei for

the social endowment. The following assumptions are always in force:

• Assumption 1 e+ F (e) � 0

• Assumption 2 For each consumer i: ei > 0

• Assumption 3 For each consumer i:

(a) ui is continuous and quasi-concave
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(b) if x ≥ y ≥ 0 then ui(x) ≥ ui(y)

(c) if x ≥ y ≥ 0 and xs` > ys` for some s 6= 0 and some `, then

ui(x) > ui(y)

(d) if x ≥ y ≥ 0, x0` > y0`, and commodity 0` is perishable, then

ui(x) > ui(y)

The first assumption says that all goods are represented in the aggregate

(keeping in mind that some date 1 goods may only come into being when

date 0 goods are used). The second assumption says that that individual

endowments are non-zero. The third assumption says that utility functions

are continuous, quasi-concave, weakly monotone, strictly monotone in date

1 consumption of all goods and in date 0 consumption of perishable goods.5

2.6 Budget Sets

Given a set of securities A, commodity prices p and security prices q, a

consumer with endowment e must make plans for consumption, for security

purchases and sales, and for deliveries against promises. In view of our

earlier comments, we assume that deliveries are precisely the minimum of

promises and the value of collateral, so we suppress the choice of deliveries.

We therefore define the budget set B(p, q, e,A) to be the set of plans (x, ϕ, ψ)

that satisfy the budget constraints at date 0 and in each state at date 1 and

the collateral constraint at date 0.

• At date 0

p0 · x0 + q · ϕ ≤ p0 · e0 + q · ψ
x0 ≥ Coll(ψ)

That is, expenditures for consumption and security purchases do not

exceed income from endowment and from security sales, and date 0

consumption includes collateral for all security sales.

5We do not require strict monotonicity in durable date 0 goods because we want to
allow for the possibility that claims to date 1 consumption are traded at date 0; of course,
such claims would typically provide no utility at date 0.
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• In state s

ps · xs + Del(ψ, s, p) ≤ ps · es + ps · Fs(x0) + Del(ϕ, s, p)

That is, expenditures for consumption and for deliveries on promises do

not exceed income from endowment, from the return on date 0 durable

goods, and from collections on others’ promises.

If these conditions are satisfied, we frequently say that the portfolio (ϕ, ψ)

finances x at prices p, q. Of course agents know date 0 prices but must

forecast date 1 prices. Our equilibrium notion implicitly incorporates the

requirement that forecasts be correct, so we take the familiar shortcut of

suppressing forecasts and treating all prices as known to agents at date 0.6

Note that if security promises are independent of date 0 prices and ho-

mogeneous of degree 1 in state s prices — in particular, if securities are real

(promise delivery of the value of some commodity bundle) — then budget

constraints depend only on relative prices. In general — for instance, if secu-

rity promises are nominal — budget constraints may depend on price levels

as well as on relative prices.

2.7 Collateral Equilibrium

Given an economy E = 〈(ei, ui),A〉, a collateral equilibrium consists of com-

modity prices p ∈ RL(1+S)
++ , security prices q ∈ RJ

+ and consumer plans

(xi, ϕi, ψi) satisfying the usual conditions:

• Commodity Markets Clear∑
i

xi =
∑

i

ei +
∑

i

F (ei
0)

• Security Markets Clear ∑
i

ϕi =
∑

i

ψi

6Barrett (2000) offers a model in which forecasts might be incorrect.
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• Plans are Budget Feasible

(xi, ϕi, ψi) ∈ B(p, q; ei,A)

• Consumers Optimize

(x, ϕ, ψ) ∈ B(p, q, ei,A) ⇒ ui(x) ≤ ui(xi)

(As in a production economy, the market clearing condition for commodi-

ties incorporates the fact that some date 1 commodities come into being from

date 0 activities.)

2.8 Walrasian Equilibrium and GEI Equilibrium

We will find it useful to compare collateral equilibrium with the benchmarks

of Walrasian equilibrium and of GEI (incomplete markets) equilibrium.

We first recall the definition of Walrasian equilibrium in the present con-

text; see Dubey, Geanakoplos, and Shubik (2005) for further details. We

maintain the same structure of commodities and preferences. In particular,

date 0 commodities are durable, and Fs(x0) is what remains in state s if the

bundle x0 is consumed at date 0. Suppressing commodities and the nature

of durability, the data of a durable goods economy is thus a set (ei, ui) of

consumers, specified by endowments and utility functions. We use notation

in which a purchase at date 0 conveys the rights to what remains at date 1;

hence if commodity prices are p ∈ R(1+S)L
++ , the Walrasian budget set for a

consumer whose endowment is e is

BW (e, p) = {x : p · x ≤ p · e+ p · F (x0)}

A Walrasian equilibrium consists of commodity prices p and consumption

choices xi such that

• Commodity Markets Clear∑
i

xi =
∑

i

ei +
∑

i

F (ei
0)
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• Plans are Budget Feasible

xi ∈ Bw(ei, p)

• Consumers Optimize

yi ∈ B(ei, p) ⇒ ui(yi) ≤ ui(xi)

In the familiar GEI model, as in our collateral model, goods are traded

on spot markets but only securities are traded on intertemporal markets.

In the GEI context a security is a claim to income at each future state s

as a function of prices p0, ps at date 0 and in state s; that is, a function

A : S ×RL ×RL → R. The data of a GEI economy consists of I consumers,

characterized by utility functions ui and endowments ei, and J securities Aj.

To maintain the parallel with our collateral framework, it is convenient

to continue to separate security purchases and sales. Given commodity spot

prices p ∈ RL(1+S)
++ and security prices q ∈ RJ , the budget setBGEI(p, q, e, {Aj})

for a consumer with endowment e consists of consumption plans x ∈ RL(1+S)
+

and portfolios of security purchases and sales ϕ, ψ ∈ RJ that satisfy the

budget constraints at date 0 and in each state at date 1:

• At date 0

p0 · x0 + q · θ ≤ p0 · e0

• In state s

ps · xs +
∑

j

ψjǍ
j
s(p0, ps) ≤ ps · es + ps · Fs(x0) +

∑
j

ϕjǍ
j
s(p0, ps)

Note that the GEI budget set differs from the collateral budget set in

two ways: there is no collateral requirement at date 0, and security deliveries

coincide with promises.

A GEI equilibrium consists of commodity spot prices p ∈ RL(1+S)
++ , security

prices q ∈ RJ , consumption plans xi ∈ RL(1+S)
+ and portfolio choices ϕi, ψi ∈

RJ
+ such that
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• Commodity Markets Clear∑
i

xi =
∑

i

ei +
∑

i

F (ei
0)

• Security Markets Clear ∑
i

ϕi =
∑

i

ψi

• Plans are Budget Feasible

(xi, ϕi, ψi) ∈ B(ei, p, q, {Aj})

• Consumers Optimize

(x, φ, ψ) ∈ B(ei, p, q, {Aj}) ⇒ ui(x) ≤ ui(xi)

2.9 Rental Markets

In our formulation of the Walrasian economy, the purchase of a durable good

at date 0 conveys the rights to what the durable becomes at date 1. Because

date 1 commodities are marketed at date 0, the rental of a durable – the

purchase of date 0 rights only – can be accomplished by a purchase of the

durable together with the simultaneous sale of the rights to what the durable

becomes at date 1. Thus, the rental price of x0 ∈ RL
+ is p · x0 − p · F (x0).

If the right securities are available, then rental markets can be synthesized

in our collateralized security market as well. Suppose that there is a vector

of durable goods x0 = c, and a security (A, c) that promises at least the value

of the collateral in every state in period 1, As ≥ ps · Fs(c) ∀s ≥ 1. If q is the

price of this security, then the rental price of the bundle c ∈ RL
+ is p0 · c− q.

Of course date 0 purchases of date 1 goods can be synthesized as well,

if the right securities exist, because purchasing only the date 1 rights (i.e,

F (x0)) to the durable x0 amounts to the purchasing the security (A, c) above

that promises delivery of at least the value of what the durable becomes in

16



each state at date 1 (As ≥ ps · Fs(x0) ) and is collateralized by the durable

itself (c = x0). However, date 0 sales of date 1 commodities usually cannot be

synthesized through security markets, because selling only the date 1 rights

to the durable x0 amounts to selling the security (A, c) without holding the

requisite collateral.
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3 Equilibrium

Under the assumptions discussed in Section 2, collateral equilibrium always

exists. We defer this and all other proofs to the Appendix.

Theorem 1 (Existence) Under the maintained assumptions, every econ-

omy admits a collateral equilibrium.

This may seem a surprising result, because we allow for real securities,

options, derivatives and even more complicated non-linear securities; in the

standard model of incomplete financial markets, the presence of any of these

securities may be incompatible with existence of equilibrium.7 In our frame-

work, however, the requirement that security sales be collateralized places an

endogenous bound on short sales. As in Radner (1972), a bound on short sales

eliminates the discontinuity in budget sets that gives rise to non-existence

and thus restores the existence of equilibrium.8

7See Hart (1975) for the seminal example of non-existence of equilibrium with real
securities, Duffie and Shafer (1985) and Duffie and Shafer (1986) for generic existence with
real securities, and Ku and Polemarchakis (1990) for robust examples of non-existence of
equilibrium with options.

8Araujo, Pascoa, and Torres-Martinez (2002) exploit a similar idea to show that col-
lateral requirements rule out Ponzi schemes in markets with an infinite horizon.
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4 A Simple Mortgage Market

In this section we offer a simple example that illustrates the working of our

model and some of the points described in the Introduction, and suggests

some of the general results that follow. For the sake of simplicity, the various

examples that follow are all variants of this simple example.

Example 1 [A Mortgage Market] Consider a world with no uncertainty

(S = 1). There are two goods at each date: food F which is perishable and

housing H which is perfectly durable. There are two (types of) consumers,

with endowments

e1 = (18− w, 1; 9, 0)

e2 = (w, 0; 9, 0)

We take w ∈ (0, 18) as a parameter; we will be especially interested in the

case w = 7/2. Consumer 1 finds food and housing to be perfect substitutes

and has constant marginal utility of consumption; Consumer 2 finds date 0

housing and date 1 housing to be perfect substitutes, likes housing more than

Consumer 1, but has decreasing marginal utility for date 0 food:

u1 = x0F + x0H + x1F + x1H

u2 = log x0F + 4x0H + x1F + 4x1H

As a benchmark, we begin by recording the unique Walrasian equilibrium

〈p̃, x̃〉 (leaving the simple calculations to the reader). If we normalize so that

p̃0F = 1 then equilibrium prices are:

p̃0F = 1 , p̃1F = 1 , p̃0H = 8 , p̃1H = 4

equilibrium consumptions are:

x̃1 = (17, 0; 18− w, 0)

x̃2 = (1, 1;w, 1)
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and equilibrium utilities are

ũ1 = 35− w

ũ2 = 8 + w

Consumer 2 likes housing much more than Consumer 1 and is rich in date

1, so, whatever her date 0 endowment, she buys all the date 0 housing —

borrowing from her date 1 endowment if necessary, and of course repaying if

she does so. Individual equilibrium utilities depend on w, but total utility is

always 43 — which is the level it must be at any Pareto efficient allocation

in which both agents consume food in date 1. (Because both agents have

constant marginal utility of 1 for date 1 food, the economy has transferable

utility in the range of allocations where both consume date 1 food.)

In the GEI world, in which securities always deliver precisely what they

promise and security sales do not need to be collateralized, the Walrasian

outcome will again obtain there are at least as many independent securities

as states of nature — in this case, at least one security whose payoff is never

0. For comparison purposes, suppose exactly one security Âα is available,

delivering the value of α > 0 units of food. Commodity and asset prices are

p̃0F = 1 , p̃1F = 1 , p̃0H = 8 , p̃1H = 4 , qα = α

and equilibrium consumptions and utilities are:

x̃1 = (17, 0; 18− w, 0) ũ1 = 35− w

x̃2 = (1, 1;w, 1) ũ2 = 8 + w

However, in the world of collateralized securities, no agent can make

guarantees to pay without offering collateral, and Walrasian outcomes need

not obtain. To the extent Consumer 2 can use housing as collateral, she will

be able to buy more housing with borrowed money. However, competition

also raises the price of housing. We can trace out the effects of these opposite

forces across the range of security promises — equivalently, across the range

of collateral requirements.

We assume that only one security (Aα, c) = (αp1F , δ0H) is available for

trade; (Aα, c) promises the value of α units of food in date 1 and is collat-

eralized by 1 unit of date 0 housing. We take w ∈ (0, 18) and α ∈ [0, 4]
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as parameters. (As we show below, delivery will never exceed 4, no matter

what promises are, so that equilibrium when α > 4 will reduce to equilibrium

when α = 4.)

The nature of collateral equilibrium depends in a complicated way on

the parameters w,α. To begin the analysis, note first that we are free to

normalize so that p0F = 1. Moreover, because (Aα, c) is a real security

we are also free to normalize so that p1F = 1. It is easily seen that in every

collateral equilibrium, Consumer 1 lends (buys the security) and Consumer 2

borrows (sells the security), that both consumers consume food in both dates,

and that Consumer 2 acquires all the housing at date 1. Hence many of the

equilibrium variables can be determined quickly from first order conditions.

In particular:

MU2
1H

p1H

=
MU2

1F

p1F

(1)

MU1
0F

p0F

=
MU1

(Aα,c)

qα
(2)

It follows from (1) that p1H = 4. Because α ∈ [0, 4], the date 1 value

of collateral (weakly) exceeds the promise Aα, so Del(Aα, p) = α; hence

MU1
(Aα,c) = 4. Now (2) implies that qα = α. Summarizing: for all w ∈ (0, 18),

all α ∈ [0, 4], and in every equilibrium we have

p0F = 1 , p1F = 1 , p1H = 4 , qα = α , ψ1 = 0 , ϕ2 = 0 (3)

As we shall see, the values of the remaining equilibrium variables — in-

deed the nature of equilibrium — depend sensitively on α,w. It is convenient

to classify equilibrium according to the quantity of housing held and the frac-

tion of borrowing capacity exercised by Consumer 2; in principle this leads

to 9 possible types of equilibria, as in Table 1. Because the collateral require-

ment entails that ψ2 ≤ x2
0H , there are in fact no equilibria of type Ib or Ic;

for the present functional forms, there are no equilibria of type IIb either.

(But there would be equilibria of type IIb for some other functional forms.)

For all the other types, we solve simultaneously for the equilibrium variables

and the region in the parameter space in which an equilibrium of that type
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Table 1: Types of Equilibrium

ψ2/x2
0H = 0 ψ2/x2

0H ∈ (0, 1) ψ2/x2
0H = 1

x2
0H = 0 Ia Ib Ic

x2
0H ∈ (0, 1) IIa IIb IIc

x2
0H = 1 IIIa IIIb IIIc

(unique in the present setting) obtains. We give details for types IIc and

IIIc, leaving the calculations for other types to the reader.

We begin by analyzing equilibrium of type IIc. Consumer 1 holds food

and housing at date 0, so he can trade housing for food or vice versa. Thus

we have the first order condition:

MU1
0F

p0F

=
MU1

0H

p0H

(4)

Notice that MU1
0H = 5: Consumer 1 enjoys 1 util from living in the house at

date 0 and 4 more utils by selling the house at date 1 to buy 4 units of date

1 food. Hence p0H = 5.

To solve for the remaining equilibrium variables we use Consumer 2’s date

0 first order conditions — but the correct first order conditions may not be

obvious. Because Consumer 2 holds food and housing at date 0, it might

appear by analogy with the first order conditions for Consumer 1 that

MU2
0F

p0F

=
MU2

0H

p0H

(5)

MU2
0F

p0F

=
MU2

(Aα,c)

qα
(6)

Consumer 2 enjoys 4 utils from living in the house at each date, soMU2
0H = 8.

In view of our earlier calculations, it follows from (5) that MU2
0F = 8/5 and

from (6) that MU2
0F = 1, which is nonsense.

The problem with the analysis above is that (5) and (6) are not the cor-

rect first order conditions for Consumer 2. Consumer 2 can borrow against
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date 1 income by selling the security, but selling the security requires holding

collateral. By assumption, at equilibrium x2
0H = ψ2, so Consumer 2 is exer-

cising all of her borrowing power; hence she cannot hold less housing without

simultaneously divesting herself of some of the security and cannot sell more

of the security without simultaneously acquiring more housing.

The correct first order conditions for Consumer 2 take borrowing and

collateral into account. On the one hand, buying an additional infinitesimal

amount ε of housing costs p0Hε, but of this cost αε can be borrowed by selling

α units of the security, using the additional housing as collateral, so the net

payment is only (p0H − α)ε. However, doing this will require repaying the

loan in date 1, so the additional utility obtained will not be 8ε but rather

(8− α)ε. On the other hand, selling an additional ε units of food generates

income of εp0F at a utility cost of MU2
0F ε. Hence the correct first order

condition for Consumer 2 is not (5), but rather

MU2
0F

p0F

=
8− α

p0H − α
(7)

Consumer 2’s date 0 budget constraint is

(5− α)x0H + x0F = w (8)

Solving yields

x2
0F =

5− α

8− α

x2
0H =

w − 5−α
8−α

5− α

From this we can solve for all the equilibrium consumptions

x1 =

(
18− 5− α

8− α
, 1−

w − 5−α
8−α

5− α
; 9 + α

[
w − 5−α

8−α

5− α

]
+ 4

[
1−

w − 5−α
8−α

5− α

]
, 0

)

x2 =

(
5− α

8− α
,
w − 5−α

8−α

5− α
; 9− α

[
w − 5−α

8−α

5− α

]
− 4

[
1−

w − 5−α
8−α

5− α

]
, 1

)
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and utilities

u1 = 32− w

u2 = 8 + log(5− α)− log(8− α) +

(
8− α

5− α

)
w

(By definition, ψ2 = x2
0H and ϕ1 = ψ2.)

Finally, the region in which equilibria are of type IIc is defined by the

requirement that x2
0H ∈ (0, 1), so

Region IIc =

{
(w, α) :

5− α

8− α
< w <

(5− α)(9− α)

8− α

}

In equilibria of type IIIc, x2
0H = 1 and ψ2/x2

0H = 1 so Consumer 1 no

longer holds housing in date 0, and we cannot guess in advance what the

price of housing will be in period 0, but must solve for it along with the

other variables. Reasoning as above, we see that Consumer 2’s date 0 first-

order condition and budget constraint are

8− α

p0H − α
=

1

x0F

p0H − α+ x0F = w

Solving yields

x2
0F =

w

9− α
, p0H = α+

(
8− α

9− α

)
w

and hence

p0H = α+

(
8− α

9− α

)
w

Equilibrium consumptions are

x1 = (18− w

9− α
, 0; 9 + α, 0)

x2 = (
w

9− α
, 1; 9− α, 1)
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and utilities are

u1 = 27 + α− w

9− α

u2 = log

(
w

9− α

)
+ 17− α

Finally, the region in which equilibria are of type IIIc is determined by the

requirements that it be optimal for Consumer 2 to borrow the maximum

amount possible, whence x0F ≤ 1, and that Consumer 1 not wish to buy

housing, whence p0H ≥ 5. Putting these together yields:

Region IIIc =

{
(w, α) :

(
5− α

8− α

)
(9− α) ≤ w ≤ (9− α)

}

Summarizing these findings and similar calculations for the other regions,

we find the regions and equilibria to be:

• Type Ia

p0H = 5

x1 = (18− w, 1; 13, 0)

ϕ1 = 0

x2 = (w, 0; 5, 1)

ψ2 = 0

u1 = 32− w

u2 = logw + 9

Region Ia =

{
(w,α) : w ≤ 5− α

8− α

}
• Type Ib none

• Type Ic none
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• Type IIa

p0H = 5

x1 = (18− 5

8
, 1− (

w

5
− 1

8
); 13− 4(

w

5
− 1

8
), 0)

ϕ1 = 0

x2 = (
5

8
,
w

5
− 1

8
; 5 + 4(

w

5
− 1

8
), 1)

ψ2 = 0

u1 = 32− w

u2 = log(
5

8
) + 8 +

8w

5

Region IIa =

{
(w,α) : α = 0 ,

5

8
< w <

45

8

}
• Type IIb none

• Type IIc

p0H = 5

x1 =

(
18− 5− α

8− α
, 1−

w − 5−α
8−α

5− α
; 9 + α

[
w − 5−α

8−α

5− α

]
+ 4

[
1−

w − 5−α
8−α

5− α

]
, 0

)

ϕ1 −
w − 5−α

8−α

5− α

x2 =

(
5− α

8− α
,
w − 5−α

8−α

5− α
; 9− α

[
w − 5−α

8−α

5− α

]
− 4

[
1−

w − 5−α
8−α

5− α

]
, 1

)

ψ2 =
w − 5−α

8−α

5− α

u1 = 32− w

u2 = 8 + log(5− α)− log(8− α) +

(
8− α

5− α

)
w

Region IIc =

{
(w,α) :

5− α

8− α
< w <

(5− α)(9− α)

8− α

}
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• Type IIIa

p0H =
8w

9

x1 = (18− w

9
, 0; 9, 0)

ϕ1 = 0

x2 = (
w

9
, 1; 9, 1)

ψ2 = 0

u1 = 27− w

9

u2 = log
(w

9

)
+ 17

Region IIIa = {(w, α) : w ≥ 9}

• Type IIIb

p0H = 8

x1 = (17, 0; 18− w, 0)

ϕ1 =
9− w

α

x2 = (1, 1;w, 1)

ψ2 =
9− w

α

u1 = 35− w

u2 = 8 + w

Region IIIb = {(w,α) : 9− α < w < 9}
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• Type IIIc

p0H = α+

(
8− α

9− α

)
w

x1 = (18− w

9− α
, 0; 9 + α, 0)

ϕ1 = 1

x2 = (
w

9− α
, 1; 9− α, 1)

ψ2 = 1

u1 = 27 + α− w

9− α

u2 = log

(
w

9− α

)
+ 17− α

Region IIIc =

{
(w,α) :

(
5− α

8− α

)
(9− α) ≤ w ≤ (9− α)

}
As we have already noted, whatever the parameters are, p1H = 4 in every

equilibrium. Thus, if α > 4 an agent who sells (Aα, c) will default, and

delivery will be 4 rather than α. Hence equilibrium when α > 4 will coincide

with equilibrium when α = 4. ♦

We have chosen a formulation in which the security promise is specified

exogenously and its price is determined endogenously. In the context of home

mortgages, a more familiar formulation would specify the down payment

requirement (as a fraction of the sale price) exogenously and the interest

rate would be determined endogenously. Of course, the two formulations are

equivalent: the down payment requirement d, interest rate r, house price

p0H , security price qα and promise α are related by the obvious equations:

d =
p0H − qα
p0H

r =
α− qα
qα

This example illustrates a number of important points about collateral

equilibrium.
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• Collateral equilibrium may be inefficient, even though financial markets

are “complete”. In this example, inefficiency is easy to identify because,

as we have already noted, at least over the set of allocations at which

both consume date 1 food, the economy displays transferable utility:

an allocation is Pareto efficient if and only if the sum of individual

utilities is 43 (which is the maximum possible sum); these allocations

are precisely those for which Consumer 2 holds all the housing in both

dates and exactly one unit of date 0 food; i.e., x2
0H = x2

1H = 1 and

x2
0F = 1. Hence, collateral equilibrium is Pareto efficient only in the

portion of region IIIa where w = 9, in all of region IIIb, and in the

portion of region IIIc where w = 9−α, and when collateral equilibrium

is efficient it coincides with Walrasian equilibrium. Moreover, there

is an open set of endowment distributions from which no collateral

equilibrium is efficient. We return to these points in Theorems 3 and

7 below.

• The inefficiency of collateral equilibrium has two sources. Most obvi-

ously, collateral requirements limits each consumer’s borrowing power.

This can be seen most extremely in the portion of region IIIa where

w > 9: Consumer 2’s equilibrium marginal utility of food is greater in

date 1 than in date 0, so she would like to save, but she can only do so

if Consumer 1 borrows — and Consumer 1 can only borrow by holding

housing, which he does not wish to do.

A little less obviously, collateral requirements distort consumption de-

cisions, forcing agents who borrow to hold more of the collateral good

than they would otherwise wish to do. For instance, fix w = 7/2. For

α ∈ (0, 2) parameter values are in region IIc; for α ∈ [2, 4] parameter

values are in region IIIc, but in either case, the collateral requirement

leads Consumer 2 to hold excess housing. The simplest way to see this

is to compare marginal utilities per dollar for date 0 food and date 0

housing: In region IIc Consumer 2’s marginal utility per dollar for date

0 food is (8−α)/(5−α) which is everywhere greater than her marginal

utility per dollar from date 0 housing, which is 8/5. In region IIIc

Consumer 2’s marginal utility per dollar for date 0 food is (2/7)(9−α)
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which is everywhere greater than her marginal utility per dollar from

date 0 housing, which is 16/[7(α+ 8−α
9−α

)].

• The same kind of distortion can be seen in prices. Again fix w = 7/2.

To say that Consumer 2’s marginal utility per dollar for date 0 food

exceeds her marginal utility per dollar for date 0 housing is the say

that the price of date 0 housing is too high. However, Consumer 2

is willing to pay the higher price of date 0 housing because holding

housing enables her to borrow; that is, she derives a collateral value

from housing as well as a consumption value. Consumer 2 finds the

marginal utility per dollar for date 0 food to be higher than the marginal

utility of making the payments on the security. Just as the price of the

collateral is too high, so the price of the security is too high. She

therefore sells the security, that is she borrows, up to her collateral

limit. As we shall see in Theorem 2 below, , this phenomenon always

occurs when the collateral requirement binds.

• As we have already noted, collateral requirements have welfare effects,

but the directions of these effects may not be obvious. To make the

point, fix w = 7/2 once again. For α ∈ [0, 2), increases in α (equiv-

alently, decreases in the down payment requirement) make it possible

for Consumer 2 to afford more housing; the net result is Pareto im-

proving. However, for α ∈ [2, 4], further increases in α (equivalently,

further decreases in the down payment requirement) make it possible

for Consumer 2 to access more of his/her date 1 income to purchase

houses at date 0; competition (of Consumer 2 with his/her self – or

of consumers of the same type with each other) drives up the price of

date 0 housing (from p0H = 5 when α = 2 to p0H = 34/5 when α = 4);

this price increase makes Consumer 1 better off but makes Consumer

2 worse off.
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5 Fundamental Values & the Liquidity Wedge

The purpose of this section is to identify the distortion induced by the neces-

sity to hold collaterl: whenever the collateral constraints are binding, then

there must be an agent who pays more for some collateral good, and borrows

more by selling some security, than she thinks is merited by their respective

“fundamental values”.

To make this point, fix an economy E = 〈(ei, ui),A〉 and a collateral equi-

librium 〈p, q, (xi, ϕi, ψi)〉 for E . Assume (for the remainder of this Section)

that utility functions ui are differentiable at the equilibrium consumptions

and that each consumer’s consumption is non-zero in each spot s ≥ 0. Con-

sider consumer i. For each state s ≥ 1 and commodity k, consumer i’s

marginal utility for good sk is

MU i
sk =

∂ui(xi)

∂xsk

By assumption, xs 6= 0 so there is some ` for which xi
s` > 0; for any such `,

consumer i’s marginal utility of income at state s is

µi
s =

1

ps`

MU i
s`

Durability means that i’s utility for 0k has two parts: utility from consuming

0k at date 0 consumption and utility from the income derived by selling what

0k becomes at date 1; hence we can express marginal utility as:

MU i
0k =

∂ui(xi)

∂x0k

+
S∑

s=1

µi
s [ps · Fs(δ0k)]

Again, there is some ` for which xi
0` > 0; for any such `, marginal utility of

income is at date 0 is

µi
0 =

1

p0`

MU i
0`

The marginal utility of any security (A, c) to consumer i is the utility gener-

ated by actual deliveries at date 1

MU i
(A,c) =

S∑
s=1

µi
s Dels(A, c)
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We define the fundamental value of commodity 0k and security (A, c) to

consumer i as

FV i
0k =

MU i
0k

µi
0

FV i
(A,c) =

MU i
(A,c)

µi
0

To explain the terminology, consider the incomplete markets economy Ě =

〈(ei, ui), Ǎ〉 with the same consumers but with securities whose promises are

Ǎj = Del(Aj, cj)

If 〈p, q, (xi, ϕi, ψi)〉 were a GEI equilibrium for E then the first order condi-

tions would imply immediately that for each consumer i, commodity prices

weakly exceed fundamental values, with equality for those commodities for

which consumption is strictly positive, and coincide with fundamental values:

p0k ≥ FV i
0k (9)

qj = FV i
Ǎj (10)

Note that (9) holds with equality if i consumes commodity 0k but that (10)

holds whether or not i is buys or sells security j.

However, in a collateral equilibrium that does not reduce to GEI equilib-

rium — that is, a collateral equilibrium in which some collateral constraints

bind — some prices will strictly exceed fundamental values for some con-

sumer. Indeed, there will be at least one consumer who pays more for some

commodity than its fundamental value (because that consumer derives value

from using that commodity as collateral) and who sells some security for

more than its fundamental value (because that consumer finds money at

date 0 to be more valuable than the deliveries at date 1).

Theorem 2 (Fundamental Values) Let E = 〈ei, ui),A〉 be an economy

with collateralized securities and let 〈p, q, xi, ϕi, ψi〉 be an equilibrium for E.

Assume that each consumer’s equilibrium consumption is non-zero in each

spot and that utilities are differentiable at equilibrium consumptions. Then

either
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(i) each consumer finds that all date 0 commodities he holds and all se-

curities are priced at their fundamental values and 〈p, q, xi, ϕi, ψi〉 is a

GEI for the incomplete markets economy 〈(ei, ui, Ǎ〉

or

(ii) some consumer finds that some date 0 commodity he holds and some

security are priced above their fundamental value.

Thus, when collateral constraints are binding, there is a consumer i, a

commodity 0k and a security j for which the differences p0k − FV i
0k and

qj − FV i
Ǎj

are strictly positive. We identify this as a liquidity wedge.

One consequence of Theorem 2 is that, when collateral constraints are

binding, arbitrage efficiency does not hold; that is, prices do not equate

ratios of marginal utilities across all consumers. A second consequence is

that efficient collateral equilibria are Walrasian.

Theorem 3 (Efficient Collateral Equilibria are Walrasian) Let E =

〈(ei, ui),A〉 be an economy with collateralized securities and let 〈p, q, xi, ϕi, ψi〉
be an equilibrium for E. Assume that each consumer’s equilibrium consump-

tion is non-zero in each spot, that utilities are differentiable at equilibrium

consumptions, and that at least one consumer’s consumption of every good

is strictly positive. Then either

(i) (xi) is a Pareto optimal allocation and 〈p, q, xi〉 is a WE for the econ-

omy 〈ei, ui〉

or

(ii) (xi) is not a Pareto optimal allocation and some consumer finds that

some date 0 commodity he holds and some security are priced above

their fundamental value to her.
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6 Default, Efficiency and Crashes

This Section makes a number of related points. The first point is that default

— although suggestive of inefficiency — may be welfare enhancing.9 More

precisely, as Example 2 shows, levels of collateral that are socially optimal

may lead to default with positive probability. The second point is that there

is a link between collateral requirements and future prices. Lower collateral

requirements lead buyers to take on more debt; the difficulties of servicing

this debt can lead to reduced demand and lower prices — even to crashes

— in the future. Importantly, such a crash occurs precisely because lower

collateral requirements encourage borrowers to take on more debt than they

can service. As Example 2 also shows, despite such crashes, lower collateral

requirements may be welfare enhancing. The third point is that although

the set of securities available for trade is given exogenously as part of the

data of the model, the set of securities that are actually traded is determined

endogenously at equilibrium. Thus, we may view the financial structure of

the economy as chosen by the competitive market. As Example 3 shows,

the market may choose levels of collateral that lead to default with positive

probability, and this choice may be efficient. Theorem 4 indentifies a context

in which the market choice of securities (in particular collateral levels) is

necessarily efficient.

Example 2 (A Mortgage Market with Uncertainty) We construct a

variant on Example 1. Rather than present a full-blown analysis in the style

of Example 1, we fix endowments and take only the security promise as a

parameter, which makes it easier to focus on the points of interest.

There are two states of nature and two goods: Food, which is perishable,

and Housing, which is durable. There are two (types of) consumers, with

endowments:

e1 = (29/2, 1; 9, 0; 9, 0)

e2 = (7/2, 0; 9, 0; 5/2, 0)

9A similar point has been made, in different contexts, by Zame (1993), Sabarwal (2003)
and Dubey, Geanakoplos, and Shubik (2005).
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Consumer 1 has constant marginal utility of consumption for food and hous-

ing at each date/state; Consumer 2 has constant marginal utility for housing

at each date/state but decreasing marginal utility for date 0 food; both con-

sumers view the states as equally likely:

u1 = x0F + x0H +
1

2
[x1F + x1H ] +

1

2
[x2F + 3x2H ]

u2 = log x0F + 4x0H +
1

2
[xF + 4x1H ] +

1

2
[x2F + 4x2H ]

(Note that endowments and preferences are similar to those in Example 1,

except that Consumer 1’s marginal utility for housing in state 2 is greater

than in state 1 and that Consumer 2 is poor in state 2.)

Suppose that a single security Aα = (αp1F , αp2F ; δ0H), promising the

value of α units of food and collateralized by 1 unit of housing, is available

for trade; we take α ∈ [0, 4] as a parameter.10 (Equivalently, we could con-

sider securities that promise to deliver the value of one unit of food and are

collateralized by 1/α units of housing.) We distinguish four regions; in each

there is a unique equilibium. In Region I, α is sufficiently small that Con-

sumer 2 cannot borrow enough to buy all the housing at date 0, but buys the

remaining housing in date 1. In Region II, α is large enough that Consumer

2 can buy all the housing at date 0 but small enough that she will be able to

honor her promises in both states at date 1 and retain all the housing at date

1. In Region III, Consumer 2 will honor her promises but will not be able to

retain all the housing. In Region IV, Consumer 2 will default. Finally, at the

boundary of Regions II and III, equilibrium consumptions are determinate

but prices are indeterminate. The calculations in Regions I, II are almost

identical to those in Example 1 and are omitted; the calculations for Regions

III, IV follow the same method with the appropriate changes to incorporate

default, and are sketched.

• Region I: α ∈ [0,2)

Consumers 1 and 2 both hold date 0 housing; Consumer 2 honors her

10As before, the case α > 4 reduces to the case α = 4.
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promises in both states at date 1.

p = (1, 5; 1, 4; 1, 4)

qα = α

x1 = (18− 5− α

8− α
, 1− 7

2(5− α)
+

1

8− α
; 9 + α, 0; 9 + α, 0)

x2 = (
5− α

8− α
,

7

2(5− α)
− 1

8− α
; 9− α, 1;

5

2
− α, 1)

ϕ1 =
7

2(5− α)
− 1

8− α

ψ2 =
7

2(5− α)
− 1

8− α

• Region II: α ∈ [2, 5
2
)

Consumer 2 holds all the housing at both dates and honors her promises

at both states in date 1.

p =

(
1, α+

(
7

2

)(
8− α

9− α

)
; 1, 4; 1, 4

)
qα = α

x1 =

(
18−

(
7

2

)[
1−

(
8− α

9− α

)]
, 0; 9 + α, 0; 9 + α, 0

)
x2 =

((
7

2

)[
1−

(
8− α

9− α

)]
, 1; 9− α, 1;

5

2
− α, 1

)
ϕ1 = 1

ψ2 = 1

• Boundary between Regions II, III: α = 5
2

Consumer 2 holds all the date 0 housing and honors her promise in

date 1; in state 2 this leaves consumer 2 with all the housing and no
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food, whence p2H is indeterminate.

p =

(
1,

5

2
+

(
7

2

)(
11

13

)
; 1, 4; 1, p2H

)
p2H ∈ [3, 4]

qα = α

x1 =

(
9 +

(
7

2

)(
11

13

)
, 0;

23

2
, 0;

23

2
, 0

)
x2 =

(
5

2
−
(

7

2

)(
11

13

)
, 1;

13

2
, 1; 0, 1

)

• Region III: α ∈ (5
2
,3]

Consumer 2 holds all the date 0 housing and honors her promise in

the good state. In the bad state, the price of housing falls to p2H = 3;

Consumer 2 has assets of 5
2
+3 (endowment plus housing) and liabilities

of α (the security promise), so sells the house, repays her debt, and then

buys all the housing she can afford at the price p2H = 3; Consumer 1

buys the remaining housing.

p =

(
1, α+

(
7

2

)(
8− α

9− α

)
; 1, 4, 1, 3

)
qα = α

x1 =

(
29

2
+

(
7

2

)(
8− α

9− α

)
, 0; 9 + α, 0;

23

2
, 1−

11
2
− α

3

)
x2 =

(
5

2
−
(

7

2

)(
8− α

9− α

)
, 1; 9− α, 1; 0,

11
2
− α

3

)
• Region IV α ∈ [3,4]

Consumer 2 holds all the date 0 housing and honors her promise in the

good state, but defaults in the bad state (delivering the house instead

of the promise α). After the default, Consumer 2 buys back all the

housing she can afford (less than the available quantity of housing) at
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the price p2H = 3.

p =

(
1,
α+ 3

2
+

(
5

2

)(
8− α+3

2

9− α+3
2

)
; 1, 4; 1, 3

)
qα =

α+ 3

2

x1 = (
29

2
+

5

2

(
8− α+3

2

9− α+3
2

)
, 0; 9 + α, 0;

23

2
,
1

6
) x2 = (

5

2
− 5

2

(
8− α+3

2

9− α+3
2

, 1; 9− α, 1; 0,
5

6

)

Consumers 1 and 2 have constant and equal marginal utilities for food in

state 1, so this is a transferable utility economy and we may identify social

welfare with the sum of individual utilities. Direct computation shows that

• 0 ≤ α < 2: welfare of both Consumer 1 and Consumer 2 is increasing,

and social welfare is increasing

• for 2 < α ≤ 4: welfare of Consumer 1 is increasing and welfare of

Consumer 2 is decreasing, and social welfare is increasing

In particular, social welfare attains its maximum when α = 4, so collateral

levels that lead to default with positive probability are socially efficient. ♦

In our framework, the set of securities available for trade is given exoge-

nously, but the set of securities actually traded is determined endogenously at

equilibrium. Because the former set might be very large — conceptually, all

conceivable securities — we can view the action of the market as determining

the observed security structure. In the present context, the market chooses

the most efficient collateral requirements even though those requirements

lead to default in the bad state.

Example 3 (Which Securities are Traded?) We maintain the entire

structure of Example 2, except that some set {Aα} of securities is available

for trade where as above Aα = (αp1F , αp2F ; δ0H) promises the value of α units

of food and is collateralized by one unit of housing (Equivalently: a finite
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number of collateral requirements are possible.) To be consistent with our

framework, we assume the set of available securities (the range of collateral

requirements offered) is finite, but, at least conceptually, we might imagine

that all possible collateral requirements are offered. We assert that at any

equilibrium, only the security whose promise is greatest — equivalently, the

security with the lowest collateral requirement — is traded.

To see this, consider an environment in which Aβ, Aγ are available, where

β < γ, and suppose Aβ is traded. Only Consumer 2 sells securities (borrows),

so Consumer 2’s equilibrium plan involves selling some positive amount of

Aβ. Consider the alternative plan for Consumer 2 which involves selling ε

fewer shares of Aβ and ε more shares of Aγ. Given the specified endowments,

Consumer 2’s equilibrium consumption must be non-zero in date 0 and in

both states at date 1, so if ε is small enough, this alternative plan is feasible.

Moreover, because securities are priced at their expected payoffs, this alter-

native plan is preferred if Consumer 2’s marginal utility for income in date

0 exceeds his expected marginal utility for income in date 1.

To see that this is indeed the case, first estimate marginal utility of income

in each state. In state 1, prices are p1F = 1, p1H = 4 so Consumer 2’s marginal

utility of income is 1. In state 2, prices are p2F = 1, p2H ≥ 3 so Consumer 2’s

marginal utility of income is at most 4/3. Hence expected marginal utility

of income in date 1 is at most 7/6. Marginal utility of income in date 0 is

the maximum of marginal utility per dollar for food and marginal utility per

dollar for housing. The former exceeds 7/6 unless x2
0F ≥ 6/7. If Consumer

1 holds any housing at all, then p0H = 5, so if x2
0F ≥ 6/7 then the marginal

utility of a dollar of housing to Consumer 2 is greater than the marginal

utility of a dollar of food, which is a contradiction. Hence Consumer 1 holds

no housing, so that x2
0H = 1 and

p0H = p0Hx
2
0H ≤ 7

2
+ 4− x2

0F ≤
15

2
− 6

7
=

93

14

Hence marginal utility of housing per dollar is at least 8/(93/14) = 112/93 >

7/6. Hence marginal utility of income at date 0 is greater than expected

marginal utility of income at date 1. Thus, the alternative plan is preferred,

which contradicts optimality of equilibrium plans. We conclude that Aβ is
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not traded, as asserted. ♦

In this environment at least, the market chooses efficient collateral levels

— even though those collateral levels may lead to default. Characterizing

economies when the market does or does not choose efficient collateral levels

seems an important and difficult question, to which we do not know the an-

swer. (Indeed, because multiple equilibria are possible, it is not entirely clear

precisely how to formulate the question.) However, the answer is affirmative

in at least one important case: if date 1 prices do not depend on collateral

levels.

Theorem 4 (Constrained Optimality) Every set of collateral equilibrium

plans is Pareto optimal among all sets of plans that:

(a) are socially feasible;

(b) given whatever date 0 decisions are assigned, respect each consumer’s

budget set at every state s at date 1 at the given equilibrium prices;

(c) call for deliveries on securities that are the minimum of the promise

and the value of collateral.

In particular, sequestering securities cannot lead to a Pareto improvement

unless date 1 prices change; if date 1 prices do not change, the market chooses

the security structure efficiently. In particular, if only one good is available

for consumption at date 1, then collateral equilibrium is constrained efficient

and the market chooses the security structure efficiently; compare Kilenthong

(2006).
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7 Securitization

Securitization usually refers to the process of converting non-tradable assets

into tradable securities through the repacking of their cash flows (Elul, 2005).

More generally, we may think of securitization as the process of creating

securities – we shall refer to them as security pools – that are collateralized

by other securities. In general, the securities used as collateral might in turn

be collateralized by other securites, and so forth through many layers, but for

our purposes it shall be enough to allow for only a single layer; we leave the

straightforward generalization to the interested reader. This section presents

the formal model; discussion and applications to welfare are discussed in

Section 8

Fix commodities and a family A = {(A1, c1), . . . , (AJ , cJ)} of collateral-

ized securities. A security pool is a tuple B = (B1, . . . , BT ;χ) where each

tranche Bt is a promise of delivery as a function of prices, and χ = (χ), χ1) ∈
RL

+ × RJ
+ (a bundle of commodities and a portfolio of securities) is the col-

lateral requirement. It is convenient to write:

Del(χ; s, p) = p · χ0 + Del(χ1; s, p)

for the delivery of the collateral requirement χ = (χ0, χ1). We interpret

the promise Bt as senior to Bt+1, so actual deliveries may be defined by

induction:

Del(B1; s, p) = min
{
B1(s, ps), Del(χ; s, p)

}
Del(Bt+1; s, p) = min

{
Bt+1(s, ps), Del(χ; s, p)−

t∑
t′=1

Del(Bt′ ; s, p)

}

Note that the delivery on each of the promises lies (weakly) between 0 and

the delivery on the collateral. There is no loss in assuming that all pools

have the same number of tranches (because we can always add tranches that

promise 0 delivery).

If B = {B1, . . . ,BK} is the set of available security pools, a portfolio of
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security tranches is a vector Θ ∈ RKT
+ ; the delivery on Θ is

Del(Θ; s, p) =
∑

k

∑
t

ΘktDel(Bkt; s, p)

An economy with collateralized securities and security pools is a tuple

E = 〈(ei, ui),A,B〉.

For each k, t, we write Qkt for the price of tranche Bkt of pool Bk, and

Φkti,Ψkti for consumer i’s purchases and sales of this tranche. Given spot

prices p, security prices q and tranche prices Q = (Qkt), the budget set of a

consumer whose endowment is e is the set of plans (x, ϕ, ψ,Φ,Ψ) (for con-

sumption, security purchases, security sales, tranche purchases and tranche

sales) that satisfy the budget constraints at date 0 and in each state at date

1 and the collateral constraints at date 0:

• At date 0

p0 · x0 + q · ϕ+Q · Φ ≤ p0 · e0 + q · ψ +Q ·Ψ

x0 ≥
∑

j

ψjc
j

ϕ ≥
∑

k

max
t

Ψktχk

That is, expenditures for consumption, security purchases and pool

purchases do not exceed income from endowment, security sales and

pool sales, date 0 consumption includes collateral for all security sales

and date 0 security purchases include collateral for all pool sales. Note

that, as intended, holding the collateral χk is sufficient to collateralize

sales of one unit of each tranche of pool Bk.

• In state s

ps · xs + Del(ϕ; s, p) + Del(Φ; s, p) ≤ ps · es + ps · Fs(x0)

+ Del(ψ, s, p) + Del(Ψ; s, p)
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That is, expenditures for consumption and deliveries on securities and

pools do not exceed income from endowment, from the return on durable

goods, and from deliveries on security promises and pool promises.

A pool equilibrium for such an economy consists of spot prices p ∈ RL(1+S)
+ ,

security prices q ∈ RJ
+, pool pricesQ ∈ RKT

+ and consumer plans (xi, ϕi, ψi,Φi,Ψi)

satisfying the conditions:

• Commodity Markets Clear∑
i

xi =
∑

i

ei +
∑

i

F (ei
0)

• Security Markets Clear ∑
i

ϕi =
∑

i

ψi

• Pool Markets Clear ∑
i

Φi =
∑

i

Ψi

• Plans are Budget Feasible

(xi, ϕi, ψi) ∈ B(p, q,Q; ei,A,B)

• Consumers Optimize

(x, ϕ, ψ,Φi,Ψi) ∈ B(p, q,Q; ei,A,B) ⇒ ui(x) ≤ ui(xi)

It is natural to think of security pools as assembled by intermediaries who

purchase all the collateral and then sells some of the tranches, holding the

rest themselves.

Our model of security pools satisfies the basic consistency requirement

that equilibrium exists.
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Theorem 5 (Existence of Pool Equilibrium) Every economy with col-

lateralized securities and security pools, satisfying Assumptions 1-3 (in Sec-

tion 2) admits an equilibrium.

Our model incorporates three distinct processes: pyramiding (the use

collateralized securities to collateralize further securities), pooling (the com-

bining of bundling of collateral goods and securities to collateralize different

loans) and tranching (the using collateral goods and securities to collateralize

several securities). Section 8 shows how these processes operate when used

together (in our environment) but a brief informal discussion may guide the

reader.

• To see how pyramiding could be useful, imagine an economy with one

consumption good and three states at date 1. Suppose there is a durable

good (houses today) yields consumption in quantities (2,1,1) in the

three states. Agent 0 has utility for date 0 housing, agent 1 only wants

to consume in state 1, and agent 2 (who is very risk averse) wants to

smooth consumption perfectly in date 1. Suppose further that in the

initial condition of society, only riskless promises (i.e., promises of the

form (a, a, a) can be written. If agent 0 owns the house and sells off

a promise of (1,1,1) to agent 2, then agent 0 gets stuck consuming 1

in state 1 tomorrow. On the other hand, if agent 1 owns the house

and sells of the promise (1,1,1) to agent 2, then the right agent gets

consumption of 1 in state 1 tomorrow, but the house is in the wrong

hands. With pyramiding, agent 0 could own the house and sell off

promise (2,2,2) to agent 1. Agent 1 could use that promise – which

delivers (2,1,1) – as collateral for a futher promise of (1,1,1) to agent 2.

This achieves the efficient allocation of getting 0 to live in the house,

agent 1 to consume 1 in state 1, and agent 2 to consume (1,1,1) in the

three states tomorrow. (We might think of agent h=0 as a homeowner,

agent 1 as a speculator, and agent 2 as the risk averse lender.) We see

that pyramiding, combined with default, allows for a socially superior

allocation.

• To see how pooling is useful, imagine a variant of the previous example
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in which there are two houses and two potential homeowners 0 and

0’. Suppose the first house pays (1,1,0) and the second house pays

(1,0,1) in the three states. The optimal allocation is achieved when 0

buys the first house and using it as collateral sells the promise (1,1,1),

thereby delivering (1,1,0). Agent 0’ buys the second house and using it

as collateral sells the promise (1,1,1), delivering (1,0,1). Agent 1 buys

both promises, pooling them together as collateral to back the promise

(1,1,1), which delivers fully and is sold to agent 2, leaving agent 1 with

the residual payoff of (1,0,0). Pooling the promises allowed for the di-

versification that made the pool able to fully cover the (1,1,1) promise.

Note that the houses could not directly be pooled together, because

they need to be owned by separate homeowners. This example illus-

trates the power of say subprime mortgage pools to enable homeowners

to borrow the money to buy houses to live in, while dividing the mort-

gage cash flows between speculators and risk averse agents. In states

2 and 3 one homeowner defaults, but at the pool level the promise is

kept.11

• Tranching allows the same collateral is used to back more than one loan

or tranche. With more than one loan depending on the same collateral,

a seniority is required to define the payoffs. Consider the first example

in which the homeowner buys the house and using it as collateral issues

a senior promise (first mortgage) promising (1,1,1) and a junior tranche

(second mortgage) also promising (1,1,1). The senior tranche will fully

deliver (1,1,1) and be bought by agent 2, and the junior tranche will

deliver (1,0,0) and be bought by agent 1.

11An example in keeping with how events unfolded over the past two years, as opposed
to how they were meant to unfold in theory, would involve a fourth state in which many
both house payoffs are 0, forcing two defaults at the homeowner level as well as default at
the pool level.
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8 Securitization and Efficiency

We argue here that, in a world in which all securities must be collateral-

ized, securitization promotes efficiency but that there are robust situations

in which efficiency cannot be obtained. To make these points we begin with

a simple observation.

Theorem 6 (Net Savers) If 〈p, q,Q, (xi, ϕi, ψi,Φi,Ψi〉 is an equilibrium for

the economy 〈(ei, ui),A,B〉 then each consumer’s future expenditures must

exceed his/her unpledgeable income in every future state; that is,

ps · xi
s ≥≥ pse

i
s

for each consumer i and state s.

This simple theorem has a striking negative consequence for efficiency:

provided we rule out avoid corner solutions, inefficiency is a robust phe-

nomenon – independently of consumer preferences and the availability of

securities and security pools.

Theorem 7 (Robust Inefficiency) Fix a positive social endowment e ≥ 0

and smooth utility functions (ui) that are strictly monotone and satisfy the

boundary condition.12 There is an non-empty open subset Ω of the set of

endowment profiles {(ei) :
∑
ei = e} with the property that no collateral

equilibrium from any endowment profile in Ω can be Pareto optimal, no mat-

ter what securities and security pools are available for trade.

On the other hand, any allocation that can be supported as a Walrasian

equilibrium and that Theorem 6 does not rule out as occurring in a collateral

equilibrium can in fact be obtained whenever “enough’ securities and security

pools are available.13

12That is, indifference curves through any point in the strictly positive orthant lie en-
tirely in the strictly positive orthant; Debreu (1972).

13As the proof shows, we need only a very simple set of security pools whose tranches
are Arrow securities.
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Theorem 8 (Supporting Walrasian Equilibrium) If 〈p̃, (xi)〉 is a Wal-

rasian equilibrium for the economy 〈(ei, ui)〉, and each consumer is a net

saver in the sense that

p̃s · (xi
s − ei

s) ≥ 0

for each consumer i and state s, then there is a family A∗ of collateralized

securities and a family B∗ of security pools such that if A is any family

of collateralized securities and B is any family of security pools for which

A ⊃ A∗ and B ⊃ B∗ then there is an equilibrium 〈p, q,Q, (xi, ϕi, ψi,Φi,Ψi)〉
for the economy 〈(ei, ui),A, ,B〉 with the same consumptions (and the same

commodity prices) as the given Walrasian equilibrium.

A simple example illustrates Theorem 8 and the reason why tranching is

required for efficency.

Example 4 (Security Pools and Walrasian Equilibrium) We consider

another variant of Example 1. There are two states of nature, two goods

(Food and Housing), and four consumers. Each consumer assigns equal prob-

ability to the two states in date 1. Consumer 1 owns the housing and is risk

neutral; Consumer 2 likes housing much more than other consumers; Con-

sumers 3, 4 care only about food and have an insurance motive. We take the

supply of housing h ∈ [0, 5] as a parameter. Endowments and utilities are

e1 = (12, h; 16, 0; 16, 0)

u1 = x0F + x0H +
1

2
[x1F + x1H ] +

1

2
[x2F + x2H ]

e2 = (9, 0; 32, 0; 32, 0)

u2 = log(x0F ) + 4x0H +
1

2
[x1F + 4x1H ] +

1

2
[x2F + 4x2H ]

e3 = (12, 0; 8, 0; 0, 0)

u3 = log(x0F ) +
1

2
log(x1F ) +

1

2
log(x2F )

e4 = (12, 0; 0, 0; 8, 0)

u4 = log(x0F ) +
1

2
log(x1F ) +

1

2
log(x2F )
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Walrasian prices and utilities are unique but equilibrium allocations are

indeterminate:

p̃ = (1, 8;
1

2
(1, 4);

1

2
(1, 4))

x1 = (28, 0; 8h+ ζ, 0; 8h− ζ, 0)

x2 = (1, h; 40− 8h− ζ, h; 40− 8h+ ζ, h)

x3 = (8, 0; 8, 0; 8, 0)

x4 = (8, 0; 8, 0; 8, 0)

for ζ ∈ [0,min(8h, 40− 8h)].

For which values of h, ζ can this equilibrium be supported as a collateral

equilibrium for an appropriate choice of securities and security pools? In view

of Theorems 6 and 8, it is necessary and sufficient that each consumer be a

net saver. This requirement is automatically satisfied for Consumers 3 and

4; for Consumers 1, 2 the requirement imposes inequalities. In particular, we

conclude that

• for h ∈ [0, 2) and for h ∈ (2, 5] there is no Walrasian equilibrium that

can be supported as a pool equilibrium

• for h = 2 there is at least one Walrasian equilibrium that can be sup-

ported as a pool equilibrium (namely the one with ζ = 0)

• for h = 2 there are also Walrasian equilibria that cannot be supported

as a pool equilibrium (those with ζ 6= 0)

(For h ∈ (2, 5], Consumer 2 is too poor at date 0, and cannot borrow

enough to buy all the housing. For h ∈ [0, 2), Consumer 2 is too rich at date 0,

and cannot save because saving requires that some other consumer borrow —

but borrowing would require some other consumer to hold housing.) The pool

equilibria that support Walrasian equilibria are easy to describe: Consumer

2 buys all the housing, using it to collateralize the loan; Consumer 1 uses the

housing loans (i.e., the mortgages) to collateralize a security pool with two
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tranches, each promising to deliver the value of 8 units of food in each state;

Consumers 3 and 4 each buy one of these tranches.

It is instructive to see why collateralized securities alone are not sufficient

to support any of the Walrasian equilibria, including the symmetric equilib-

rium when h = 2. To support a Walrasian equilibrium, Consumers 3 and 4

must each buy insurance that pays 8 units of account in a diffferent state in

date 1. Buying insurance amounts to lending, and loans must be collateral-

ized; if the loans must be collateralized by durable goods then each of these

loans must be collateralized by at least two houses — so three houses cannot

collateralize both loans. Security pools “solve” this problem by making it

possible for the same houses to collateralize both loans. ♦
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9 Conclusion

Collateral requirements are almost omnipresent in modern economies, but

the effects of these collateral requirements have received little attention ex-

cept in circumstances where there is actual default. This paper has argued

that collateral requirements ahve important effects on every aspect of the

economy — even when there is no default. Collateral requirements inhibit

lending, limit borrowing, and distort consumption decisions. The shortage of

collateral leads to financial innovations that stretch the available collateral.

But even after all possible financial innovations, in the presence of collateral

requirements, robust inefficiency is an inescapable possibility.

The model offered here abstracts away from many transaction costs, in-

formational asymmetries, and many other frictions that play an important

role in real markets. It also restricts attention to a two-date world, and so

does not address issues such as default at intermediate dates. All these are

important questions for later work.
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Appendix

Proof of Theorem 1 In constructing an equilibrium for E = ((ei, ui),A),

we must confront the possibility that security promises, and hence deliveries,

may be 0 at some commodity spot prices.14 (An option to buy gold at

$400/ounce will yield 0 in every state if the the spot price of gold never

exceeds $400/ounce.) Because of this, the argument is a bit delicate. We

construct, for each ρ > 0, an auxiliary economy Eρ in which security promises

are bounded below by ρ; in these auxiliary economies, equilibrium security

prices will be different from 0. We then construct an equilibrium for E by

taking limits as ρ→ 0.

For each s = 0, 1, . . . , S, choose and fix an arbitary price level βs > 0.

(Because promises are functions of prices, choosing price levels is not the same

thing as choosing price normalizations, and we do not assert that equilibrium

is independent of the price levels — only that for every set of price levels there

exists an equilibrium.) Write

∆s = {(ps`) ∈ RL
++ :

∑
`

ps` = βs}

∆ = ∆0 × . . .×∆S

Write 10 = (1, . . . , 1) ∈ RL
+ and define

Q = {q ∈ RJ
+ : 0 ≤ qj ≤ 2β010 · cj}

We construct equilibria (for the auxiliary economies and then for our original

economy) with commodity prices in ∆ and security prices in Q.

For each ρ > 0, define an security (Aρj, cj) whose promise is:

Aρj = Aj + ρ

Let Aρ = {(Aρ1, c1) . . . , (AρJ , cJ)}. Define the auxiliary economy Eρ =

〈(ei, ui),Aρ〉, so Cρ differs from E only in that security promises have been

increased by ρ in every state and for all spot prices.

14Non-trivial collateral requirements imply that if promises are not 0 then deliveries
cannot be 0 either.

51



We first construct truncated budget sets and demand and excess demand

correspondences in this auxiliary economy. By assumption, collateral re-

quirements for each security are non-zero. Choose a constant µ so large that,

for each j,

µcj 6≤ ē0

(Thus, to sell µ units of the security Aρj would require more collateral than

is actually available to the entire economy.) For each (p, q) ∈ ∆ × Q and

each consumer i, define the truncated budget set

Bi
0(p, q) = {π ∈ Bi(p, q, eiÃρ) : 0 ≤ ϕij ≤ µI , 0 ≤ ψij ≤ µI for each j}

and the individual truncated demand correspondence

di(p, q) = {π = (x, ϕ, ψ) ∈ Bi
0(p, q) : π is utility optimal in Bi

0(p, q)}

(Note that truncated demand exists at every price (p, q), because we bound

security purchases and sales. Absent such a bound, demands would certainly

be undefined at some prices. For instance, if qj = 2β010 · cj, agents could

sell Aρj for enough to finance the purchase of its collateral requirement cj, so

there would be an unlimited arbitrage. Bounding security sales bounds the

arbitrage.) Write

D(p, q) =
∑

i

di(p, q)

for the aggregate demand correspondence.

For each plan π, we define security excess demand and commodity excess

demands zs(π) in each spot :

za(π) = ϕ− ψ

zs(π) = xs − ēs

Write

z(π) = (z0(π), . . . , zS(π); za(π)) ∈ RL(1+S) × RJ

and define the aggregate excess demand correspondence

Z : ∆×Q → RL(1+S) × RJ

Z(p, q) = z(D(p, q))
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It is easily checked that Z(p, q) is non-empty, compact, and convex for

each p, q and that the correspondence Z is upper hemi-continuous. Because

consumptions security sales are bounded, Z is also bounded below. Because

utility functions are monotone, a familiar argument (Debreu (1959)) shows

that Z satisfies the usual boundary condition:

||Z(p, q)|| → ∞ as (p, q) → bdy∆×Q

(It doesn’t matter which norm we use.)

Now fix ε > 0, and set

∆ε = {p ∈ ∆ : ps` ≥ ε for each s, `}

Because Z is an upper hemi-continuous correspondence, it is bounded on

∆ε ×Q; set

Zε = {z ∈ RL(1+S) × RJ : ||z|| ≤ sup
(p,q)∈∆ε×Q

||Z(p, q)||}

Define the correspondence

F ε : ∆ε ×Q× Zε → ∆ε ×Q× Zε

F ε(p, q, z) = argmax {(p∗, q∗) · z : (p∗, q∗) ∈ ∆ε ×Q} × Z(p, q)

For prices (p, q) ∈ ∆×Q and a vector of excess demands z ∈ RL(1+S) × RJ ,

(p, q) · z is the value of excess demands. We caution the reader that, in

this setting, Walras’ law need not hold for arbitrary prices: the value of

excess demand need not be 0. We shall see, however, that the value of excess

demand is 0 at the prices we identify as candidate equilibrium prices

Our construction guarantees that F ε is an upper-hemicontinuous corre-

spondence, with non-empty, compact convex values. Kakutani’s theorem

guarantees that F ε has a fixed point. We assert that for some ε0 > 0 suffi-

ciently small, the correspondences F ε, 0 < ε < ε0 have a common fixed point .

To see this, write Gε ⊂ ∆ε × Q × Zε for the set of all fixed points of F ε;

Gε is a non-empty compact set. We show that for some ε0 > 0 sufficiently

small, the sets Gε are nested and decrease as ε decreases; that is, Gε1 ⊂ Gε2

whenever 0 < ε1 < ε2 < ε0.
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To see this, note first that security deliveries are bounded, because de-

liveries never exceed the value of collateral. Hence individual expenditures

at budget feasible plans (and in particular at plans in the truncated demand

set) are bounded, independent of prices (because income from endowments

is bounded, security prices and sales are bounded, and security purchases

and deliveries are bounded). Choose an upper bound M > 0 on individ-

ual expenditures at budget feasible plans. Because commodity demands are

non-negative, individual excess demands are bounded below; choose a lower

bound −R < 0 on individual exess demands.

Because excess demand is the sum of individual demands less the sum of

endowments, it follows that if z ∈ Z(p, q) then

(p, q) · z ≤ MI

zs` ≥ −RI for each commodity s`

A familiar argument (based on strict monotonicity or preferences) shows

that if commodity prices tend to the boundary of ∆ then aggregate com-

modity excess demand blows up. If the price of some security tends to 0 but

the value of its collateral does not, then deliveries on that security do not

tend to 0, whence demand for that security and consequent aggregate com-

modity excess demand again blow up. Hence we can find ε0 > 0 such that if

(p, q) ∈ ∆×Q, z ∈ Z(p, q), and ps0`0 < ε0 for some spot s0 and commodity

`0 then there is some spot s1 and commodity `1 such that

zs1`1 >
1

βs1 − (L− 1)ε

[
MI + εR(L− 1) + (max

s
βs)RI

]
(11)

We assert that if 0 < ε < ε0 then Gε ⊂ ∆ε0 × Q × Zε0 . To see this,

suppose that (p, q, z) ∈ Gep and p /∈ ∆ε0 . Define p̃ ∈ ∆ by

p̃s` =


ε if s = s0, ` 6= `0
βs − (L− 1)ε if s = s0, ` = `0
βs/L otherwise

Direct calculation using equation (11) shows that (p̃, 0) · z > MI, which is

a contradiction. We conclude that p ∈ ∆ε0 and hence that (p, q, z) ∈ Gε
0 as

desired.
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The definition of F ε implies that if 0 < ε1 < ε2 and Gε1 ⊂ ∆ε2 ×Q× Zε2

then Gε1 ⊂ Gε2 . Hence, for 0 < ε < ε0 the sets Gε are nested and decrease

as ε decreases. A nested family of non-empty compact sets has a non-empty

intersection so we may define the non-empty set G:

G =
⋂
ε<ε0

Gε

Let (p, q, z) ∈ G; we assert that z = 0 and that p, q constitute equilibrium

prices for the economy Eρ.

We first show that excess security demand za = 0. If the excess demand

for security j were strictly positive, the requirement that (p, q) maximize

the value of excess demand would imply that qj is as big as possible: qj =

2β010 · cj. But then agents could sell Aρj for enough to finance the purchase

of the collateral requirement, whence the excess demand for Aρj would be

negative, a contradiction. We conclude that security excess demand must

be non-positive. If the excess demand for security j were strictly negative,

the requirement that (p, q) maximize the value of excess demand would imply

that qj is as small as possible: qj = 0. But if the price of Aρj were 0 then every

agent would wish to buy it because its delivery would be min{ρ, ps ·Fs(c
j)} >

0. Hence the excess demand for Aρ
j must be positive, a contradiction.15 We

conclude that za = 0.

We show next that Walras’ law holds for the prices p, q and the excess

demand z: (p, q) · z = 0. To see this, choose individual demands πi ∈ di(p, q)

with the property that the corresponding aggregate excess demand is z:

Z(
∑

i

πi) = z

For each agent i, the plan πi lies in the budget set at prices (p, q), so the date

0 expenditure required to carry out the plan πi is no greater than the value of

date 0 endowment. Because utility is strictly monotone in date 0 perishable

commodities and in all commodities in state s, optimization implies that all

15Note that we could not obtain this conclusion in the original economy, because, at the
prices (p, q) the security Aj might promise 0 in every state.
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individuals spend all their income at date 0, so we conclude that the date 0

expenditure required to carry out the plan πi is precisely equal to the value

of date 0 endowment. Put differently, the value of date 0 excess demand is

0 for each individual. Summing over all individuals, we conclude that the

value of date 0 aggregate excess demand is 0: p0 ·z0 +q ·za = 0. Now consider

any state s ≥ 1 at date 1. For individual i, we can argue exactly as above

to conclude that the value of individual excess demand is equal to the net of

deliveries on purchases and sales of securities. Thus, the value of aggregate

excess demand in state s is the net of deliveries on aggregate purchases and

sales of securities. However, za = 0 so aggregate purchases and sales of

securities are equal. We conclude that the value of aggregate excess demand

in state s is 0. Summing over all spots we conclude that (p, q) · z = 0, as

asserted.

We show next that z = 0. If not, Walras’ law entails that excess demand

for some commodity is positive; say zs0`0 > 0. Define commodity prices p̃ by:

p̃s` =


ps` if s 6= s0

ε if s = s0, ` 6= `0
1− (L− 1)ε if s = s0, ` = `0

Because (p, q)·z = 0 and zs0`0 > 0, (p̃, q)·z will be strictly positive if ε is small

enough. However, this would contradict our assumption that (p, q, z) ∈ G

and hence is a fixed point of F ε for every sufficiently small ε. We conclude

that z = 0. It is clear that the prices p, q and plans (πi) identified above

constitute an equilibrium for the economy Eρ.

It remains to construct an equilibrium for the original economy E . To

this end, let p(ρ), q(ρ), (πi(ρ)) be equilibrium prices and plans for Eρ and

let ρ → 0. By construction, prices and plans lie in bounded sets, so we

may choose a sequence (ρn) → 0 for which the corresponding prices and

plans converge; let the limits be p, q, (πi). Commodity prices p do not lie on

the boundary of ∆ (for otherwise the excess demands at prices p(ρn), q(ρn)

would be unbounded, rather than 0). It follows that πi(ρ) is utility optimal

in consumer i’s budget set at prices (p, q). Because the collection of plans

(πi) is the limit of collections of socially feasible plans, it follows that they are

socially feasible and hence that the artificial bounds on security purchases and
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sales do not bind at the prices p, q. Hence p, q, (πi) constitute an equilibrium

for E .

Proof of Theorem 2 Fix a CE. As we have already observed, if this CE

reduces to GEI then the fundamental asset pricing equations must all hold.

Conversely, if the fundamental asset pricing equations hold then the first-

order conditions for GEI hold. Because utility functions are quasi-concave

and the budget and market-clearing conditions for GEI imply the budget

and market-clearing conditions for CE, it follows that we are at a GEI. Put

differently: if the CE does not reduce to GEI then at least one of the funda-

mental pricing equations must fail; we must show that the failure(s) are of

the type(s) specified.

Not first that, because any agent can always buy more of any good or of

any security, both commodity prices and security prices must weakly exceed

fundamental value for every agent. Thus if CE does not reduce to GEI, there

must be some agent i and some durable good he holds or some promise he is

selling for which price strictly exceeds fundamental value.

This proof seems incomplete, or at least mysterious. What if

there are NO perishable goods? What if ALL goods held by i are

used as collateral?

On the other hand, any agent can always reduce or increase all his hold-

ings of durable goods and all the promises sold by a common ε% without

violating a collateral constraint, moving the resulting revenue into or out

of perishable consumption. This marginal move must yield zero marginal

utility if the agent was optimizing. Since every exchange of durable con-

sumption for perishable consumption either yields zero marginal utility or

positive marginal utility, and every reduction of promises sold either yields

zero marginal utility or negative marginal utility, the across the board re-

duction must involve at least one durable good for which price was above

fundamental value and at least one sold promise for which price was also

above fundamental value, or agent i.

Proof of Theorem 3 If the allocation (xi) is Pareto optimal, then ratios of
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marginal utilities are equal so prices must coincide with fundamental values,

whence CE coincides with GEI. It follows exactly as in Elul (1999) that an

efficient GEI in which some agent consumes a strictly positive amount of

each good is Walrasian.16

Proof of Theorem 4 Let 〈p, q, (xi, ϕi, ψi)〉 be an equilibrium, and suppose

that (x̂i, ϕ̂i, ψ̂i) is a family of plans meeting the given conditions that Pareto

dominates the equilibrium set of plans. By assumption, all the alternative

plans are feasible, meet the budget constraints at each state at date 1, and call

for deliveries that are the minumum of promises and the value of collateral,

Optimality of the equilibrium plans at prices p, q means, therefore, that all

the alternative plans (x̂i, ϕ̂i, ψ̂i) fail the budget constraints at date 0. Because

the alternative set of plans is socially feasible, summing over consumers yields

a contradiction.

Proof of Theorem 5 The proof follows exactly as the proof of Theorem

1 with the obvious addition of pools, pool prices, and pool purchases and

sales. We leave the details to the reader.

Proof of Theorem 6 If ps ·xi
s < ps ·ei

s for some consumer i and state s, then

in state s, consumer i could default on all the promises of the securities s/he

sold at date 0, surrender the collateral backing these promises, and still afford

more than xi
s. This would contradict the requirement that i’s equilibrium

plan be optimal in i’s budget set. Hence ps · xi
s ≥ ps · ei

s, as asserted.

Proof of of Theorem 7 Write E = {(e1, . . . , eN) :
∑
ei = e} for the

set of endowment profiles that sum to the given social endowment e. Let

Π ⊂ R(1+S)L
++ be the set of Walrasian prices from some endowment profile in

E, normalized so that p · e = 1, and let Π be its closure. A straightforward

argument shows that Π is compact.

Fix a consumer, say consumer 1, a state, say state 1, and real numbers

α, α′ with 0 < α < α′ < 1. For each w ∈ [α, α′], write X(w, p) ⊂ R(1+S)L
+

16Elul (1999) treats the the standard model with no durable goods; the adaptation to
the present context is entirely straightforward.
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for consumer 1’s demand at wealth w and prices p and let X1(w, p) be the

component of X(w, p) in state 1. The boundary condition implies that p1 ·
X1(w, p) < w. A straightforward compactness argument implies there exists

some β < 1 such that

p1 ·X1(w, p) < βw for all w ∈ [α, α′], p ∈ Π

Set

Ω = {(e1, . . . , eN) ∈ E : α < p · e1 < α′, p1 · e11 > βp · e1 for all p ∈ Π}

Because e� 0, Note that Ω is a non-empty (because e� 0) open set.

We claim that no collateral equilibrium from any endowment profile in Ω

can be Pareto optimal. To see this, fix (e1, . . . , eN)Ω. In view of Theorem

3, every Pareto optimal collateral equilibrium is Walrasian, so it suffices to

show that if 〈p, (xi)〉 is a Walrasian equilibrium from the endowment profile

(e1, . . . , eN) then the consumption allocation (xi) cannot be supported in a

collateral equilibrium. To see this, note that our construction guarantees that

p·e1 ∈ [α, α′], p1·x1
1 ≤ βp·e1 and p1·e11 > βp·e1, whence p1·x1

1 < p1·e11. Because

utility functions are smooth and consumptions (xi
1) are interrior, state 1

prices in any collateral equilibrium and in any Walrasian equilibrium must

be collinear with marginal rates of substitution, so it follows from Theorem

6 that the consumption allocation (xi)〉 cannot be supported in a collateral

equilibrium.

Proof of Theorem 8 Suppose each consumer is a net saver. For ` =

1, . . . , L let B` = (B`1, . . . , B`S; δ0`) be the security pool which is collater-

alized by one unit of the commodity 0` and for which the s tranche B`s

promises to deliver in state s the value of what one unit of commodity 0`

becomes in state s and promises to deliver nothing in states σ 6= s. That is:

B`s
σ =

{
ps · Fs(δ0`) if σ = s

0 if σ 6= s
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Define prices for commoditiesand tranches as follows:

p0` = p̃0` +
∑

s

p̃s · Fs(δ0`)

ps` = p̃s`

Q`s = ps · Fs(δ0`) (12)

For each consumer i and each state s define

ri
s = ps · [xi

s − Fi(x
i
0)]− ps · [ei

s − Fs(e
i
0)]

Note that this quantity could be positive, negative or zero. For each consumer

i define the portfolios Φi,Ψi of purchases and sales of tranches as follows:

ϕi = xi
0

ψi = xi
0

Φi`s =
x1

0

ps · Fs(x1
0

(r1
s)

+

Ψi`s =
x1

0

ps · Fs(x1
0

(−r1
s)

+ (13)

We claim 〈p, , Q, (xi,Φi,Ψi)〉 is an equilibrium for the economy E =

〈(ei, ui), (F`)〉.

To see this note first that deliveries on tranches coincide with promises:

this follows immediately from the definitions. Moreover, for each consumer

i the plan (xi,Φi,Ψi) is in consumer i’s collateral budget set B(p,Q; ei):

this follows immediately by substituting the definitions of prices (12) and of

portfolios (13) into the Walrasian budget constraints.17 We assert that, for

each i, all consumption plans that that can be financed by purchases and

sales of security pools are in the Walrasian budget set BW (p̃; ei). To see this,

suppose (x̂i, ϕ̂i, Φ̂i, Ψ̂i) is in consumer i’s budget set B(p,Q; ei). The date 0

17We do not assert that every consumption plan in the Walrasian budget sets can be
financed by appropriate portfolios of security purchases and sales – and in general, this is
not so – but only that these particular consumption plans can be so financed.
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and state s budget constraints are

p0 · x̂0 +Q · Φ̂ ≤ p0 · e0 +Q · Ψ̂
ps · x̂s + Del(Φ̂; s, p) ≤ ps · es + ps · Fs(x̂0)

+ Del(Ψ̂; s, p)

Substituting the definitions of spot prices and security deliveries, summing

and doing some algebra yields

p̃0 · x̂0 +
∑

p̃s · x̂s ≤ p̃0 · e0 +
∑

p̃s · es

which is the Walrasian budget constraint.
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