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Abstract: Truthful revelation of preferences has emerged as a desideratum

in the design of school choice programs. Gale-Shapley’s deferred acceptance

mechanism is strategy-proof for students but limits their ability to communi-

cate their preference intensities. This results in ex-ante inefficiency when ties

at school preferences are broken randomly. We propose a variant of deferred

acceptance mechanism which allows students to influence how they are treated

in ties. It maintains truthful revelation of ordinal preferences and supports a

greater scope of efficiency.

Keywords: Gale-Shapley’s deferred acceptance algorithm, choice-augmented

deferred acceptance, tie breaking, ex ante Pareto efficiency.

1 Introduction

Public school choice has been a subject of intense research and policy debate in recent

years. The idea of expanding one’s choice of school beyond his/her residence area has

broad public support, as exemplified by the number of districts that offer parental choice
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over public schools.1 Yet, how to operationalize the idea of school choice remains actively

debated.

This debate, initiated by Abdulkadiroğlu and Sönmez (2003), is centered around a

popular method, the “Boston” mechanism, which was used by Boston Public Schools (BPS)

until the 2004-2005 school year to assign K-12 pupils to the city schools. Under the Boston

mechanism, each school assigns its seats in the order students rank that school during

registration. Specifically, each school accepts first those who rank it the first, and accepts

those who rank it the second only when the seats are available, and so forth. Under this

system, a student’s ranking of a school matters crucially for her chance of assignment at

that school. This feature may engender strategic behavior in the families’ application. For

instance, a family may not list their most preferred school as the top choice if that school

is very popular among others: Ranking it at the top will not improve their chance with

that school appreciably, but it may rather jeopardize their shot at their second, or even

less, preferred school, which could have been available to them if they had ranked it at

the top instead. This incentive to “game the system” raises difficulties for families and

administrators alike.2

In 2005, BPS replaced the Boston mechanism with the student-proposing deferred ac-

ceptance (henceforth DA) mechanism. Originally proposed by David E. Gale and Lloyd

S. Shapley (1962), the DA has students apply to schools in the order they rank them, but

schools select the students based solely on their priorities with each school. Specifically,

in the first round students apply to their to top-ranked schools, and the schools select

from them according to their priorities, up to their capacities but only tentatively, and

reject the others. In the second round, those rejected by their top choice apply to their

second-ranked schools, and schools reselect from those held from the first round and from

new applicants up to their capacities (only based on the school’s ranking of them), again

tentatively, and reject the others. This process continues until no students are rejected,

at which point the tentative assignment becomes final. A crucial difference relative to the

Boston is that a student’s ranking of a school does not affect her chance of assignment at

that school, once she applies to that school in the process. This means that the families

1Government policies that allow parents to choose schools for their children take various
forms, including interdistrict and intradistrict public school choice, offered widely across the US,
as well as open enrollment, tax credits and deductions, education savings accounts, publicly
funded vouchers and scholarships, private voucher programs, contracting with private schools, home
schooling, magnet schools, charter schools and dual enrollment. See an interactive map at
http://www.heritage.org/research/Education/SchoolChoice/SchoolChoice.cfm for a comprehensive list of
choice plans throughout the US.

2It also raises a fairness issue since not all families may be equally sophisticated at strategizing (Ab-
dulkadiroğlu, Pathak, Roth, and Sönmez, 2006).
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have dominant strategies to report truthfully about their rankings, a property known as

“strategyproofness” (Dubins and Freedman, 1981; Roth, 1982). For instance, top-ranking

a very popular school will not jeopardize one’s chance at less preferred schools in case she

fails to get into the top school.

Besides strategyproofness, the DA mechanism is well-justified in terms of student wel-

fare, if student and school preferences do not involve indifferences. Given strict preferences

on both sides, the DA algorithm produces the so-called student optimal stable matching —

a matching that is most preferred by every student among all stable matchings (Gale and

Shapley, 1962).3 By contrast, any stable matching may arise in a full-information Nash

equilibrium of the Boston mechanism (Ergin and Sönmez, 2006).

In practice, however, schools do not have strict preferences over students. For instance,

the Boston public schools prioritize applicants based on whether students have siblings

attending a given school or whether they live within its walk zone. This leaves many

students in the same priority class. The resulting indifferences in school preferences present

challenges in attaining the dual objectives of strategyproofness and welfare, for no strategy-

proof mechanism implements a student-optimal stable matching for every preference profile

(Erdil and Ergin, 2008). Furthermore, one has to break ties at school preferences in order

to adopt the DA mechanism, and any inefficiency associated with a realized tie-breaking

cannot be removed ex post without harming students’ incentives ex ante (Abdulkadiroğlu,

Pathak and Roth, 2008).4 These papers provide a solution either in the way of a random

tie breaking procedure or of a method for the students to “trade” assignments ex post.

The existing literature on school choice, including these papers, is primarily concerned

with the students’ ex post ordinal welfare, namely, how well a given procedure assigns

students based on their preference orderings for realized tie-breaking. Such a perspective

does not capture how well a procedure does in terms of students’ ex ante welfare — i.e., on

average across all realizations of tie-breaking (not just under some realization) — and how

well it does in resolving students’ conflicting interests based on their relative preference

intensities over schools.

To illustrate why ex ante welfare matters, suppose there are three students, {1, 2, 3}, to

be assigned to three schools, {s1, s2, s3}, each with one seat. All students are ranked into

the same priority class at every school, and students’ preferences are represented by the

following von-Neumann Morgenstern (henceforth, vNM) utility values, where vij is student

i’s vNM utility value for school sj:

3A matching is stable if no student or school can do strictly better by breaking off current matching
either unilaterally or by rematching with some other partner without making it worse off.

4Also see Ehlers (2006) on matching with indifferences.
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Every feasible matching that assigns each student to a school is stable due to the indif-

ferences at school preferences. Since the students have the same ordinal preferences, any

such assignment is also ex post Pareto efficient. Therefore, there is no basis for comparing

different procedures based on the ex post welfare criterion. In particular, the stable im-

provement cycles algorithm (Erdil and Ergin, 2008), which finds a student-optimal stable

matching for every preference profile, has no bite in this example. Yet, how the students’

conflicting interests are resolved matters greatly for their ex ante welfare.

To see this, suppose first the DA algorithm is used with ties broken randomly. Then, all

three submit true (ordinal) preferences, and they will be assigned to the schools with equal

probabilities. Hence, the students obtain expected utilities of EU1 = EU2 = EU3 = 5
3
.

This assignment is ex ante Pareto-dominated by the following assignment: Assign stu-

dent 3 to s2, and students 1 and 2 randomly between s1 and s3, which yields expected

utilities of EU ′1 = EU ′2 = EU ′3 = 2 > 5
3
. Intuitively, starting from the random assignment,

this latter assignment executes a trading of probability shares of schools by transferring

student 3’s share of schools 1 and 3 to students 1 and 2 in exchange of the latter students’

shares of school 2. Such a trade is beneficial for all parties given their preference intensities.

Surprisingly, this latter, Pareto dominating, assignment arises as the unique equilibrium

of the Boston mechanism.5 Students 1 and 2 have a dominant strategy of ranking the

schools truthfully, and student 3 finds it her best response to strategically rank s2 as her

first choice.6 The feature of the Boston mechanism crucial for this outcome is that a student

can increase her probability of getting a school simply by ranking that school higher in her

choice list. It is thus perhaps not surprising that some parents regarded this ability to

influence the assignment as a merit of Boston mechanism, not as its shortcoming. At a

public hearing by the BPS School Committee, a parent argued:

I’m troubled that you’re considering a system that takes away the little power

that parents have to prioritize... what you call this strategizing as if strategizing

is a dirty word... (Recording from Public Hearing by the School Committee,

05-11-04).

5This does not contradict Ergin and Sönmez (2006)’s finding that the Boston mechanism is (weakly)
Pareto dominated by the DA, which relies on strict preferences by the schools.

6In equilibrium, student 2 will be assigned to s2, and students 1 and 2 will be assigned between s1 and
s3 with equal probabilities, for these students will have lower priority than student 3 at school 2.
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This ability to influence one’s treatment in a competition is suppressed in the DA, for a

school never discriminates its applicants based on where they rank that school in their

choice lists. However, it is this latter property — nondiscrimination of applicants based on

choice rankings — that yields the incentives for truthful revelation of preferences in DA.

This suggests that there is a tradeoff between incentives and ex ante efficiency.

Clearly, the DA is extreme in resolving this tradeoff; it guarantees truthful revelation of

preferences but denies students any “say” over how they should be treated by each school.

Some parents seem to have found this feature of DA as troublesome, as one parent put it

as follows:

... if I understand the impact of Gale Shapley, and I’ve tried to study it and I’ve

met with BPS staff... I thought I understood that in fact the random number ...

[has] preference over your choices... (Recording from the BPS Public Hearing,

6-8-05).

The current paper provides some welfare justifications to these sentiments expressed by the

parents, and suggests that there is a potentially better way to balance the tradeoff than

either DA or Boston mechanism. Appreciable welfare gain can be obtained by offering

students simple and practical ways to signal their preference intensities, with no sacrifice

on (ordinal) strategy-proofness. We propose a procedure that accomplishes this goal and

a new efficiency notion that enhances our understanding and ability to compare various

assignment mechanisms on the efficiency ground. The next section illustrates our proposal.

2 Choice-Augmented DA Algorithm: Illustration

We already described how the DA algorithm works when the schools’ priories involve strict

preferences over students.7 Suppose now schools’ priorities are characterized by weak prefer-

ences. Then, ties must be broken to generate strict school preferences for the DA algorithm

to be employed. There are two common methods of breaking ties. Single tie-breaking ran-

domly assigns every student a single lottery number to break ties at every school, whereas

multiple tie-breaking randomly assigns a distinct lottery number to each student at every

school. Clearly, a DA algorithm is well defined with respect to the strict priority list gener-

ated by either method. We refer the DA algorithms using single and multiple tie-breaking

by DA-STB and DA-MTB, respectively.

We propose an alternative way to break a tie, one that allows students to influence its

outcome based on their communication. The associated DA algorithm, which we refer as

Choice-Augmented Deferred Acceptance (henceforth, CADA), is described as follows:

7For a more detailed description, see Gale and Shapley (1962).
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• Step 1: All students submit ordinal preferences, plus an “auxiliary message, ”naming

one’s “target” school. If a student names a school for a target, she is said to have

“targeted” the school.

• Step 2: The schools’ strict priorities over students are generated based on their

inherent priorities and the students’ auxiliary messages, as follows. First, each stu-

dent is independently randomly assigned two lottery numbers. Call one target lottery

number and the other regular lottery number. Each school’s strict priority list is then

generated as follows: (i) First consider the students in the school’s highest priority

group. Within that group, rank at the top those who name the school as their target.

List them in the order of their target lottery numbers, and list below them the rest

(who didn’t name that school for target) according to their regular lottery numbers.

(ii) Move to the next highest priority group, and list them below in the same fashion,

and repeat this process until all students are ranked in a strict order.

• Step 3: The students are then assigned to schools via the DA algorithm, using

each student’s ordinal preferences from Step 1 and each school’s strict priority list

compiled in Step 2.

To illustrate Step 2, suppose there are five students N = {1, 2, 3, 4, 5} and two schools

S = {A,B}, neither of which has inherent priority ordering over the students. Suppose

students 1, 3 and 4 targeted A and 2 and 5 targeted B, and that students are ordered

according to their target and regular lottery numbers as follows:

T(N) : 3− 5− 2− 1− 4; R(N) : 3− 4− 1− 2− 5.

Then the priority list for school A first reorders students {1, 3, 4}, who targeted that school,

based on T(N), to 3− 1− 4, and reorders the rest, {2, 5}, based on R(N) to 2− 5, which

produces a complete list for A:

PA(N) = 3− 1− 4− 2− 5.

Similarly, the priority list for B is determined as

PB(N) = 5− 2− 3− 4− 1.

The process of compiling the priority lists resembles the STB in that the same lottery

is used by different schools, but only within each group. Unlike STB, though, different

lotteries are used across different groups. This ensures that a student who has a bad draw
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at her target school gets a “new lease of life” with another independent draw for the other

schools.8

Clearly, the deferred acceptance feature preserves stability and the incentives to reveal

the ordinal preferences truthfully; the gaming aspect is limited to manipulating the outcome

of tie-breaking. This limited introduction of “choice signaling” can however improve upon

the DA rule in a significant way. In the above example, the CADA implements the Pareto

superior matching: All students will submit the ordinal preferences truthfully, but 1 and 2

will target s1, and 3 will target s2. In this case, the CADA resembles the Boston mechanism.

In general, CADA is different from the Boston mechanism. In fact, if schools have many

priorities (so their preferences are almost “strict”), then the auxiliary message would have

little bite; thus the CADA will very much resemble the DA. Furthermore, CADA delivers a

more efficient matching without sacrificing strategy-proofness. The rest of the paper makes

this sense precise. That is, we demonstrate the nature of welfare benefits that CADA will

have relative to the DA algorithms, when there are sufficiently numerous students and

numerous school seats.

Specifically, we consider a model of a “large” economy populated by a continuum of

students and a finite number of schools each with a continuum of capacities. We then

compare alternative procedures, DA-STB, DA-MTB and CADA, in terms of the scope

of efficiency achieved under different procedures. To illustrate our approach, suppose a

procedure determines for each student the probabilities of her getting assigned to alternative

schools. Call these her shares of schools. Then the “scope of efficiency” can be measured

by the set of schools whose shares cannot be traded among students in a way that benefits

all the students. The bigger this set is, arguably the more efficient the outcome is, with

the outcome being fully Pareto efficient if the set coincides with the entire set of schools.

Our main result is then stated in this term: The CADA mechanism supports a greater

scope of efficiency than the DA mechanisms with either tie-breaking procedure. Specifically,

the DA mechanisms support efficient allocation of at most a pair of schools, whereas CADA

supports efficient allocation of a (weakly) bigger set of schools. In particular, CADA

entails efficient allocation among schools that are relatively popular—in the sense of being

oversubscribed by students in their target choice. The economics of this property closely

resembles that of competitive markets. Essentially, the students participating in CADA can

be seen as making purchasing decisions on the shares of schools. For instance, a student can

raise her share of a school, say A, by targeting it, but that lowers her priority standing in

8Although the primary reason for our choice is technical, this choice also has additional benefit of
allaying a similar concern about the STB raised in the wake of the NYC redesign. One criticism against
STB was that if a student has a bad draw, then she will not have a low priority with just one or two
schools, but with every school she applies to. CADA mitigates this problem.
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other schools, say B and C, thus reducing her shares of those schools. The exact tradeoffs

faced by a student are determined by how many other students are targeting A, rather

than B or C. If there are many such students, then raising a share of A is “expensive,” for

it requires giving up large amounts of shares of B and C. In other words, relative degrees

of congestion at different schools act as “prices” that regulate individuals’ decisions. In a

“large” economy, students become price takers, so the resulting allocation resembles that

of competitive markets, which, as is well known, yields an efficient allocation (among the

oversubscribed schools).

In addition to showing the benefit of CADA, we also argue that DA-STB is more

desirable than DA-MTB from an ex ante welfare perspective. In particular, we show that

the former supports greater scope of efficiency than the latter. The choice between single

versus multiple tie-breaking has proven to be an important policy choice in high school

admissions in New York City.9 Our finding informs the choice between DA-STB and DA-

MTB in favor of the former.

The idea of CADA appears similar to the proposal by Sönmez and Ünver (2003) to

imbed the DA algorithm in “course bidding” employed by some business schools. These

two proposals differ in the application, however, as well as in the nature of the inquiry: We

are interested in studying the benefit of adding a “signalling” element to the DA algorithm.

By contrast, their interest is in studying the effect of adding ordinal preferences and the DA

feature to the course bidding. In a broader sense, our paper is an exercise of mechanism

design without monetary transfers, and in fact it is closer in nature to the recent ideas

of “storable votes” (Casella, 2005) and “linking decisions” (Jackson and Sonnenschein,

2007).10 Just like them, CADA “links” how a student is treated in a tie at one school

to how she is treated in a tie at another school, and this linking makes communication

credible. Clearly, applying the idea in a centralized matching is novel and differentiates

the current paper. There is a further difference. Jackson and Sonnenschein (forthcoming)

demonstrated the efficiency of linking when (linkable) decisions tend to infinity, relying

largely on the logic of the law of large numbers. To our knowledge, the current paper is the

first to characterize the precise welfare benefit of linking a fixed (finite) number decisions

(albeit with continuum of agents).

The rest of the paper is organized as follows. We present the formal model and welfare

criterion in Section 3, provide welfare comparison across the three alternative procedures

in Section 4. Section 5 presents simulation to quantify the welfare benefits of CADA.

Section 6 then considers the implication of enriching the message used in the CADA and

the robustness of our results to some students not behaving in a strategically sophisticated

9See Abdulkadiroğlu, Pathak and Roth (forthcoming) for a detailed discussion.
10See also Che and Gale (1998, 2000) for the effect of budgetary limits in mechanism design.
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way. Section 7 concludes.

3 Model and Basic Analysis

3.1 Primitives

There are n ≥ 2 schools, S = {1, ..., n}, each with a unit mass of seats to fill. There

are mass n of students who are indexed by vNM values v = (v1, ..., vn) ∈ V := [0, 1]n

they attach to the n schools. The set of student types, V , is equipped with a measure µ.

We assume that µ is absolutely continuous with strictly positive density in the interior of

V . The assumptions that the aggregate measure of students equal aggregate capacities of

schools and that all students find every school acceptable are made for convenience and

will not affect our main results (see Subsection 6.5).

The students’ vNM values induce their ordinal preferences. Let π := (π1, ..., πn) : V →
Sn be such that πi(v) 6= πj(v) if i 6= j and that vπi(v) > vπj(v) implies i < j. In other

words, π(v) lists the schools in the descending order of the preferences for a student with

v, with πi(v) denoting her i-th preferred school. Let Π denote the set of all ordered lists

of S. Then, for each τ ∈ Π,

mτ := µ({v|π(v) = τ})

represents the measure of students whose ordinal preferences are τ . By the full support

assumption, mτ > 0 for each τ ∈ Π. Finally, let m := {mτ}τ∈Π be a profile of measures of

all ordinal types. Let M := {{mτ}τ∈Πn|
∑

τ∈Π mτ = n} be the set of all possible measure

profiles. We say a property holds generically if it holds for a subset of m’s that has the

same Lebesque measure as M.

An assignment, denoted by x, is a probability distribution over S, and this is an element

of a simplex, ∆ := {(x1, ..., xn) ∈ Rn
+|
∑

i∈S xi = 1}. We are primarily interested in how

a procedure determines the assignment for each student ex ante prior to conducting the

lottery. To this end, we define an allocation to be a measurable function φ := (φ1, ..., φn) :

V 7→ ∆ such that
∫
φi(v)dµ(v) = 1 for each i ∈ S, with the interpretation that student v

is assigned by mapping φ = (φ1, ..., φn) to school i with probability φi(v). Let X denote

the set of all allocations.
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3.2 Welfare Standards

We begin with two standard notions of ex ante welfare. To begin, we say allocation φ̃ ∈ X
weakly Pareto-dominates allocation φ ∈ X if, for almost every v,∑

i∈S

viφ̃i(v) ≥
∑
i∈S

viφi(v), (1)

and that φ̃ Pareto-dominates φ if the former weakly dominates the latter and the inequality

of (2) is strict for a positive measure of v’s. We also say φ̃ ∈ X ordinally-dominates φ ∈ X
if the former has higher chance of assigning each student to her more preferred school than

the latter in the sense of first-order stochastic dominance: for a.e. v,

k∑
i=1

φ̃πi(v)(v) ≥
k∑
i=1

φπi(v)(v), ∀k = 1, ..., n− 1, (2)

with the inequality being strict for some k, for a positive measure of v’s.

Definition 1. (i) An allocation φ ∈ X is Pareto efficient (PE) if there is no other

allocation in X that Pareto-dominates φ.

(ii) An allocation φ ∈ X is ordinally efficient (OE) if there is no other allocation

in X that ordinally-dominates φ.

For our purpose, it is useful to introduce additional welfare notions, those relating to the

scope of efficiency. To begin, fix an assignment x ∈ ∆, and a subset K ⊂ S of schools. An

assignment x̃ ∈ ∆ is said to be a within K reassignment of x if x̃j = xj for each j ∈ S\K,

and let ∆K
x ⊂ ∆ be the set of all such reassignments. Then, a within K reallocation of an

allocation φ ∈ X is an element of a set

XK
φ := {φ̃ ∈ X |φ̃(v) ∈ ∆K

φ(v), a.e. v ∈ V}.

In words, a within-K reallocation of φ represents an outcome of students trading their

shares of schools only within K.

Definition 2. (i) For any K ⊂ S, an ex ante allocation φ ∈ X is Pareto efficient

(PE) within K if there is no within K reallocation of φ that Pareto dominates φ.

(ii) For any K ⊂ S, an ex ante allocation φ ∈ X is ordinally efficient (OE) within

K if there is no within K reallocation of φ that ordinally dominates φ.

(iii) An allocation is pairwise PE (resp. pairwise OE) if it is PE (resp. OE) within

every K ⊂ S with |K| = 2.

10



These welfare criteria are quite intuitive. Suppose the students are initially endowed

with ex ante shares φ of schools but they can trade these shares amongst them. Can they

trade mutually beneficially if the trading is restricted to the shares of K? The answer is

no if allocation φ is PE within K. In other words, the size of the latter set represents the

restriction on the trading technologies and thus determines the scope of markets within

which efficiency is realized. The bigger the set is, the less restricted the agents are in the

scope of trading, so it means a more efficient allocation. Clearly, if an allocation is Pareto

efficient within the set of all schools, then it is fully Pareto efficient. In this sense, we can

view the size of such set as a measure of efficiency.

A similar intuition holds with respect to ordinal efficiency. In particular, ordinal effi-

ciency can be characterized by the inability to form a cycle of traders who beneficially swap

their probability shares of schools. Formally, let Bφ be the binary relation on S defined by

iBφ j ⇐⇒ ∃A ⊂ V , µ(A) > 0, s.t. vi > vj and φj(v) > 0,∀v ∈ A,

and say that φ admits a trading cycle within K if there exist i1, i2, ...il ∈ K such that

i1Bφ i2, ..., il−1Bφ il, and il Bφ i1. The next lemma is then adapted from Bogomolnaia and

Moulin (2001).

Lemma 1. An allocation φ is OE within K ⊂ S if and only if φ does not admit a trading

cycle within K.

Before proceeding further, we observe how different notions relate to one another.

Lemma 2. (i) If an allocation is PE (resp. OE) within K ′, then it is PE (resp. OE)

within K ⊂ K ′;

(ii) An allocation is OE within K ⊂ S if it is PE within K.

(iii) For any K with |K| = 2, if an allocation is OE within K, then it is PE within K.

(iv) If an allocation is OE, then it is pairwise PE.

Part (i) follows since a Pareto improving within-K reallocation constitutes a Pareto

improving within-K ′ reallocation for any K ′ ⊃ K. Likewise, a trade cycle within any set

forms a trade cycle within its superset. Part (ii) follows since if an allocation is not ordinally

efficient within K, then it must admit a trading cycle within K, which easily implies there

being a Pareto improving reallocation. Part (iii) follows since, whenever there exist an

allocation that is not Pareto efficient within a pair of schools, there must be two groups

of agents who would benefit from swapping their probability shares of these schools, from
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which the allocation must admit a trade cycle within that pair. Part (iv) then follows from

Part (iii).

These characterizations are tight. The converse of Part (iii) does not hold for any K

with |K| > 2. In the example from the introduction, the DA allocation is OE but not PE.

Likewise, an allocation that is PE within K need not be OE within any K ′ % K. To see

this, imagine a situation in which an allocation is Pareto improvable upon only via a trade

cycle that includes a school in K ′\K. In that case, the allocation may be PE within K yet

it will not be OE within K ′.

3.3 Alternative School Choice Procedures

We consider three alternative procedures for assigning students to the schools: (1) Deferred

Acceptance with Single Tie-breaking (DA-STB), (2) Deferred Acceptance with Multiple

Tie-Breaking (DA-MTB), and (3) Choice-Augmented Deferred Acceptance (CADA). These

procedures, introduced earlier, can be extended to the continuum of students in a natural

way.

The alternative procedures differ only by the way the schools break ties. The tie-

breaking rule is well-defined for DA-STB and DA-MTB, and it follows Step 2 of Section 2

in the case of CADA, except that these rules must be extended to our continuous economy

model. The formal descriptions are provided in Appendix A. Here, we offer the following

heuristic descriptions:

• DA-STB: The mechanism draws a single random number ω ∈ [0, 1] for each student,

and a agent with a lower number has a higher priority than the ones with higher

numbers for each school.

• DA-MTB: For each student, the mechanism draws n independent random numbers

(ω1, ..., ωn) from [0, 1]n. The i-th component, ωi, of student’s random draw then

determines her priority at school i, with a lower number draw having a higher priority

than a higher number.

• CADA: The mechanism draws two random numbers (ωT , ωR) ∈ [0, 1]2 for each stu-

dent. School i then ranks those students who targeted that school, based on their

values of ωT and then ranks the others based on the values of 1 + ωR (with a lower

number having a higher priority in both cases). In other words, those who didn’t

target the school receive penalty score of 1.

For each procedure, the DA algorithm is readily defined using the appropriate tie-

breaker and the students’ ordinal preferences as inputs. Appendix A provides a precise
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algorithm, which is sketched here. At the first step, each student applies to her most

preferred school. Every school i tentatively admits up to unit mass from its applicants in

the order of its priority order, and reject the rest if there is any. In general, each student who

was rejected in the previous step applies to her next preferred school. Each school considers

the set of students it has tentatively admitted and the new applicants. It tentatively admits

up to unit mass from these students in the order of its priority, and rejects the rest. The

process converges when the set of students that are rejected has zero measure. Although

this process might not complete in finite time, it converges in limit, and the allocation in

the limit is well defined (see Theorem 10 of Appendix A). Further, each of the procedure

is ordinally strategy proof:

Theorem 1. (Ordinal strategy-proofness) In each of the three procedures, it is a

(weakly) dominant strategy for each student to submit her ordinal preferences truthfully.

Proof: The proof follows from Theorem 11 in Appendix A.

3.4 Characterization of Equilibria

� DA-STB and DA-MTB

In either form of DA algorithm, the resulting allocation is conveniently characterized by

the “cutoff” of each school — namely, the highest lottery number that would get students

admitted by each school. Specifically, the DA-STB process induces a cutoff ci ∈ [0, 1] for

each school i such that a student who ever applies to school i gets admitted by that school

if and only if her (single) draw ω is less than ci. We first establish that these cutoffs are

well defined and generically distinct.

Lemma 3. There exists a unique set of cutoffs {ci}i∈S for the schools under DA-STB and

satisfies ci > 0. There exists a school with cutoff 1. For a generic m, the cutoffs are all

distinct.

Importantly, these cutoffs pin down the allocation of all students. To see this, consider

any student with v and a school i with a cutoff ci. Suppose school j has the highest cutoff

among those the student prefers over i, and its cutoff is cj. If cj > ci. Then, the student

will never receive school i since whenever she has a draw ω < ci good enough for i, she

will get into school j or better. Suppose now cj < ci. Then, she will get into school i if

and only if she receives a draw ω ∈ [cj, ci]. The probability of this event is precisely the

distance between the two cutoffs, ci − cj. Formally, let S(i,v) := {j ∈ S|vj > vi} denote

the set of schools more preferred to i by type-v students. Then, the allocation φS arising

from DA-STB is given by

φSi (v) := ci − max
j∈S(i,v)

cj,∀v,∀i ∈ S,

13



where c∅ := 0.

DA-MTB is similar to DA-STB, except that each student has independent draws

(ω1, ..., ωn), one for each school. The DA process again induces a cutoff c̃i ∈ [0, 1] for

each school i such that a student who ever applies to school i gets assigned to it if and only

if her draw for school i, ωi, is less than c̃i. These cutoffs are well defined.

Lemma 4. There exists a unique set of cutoffs {c̃i}i∈S under DA-MTB, such that c̃i > 0

for all i ∈ S. There exists a “worst” school w such that c̃w = 1. For a generic m, there is

single worst school.

Given the cutoffs {c̃i}i∈S, a type v-student receives school i whenever she has rejectable

draws ωj > c̃j for all school j ∈ S(i,v) she prefers to i and an acceptable draw ωi < c̃i at

school i. Formally, the allocation φM from DA-MTB is determined by:

φMi (v) := c̃i
∏

j∈S(i,v)

(1− c̃j),∀v,∀i ∈ S,

with the convention c̃∅ := 0.

� CADA

As with the two other procedures, given the students’ strategies on their messages,

the DA process induces cutoffs for the schools, one for each school in [0, 2]. Of particular

interest is the equilibrium in the students’ choices of messages. Given Theorem 1, the

only nontrivial part of the students’ strategy concerns her “auxiliary message.” Let σ =

(σ1, ..., σn) : V 7→ ∆ denote the students’ mixed strategy, whereby a student with v targets

i with probability σi(v). We first establishes existence of equilibrium.

Theorem 2. (Existence) There exists an equilibrium σ∗ in pure strategies.

We say that a student applies to school i if she is rejected by all schools she lists ahead

of i in her (truthful) ordinal list. We say that a student subscribes to school i ∈ S if she

targets school i and applies to that school during the DA process. (The latter event depends

on where she lists school i in her ordinal list and the other students’ strategies as well as

the outcome of tie-breaking). Let σ̄∗i (v) be the probability that a student v subscribes to

school i in equilibrium. We say a school i ∈ S is oversubscribed if
∫
σ̄∗i (v)dµ(v) ≥ 1 and

undersubscribed if
∫
σ̄∗i (v)dµ(v) < 1. In equilibrium, there will be at least (generically,

exactly) one undersubscribed school which anybody can get admitted to (that is, even

when she fails to get in any other schools she listed ahead of that school). Formally, a

school w ∈ S is said to be “worst” if its cutoff on [0, 2] equals precisely 2. Then, we have

the following lemma.
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Lemma 5. (i) Any student who prefers the worst school the most is assigned to that school

with probability 1 in equilibrium. (ii) If her most preferred school is undersubscribed but not

the worst school, then she targets that school in equilibrium. (iii) For almost every student

with v such that π1(v) 6= w, σ∗(v) = σ̄∗(v) in equilibrium.

In light of Lemma 5-(iii), we shall refer to “targets a school i ” simply as “subscribes

to school i.”

4 Welfare Analysis of Alternative Procedures

We compare ex ante welfare of three alternative procedures in this section. We begin with

DA-STB.

Theorem 3. (DA-STB) (i) The allocation φS from DA-STB is OE, and is thus pairwise

PE.

(ii) For a generic m, there exists no K ⊂ S with |K| > 2 such that φS is PE within K.

Proof. The results can be proven with the aid of Figure 1.

0

ω

· · ·· · ·cs∗∗ ci cj 1· · ·

Figure 1: Ordinal efficiency of DA-STB

Following Lemma 3, the cutoffs of the schools are deterministic, as depicted in the

figure. Suppose iBφ
S
j. Then, there must exist a positive measure of students who prefer

school i to school j but are assigned to j with positive probability. It must then follow

that ci < cj. Or else, any students who prefer school i can never be assigned to j. This is

because any such student will rank i ahead of j (by strategyproofness), so if she is rejected

by i, her draw must be ω > ci ≥ cj, not good enough for j. Since the cutoffs are (at least

weakly) ordered, this means that φS cannot admit a trading cycle. Hence, it is OE (and

thus pairwise PE).

To prove Part (ii), recall from Lemma 3 that the schools’ cutoffs are generically distinct.

Take any set {i, j, k} with ci < cj < ck.

0 1ci cj ck· · · · · · · · · · · ·
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Figure 2: Ex ante Pareto inefficiency of DA-STB within {i, j, k}.

Then, by the full support assumption, there exists a positive measure of v’s satisfying

vi > vj > vk > vl for all l 6= i, j, k. These students will then have the positive chance of

being assigned to each school in {i, j, k}, for their draws will land in the intervals, [0, ci],

[ci, cj] and [cj, ck], with positive probabilities. Again, given the full support assumption,

such students will all differ in their marginal rate of substitution among the three schools.

Then, just as with the motivating example, one can construct a mutually beneficial trading

of shares of these schools among these students.

The result can be summarized as saying that DA-STB can yield an ordinally efficient

allocation in the large economy, but this is the most that can be expected from DA-STB,

in the sense that the scope of efficiency is generically limited to (sets of) three schools.

Remark 1. With finite students, the allocation from DA-STB is ex post Pareto efficient

but is not OE, but as the number of students and school seats grow to our limiting model,

the DA-STB allocation becomes arbitrarily close to being OE. This is an implication of Che

and Kojima (2008), who show that the random priority rule (which coincides with our DA-

STB) becomes indistinguishable from the probabilistic serial mechanism (which is known to

be OE) as the economy grows large. When the schools have intrinsic priorities, the DA-STB

is not even ex post Pareto efficient (Abdulkadiroglu, Pathak and Roth (forthcoming)).

Next, consider the DA-MTB. Let school w ∈ S be the worst school if its cutoff under

DA-MTB is 1. There exists only one worst school for a generic m.

Theorem 4. (DA-MTB) (i) The allocation φM from DA-MTB is PE within {i, w} for

each i ∈ S \ {w}.

(ii) Generically, there exists no K ⊂ S \ {w} with |K| > 1 such that φM is OE within K.

(iii) Generically, there exists no K ⊂ S with |K| > 2 such that φM is OE within K.

Proof. The results (ii) and (iii) follow from the failure of ex post Pareto efficiency

in the DA-MTB. Take any two schools {i, j}, neither of which is a worst school. There

is a positive measure of students whose first and second preferred schools are i and j,

respectively (call them “type-i”). Likewise, there is a positive measure of so-called “type-

j” students first and second preferred schools are j and i, respectively. A positive measure

of type-i students draw (ωi, ωj) such that ωi > c̃i and ωj < c̃j; and positive measure of

type-j students draw (ω′i, ω
′
j) with ω′i < c̃i and ω′j > c̃j (see Figure 3 below). Clearly, the

former type students are assigned to j and the latter to i, so both types of students will

benefit from swapping their assignments.
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Figure 3: Pareto inefficiency within {i, j} under DA-MTB.

Hence, the allocation from DA-MTB is not pairwise OE. Parts (ii) and (iii) then follow

given that generically there is only one worst firm (Lemma 4).

To prove Part (i), suppose school j = w is the worst school. Then, cj = 1. Hence,

any students who prefer j over i can never be assigned to i. Hence, the allocation does

not admit any trading cycle within {i, j}, and is thus OE within {i, j} (Lemma 1). The

allocation is then PE by Lemma 2-(iii).

Theorems 3 and 4 have an obvious implication.

Corollary 1. Assume n ≥ 3. Then, for a generic m, a PE allocation never arises from

the DA algorithm with either tie-breaking procedure.

We next turn to the CADA algorithm. The welfare properties of its allocation are

characterized as follows.

Theorem 5. (CADA) (i) An equilibrium allocation φ∗ of CADA is OE, and is thus

pairwise PE.

(ii) An equilibrium allocation of CADA is PE within the set of oversubscribed schools.

(iii) If all but one schools are oversubscribed, then the equilibrium allocation of CADA is

PE.

Theorem 5-(ii) and (iii) showcase the ex ante efficiency benefit associated with CADA.

As mentioned earlier, the benefit parallels that of a competitive market. Essentially, CADA

supports “competitive markets” for oversubscribed schools. Each student is given a “bud-

get” of unit probability she can allocate across alternative schools for targeting. A given

unit probability can buy different amounts of shares for different schools, depending on how

many others name those schools. If a mass zi ≥ 1 students applies to school i, allocating

a unit budget can only buy a share 1/zi. Hence, the relative congestion at alternative

schools, or their relative popularity, serves as relative “prices” for these schools. In a large

economy, individual students take these prices as given, so the prices play the usual role
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of allocating resources efficiently. It is therefore not surprising that the proof follows the

First Welfare Theorem.

Why are competitive markets limited only to oversubscribed schools? Why not under-

subscribed schools? The reason has to do with that one can get into an undersubscribed

school in two different ways: She can target it, in which case she gets assigned to it for sure;

alternatively, she can name an oversubscribed school but the school rejects her, in which

case she may still get assigned to the undersubscribed school via the usual DA channel.

This means that no single price system regulates the students’ assignments to the under-

subscribed schools. Furthermore, a spill-over from the oversubscribed schools accounts for

assignment of some students to these schools. Consequently, competitive markets do not

extend to them.

Finally, Part (i) asserts ordinal efficiency for CADA. At first glance, this feature may be

a little surprising in light of the fact that different priority lists are used by different schools.

As is clear from DA-MTB, this feature is susceptible to ordinal inefficiency. This is not the

case, however, in the equilibrium of CADA. To see this, observe first that any student who

is assigned to an oversubscribed school with positive probability must strictly prefer it to

any undersubscribed school (or else she should have secured assignment to the latter school

by targeting it). This means that we cannot have jBφ
∗
i if school j is undersubscribed and

school i is oversubscribed. This means that if the allocation admits any trading cycle, it

must be within oversubscribed schools or within undersubscribed schools. The former is

ruled out by Part (ii) and the latter by the same argument as Theorem 3-(i).

The characterization of Theorem 5 is tight in the sense that there is generally no bigger

set that includes all oversubscribed schools and some undersubscribed school that supports

Pareto efficiency.11

11To see this, suppose there are four schools, S = {1, 2, 3, 4}, and four types of students V =
{v1,v2,v3,v4}, with µ(v1) = 3−ε

2 , µ(v2) = 1+ε
2 , µ(v3) = 3−ε

2 , and µ(v4) = 1+ε
2 where ε is a small

number.
v1

j v2
j v3

j v4
j

j = 1 10 10 20 20
j = 2 3 5 9 8
j = 3 1 4 8 1
j = 4 0 0 0 0

In this case, type 1 and 3 students subscribe to school 1, and type 2 and 4 students subscribe to school 2.
More specifically, the allocation φ∗ has φ∗(v1) = φ∗(v3) = ( 1

3−ε , 0,
2−ε

2(3−ε) ,
2−ε

2(3−ε) ) and φ∗(v2) = φ∗(v4) =
(0, 1

1+ε ,
ε

2(1+ε) ,
ε

2(1+ε) ). Although schools 1 and 2 are oversubscribed, this allocation is not PE within
{1, 2, 3} since type 1 students can trade probability shares of school 1 and 3 in exchange for probability
share at 2, with type 1 students. The allocation is not PE within {1, 2, 4} either, since type 3 students
can trade probability shares of school 1 and 4 in exchange for probability share at 2, with type 4 students.
Therefore {1, 2} is the largest set of schools that support Pareto efficiency.
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Theorem 5 refers to an endogenous property of an equilibrium, namely the set of

over/under-subscribed schools. We provide a sufficient condition for this property. For

each school i ∈ S, let m∗i := µ({v ∈ V|π1(v) = i}) be the measure of students who prefer

i the most. We then say a school i is popular if m∗i ≥ 1, namely, the size of the students

whose most preferred school is i is as large as its capacity.

It is easy to see that every popular school must be oversubscribed in equilibrium. Sup-

pose to the contrary that a popular school i is undersubscribed. Then, by Lemma 5-(ii),

every student with v with π1(v) = i must subscribe to i, a contradiction. Since every

popular school is oversubscribed, the next result follows from Theorem 5.

Corollary 2. Any equilibrium allocation of CADA is PE within the set of popular schools.

Corollary 2 provides a sufficient condition for a school to be oversubscribed. But it is

quite possible that a non-popular school can be oversubscribed in equilibrium. In particular,

if all students have the same ordinal preferences, then there is only one popular school, so

Corollary 2 has no bite. Yet, the set of oversubscribed schools can be much bigger than

S∗ even in this case. We can provide some insight into this question, by introducing more

structure into the preferences.

Suppose all students have the uniform ordinal preferences, with the schools indexed by

the uniform ranking. Letting VU := {v ∈ V|v1 > ... > vn}, the students will have the same

ordinal preferences if µ(VU) = µ(V). Define

VU2 :=

{
v ∈ VU

∣∣∣∑n
i=1 vi
n

< v2

}
.

Lemma 6. Assume µ(VU) = µ(V), then at least two schools are oversubscribed in the

CADA equilibrium if µ(VU2 ) ≥ 1.

Full Pareto efficiency may be achieved in some cases.

Corollary 3. The equilibrium allocation of CADA is PE if (i) all but one schools are

popular, or if (ii) n = 3 and all students have the same ordinal preferences and µ(VU2 ) ≥ 1

holds.

4.1 Comparison of Procedures

A three-way comparison emerges from the preceding analysis. It provides a formal sense

in which the CADA yields a better outcome than DA-STB, which in turn yields a better

outcome than DA-MTB. In particular, if the allocation from DA-MTB is PE within K ⊂ S,

then so is the allocation from DA-STB, although the converse does not hold; and if the
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allocation from DA-STB is PE within K ′ ⊂ S, then so is the allocation from CADA,

although the converse does not hold.

Specifically, between the two DA algorithms, the allocation arising from DA-STB is

OE, and thus PE within any two schools, whereas the allocation from DA-MTB generically

fails to be PE within two schools unless they contain a worst school.

Meanwhile, the CADA allocation is Pareto efficient within a strictly bigger set of schools

than the allocations from DA algorithms, if there are more than two popular schools. The

following examples illustrate comparisons further.

Example 1. There are three schools, S = {1, 2, 3}, and three types of students V =

{v1,v2,v3}, each with µ(vi) = 1.

v1
j v2

j v3
j

j = 1 5 4 1

j = 2 1 2 5

j = 3 0 0 0

It follows from Corollary 3-(i) that the allocation from CADA is Pareto efficient. More

specifically, the equilibrium allocation is φ∗(v1) = φ∗(v2) = (1
2
, 0, 1

2
) and φ∗(v3) = (0, 1, 0).

The allocation from DA-STB is PE within any pair of two schools: φS(v1) = φS(v2) =

(1
2
, 1

6
, 1

3
) and φS(v3) = (0, 2

3
, 1

3
).12 This allocation is not Pareto efficient since student 1

can trade probability shares of schools 1 and 3 in exchange for probability share at school

2, with student 2.

The allocation from DA-MTB is φM(v1) = φM(v2) ≈ (0.392, 0.274, 0.333) and φM(v3) ≈
(0.215, 0.451, 0.333).13 This is not PE within {1, 2}.

Example 2. There are three schools, S = {1, 2, 3}, and two types of students V = {v1,v2},
with µ(v1) = 2 and µ(v2) = 1.

v1
j v2

j

j = 1 3 3

j = 2 1 2

j = 3 0 0

It follows from Corollary 3-(ii) that the allocation from CADA is Pareto efficient. More

specifically, the allocation φ∗ has φ∗(v1) = (1
2
, 0, 1

2
) and φ∗(v2) = (0, 1, 0).

12Assuming that each student has a single uniform draw from [0, 1], the cutoff for school 1 is c1 = 1/2,
the cutoff for school 2 is c2 = 2/3, and the one for school 3 is 1.

13Again, assuming that each student has a uniform draw from [0, 1] for each school separately, the cutoff
for school 1 is c1 = 5−

√
7

6 ≈ 0.3923, the cutoff for school 2 is c2 ≈ 0.4513, and the one for school 3 is 1.
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DA-STB and DA-MTB entail the same allocation φDA(v1) = φDA(v2) = (1
3
, 1

3
, 1

3
),

which is PE within any pair of two schools. (The result of Theorem 4-(ii) does not hold

for DA-MTB because the full-support assumption does not hold here.) This allocation is

not PE since type 1 students can trade probability shares of school 1 and 3 in exchange for

probability share at 2, with type 2 students.

Example 3. There are three schools, S = {1, 2, 3}, and two types of students V = {v1,v2},
each with µ(v1) = 2 and µ(v2) = 1.

v1
j v2

j

j = 1 10 10

j = 2 1 2

j = 3 0 0

In this example, the allocation arising from CADA is not PE. All students subscribe to

school 1 in equilibrium, so the allocation φ∗ is φ∗(v1) = φ∗(v2) = (1
3
, 1

3
, 1

3
), just as with

DA-STB and DA-MTB.

In fact, if all students have the uniform ordinal preferences (i.e., µ(V) = µ(VU)), then

we can show that the CADA (weakly) Pareto-dominates the DA.

Theorem 6. Suppose all students have the same ordinal preferences. The equilibrium

allocation of CADA (weakly) Pareto dominates the allocation arising from DA with any

random tie-breaking rule.

5 Simulations

The theoretical results in the previous sections do not speak to the magnitude of efficiency

gains or loses in each mechanism. In this section, we numerically investigate these questions

via simulations, which also help highlight the sources of efficiency gains and loses.

In our numerical model, we have 5 schools each with 20 seats and 100 students. Student

i’s vNM value for school j, ṽij, is given by

ṽij = αuj + (1− α)uij

where α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, uj is common across students and uij
is specific to student i and school j. For each α, we draw {uj} and {uij} uniformly ran-

domly and independently from the interval [0, 1] to construct student preferences. Then

we normalize the level and the scale of each student’s vNM utilities as follows:

vij = ζj(ṽi1, ..., ṽi5)) :=

ṽij −min
j′
ṽij′

max
j′
ṽij′ −min

j′
ṽij′
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Under this normalization, the values of schools range from zero to one, with the least

preferred school worth zero and the most preferred one. Any profile of vNM values can

be represented in this way; one can simply normalize according to this formula. Further,

this normalization is invariant to affine transformation in the sense that fore each i and j,

ζj(ṽi1, ..., ṽi5) = ζj(aṽi1 + b, ..., aṽi5 + b), for any a ∈ R++, b ∈ R.

The students’ preferences become similar both ordinally and cardinally as α gets closer

to 1. In one extreme case with α = 0, students’ preferences are completely uncorrelated;

in the other with α = 1, students have the same cardinal preferences. Given a cardinal

utility profile, we simulate DA-STB and DA-MTB, compute a complete information Nash

equilibrium of CADA and the resulting CADA outcome. We repeat that 100 times by

drawing a new set of vNM utility values for each α. In addition, we solve for a first-best

solution, which is a utilitarian maximum for each set of vNM utility values. We then

compute average welfare under each mechanism, i.e., the total expected utilities realized

under a given mechanism averaged over 100 drawings.14

In Figure 4, we compare the three mechanisms to the first best solution, the utilitarian

efficient allocation. We plot the welfare of each mechanism as the percentage of the welfare

at the first best solution. Two observations emerge from this figure. First, the welfare

generated by each mechanism follows a U-shaped pattern. Second, CADA outperforms DA-

STB, which outperforms DA-MTB at every value of α and the gap in performance between

CADA and the other mechanisms is bigger for larger values of α. All three mechanisms

perform almost equally well and produce about 96% of the first-best welfare when α = 0.

In this case, students have virtually no conflicts of interests, and each mechanism more

or less assigns students to their first choice schools. The welfare gain of CADA increases

as α increases. This is due to the fact that competition for one’s first choice increases as

α increases. In those instances, who gets her first choice matters. While DA-STB and

DA-MTB determine this purely randomly, CADA does so based on students’ messages.

Intuitively, if a student’s vNM value for a school increases, the likelihood of the student

targeting that school in an equilibrium of CADA, therefore the likelihood of her getting

that school, increases. This feature of CADA contributes to its welfare gain. DA-STB and

DA-MTB start catching up with CADA at α = 0.9. In this case, students have almost the

same cardinal preferences, so any matching is close to being ex ante efficient. At α = 0.9,

CADA achieves 95.5% of the first best welfare, whereas DA-STB achieves 92.2%.15

Figure 5 gives further insight into the workings of the mechanisms. It shows the per-

14See Appendix C for a detailed explanation for the simulations and the computation of the numbers for
the figures.

15At the extreme case of α = 1, preferences are the same so every matching is efficient and the welfare
generated by each mechanism is equal to the first best welfare.
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centage of students getting their first choices under each mechanism. First, DA-MTB

assigns significantly smaller numbers to first choices. This is due to the artificial stability

constraints created by multiple tie breaking, which also explains the bigger welfare loss

associated with DA-MTB. The patterns for CADA and DA-STB are more revealing. In

particular, both assign almost the same number of students to their first choices for each

value of α. That is, whereas the poor welfare performance of DA-MTB is explained by the

low number of students getting their first choices, the difference between the other two is

explainable not by how many students, but rather by which students are assigned to their

first choices.

This is illustrated more clearly by Figure 6, which shows the the ratio of the mean utility

of those who get their k-th choice under CADA to the mean utility of those who get their

k-th choice under DA-STB at the realized matchings, for k = 1, 2, 3. Specifically, those who

get their k-th choice achieve a higher utility under CADA than under DA-STB for each

k = 1, 2, 3. The utility gain is particularly more pronounced for the receivers of their second

or third choices. This simply reflects the feature of CADA in assigning students based on

their preference intensities: under CADA, those who have less to lose from the second-

or third-best choices are more likely to target those schools, and are thus more likely to

comprise such assignments. Figure 6 shows that the number of oversubscribed schools is

larger on average than the number of popular schools. Note that the average number of

oversubscribed schools is larger than 2 at all values of α. Recalling our Theorems 3 and

5, DA-STB is never Pareto efficient within a set of more than 2 schools, whereas CADA is

Pareto efficient within the set of oversubscribed schools. Figure 6 thus shows the scope of

efficiency achieved by CADA can be much higher than is predicted by Corollary 2. It is also

worth noting that the average number of oversubscribed schools exceeds 3 for α ≤ 0.4. This

implies that there are often 4 oversubscribed schools. At those instances, CADA achieves

full Pareto efficiency.

The equilibrium behavior of students in Figure 7 shows that more students target their

lower ranked schools as α gets closer to 1. This monotone pattern in behavior can be

explained by the extent of competition over schools. As α increases, more students have

the same school as first choice. Therefore competition for one’s first choice becomes more

intense. This gives students incentive to target their second, third and even fourth choices

in CADA.16 This also explains the widening gap between the number of popular schools

and the number of oversubscribed schools as α goes to 1 in Figure 7.

As mentioned in the introduction, some schools have (non-strict) priorities. We nu-

merically investigate such an environment. To this end, we introduce schools priorities as

follows: Each school has two priority classes, high priority and low priority. For each pref-

16Note that it is never optimal to target the fifth (last) choice.
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erence profile above, we assume that 50 students have high priority in their first choice and

low priority in their other choices, 30 students have high priority in their second choice and

low priority in their other choices, and 20 students have high priority in their third choice

and low priority in their other choices.17 For convenience, if a student has high priority at

a school, we refer to that school as that student’s neighborhood school.

We simulate both DA-STB and CADA in this environment. Schools’ priorities do not

coincide with students’ preferences, so both mechanism fail to produce efficient outcome or

even student optimal allocation in the presence of school priorities. Erdil and Ergin (2008)

proposed a way to attain constrained efficiency subject to respecting school priorities, via

performing so-called stable improvement cycles after an initial DA assignment. We thus

simulate this algorithm, referred to as DASTB+SIC, to see how it compares with the

CADA.

In Figure 9, we compare CADA, DA-STB and DA-STB+SIC again measured as per-

centage of first-best welfare (ignoring priorities). Again, CADA outperforms DA-STB for

all values of α. Since DA-STB+SIC is designed to attain a student optimal outcome, while

CADA and DA-STB are not, the former is expected to outperform the latter. This is in-

deed the case up to α = 0.4. When the students’ preferences are (ordinally) more similar,

CADA catches up with DASTB+SIC (at around α = 0.5) and outperforms it as α gets

large. In the latter case, the ordinal efficiency becomes less relevant, so cardinal efficiency

matters more. In particular, when α is close to 1, every matching is close to being student

optimal so that the stable improvement cycles algorithm has little bite. Hence, CADA

allocates schools more efficiently than DASTB+SIC does for higher values of α.

DASTB+SIC assigns more students to their first choices than CADA does for low values

of α. The difference vanishes for large values of α. The equilibrium behavior of students

under CADA is similar; more and more students target their lower ranked schools as α

gets bigger.18 However, Figure 10 shows that more students utilize their target choice

for their neighborhood schools. The intuition behind this result is subtle. As more and

more students target their lower ranked choices in equilibrium, it becomes tougher to

compete for lower ranked schools especially for students who do not have high priority in

their lower ranked schools. In turn, those students pick their first choice more frequently,

which is their neighborhood school. However, this increases the competition at first choice

schools for students whose first choices are not their neighborhood schools. In turn, they

target their lower-ranked neighborhood schools. In equilibrium, more students target their

neighborhood schools for larger values of α.

In summary, some similarity among preferences is expected in real-life school choice

17This assumption is in line with empirical observation in Boston.
18Additional graphs are available from the authors upon request.
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programs. In those instances, student optimality, therefore DASTB+SIC, has little bite in

improving ex ante efficiency. CADA allocates schools more efficiently from an ex ante stand-

point even though its outcome may be inefficient ex post. CADA achieves this efficiency

gain without harming ordinal incentives, whereas ex post student optimality necessarily

implies the loss of strategy-proofness.

6 Discussion

6.1 Enriching the Auxiliary Message

The auxiliary message can be expanded to include more than one school, perhaps at the

expense of some practicality. In general, the auxiliary message can include a rank order of

schools up to k ≤ n, with the tie broken in the lexicographic fashion according to this rank

order: A student is reordered to be ahead of another one at the priority list of school i ∈ S
if and only if the former ranks it higher than the latter in the auxiliary message. We call

the associated CADA a CADA of degree k.

It is worth noting that the CADA of degree n coincides with the Boston mechanism if

the schools have no priorities and if all students have the same ordinal preferences. Such

an enriching of the auxiliary message does not alter the qualitative features of CADA. In

particular, an argument analogous to that of Theorem 6 applies to CADA of any degree,

which has a rather surprising implication:

Theorem 7. If all students have the same ordinal preferences and the schools have no

priorities, then the Boston mechanism weakly Pareto dominates the DA algorithm.

Expanding the auxiliary message may complicate the deliberation on the part of stu-

dents and may be practically cumbersome. The beauty of CADA is that the auxiliary

message can be kept as simple as practically manageable, if necessary, to k = 1 as has been

assumed before. What are the benefits from adding more schools in the message? Some

observations are easy to make. First, enriching the message does not generally guarantee

full Pareto efficiency. Consider Example 3 again. Allowing the students to include the

second message, or even a third message, does not make any difference: All students will

pick school 1 as their first target and school 2 as their second target, and the precisely the

same allocation will arise in equilibrium (which also coincides with one arising from DA-

STB). The enriching of message can have a second-order effect, though. The first example

illustrates the benefit side.
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Example 4. (More is better) There are 4 schools, S = {1, 2, 3, 4}, and two types of

students V = {v1,v2}, each with µ(v1) = 3 and µ(v2) = 1.

v1
j v2

j

j = 1 20 20

j = 2 4 3

j = 3 1 2

j = 4 0 0

With CADA of degree 1, all students subscribe to school 1, so the allocation is completely

random with φ∗(vj) = (1
4
, 1

4
, 1

4
, 1

4
), j = 1, 2. With CADA of degree 2, all students pick

school 1 as their first target; but type 1 students pick school 2 as their second target whereas

type 2 students pick school 3 as their second target. Consequently, the allocation becomes

φ∗∗(v1) = (1
4
, 1

3
, 1

12
, 1

3
) and φ∗∗(v2) = (1

4
, 0, 3

4
, 0). This allocation φ∗∗ Pareto dominates φ∗,

although the former is not Pareto efficient.

A richer message need not be always better. A richer message space generates more

opportunities for a student to self-select at different tiers of schools. But the alternative

opportunities may work as substitutes and militate each other. For instance, an opportunity

to self select at a lower tier of schools may reduce a student’s incentive to self select at a

higher tier of schools, even though the latter kinds of self selection may be more important

from the social welfare perspective. This kind of “crowding out” arises in the next example.

Example 5. (More is worse) There are 4 schools, S = {1, 2, 3, 4}, and two types of

students V = {v1,v2}, with µ(v1) = 3 and µ(v2) = 1.

v1
j v2

j

j = 1 12 8

j = 2 2 4

j = 3 1 3

j = 4 0 0

Consider first CADA of degree 1. Here, all type 1 students choose school 1 as their

target, and all type 2 students choose school 2 as their target. In other words, the latter type

of students self select into the second popular school. The resulting allocation is φ∗(v1) =

(1
3
, 0, 1

3
, 1

3
) and φ∗(v2) = (0, 1, 0, 0). The expected utilities are EU1 = 4.33 and EU2 = 4.

In fact, this allocation is Pareto optimal.

Suppose now CADA of degree 2 is used. In equilibrium, type 1 students choose school

1 and 2 as their first and second targets, respectively. Meanwhile, type 2 students choose

school 1 (instead of school 2!) as their first target and school 3 as their second target. Here,
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the opportunity for type 2 students to self select at a lower tier school (school 3) blunts their

incentive to self select at a higher tier school (school 2). The resulting allocation is thus

φ∗∗(v1) = (1
4
, 1

3
, 1

12
, 1

3
) and φ∗∗(v2) = (1

4
, 0, 3

4
, 0), which yield expected utilities of EU

1
= 3.75

and EU
2

= 4.25. This allocation is not PE since type 2 students can trade probability shares

of school 1 and 3 in exchange for probability share at 2, with type 1 students.

Even though φ∗ does not Pareto dominate φ∗∗, the former is PE whereas the latter is not.

Further, the former is superior to the latter in the Utilitarian sense (recall that students’

payoffs are normalized so that they aggregate to the same value for both types): the former

gives aggregate utilities of 17, the highest possible level, whereas the latter gives 15.5 (which

is 0.5 above the level that would arise from random assignment).

The last example suggests that the benefit from enriching the message space is not

unambiguous. This is a potentially important point. In practice, expanding a message space

adds a burden on the parents to be strategically more sophisticated. Hence avoiding such

a demand for strategic sophistication is an important quality for a procedure to succeed.

This makes the simple CADA (i.e., of degree 1) quite appealing. That this practical benefit

may not even involve a welfare sacrifice is reassuring about the simple CADA.

6.2 Strategic Naivety

Since CADA involves some “gaming” aspect, albeit limited to tie-breaking, a natural con-

cern is that not all families may be strategically competent. This concern has arisen in

the context of the Boston mechanism. It has been observed that some significant percent-

age of families have played suboptimal strategies, for instance, wasting their second top

choices to schools that are so popular that students can get in those schools only by listing

them as top choices. Such mistakes may arise because of the lack of knowledge about

how the system works or the difficulty with assessing how popular schools are. The same

concern may arise with respect to CADA, in that some families may not understand well

the role the auxiliary message plays in the system and/or they may not judge accurately

how over/undersubscribed various schools will turn out.

It is thus important to investigate how the CADA will perform when some families

are not strategically sophisticated. To this end, we consider students who are “naive” in

the sense that they always target their most preferred schools in the auxiliary message.

Targeting the most preferred school appears to be a simple, but reasonable, choice when

she/he is unsure about the popularity of alternative schools or unclear about the role the

auxiliary message plays in the assignment. Such a strategy will indeed be a best response

for many situations, particularly if the first choice is distinctively better than the rest of the

choices, so it could be a good approximation. We assume that there is a positive measure of
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students who are naive in this way, and the others know the presence of these students and

their behavior, and respond optimally against them. Surprisingly, the presence of naive

students do not affect the main welfare results in a qualitative way.

Theorem 8. In the presence of naive students, the equilibrium allocation of CADA satisfies

the following properties:

(i) The allocation is OE, and is thus pairwise PE.

(ii) The allocation is PE within the set K of oversubscribed schools.

(iii) If every student is naive, then the allocation is PE within K ∪ {l} for any undersub-

scribed school l ∈ J := S\K.

Theorem 8-(i) and (ii) are qualitatively the same as the corresponding parts of Theorem

5, except for Part (iii) of Theorem 5.19 Of course, the set of oversubscribed schools need

not be the same when some fraction of students are naive, so (even) these results do not

admit direct comparison between the case of fully rational students and the current case.

In particular, Theorem 8-(iii) does not mean that the Pareto efficient set of schools is larger

when all students are naive than when there are no naive students. When every student

is naive, the set of oversubscribed schools coincides with the set of popular schools. When

no students are naive, however, the former is always weakly larger than the latter and can

be strictly larger (Recall Examples 1 and 3).

Nevertheless, the efficiency statement is very similar. In particular, Lemma 5-(ii) re-

mains valid in the current context, implying that any popular schools must be oversub-

scribed here as well. Hence, the same conclusion as Corollary 2 holds.

Corollary 4. In the presence of naive students, the equilibrium allocation of CADA is PE

within the set S∗ of popular schools.

19Suppose there are three schools, S = {1, 2, 3}, and three types of students V = {v1,v2,v3}, with
µ(v1) = µ(v2) = µ(v3) = 1.

v1
j v2

j v3
j

j = 1 10 10 10
j = 2 1 8 9
j = 3 0 0 0

Suppose type 1 and 2 students are strategically sophisticated while type 3 students are all naive. In this
case, type 1 and 3 students submit school 1, and type 2 students target school 2. Then, the resulting
ex ante allocation has φ∗(v1) = φ∗(v3) = ( 1

2 , 0,
1
2 ) and φ∗(v2) = (0, 1, 0). Although schools 1 and 2 are

oversubscribed, this allocation is not PE since it will be Pareto improving for type 2 students to trade
probability share of school 2 in exchange for probability shares at schools 1 and 3, with type 3 (naive)
students. Therefore, Theorem 5-(iii) does not extend to the case in which we have both strategically
sophisticated and naive students.
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We also investigate numerically the impact of naive players on average welfare via

simulations. To this end, we assume that a certain number of students play naively and

target their first choice schools. Other students play their best responses in a complete

information Nash equilibrium. We run this simulation with 50 naive students, with 75

naive students and with 100 (all) naive students. Figure 11 reports the average percentage

welfare with respect to the first best with zero, 50, 75 and 100 (all) naive students. The

welfare patterns are similar. A bigger number of strategic players yields a more efficient

outcome. It is worth noting that CADA continues to outperform DA-STB even when all

players are naive.

6.3 CADA with “Safety Valve”

The preceding subsection has seen that the main welfare property of CADA remains valid

even when an arbitrary proportion of the student population behaves naively. This does

not mean, however, that naive students are not disadvantaged by the others who may make

strategic use of the message. It thus makes sense to provide an extra safeguard to those

who may feel unsure about how to play the CADA game. This can be done by augmenting

the message space to allow for an “exit option” and to treat those who invoke such an

option as if they are participating in the standard DA algorithm. Specifically, the CADA

can be modified as follows.

• All students submit ordinal preferences and auxiliary messages. In the auxiliary

message, a student can name a target school or say “Opt Out.”

• Random ordering of students are generated according to the standard method (e.g.,

STB). Then, run DA-STB using this priority list. (If a school has inherent priorities,

the random list is used only to break a tie within the same priority class.) Assign

those who have picked “Opt Out” according to this procedure.

• Assign the remaining students to the remaining seats, using the CADA algorithm.

Specifically, construct the choice-augmented priority list for each school, as described

before (using two random lists). Then, the assignment is made via the DA algorithm

using the choice-augmented priority.

Clearly, this modified algorithm gives each student the option of achieving precisely the

same lottery of assignments as she receives from the DA-STB. But she can choose to send

an active signal and do better.

Theorem 9. The CADA with the safety option makes every student (weakly) better off

than she is from the DA-STB.
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6.4 Dynamic Implementation

As noted, the welfare benefit of CADA originates from the competitive markets it induces.

Unlike the usual markets where there are explicit prices, however, in the CADA-generated

markets, students’ beliefs about the relative popularity of schools act as the prices. Hence,

for the CADA to have the desirable welfare benefit, their beliefs must be reasonably accu-

rate. In practice, the students’ preferences tend to reflect the reputations that schools have

developed; thus, as long as the school reputations are stable, they can serve as reasonably

good proxies for the prices. Nevertheless, the students may not share the same beliefs and

the beliefs may not be accurate, in which case CADA procedure will not implement the

CADA equilibrium precisely.

The CADA equilibrium can be implemented more precisely by making the (shadow)

prices more explicit and by facilitating students’ ability to respond to them. Suppose, after

submitting their ordinal preferences (which is an once and for all decision), the students

can be asked to submit their auxiliary message in a dynamic fashion.

In Round 1, the students submit the names of their target schools. At the end of Round

1, the students are allowed to see the population distribution of target school choices.20 In

Round m ≥ 2, the students are allowed to change their auxiliary messages. If the number

of students who have changed their auxiliary messages from the previous round is less than

some (pre-specified) threshold, then their choices in Round m become final, and CADA is

run, just as before, to produce a matching. If the number exceeds the threshold, then the

population distribution of choices is announced, and they move on to Round m+ 1.

Under this dynamic mechanism, a student’s choice matters only when most of the other

students do not alter their choices. It is thus optimal for students to simply best respond

to the announced distribution of population choices in the previous round. Clearly, the

resulting best-response dynamics will lead to a Nash equilibrium (i.e., a CADA equilibrium

discussed earlier), whenever the process converges. Although our dynamic process likely

converges in practice, activity rules can be added to facilitate the convergence. For instance,

limit cycles can be eliminated by preventing some small fraction of randomly selected

students from returning back to their original choices after deviating from them once or

twice.

20Alternatively, the clearinghouse may compute and display the probabilities of assignment to different
schools that would arise (from the CADA) from each choice, assuming that no other student alters her
auxiliary message.
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6.5 Excess Capacities and Outside Options

Thus far, we have made simplifying assumptions that the aggregate measure of students

equal the aggregate capacities of public schools and that all students find each public

school acceptable. These assumptions may not hold in reality. While public schools must

guarantee seats to students, all the seats need not be filled. And some students may find

outside options, such as home or private schooling, better than some public schools. One

can relax these assumptions by letting the aggregate capacities to be (weakly) greater than n

and by endowing each student an outside option with value drawn from [0, 1].21 Extending

the model in this way entails virtually no changes in the main tenet of our paper. All

theoretical results continue to hold in this relaxed environment. A subtle difference arises

since, with excess capacities, there may be more than one worst school under DA-MTB,

so its allocation may become PE within more pairs of schools. Nevertheless, Theorems 1-9

remain valid. For instance, the DA-STB allocation is ordinally efficient; and the CADA

allocation is ordinally efficient, and Pareto efficient within oversubscribed, and thus popular,

schools.

6.6 Intrinsic Priorities

The theoretical part of the paper has assumed that schools have no intrinsic priorities. As-

suming that schools are indifferent to all students enabled us to focus on the role of school

choice mechanisms in resolving conflicts and to obtain a clear welfare characterizations

across mechanisms. In practice, schools do have (coarse) priorities. Although accommo-

dating priorities in our model seems beyond the scope of the current paper, our simulation

shows that the benefit of CADA extends to such an environment especially if the students’

preferences have sufficient commonality. How the theoretical results will extend to this

environment remains an interesting open question.22

21This modeling approach implicitly assumes the outside options to have unlimited capacities, which
may not accurately reflect the scarcity of outside option such as private schooling.

22At least one part of the result seems easily extendable with a slight modification of CADA. Suppose
students can be partitioned into separate “priority” groups so that each group has the same intrinsic
priority profile; that is, students in each priority group have the same intrinsic priority at every school.
One can then apply the CADA tie-breaking with respect to each priority group. In other words, tie-
breaking standings of students within each priority group are determined by their auxiliary messages. This
modified CADA ensures that the targeting by the members of each priority group has no “externalities” on
the tie-breaking of students in a different group. It is straightforward to check that Theorem 6 generalizes
as follows: The (modified) CADA allocation weakly Pareto dominates the DA allocation if students within
each priority group have the same ordinal preferences.
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7 Conclusion

In this paper, we propose a new deferred acceptance procedure in which students are al-

lowed, via signaling of their preferences, to influence how they are treated in a tie for a

school. This new procedure, choice-augmented DA algorithm (CADA), makes the most of

two existing procedures, the Gale-Shapely’s deferred acceptance algorithm (DA) and the

Boston mechanism. While the DA achieves the strategyproofness, an important property

in the design of school choice programs, it limits students’ abilities to communicate their

preference intensities, which entails an ex ante inefficient allocation when schools are indif-

ferent among students with the same ordinal preferences. The Boston mechanism, on the

other hand, is responsive to the agents’ cardinal preferences and may achieve more efficient

allocation than the DA, but fails to satisfy strategyproofness. We show that, by allow-

ing students to influence tie-breaking via additional communication, CADA implements a

more efficient ex ante allocation than the standard DA algorithms, without sacrificing the

strategyproofness of ordinal preferences.
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Appendix A: Extensions of Algorithms to the Contin-

uous Environment

It is convenient to explicitly model the randomizing device used to break the ties. For our

purpose, it is sufficient to consider a vector ω = (ω1, ..., ωn) ∈ [0, n]n =: Ω of uniformly

and independently generated numbers. (The vector of ω will be sufficiently rich enough to

model the procedures we study.) Formally, we augment the type space by incorporating

the random draw to V × Ω =: Θ, with its generic element denoted θ := (v, ω), and endow

it with a product measure η = µ × ξ1 × ... × ξn, where ξi is a uniform measure satisfying

ξ([0, ωi]) = ωi for each ωi ∈ [0, 1]. This formalism avoids appealing to the law of large

numbers (on the continuum of agents), by ensuring that a fraction ωi of the student mass

draws ωi or less on each i-th random variable. A student of type θ = (v, ω) is then

interpreted as having values v and drawing a vector ω. The student never observes ω, so

her action required by the procedure will be measurable with respect to only v; whereas

(part or all of) ω component is “discovered” by the schools for their use in tie-breaking.

An ex post allocation is a measurable function ψ := (ψ1, ..., ψn) : Θ 7→ ∆ such that

ψi(θ) ∈ {0, 1} and that
∫
ψi(θ)η(dθ) = 1 for each i ∈ S. Namely, ψ assigns a student with

v to school j upon drawing ω such that ψj(v, ω) = 1. Let Y be the set of all ex post

allocations. Later, we shall describe how each procedure generates an ex post allocation.

Some procedures may not use the entire vector of ω, so the ex post allocation they produce

may be measurable with respect to only some components of ω.

We define the alternative DA procedures here.

Ordinal preferences. In any DA algorithm, every student submits a ranking of

schools. Formally, students’ ordinal preferences are represented by a measurable function

P : Θ → Πn, where P (v, ω) ∈ Πn is an ordered list of n schools (ordered not necessarily

according to true preferences). Since the ω is unobserved by the students (at least at the

time of submitting the ordinal preferences), we require that P (v, ω) = P (v′, ω′) whenever

v = v′. We say a DA algorithm is ordinally strategy-proof if it is a (weak) dominant

strategy for each student with v to choose P (v, ω) = πn(v).

School priorities (tie-breaking rules). We introduce a tie-breaker function which

determines the priority of each student for each school as a function of the random draw

(as well as their auxiliary message in the case of CADA), in the event of a tie. Formally,

tie-breaker function for school i is a bounded measurable function Fi : Θ 7→ R, such that a

student θ′ is interpreted as having a higher priority than student θ if Fi(θ
′) < Fi(θ). A tie-

breaker is a profile F = {Fi : i ∈ S} of tie-breaker functions. Specifically, the tie-breakers

for DA-STB, DA-MTB, and CADA are determined as follows:
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• DA-STB: The STB rule uses the same tie-breaker function for all schools. This is

modeled by a tie-breaker with

Fi(v, ω1, ..., ωn) = ω1,

θ = (v, ω1, ..., ωn), for every school i ∈ S. In other words, a draw’s draw ω1 serves as

a priority number for all schools. Heuristically, a real number ω1 is drawn randomly

from an interval [0, 1], for each student, which then serves as her priority score.23

• DA-MTB: The MTB rule produce a randomly and independently drawn priority list

for each school. This is modeled by a tie-breaker, with

Fi(v, ω1, ..., ωn) = ωi,

for i ∈ S and for each θ = (v, ω1, ..., ωn). In other words, for each student, a vector

(ω1, ..., ωn) of independent draws determines her priority scores at different schools.

• CADA: In CADA, each student sends an auxiliary message of a target school (in

addition to their ordinal preferences over schools). Given a (measurable) strategy

profile s : V → S determining the auxiliary message for each intrinsic type v, the

tie-breaker function for school i is given by

Fi(v, ω1, ..., ωn) =

{
ω1 if s(v) = i

1 + ω2 if s(v) 6= i

That is, under Fi, ties are broken first in favor of students who target i, within them

according to the random draw ω1, and then ties among the rest are broken according

to a random draw ω2 + n (where n act as a “penalty score” n). Clearly, Fi is a

measurable function since ω1 and s are measurable.

Definition of DA algorithms: Given ordinal preferences P and a tie-breaker F =

{Fi : i ∈ S}, a DA algorithm is defined as follows. First, we define a measurable function

ChFi over subsets of Θ as the set of best ranked students for school i ∈ S according to Fi
from a given set up to the capacity. Formally, for any measurable X ⊂ Θ, let

ChFi(X) := sup{Y ⊂ X|η(Y ) ≤ 1, Fi(θ) < Fi(θ
′),∀θ ∈ Y, θ′ ∈ X\Y }

denote the set of students chosen from X such that the set does not exceed the capacity

and that the chosen students have a higher priority than those not chosen.

23This heuristics invokes a law of large numbers, but our formal method does not rely on it for we assume
a well-behaved randomization device.
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Next, we define the DAF (deferred acceptance) mapping. Consider first a mapping

Q : Θ → Π, where Q(θ) is an ordered list of any k ≤ n schools. (Recall P (θ) is a special

case involving the full set of schools.) The DA mapping, Q′ = DAF(Q) ∈ Π is determined

as follows. Every student with θ applies to her most preferred school in Q(θ). Every school

i (tentatively) admits from its applicants in the order of Fi. If all of its seats are assigned,

it rejects the remaining applicants. If a student θ is rejected by i, Q′(θ) is obtained from

Q(θ) by deleting i in Q(θ). If a student θ is not rejected, then Q′(θ) = Q(θ). More formally,

let Ti(Q) = {θ ∈ Θ : i is ranked first in Q(θ)} be the set of students that rank i as first

choice. Note that Ti(Q) is measurable. Then each school i admits students in ChFi(Ti(Q))

and rejects students in Ti(Q)\ChFi(Ti(Q)). If θ ∈ Ti(Q)\ChFi(Ti(Q)) for some i ∈ S, then

Q′(θ) is obtained from Q(θ) by deleting i from the top of Q(θ); otherwise Q′(θ) = Q(θ).

Since Q is a measurable function, Q′ is also measurable.

Repeated application of the DAF mapping gives us the DA algorithm. That is, given

a problem (P,F), let Q0 = P and define Qt = DAF(Qt−1) for t > 0. Then Qt converges

almost everywhere to some measurable Q∗ (Theorem 10 below). The matching can be then

found by assigning θ to its top choice of Q∗(θ). Formally, define a mapping ψ(P,F) : Θ 7→ ∆

such that ψ
(P,F)
i (θ) = 1 if i is the top choice of Q∗(θ), and ψ

(P,F)
i (θ) = 0 otherwise. Since

the schools’ capacities are respected in each round and also in the limit, the mapping must

be an ex post allocation.

We present two main results:

Well-definedness of the Procedure. The existence of ψ(P,F) follows from the next

theorem.

Theorem 10. For every (P,F), DAtF(P ) converges almost everywhere to some measurable

Q∗ : Θ→ Π.

Proof. Define the set of rejected students as Rt = {θ : θ ∈ Ti(Qt)\ChFi(Ti(Qt)) for some

i ∈ S}. Then η(Rt) goes to zero as t goes to infinity. Otherwise, if η(Rt) ≥ κ > 0 for all

t, all the schools in every student’s preference would be deleted in finite time because of

finiteness of the number of schools, which in turn would imply that η(Rt) goes to zero, a

contradiction. Therefore, DAtF(P ) converges almost everywhere to some Q∗. Since every

Qt = DAtF(P ) is measurable, Q∗ is also measurable.

Ordinal Strategy-proofness. Fix arbitrary ordinal preferences P . Let P−v : V\{v} →
Πn denote the ordinal preferences of all students but v determined by P. Recall that

πn(v) ∈ Πn represents the truthful ordinal preference induced by v, that is πn(v) lists i

before j if and only if vi > vj. To simplify the notation, let ψP := ψ(P,F), with F sup-

pressed, and let ψ∗ := ψ(πn,P−[·],F) denote the matching outcome for any given type when it
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submits its ordinal preferences truthfully and the others report P . When students report

P , a student with type v receives expected utility of

Eω

[
v · ψP (v, ω)

]
.

Theorem 11. For every (P,F), it is a (weak) dominant strategy for every student to submit

her ordinal preferences truthfully to DA, that is, for all v ∈ V, P ,

Eω [v · ψ∗(v, ω)] ≥ Eω

[
v · ψP (v, ω)

]
.

Proof. It suffices to show that, for all θ = (v, ω),

v · ψ∗(v, ω) ≥ v · ψP (v, ω).

Suppose to the contrary that

v · ψ∗(v, ω) < v · ψP (v, ω), (3)

for some θ = (v, ω) and P . We show that there exists a finite many-to-one matching

problem for which a DA algorithm fails strategy-proofness, which will then constitute a

contradiction to the standard strategy-proofness result (Dubins and Friedman, 1981; Roth,

1982).

To begin, fix any K ∈ N+, and construct a discretization of (P, F ) for θ as follows: For

every z = (z1, ..., zn) and y = (y1, ..., yn) where zi, yj ∈ {0, ..., K}, consider a set

Θz,y =

{
(ṽ, ω̃) ∈ Θ :

zi
K
≤ ṽi ≤

zi + 1

K
,
nyj
K
≤ ω̃j ≤

n(yj + 1)

K
, i, j ∈ S

}
.

Let ηK,min = min
Θz,y

η(Θz,y), and let #Θz,y be the integer part of η(Θz,y)

ηK,min
.

Pick #Θz,y students in total from every set Θz,y at random without repetition. Let

{θl} denote the set of students that are picked. If |{θ
l}|
n

is not an integer, pick additional

students from the larger sets until obtaining an integer |{θ
l}|
n
. Note that the number of

additional students to be picked this way is less than n and n is fixed, therefore this will be

negligible in the limit as K goes to infinity. Now consider the problem in which the set {θl}
of students are to be assigned to a set S of schools each with capacity |{θ

l}|
n
. Each student

θl = (vl, ωl)’s strict ordinal preference is given by P (θl). The schools’ strict preferences are

given by F . Denote this problem by ({θl}, S, P,F)K , and the associated ex post allocation

ψPK . As K goes to infinity, ({θl}, S, P,F)K approximate (Θ, S, P,F) arbitrarily closely.

Hence, ψPK →a.e ψ
P and ψ

πn(v),P−v

K →a.e. ψ
∗ as K → ∞. Hence, if (3) holds, then there

exists K such that

v · ψ∗K(v, ω) < v · ψPK(v, ω).

This contradicts the fact that, in every finite problem, submitting true preferences to the

student-proposing deferred acceptance mechanism is a dominant strategy for every student

(Dubins and Friedman, 1981; Roth, 1982).
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Appendix B: Proofs of the Main Results

Proof of Lemma 3. For any S ′ ⊂ S and i ∈ S ′, let mi(S
′) := µ({v|vi ≥ vj, ∀j ∈ S ′})

be the measure of students who prefer i the most among S ′. The cutoffs of the schools are

then defined recursively as follows. Let Ŝ0 = S ĉ0 = 0, and x̂0
i = 0 for every i ∈ S. Given

Ŝ0, ĉ0, {x̂0
i }i∈S, . . . , Ŝt−1, ĉt−1, {x̂t−1

i }i∈S, and for each i ∈ S define

ĉti = sup
{
c ∈ [0, 1]

∣∣∣x̂t−1
i +mi(Ŝ

t−1)
(
c− ĉt−1

)
< 1
}
, (4)

ĉt = min
i∈Ŝt−1

ĉti, (5)

Ŝt = Ŝt−1 \ {i ∈ Ŝt−1|ĉti = ct}, (6)

x̂ti = x̂t−1
i +mi(Ŝ

t−1)
(
ĉt − ĉt−1

)
. (7)

Each recursion step t determines the cutoff of school(s) given cutoffs {ĉ0, ..., ĉt−1}. Students

with draw ω > ĉt−1 can never be assigned to schools S \St−1. For each school i ∈ St−1 with

remaining capacity, a fraction x̂t−1
i is claimed by students with draws less than ĉt−1, so only

fraction 1− x̂t−1
i of seats can be assigned to students with draws ω > ĉt−1. If school i has

the next highest cutoff, ĉt, then the remaining capacity 1 − x̂t−1
i must equal the measure

of those students who prefer i the most among St−1 and have drawn numbers in [ĉt−1, ĉt].

This, and the fact that school i has cutoff ĉt, imply (4) and (5). The recursion definition

implies (6) and (7).

The recursive equations uniquely determine the set of cutoffs {ĉ0, ..., ĉk}, where k ≤ n.

The cutoff for school i ∈ S is then given by ci := {ĉt|ĉti = ĉt}. It clearly follows from (4)

and (5) for t = 1 that ĉ1 > 0. It also easily follows that ĉk = 1. Obviously ĉk ≤ 1. We also

cannot have ĉk < 1, or else there will be positive measure of students unassigned, which

cannot occur since every student prefers each school to being unassigned and the measure

of all students coincide with the total capacity of schools.

Although it is possible for more than one school to have the same cutoff, this is not

generic. If there are schools with the same cutoff, we must have i 6= j ∈ Ŝt−1 for some t

and St−1 such that ĉti = ĉtj, which entails a loss of dimension for m within M. Hence, the

Lebesque measure of the set of m’s involving such a restriction is zero. It thus follows that

generically no two schools have the same cutoff.

Proof of Lemma 4. For each i ∈ S and any S ′ ⊂ S \ {i}, let

mS′

i := µ({v ∈ V|vj ≥ vi ≥ vk, ∀j ∈ S ′,∀k ∈ S \ (S ′ ∪ {i})})

be the measure of those students whose preference order of school i follows right after

schools in S ′. (Note that the order of schools within S ′ does not matter here.) We can
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then define the conditions for cutoffs {c̃1, ..., c̃n} under DA-MTB as the following system

of simultaneous equations. Specifically, for any school i ∈ S, we must have

c̃i

m∅i +
∑

S′⊂S\{i}

mS′

i

[∏
j∈S′

(1− c̃j)

] = 1. (8)

The LHS has the measure of students admitted to school i, which consists of those who

prefer i the most and have a good draw for school i (i.e., ωi ≤ c̃i), and those who prefer

schools S ′, for any S ′ ⊂ S \ {i}, ahead of i but have bad draws in those schools and have

good draw for school i. In equilibrium, the cutoffs must be such that these aggregate

measures must equal one (the capacity of school i).

To show that there exists a set {c̃1, ..., c̃n} of cutoffs satisfying the system of equations

(8), let Υ := (Υ1, ...,Υn) : [0, 1]n → [0, 1]n be a function whose i’s component is defined as:

Υi(c̃1, ..., c̃n) = min

 1

m∅i +
∑

S′⊂S\{i}m
S′
i

[∏
j∈S′(1− c̃j)

] , 1
 ,

where we adopt the convention that min{1
0
, 1} = 1.

Observe that self mapping Υ(·) is a monotone increasing on a nonempty complete lattice.

Hence, by the Tarski’s fixed point theorem, there exists a largest fixed point c∗ = (c∗1, ..., c
∗
n)

such that Υ(c∗1, ..., c
∗
n) = (c∗1, ..., c

∗
n), and c∗ ≥ c̃∗ for any fixed point c̃∗.

We now show that at any such fixed point c̃∗,

1

m∅i +
∑

S′⊂S\{i}m
S′
i

[∏
j∈S′(1− c̃∗j)

] ≤ 1, (9)

for each i ∈ S. Suppose this is not the case for some i. Then, by the construction of the

mapping, we must have c̃∗i = 1. This means that all students are assigned to some schools.

Therefore, by pure accounting,

∑
i∈S

c̃∗i

m∅i +
∑

S′⊂S\{i}

mS′

i

[∏
j∈S′

(1− c̃∗j)

] = n. (10)

Yet, since (9) fails for some school,

∑
i∈S

c̃∗i

m∅i +
∑

S′⊂S\{i}

mS′

i

[∏
j∈S′

(1− c̃∗j)

]
<
∑
i∈S

 1

m∅i +
∑

S′⊂S\{i}m
S′
i

[∏
j∈S′(1− c̃∗j)

]
m∅i +

∑
S′⊂S\{i}

mS′

i

[∏
j∈S′

(1− c̃∗j)

]
= n,
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where the strict inequality follows since, for school l for which (9) holds, c̃∗l = 1

m∅l +
P
S′⊂S\{l}m

S′
l [

Q
j∈S′ (1−c̃∗j )]

and, for school i for which (9) does not hold, c̃∗i = 1 < 1

m∅i+
P
S′⊂S\{i}m

S′
i [

Q
j∈S′ (1−c̃∗j )]

. This

inequality contradicts (10). Since (9) holds for each i ∈ S, the fixed point (c̃∗1, ..., c̃
∗
n) solves

the system of equations (8). By the analogous logic, there must exist a worst school w with

c̃w = 1. As before, it follows that the solutions to (8) are generically distinct, which implies

that, for generic m, there is a single worst school.

To establish uniqueness, suppose to the contrary c∗ > c̃∗: c∗j ≥ c̃∗j for all j and c∗i > c̃∗i
for some i. Let us denote the worst school under c̃∗ as w, i.e., c̃∗w = 1. By monotonicity

and the definition of cutoffs, w must be a worst school under c∗ as well, i.e., c∗w = 1. Since

(8) must be satisfied for w under both cutoffs, we havemw +
∑

S′⊂S\{w}

mS′

w

[∏
j∈S′

(1− cj)

] =

mw +
∑

S′⊂S\{i}

mS′

w

[∏
j∈S′

(1− c̃j)

] = 1,

which holds if and only if cj = c̃j for all j.

Proof of Theorem 2. The proof is a direct application of Theorem 2 of Mas-Colell (1984).

Proof of Lemma 5. Part (i) follows trivially since such a student can target that school

and get assigned to it with probability one. To prove part (ii) consider any student of

type v, whose values are all distinct. There are µ-a.e. such v. Suppose her most-preferred

school π1(v) =: i is undersubscribed and not a worst school. It is then her best response

to target i, since doing so can guarantee assignment to i for sure, whereas targeting some

other school may result in assignment to some other school. Hence, the student must be

targeting i in equilibrium.

To prove part (iii), consider any v (with distinct values), such that π1(v) 6= w. Suppose

first σ∗i (v) > 0 for some oversubscribed school i. It follows from the above observation

that her most preferred school must be an oversubscribed school (not necessarily i). Given

the distinct values, she must strictly prefer school i to all undersubscribed schools. Hence,

she lists i ahead of all undersubscribed schools in her ordinal list. Whenever she picks i,

she will fail to place in any oversubscribed schools other than i that she may list ahead

of i, so she will apply to school i with probability one. Suppose next σ∗j (v) > 0 for some

undersubscribed school j. Then, the student must prefer j to all other undersubscribed

schools, so she will apply to j with probability one whenever she fails to place in any

oversubscribed school she may list ahead of j in the ordinal list. Whenever she targets j,

she is surely rejected by all oversubscribed schools she may list ahead of j, so she will apply

to j with probability one. We thus conclude that σ∗(v) = σ̄∗(v) for µ-a.e. v.
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Proof of Theorem 5: Proof of Part (i) builds on that of part (ii), so it will appear last.

Throughout, we let K and J be the sets of over- and under-subscribed schools.

Part (ii): Let σ∗(·) be an equilibrium, and let φ∗(·) be the ex ante allocation induced

by σ∗(·). For any v ∈ V , consider an optimization problem:

[P (v)] max
x∈∆K

φ∗(v)

∑
i∈S

vixi

subject to ∑
i∈K

pixi ≤
∑
i∈K

piφ
∗
i (v),

where pi ≡ max{
∫
σ∗i (ṽ)dµ(ṽ), 1}.

We first prove that φ∗(v) solves [P (v)]. This is trivially true for any v with π1(v) = w

since xi = φ∗i (v) = 0, i ∈ K must hold by Lemma 3 (ii). Based on this observation, in the

rest of the proof, we will restrict attention to students whose most preferred school is not

the worst school.

Consider now any x ∈ ∆K
φ∗(v) satisfying the constraint of [P (v)], and suppose a type

v-student faces all others playing their parts of the equilibrium strategies σ∗ under the

original CADA game. Consider a strategy called si in which she targets school i ∈ S

and submits it as her top choice in her ordinal list, and but submits truthful ordinal list

otherwise. If type v plays strategy si, then she will be assigned to school i with probability

1

max{
∫
σ∗i (ṽ)dµ(ṽ), 1}

=
1

pi
.

If i ∈ J , this probability is one. If i ∈ K, then she will be rejected by school i with positive

probability. In that event, she will pass through the DA process according to her true

ordinal preferences, and will be assigned based on her non-target draw of score ω2. Since

she will never be assigned to any other schools in K, she will only be assigned to a school

in J . Which school in J she is assigned to is determined solely by ω2 (holding fixed the

student’s ordinal rankings), and her draw of ω2 is independent of her draw of ω1 (which

determined her assignment to i). Hence, the conditional probability of a student getting

assigned to j ∈ J , is the same, regardless of which oversubscribed school i ∈ K turned him

down. Note let that conditional probability be φ̄∗j(v). Obviously,
∑

j∈J φ̄
∗
j(v) = 1.

In summary, when playing si, i ∈ K she will be assigned to school j ∈ J with probability(
1− 1

pi

)
φ̄∗j(v).

Suppose now the type v student randomizes by choosing “strategy si” with probability

yi := pixi, for each i ∈ K, and with probability

yj := σ∗j (v) +

[∑
i∈K

(v∗i (v)− pixi)
(

1− 1

pi

)]
φ̄∗j(v),
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for each j ∈ J . Observe yj ≥ 0 for all j ∈ S. This is obvious for j ∈ K. For j ∈ J , this

follows since the terms in the square brackets are nonnegative:∑
i∈K

(v∗i (v)− pixi)
(

1− 1

pi

)
=
∑
i∈K

(piφ
∗
i (v)− pixi)

(
1− 1

pi

)

=

[∑
i∈K

pi(φ
∗
i (v)− xi)

]
−

[∑
i∈K

(φ∗i (v)− xi)

]
=
∑
i∈K

pi(φ
∗
i (v)− xi)

≥ 0,

where the first inequality is implied by Lemma 3-(iii), the third equality holds since x ∈
∆K
φ∗(v), and the last inequality follows from the fact that x satisfies the constraint of [P (v)].

Further,

∑
i∈S

yi =
∑
i∈K

pixi +
∑
j∈J

[
σ∗j (v) +

[∑
i∈K

(v∗i (v)− pixi)
(

1− 1

pi

)]
φ̄∗j(v)

]

=
∑
i∈K

pixi +
∑
j∈J

σ∗j (v) +
∑
i∈K

[
(σ∗i (v)− pixi)

(
1− 1

pi

)](∑
i∈J

φ̄∗j(v)

)

=
∑
i∈K

pixi +
∑
j∈J

σ∗j (v) +
∑
i∈K

[
(σ∗i (v)− pixi)

(
1− 1

pi

)]
=
∑
i∈K

σ∗i (v) +
∑
j∈J

σ∗j (v) +
∑
i∈K

(φ∗i (v)− xi)

=
∑
i∈S

σ∗i (v) = 1.

The third equality holds since
∑

i∈J φ̄
∗
i (v) = 1, the fourth is implied by Lemma 5-(iii), and

the fifth follows since x ∈ ∆K
φ∗(v), (which implies

∑
i∈K xi =

∑
i∈K φ

∗(v)).

By playing the mixed strategy (y1, ..., yn), the student is assigned to school i ∈ K with

probability
yi
pi

= xi,
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and to each school j ∈ J with probability

yj +

[∑
i∈K

yi

(
1− 1

pi

)]
φ̄∗j(v)

= σ∗j (v) +

[∑
i∈K

(σ∗i (v)− pixi)
(

1− 1

pi

)]
φ̄∗j(v) +

[∑
i∈K

pixi

(
1− 1

pi

)]
φ̄∗j(v)

= σ∗j (v) +

[∑
i∈K

σ∗i (v)

(
1− 1

pi

)]
φ̄∗j(v)

= σ∗j(v) +

[∑
i∈K

σ∗i (v)

(
1− 1

pi

)]
φ̄∗j(v)

= φ∗j(v) = xj.

In other words, the student v can replicate any x ∈ ∆K
φ∗(v) that satisfies

∑
i∈K pixi ≤∑

i∈K piφ
∗
i (v) by playing a strategy available in the CADA game. Since φ∗(·) solves the

CADA game and is still feasible in more constrained problem [P (v)], it must solve [P (v)].

Moreover, since µ is atomless and [P (v)] has a linear objective function on a convex set,

φ∗(v) must be the unique solution to [P (v)] for µ-a.e. v.

We prove the statement of the theorem by contradiction. Suppose to the contrary that

there exists an allocation φ(·) ∈ XK
φ∗ that Pareto dominates φ∗(·). Then, for µ-a.e. v, φ(v)

must either solve [P (v)] or violate the constraint. For µ-a.e. v, the solution to [P (v)] is

unique and coincides with φ∗(v). Therefore, we must have∑
i∈K

piφi(v) ≥
∑
i∈K

piφ
∗
i (v), (11)

for µ-a.e. v. Further, there must exist a set A ⊂ V with µ(A) > 0 such that each student

v ∈ A must strictly prefer φ(v) to φ∗(v), which must imply (since φ∗(v) solves [P (v)])∑
i∈K

piφi(v) >
∑
i∈K

piφ
∗
i (v), ∀v ∈ A. (12)

Combining (11) and (12), we get∫ ∑
i∈K

piφi(v)dµ(v) >

∫ ∑
i∈K

piφ
∗
i (v)dµ(v)

⇔
∑
i∈K

pi

∫
φi(v)dµ(v) >

∑
i∈K

pi

∫
φ∗i (v)dµ(v). (13)

Now since φ(·) ∈ X , for each i ∈ S,∫
φi(v)dµ(v) = 1 =

∫
φ∗i (v)dµ(v).
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Multiplying both sides by pi and summing over K, we get∑
i∈K

pi

∫
φi(v)dµ(v) =

∑
i∈K

pi

∫
φ∗i (v)dµ(v),

which contradicts (13). We thus conclude that φ∗ is Pareto optimal within K.

Part (iii): Consider the following maximization problem for every v ∈ V :

[P (v)] max
x∈∆

∑
i∈S

vixi

subject to ∑
i∈K

pixi ≤ 1. (14)

When we have only one undersubscribed school, called school n, the allocation xn is

completely pinned down by the allocation among n− 1 oversubscribed schools, that is,

xn = 1−
∑
i∈K

xi.

Therefore, an allocation x ∈ ∆ is feasible in CADA game if (and only if) (14) holds.

Now consider the following maximization problem:

[P
′
(v)] max

x∈∆

∑
i∈S

vixi

subject to ∑
i∈K

pixi ≤
∑
i∈K

piφ
∗
i (v). (15)

Since φ∗(·) solves less constrained problem [P (v)] and is still feasible in [P
′
(v)], it must

be an optimal solution for [P
′
(v)]. The rest of the proof is shown by the same argument

as in Part (ii).

Part (i): The argument in the text already established that the allocation cannot admit

a trading cycle that includes both oversubscribed and unsubscribed schools. It cannot admit

a trading cycle comprising only oversubscribed schools, since the allocation is PE within

these schools, by Part (ii), making it OE within the schools, by Lemma 2-(ii). It cannot

admit a trading cycle comprising only undersubscribed schools, since the logic of Theorem

3-(i) implies that it is OE within undersubscribed schools. Since the allocation cannot

admit any trading cycle, it must be OE.

Proof of Lemma 6. We can show that, if a school j > 1 is oversubscribed, then school

j−1 is oversubscribed. (Those who targeted j should have picked j, giving a contradiction.)
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It then suffices to show that at least schools {1, 2} are oversubscribed. Suppose not.

Then, only school 1 is oversubscribed in equilibrium. Suppose mass m2 < 1 of students

target school 2; and all other mass n − m2 target school 1. (No student targets school

j > 2, since targeting school 2 will guarantee enrollment, which dominates targeting any

school j > 2.) Pick any student with v such that
Pn
i=1 vi
n

< v2. If the student picks school

2, she can guarantee the payoff of v2. If the student targets school 1, she can get

v1
1

n−m2

+ v2
1−m2

n−m2

+ (
n∑
i=3

vi)
1

n−m2

= (
n∑
i=1

vi)
1

n−m2

− v2
m2

n−m2

,

which is less than v2. Hence, all such students must be targeting 2. Since there is more

than unit mass of such students, school 2 cannot be undersubscribed, which contradicts

the hypothesis that only school 1 is oversubscribed.

Proof of Theorem 6: Consider first a DA algorithm with any random tie-breaking. Since

all students submit the same rank order over schools, they all must be assigned to each

school with the same probability. In other words, the allocation must be

φDA(v) = (
1

n
, ...,

1

n
) for all v.

Consider now CADA algorithm. Let σ∗(v) ∈ ∆ be the equilibrium mixed strategy

adopted by type v. Then, a measure

α∗i :=

∫
σ∗i (v)dµ(v)

of students target i ∈ S in equilibrium. The equilibrium induces a mapping ϕ∗ : S 7→ ∆,

whereby a student is assigned to school j with probability ϕ∗j(i) if she targets i.

Since in equilibrium, the capacity of each school is filled, we must have, for each j ∈ S,∑
i∈S

α∗iϕ
∗
j(i) = 1. (16)

That is, a measure α∗i of students target i, and a fraction ϕ∗j(i) of those is assigned to school

j. Summing the product over all i then gives the measure of students assigned to j, which

must equal its capacity, 1.

Consider a student with any arbitrary v ∈ V . Suppose she randomizes in her auxiliary

message by choosing school i with probability

yi :=
α∗i∑
j α
∗
j

=
α∗i
n
.
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Then, the probability that she will be assigned to any school k is∑
j

yjϕ
∗
k(j) =

∑
j

α∗j
n
ϕ∗k(j) =

1

n
,

where the second equality follows from (16). That is, she can replicate the same ex ante

assignment with the randomization strategy as φDA(v). Hence, the student must be at

least weakly better from CADA.

Proof of Theorem 8: Part (i) is precisely the same as Part (i) of Theorem 5 and is

the consequence of Part (ii) below and Part (ii) of Lemma 2 (which does not depend on

whether the students are naive or not). Hence it is omitted. To prove Part (ii), it is useful

to establish the following lemma. As before, let φ∗ denote the ex ante allocation arising

from the CADA game and let K and J = S\K be respectively the sets of oversubscribed

and undersubscribed schools in equilibrium.

Lemma 7. Any reassignment of φ∗(v) within K will make a naive student with v strictly

worse off, for almost every v.

Proof: Consider a naive student with v. Assume without loss of generality that she

prefers i strictly over all other schools (i.e., vi > vj, ∀j 6= i). (This is without loss of

generality since the values are distinct for almost every student type.) Since the student is

naive, she subscribes to school i with probability 1. If school i is undersubscribed, then the

result is trivial since φ∗k(v) = 0 for all k ∈ K. Hence, suppose school i is oversubscribed.

Then, any reassignment x ∈ ∆K
φ∗(v) must satisfy∑

j∈K

xj = φ∗i (v)

Since vi > vj ∀j 6= i, for any x ∈ ∆K
φ∗(v), x 6= φ∗i (v), we must have∑

j∈K

xjvj <
∑
j∈K

xjvi = φ∗i (v)vi,

which implies that the student must be strictly worse off from any such reassignment. ‖

We are now ready to prove Parts (ii) and (iii):

Part (ii): We make use of the proof of Theorem 5. By Lemma N, a type-v naive

student’s assignment from the CADA, φ∗(v), is a unique solution to [P (v)], for a.e. v,

even without the constraint ∑
i∈K

pixi ≤
∑
i∈K

piφ
∗
i (v). (17)
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Since φ∗(v) is feasible under (17), this must be a unique solution to [P (v)].

For a non-naive student with a.e. v, the proof of Theorem 5 follows directly, so φ∗(v),

is also a unique solution of [P (v)]. Since the equilibrium assignment of both types solves

[P (v)], the rest of the argument in the proof of Theorem 5 applies, proving that we φ∗ is

PE within K. ‖

Part (iii): Again let φ∗ be the ex ante allocation arising from CADA. Suppose to the

contrary that there exists a within-K ∪ {l} reallocation φ̃ of φ∗ that Pareto dominates φ∗.

By Part (ii), φ∗ is PE within K, so φ̃l(v) 6= φ∗l (v) for a positive measure of v, which in

turn implies that there exists a set A ⊂ V with µ(A) > 0 such that φ̃l(v) > φ∗l (v) for each

v ∈A. Since φ̃(v) ∈ ∆
K∪{l}
φ∗(v) ,

∑
j∈K∪{l} φ̃j(v) =

∑
j∈K∪{l} φ

∗
j(v), so∑

j∈K

φ̃j(v) <
∑
j∈K

φ∗j(v) for all v ∈A.

Assume without loss that v satisfies vi > vj for all i ∈ K and for all j 6= i. (i 6= l since

φ̃l(v) > φ∗l (v) is impossible if i = l.) Then, the type-v student’s expected payoff from φ̃ is∑
j∈S

φ̃j(v)vj =
∑
j∈K

φ̃j(v)vj + φ̃l(v)vl +
∑

j∈J\{l}

φ∗j(v)vj

<
∑
j∈K

φ̃j(v)vi +
(
φ̃l(v)− φ∗l (v)

)
vi + φ∗l (v)vl +

∑
j∈J\{l}

φ∗j(v)vj

=

 ∑
j∈K∪{l}

φ̃j(v)− φ∗l (v)

 vi +
∑
j∈J

φ∗j(v)vj

=
∑
j∈S

φ∗j(v)vj.

Since this inequality holds for almost every v ∈ A, and since µ(A) > 0, φ̃ cannot Pareto

dominate φ∗.

Appendix C: Simulations

There are 5 schools each with a capacity of 20 seats and 100 students. Fix α. We indepen-

dently draw 100 sets of vNM values for students. Let {ṽsij} denote a draw of vNM values,

where superscript s denote the draw and ṽsij denotes student i’s vNM value for school j.

We normalize the level and the scale of each student’s vNM utilities as follows:

vsij =

ṽsij −min
j′
ṽsij′

max
j′
ṽsij′ −min

j′
ṽsij′
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Given a normalized draw {vsij}, fix the mechanism, define the following: psij is the

probability that student i is assigned school j under the mechanism. πsk(i) is the school

that is ranked k-th in i’s preference list. P s is the set of popular schools. Os is the set of

oversubscribed schools in an equilibrium of CADA with no naive players.

A first best or utilitarian maximum solves

vsFB =
1

100
max
{p̂sij}

∑
i

∑
j

p̂sijv
s
ij

Let {p̄sij} denote a solution to the first best. There may be multiple solutions, we arbitrarily

pick one.

Furthermore, we calculate

δs1 =
1

100

∑
i

∑
j

psij · 1(πs1(i) = j)

where δs1 is the average probability of assigning a student to her first choice.

In the CADA experiments with naive players, we divide the set of students into two: N

is the set of naive players who always target their first choice, and S is the set of strategically

sophisticated players who play their best response strategies given others’ strategies. We

calculate utilitarian welfare as before. We also compute the number of students targeting

their k-th choice in equilibrium, which we denote by T sk , k ∈ {1, 2, 3, 4}.
Given a draw {vsij}, the set P s is determined trivially. Next we describe how the other

numbers are computed.

A single tie breaker is a list of 100 randomly drawn lottery numbers, one for each

student. Under DA-STB the ties at a school are broken according to students’ single

random numbers. In CADA, we draw two single tie breakers, one to be used to break ties

at one’s target school, the other to be used at one’s other schools. A multiple tie breaker

is a list of 100 × 5 = 500 randomly drawn numbers, one for each student at each school.

Under DA-MTB, the ties at a school are broken according to students’ tie breaker numbers

at that school.

For each draw {vsij}, we independently draw 2,000 single tie breakers for DA-STB, and

an additional set of 2,000 single tie breakers for CADA, and 2,000 multiple tie breakers for

DA-MTB. Then psij for a mechanism is computed by

Number of tie breakers at which i is assigned j

2, 000
.

The equilibrium of CADA is computed with single tie breakers being fixed. Given the

strategies of other students, a student’s best response is found by computing that student’s

expected utility over those tie breakers. Then Os, the set of oversubscribed schools, is
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found by using students’s equilibrium target schools. In experiments with naive players,

naive players’ target schools are fixed at their first choice.

Note that we are approximating the equilibrium by drawing (two sets of) 2,000 indepen-

dent tie-breakers. The exact numbers are computed by considering 100! single tie-breakers

and (100!)5 multiple tie breakers, which is beyond the capabilities of our computational re-

sources. Any further increase in the number of tie breakers beyond 2,000 does not increase

the precision of our computations significantly.

For each zs ∈ {vs, vsFB, πs1, T s1 , T s2 , T s3 , T s4 , |P s|, |Os|}, we compute the average of zs by

z =
1

100

100∑
s=1

zs.

Note that we drop all “s” from a variable to denote its mean over 100 iterations of an

experiment. We report 100 v
vFB

in our welfare figures.
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Figure 4: Welfare as Percentage of First Best
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Figure 5: Percentage of Students Getting Their First Choice
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Figure 6: Average Utility of Receivers of kth Choice, CADA vs DASTB
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Figure 7: Average Number of Popular Schools and Oversubsribed Schools
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Figure 8: Average Number of Students Selecting kth Choice as Target in CADA Equilibrium
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Figure 9: Welfare as Percentage of First Best - with priorities
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Figure 10: Percentage of Students Selecting Their Neighborhood School as Target
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Figure 11: Welfare with Naive Players as Percentage of First Best
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