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Dynamics of Information Exchange in

Endogenous Social Networks∗

Daron Acemoglu† Kostas Bimpikis‡ Asuman Ozdaglar§

Abstract

We develop a model of information exchange through communication and investigate its impli-

cations for information aggregation in large societies. An underlying state determines payoffs from

different actions. Agents decide which others to form a costly communication link with incurring the

associated cost. After receiving a private signal correlated with the underlying state, they exchange

information over the induced communication network until taking an (irreversible) action. We define

asymptotic learning as the fraction of agents taking the correct action converging to one in probability

as a society grows large. Under truthful communication, we show that asymptotic learning occurs

if (and under some additional conditions, also only if) in the induced communication network most

agents are a short distance away from “information hubs”, which receive and distribute a large amount

of information. Asymptotic learning therefore requires information to be aggregated in the hands of

a few agents. We also show that while truthful communication may not always be a best response,

it is an equilibrium when the communication network induces asymptotic learning. Moreover, we

contrast equilibrium behavior with a socially optimal strategy profile, i.e., a profile that maximizes

aggregate welfare. We show that when the network induces asymptotic learning, equilibrium behavior

leads to maximum aggregate welfare, but this may not be the case when asymptotic learning does

not occur. We then provide a systematic investigation of what types of cost structures and associated

social cliques (consisting of groups of individuals linked to each other at zero cost, such as friendship

networks) ensure the emergence of communication networks that lead to asymptotic learning. Our

result shows that societies with too many and sufficiently large social cliques do not induce asymptotic

learning, because each social clique would have sufficient information by itself, making communica-

tion with others relatively unattractive. Asymptotic learning results if social cliques are neither too

numerous nor too large, in which case communication across cliques is encouraged.
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1 Introduction

Most social decisions, ranging from product and occupational choices to voting and political behavior,

rely on information agents gather through communication with friends, neighbors and co-workers as

well as information obtained from news sources and prominent webpages. A central question in social

science concerns the dynamics of communication and information exchange and whether such dynam-

ics lead to the effective aggregation of dispersed information. Our objective in this paper is to develop

a tractable benchmark model to study the dynamics of belief formation and information aggregation

through communication and the choices that individuals make concerning whom to communicate with.

A framework for the study of these questions requires communication to be strategic, time-consuming

and/or costly, since otherwise all information could be aggregated immediately by simultaneous com-

munication among the agents. Our approach focuses on dynamic and costly communication (and we

also allow strategic communication, though this turns out to be less important in the present context).

An underlying state of the world determines which action has higher payoff (which is assumed to

be the same for all agents). Because of discounting, earlier actions are preferred to later ones. Each

agent receives a private signal correlated with the underlying state. In addition, she can communicate

with others, but such communication first requires the formation of a communication link, which

may be costly. Therefore, our framework combines elements from models of social learning and

network formation. The network formation decisions of agents induce a communication graph for

the society. Thereafter, agents communicate with those whom they are connected to until they take

an irreversible action. Crucially, information acquisition takes time because the “neighbors” of an

agent with whom she communicates acquire more information from their own neighbors over time.

Information exchange will thus be endogenously limited by two features: the communication network

formed at the beginning of the game, which allows communication only between connected pairs, and

discounting, which encourages agents to take actions before they accumulate sufficient information.

We characterize the equilibria of this network formation and communication game and then inves-

tigate the structure of these equilibria as the society becomes large (i.e., for a sequence of games). Our

main focus is on how well information is aggregated, which we capture with the notion of asymptotic

learning. We say that there is asymptotic learning if the fraction of agents taking the correct action

converges to one (in probability) as the society becomes large.

Our analysis proceeds in several stages. First, we take the communication graph as given and

assume that agents are non-strategic in their communication, i.e., they disclose truthfully all the

information they possess when communicating. Under these assumptions, we provide a condition that

is sufficient and (under an additional mild assumption) necessary for asymptotic learning. Intuitively,

this condition requires that most agents are a short distance away from information hubs, which are
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agents that have a very large (in the limit, infinite) number of connections.1 Two different types

of information hubs can be conduits of asymptotic learning in our benchmark model. The first are

information mavens who receive communication from many other agents, enabling them to aggregate

information. If most agents are close to an information maven, asymptotic learning is guaranteed.

The second type of hubs are social connectors who communicate to many agents, enabling them to

spread their information widely.2 Social connectors are only useful for asymptotic learning, if they

are close to mavens so that they can distribute their information. Thus, asymptotic learning is also

obtained if most agents are close to a social connector, who is in turn a short distance away from a

maven. The intuition for why such information hubs and almost all agents being close to information

hubs are necessary for asymptotic learning is instructive: were it not so, a large fraction of agents

would prefer to act before waiting for sufficient information to arrive. But then a nontrivial fraction

of those would take the incorrect action, and moreover, they would also disrupt the information flow

for the agents to whom they are connected. The advantage of the first part of our analysis is that it

enables a relatively simple characterization of equilibria and the derivation of intuitive conditions for

asymptotic learning.

Second, we show that even if individuals misreport their information (which they may want to do

in order to delay the action of their neighbors and obtain more information from them in future com-

munication), it is an equilibrium of the strategic communication game to report truthfully whenever

truthful communication leads to asymptotic learning. Interestingly, the converse is not necessarily

true: strategic communication may lead to asymptotic learning in some special cases in which truthful

communication precludes learning. From a welfare perspective, we show a direct connection between

asymptotic learning and the maximum aggregate welfare that can be achieved by any strategy profile:

when asymptotic learning occurs, all equilibria are (asymptotically) socially efficient, i.e., they achieve

the maximum welfare. However, when asymptotic learning does not occur, equilibrium behavior can

lead to inefficiencies that arise from the fact that agents do not internalize the positive effect of delay-

ing their action and continuing information exchange. Thus, our analysis identifies a novel information

externality that is a direct product of the agents being embedded in a network: the value of an agent

to her peers does not only originate from her initial information but also from the paths she creates

between different parts of the network through her social connections. It is precisely the destruction

of these paths when the agent takes an action that may lead to a welfare loss in equilibrium.

Our characterization results on asymptotic learning can be seen both as “positive” and “negative”.

On the one hand, to the extent that most individuals obtain key information from either individuals or

news sources (websites) approximating such hubs, efficient aggregation of information may be possible

1We also derive conditions under which ε, δ-asymptotic learning occurs at an equilibrium strategy profile. We say that
ε, δ-asymptotic learning occurs when at least 1− ε fraction of the population takes an ε-optimal action with probability
at least 1− δ.

2Both of these terms are inspired by Gladwell (2000).
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in some settings. We show in particular that hierarchical graph structures where agents in the higher

layers of the hierarchy can communicate information to many agents at lower layers lead to asymptotic

learning.3 On the other hand, communication structures that do not feature such hubs appear more

realistic in most contexts, including communication between friends, neighbors and co-workers.4 Our

model thus emphasizes how each agent’s incentive to act sooner rather than later makes information

aggregation significantly more difficult.

Third, armed with the analysis of information exchange over a given communication network, we

turn to the study of the endogenous formation of this network. We assume that the formation of

communication links is costly, though there also exist social cliques, groups of individuals that are

linked to each other at zero cost. These can be thought of as “friendship networks” that are linked

for reasons unrelated to information exchange and thus act as conduits of such exchange at low cost.

Agents have to pay a cost at the beginning in order to communicate (receive information) from those

who are not in their social clique. Even though network formation games have several equilibria, the

structure of our network formation and information exchange game enables us to obtain relatively

sharp results on what types of societies lead to endogenous communication networks that ensure

asymptotic learning. In particular, we show that societies with too many (disjoint) and sufficiently

large social cliques induce behavior inconsistent with asymptotic learning. The reason why relatively

large social cliques may discourage efficient aggregation of information is that because they have

enough information, communication with others (from other social cliques) becomes unattractive, and

as a consequence, the society gets segregated into a large number of disjoint social cliques that do not

share information. In contrast, asymptotic learning obtains in equilibrium if social cliques are neither

too numerous nor too large so that it is worthwhile for at least some members of these cliques to

communicate with members of other cliques, forming a structure in which information is shared across

(almost) all members of the society.

These results also illustrate an interesting feature of the information exchange process: an agent’s

willingness to perform costly search (which here corresponds to forming a link with another social

clique) is decreasing with the precision of the information that is readily accessible to her. This gives a

natural explanation for informational segregation: agents do not internalize the benefits for the group

of forming an additional link, leading to a socially inefficient information exchange structure. It further

suggests a form of informational Braess’ paradox,5 whereby the introduction of additional information

may have adverse effects for the welfare of a society by discouraging the formation of additional links

for information sharing (see also Morris and Shin (2002) and Duffie, Malamud, and Manso (2009) for

3An additional challenge when significant information is concentrated in the hands of a few hubs may arise because
of misalignment of interests, which our approach ignores.

4In particular, the popular (though not always empirically plausible) random graph models such as preferential
attachment and Poisson (Erdős-Renyi) graphs do not lead to asymptotic learning.

5In the original Braess’ paradox, the addition of a new road may increase the delays faced by all motorists in a Nash
equilibrium.
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a related result). Consider, for example, the website of a film critic that can be viewed as a good

but still imprecise information source (similar to a reasonable-sized social clique in our model). Other

agents can access the critic’s information and form an opinion about a movie quickly. However, this

precludes information sharing among the agents and may lead to a decrease in the aggregate welfare.

Our paper is related to several strands of the literature on social and economic networks. First,

it is related to the large and growing literature on social learning. Much of this literature focuses

on Bayesian models of observational learning, where each individual learns from the actions of others

taken in the past. A key impediment to information aggregation in these models is the fact that actions

do not reflect all of the information that an individual has and this can induce a pattern reminiscent

to a “herd,” where individuals ignore their own information and copy the behavior of others (see,

for example, Bikhchandani, Hirshleifer, and Welch (1992), Banerjee (1992), and Smith and Sørensen

(2000), as well as Bala and Goyal (1998), for early contributions, and Smith and Sørensen (2010),

Banerjee and Fudenberg (2004) and Acemoglu, Dahleh, Lobel, and Ozdaglar (2010) for models of

Bayesian learning with richer observational structures). While observational learning is important in

many situations, a large part of information exchange in practice is through communication.

Several papers in the literature study communication, though typically using non-Bayesian or “my-

opic” rules (for example, Ellison and Fudenberg (1995), DeMarzo, Vayanos, and Zwiebel (2003) and

Golub and Jackson (2010)). A major difficulty faced by these approaches, often precluding Bayesian

and dynamic game theoretic analysis of learning in communication networks, is the complexity of

updating when individuals share their ex-post beliefs (because of the difficulty of filtering out com-

mon sources of information). We overcome this difficulty by adopting a different approach, whereby

individuals can directly communicate their signals and there is no restriction on the total “bits” of

communication. This leads to a tractable structure for updating of beliefs and enables us to study per-

fect Bayesian equilibria of a dynamic game of network formation, communication and decision-making.

It also reverses one of the main insights of these papers, also shared by the pioneering social learning

work by Bala and Goyal (1998), that the presence of “highly connected” or “influential” agents, or

what Bala and Goyal (1998) call a “royal family,” acts as a significant impediment to the efficient

aggregation of information. On the contrary, in our model the existence of such highly connected

agents (information hubs, mavens or connectors) is crucial for the efficient aggregation of information.

Moreover, the existence of such “highly connected” also reduces incentives for non-truthful communi-

cation, and is the key input into our result that truthful communication can be an equilibrium. The

recent paper by Duffie, Malamud, and Manso (2009) is also noteworthy: in their model agents are

randomly matched according to endogenously determined search intensities, and because they focus

on an environment with a continuum of agents, communication of beliefs in their setup is equivalent

to exchanging signals, and thus enables them to avoid the issues arising in the previous literature.

Their main focus is on characterizing equilibrium search intensities as a function of the information
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that an agent already has access to. In contrast to our work, there is no explicit network structure.

Finally, Mobius, Phan, and Szeidl (2010) empirically compare a non-Baysian model of communication

(similar to the one adopted by Golub and Jackson (2010)) with a model in which, similar to ours,

signals are communicated and agents are Bayesian. Although their study is not entirely conclusive

on whether agents behave according to one or the other model, their evidence broadly supports the

Bayesian alternative.

Our work is also related to the growing literature on network formation, since communication takes

place over endogenously formed networks. Bala and Goyal (2000) model strategic network formation as

a non-cooperative game and study its equilibria under various assumptions on the benefits of forming

a link. In particular, they distinguish between one-way and two-way flow of benefits, depending

on whether a link benefits only the agent that decides to form it or both participating agents. They

identify a number of simple structures that arise at equilibrium: the empty network, the wheel, the star

and the complete network. More recently, Galeotti, Goyal, and Kamphorst (2006) and Galeotti (2006)

study the role of heterogeneity among agents in the network structures that arise at equilibrium.

Closer to our work is Hojman and Szeidl (2008) who study a network formation model where the

benefits from connecting to other agents have decreasing returns to scale (which is also the case in

our model of information exchange because of endogenous reasons). The main focus of the network

formation literature is on characterizing equilibrium structures and comparing them with patterns

observed in real world networks (e.g., small distances between agents, high centrality etc.). However,

in most of the literature the benefits and costs associated with forming a link are exogenous. A novelty

in our work is that the benefits of forming links are endogenously determined through the subsequent

information exchange. Our focus is also different: although we also obtain characterization results

on the shape of the network structures that arise in equilibrium (which are similar to those in the

literature), our focus is on whether these structure lead to asymptotic learning. Interestingly, while

network formation games have a large number of equilibria, the simple structure of our model enables

us to derive relatively sharp results about environments in which the equilibrium networks lead to

asymptotic learning.

Finally, our paper is related to the literature on strategic communication, pioneered by the cheap

talk framework of Crawford and Sobel (1982). While cheap talk models have been used for the study

of information aggregation with one receiver and multiple senders (e.g. Morgan and Stocken (2008))

and multiple receivers and single sender (e.g. Farrell and Gibbons (1989)), most relevant to our paper

are two recent papers that consider strategic communication over general networks, Galeotti, Ghiglino,

and Squintani (2010) and Hagenbach and Koessler (2010). A major difference between these works

and ours is that we consider a model where communication is allowed for more than one time period,

thus enabling agents to receive information outside their immediate neighborhood (at the cost of a

delayed decision) and we also endogenize the network over which communication takes place. On the
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other hand, our framework assumes that an agent’s action does not directly influence others’ payoffs,

while such payoff interactions are the central focus of Galeotti, Ghiglino, and Squintani (2010) and

Hagenbach and Koessler (2010). Our paper is also related to the existing work by Ambrus, Azevedo,

and Kamada (2010), where the sender and the receiver communicate strategically through a chain of

intermediators. Their primary focus is information intermediation, thus communication takes place

over multiple rounds but it is restricted on a ordered line from the sender to the receiver, where each

agent only sends information once.

The rest of the paper is organized as follows. Section 2 develops a general model of information

exchange among rational agents, that are embedded in a communication network. Also, it introduces

the two main environments we study. Section 3 contains our main results on social learning given

a communication graph. It also includes a welfare discussion that draws the connection between

learning and efficient communication. Finally, it illustrates how our results can be applied to a number

of random graph models. Section 4 incorporates endogenous network formation to the information

exchange model. Our main result in this section shows the connection between incentives to form

communication links and asymptotic learning. Section 5 concludes. All proofs are presented in the

Appendix.

2 A Model of Information Exchange in Social Networks

In the first part of the paper, we focus on modelling information exchange among agents over a given

communication network. In the second part (Section 4), we investigate the question of endogenous

formation of this network. We start by presenting the information exchange model for a finite set

N n = {1, 2, · · · , n} of agents. We also describe the limit economy as n→∞.

2.1 Actions, Payoffs and Information

Each agent i ∈ N n chooses an irreversible action xi ∈ R. Her payoff depends on her action and an

underlying state of the world θ ∈ R, which is an exogenous random variable. In particular, agent i’s

payoff when she takes action xi and the state of the world is θ is given by f(xi, θ) = π − (x − θ)2,

where π is a constant.

The state of the world θ is unknown and agents observe noisy signals about it. In particular, we

assume that θ is drawn from a Normal distribution with known mean µ and precision ρ. Each agent

receives a private signal si = θ+zi, where the zi’s are idiosyncratic and independent from one another

and θ, with common mean µ̄ (normalized to 0) and precision ρ̄.

2.2 Communication

Our focus is on information aggregation, when agents are embedded in a network that imposes com-

munication constraints. In particular, agent i forms beliefs about the state of the world from her

private signal si, as well as information she obtains from other agents through a given communication
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network Gn, which, as will be described shortly, represents the set of communication constraints im-

posed on them. We assume that time t ∈ [0,∞) is continuous and there is a common discount rate

r > 0. Communication times are stochastic. In particular, communication times are exponentially

distributed with parameter λ > 0.6 At a given time instant t, agent i decides whether to take action

xi (and receive payoff f(xi, θ) discounted by e−rt) or “wait” to obtain more information in subsequent

communication rounds from her peers. Throughout the rest of the paper, we say that the agent “exits”

at time t, if she chooses to take the irreversible action at time t. Discounting implies that an earlier

exit is preferred to a later one. We define Uni as the discounted payoff of agent i (from the viewpoint

of time t = 0) when the size of the society is n. For example, when the underlying state is θ and the

agent takes action xi at time t, we would have that

Uni = e−rt
(
π − (xi − θ)2

)
.

As mentioned above, each agent obtains information from other agents through a communication

network represented by a directed graph Gn = (N n, En), where En is the set of directed edges with

which agents are linked. We say that agent j can obtain information from i or that agent i can send

information to j if there is an edge from i to j in graph Gn, i.e., (i, j) ∈ En. Let Ini,t denote the

information set of agent i at time t and Ini,t denote the set of all possible information sets. Then, for

every pair of agents i, j, such that (i, j) ∈ En, we say that agent j communicates with agent i or that

agent i sends a message to agent j, and define the following mapping

mn
ij,t : Ini,t →Mn

ij,t for (i, j) ∈ En,

where Mn
ij,t ⊆ Rn denotes the set of messages that agent i can send to agent j at time t. Note that

without loss of generality the k-th component of mn
ij,t represents the information that agent i sends to

agent j at time t regarding the signal of agent k7. Moreover, the definition ofmn
ij,t captures the fact that

communication is directed and is only allowed between agents that are linked in the communication

network, i.e., j communicates with i if and only if (i, j) ∈ En. The direction of communication should

be clear: when agent j communicates with agent i, then agent i sends a message to agent j, that could

in principle depend on the information set of agent i as well as the identity of agent j.

Importantly, we assume that the cardinality (“dimensionality”) of Mn
ij,t is such that communi-

cation can take the form of agent i sharing all her information with agent j. This has two key

implications. First, an agent can communicate (indirectly) with a much larger set of agents than just

her immediate neighbors, albeit with a time delay. For example, the second time agent j communicates

6Equivalently, agents “wake” up and communicate simultaneously with their neighbors, when a Poisson clock with
rate λ ticks.

7As will become evident in subsequent discussion, we assume that communication involves exchange of signals and not
posterior beliefs. Moreover, information is tagged, i.e., the receiver of the message understands that its k-th component
is associated with agent k.
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with agent i, then j can send information not just about her direct neighbors, but also their neighbors

(since presumably she obtained such information during the first communication). Second, mechanical

duplication of information can be avoided. In particular, the second time agent j communicates with

agent i, she can repeat her original signal, but this is not recorded as an additional piece of information

by agent j, since given the size of the message space Mn
ij,t, each piece of information is “tagged”.

This ensures that there need be no confounding of new information and previously communicated

information.

Let Tt denote the set of times that agents communicated with their neighbors before time t. That

defines the information set of agent i at time t > 0 as:

Ini,t = {si,mn
ji,τ , for all τ ∈ Tt and j such that (j, i) ∈ En}

and Ini,0 = {si}. In particular, the information set of agent i at time t > 0 consists of her private signal

and all the messages her neighbors sent to i in previous communication times. Agent i’s action at

time t is a mapping from her information set to the set of actions, i.e.,

σni,t : Ini,t → {“wait”} ∪ R.

The tradeoff between taking an irreversible action and waiting, should be clear at this point. An

agent would wait, in order to communicate indirectly with a larger set of agents and choose a better

action. On the other hand, future is discounted, therefore, delaying is costly.

We close the section with a number of definitions. We define a path between agents i and j in

network Gn as a sequence i1, · · · , iK of distinct nodes such that i1 = i, iK = j and (ik, ik+1) ∈ En for

k ∈ {1, · · · ,K − 1}. The length of the path is defined as K − 1. Moreover, we define the distance of

agent i to agent j as the length of the shortest path from i to j in network Gn, i.e.,

distn(i, j) = min{length of P
∣∣ P is a path from i to j in Gn}.

Finally, the k-step neighborhood of agent i is defined as

Bn
i,k = {j

∣∣ distn(j, i) ≤ k},

where Bn
i,0 = {i}, i.e., Bn

i,k consists of all agents that are at most k links away from agent i in graph

Gn. Intuitively, if agent i waits for k communication steps and all of the intermediate agents receive

and communicate information truthfully, i will have access to all of the signals of the agents in Bn
i,k.

2.3 Equilibria of the Information Exchange Game

We refer to the game defined above as the Information Exchange Game. We next define the equilibria

of the information exchange game Γinfo(G
n) for a given communication network Gn. We use the
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standard notation σ−i to denote the strategies of agents other than i and we let σi,−t denote the vector

of actions of agent i at all times except t. Also, let Pσ and Eσ denote the conditional probability,

conditional expectation respectively when agents behave according to profile σ.

Definition 1. An action strategy profile σn,∗ is a pure-strategy perfect Bayesian Equilibrium of the

information exchange game Γinfo(G
n) if for every i ∈ N n and time t, σn,∗i,t maximizes the expected

payoff of agent i given the strategies of other agents σn,∗−i , i.e.,

σn,∗i,t ∈ arg max
y∈{“wait”}∪R

E((y,σn,∗i,−t),σ
n,∗
−i )(Uni

∣∣Ini,t).
We denote the set of equilibria of this game by INFO(Gn).

For the remainder, we refer to a pure-strategy perfect Bayesian Equilibrium simply as an equilib-

rium (we do not study mixed strategy equilibria). It is important to note here that although equilibria

depend on the discount rate r, we do not explicitly condition on r (through the use of a subscript) for

convenience.

If agent i decides to exit and take an action at time t, then the optimal action would be:

xn,∗i,t = arg max
x

E[f(x, θ)
∣∣Ini,t] = E[θ

∣∣Ini,t],
where the second equality holds as f(x, θ) = π − (x − θ)2. Since actions are irreversible, the agent’s

decision problem reduces to determining the timing of her action. It is straightforward to see that

at equilibrium an agent takes the irreversible action immediately after some communication step

concludes. Thus, an equilibrium strategy profile σ induces an equilibrium timing profile τn,σ, where

τn,σi designates the communication step after which agent i exits by taking an irreversible action. The

τ notation is convenient to use for the statement of some of our results below. Finally, similar to

Bn
i,k, we define the k-step neighborhood of agent i under equilibrium σ as follows: a path Pσ between

agents i and j in Gn under σ is a sequence i1, · · · , iK of distinct nodes such that i1 = i, iK = j,

(ik, ik+1 ∈ En) and τn,σik ≥ k − 1, which ensures that the information from j will reach agent i before

any of the agents in the path take an irreversible action. Then, we can define

distn,σ(i, j) = min{length of Pσ
∣∣ Pσ is a path from i to j in Gn under equilibrium σ}

and

Bn,σ
i,k = {j

∣∣ distn,σ(j, i) ≤ k}.

2.4 Assumptions on the Information Exchange Process

The communication model described in Section 2.2 is fairly general. In particular, the model does not

restrict the set of messages that an agent can send. Throughout, we maintain the assumption that the

communication network Gn is common knowledge. Also, we focus on the following two environments
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Figure 1: The information set of agent 1 under truthful communication.

defined by Assumptions 1 and 2 respectively.

Assumption 1 (Truthful Communication). Communication between agents is truthful, i.e.,

mn
ij,t =

{
m̂n

ij,t if |Tt| ≤ τn,σi
m̂n

ij,τn,σi
otherwise.

and

(m̂n
ij,t)` =

{
s` if distn,σi,` ≤ |Tt|
∈ R otherwise

Intuitively, this assumption compactly imposes three crucial features: (1) Communication takes

place by sharing signals, so that when agent j communicates with agent i at time t, then agent i

sends to j all the information agent i has obtained thus far (refer to Figure 1 for an illustration of the

communication process centered at a particular agent); (2) Agents cannot strategically manipulate the

messages they sent, i.e., an agent’s private signal is hard information. Moreover, they cannot refuse to

disclose the information they possess; (3) When an agent takes an irreversible action, then she no longer

obtains new information and, thus, can only communicate the information she has obtained until the

time of her decision. The latter feature captures the fact that an agent, who engages in information

exchange to make a decision, would have weaker incentives to collect new information after reaching

that decision. Nevertheless, she can still communicate the information she had previously obtained to

other agents. An interesting consequence of this feature is that it imposes dynamically new constraints

to communication: agent i can communicate with agent j only if there is a directed path between

them in the original communication network Gn and the agents in the path do not exit early. We call

this type of communication truthful to stress the fact that the agents cannot strategically manipulate

the information they communicate.8 We discuss the implications of relaxing Assumption 1 by allowing

8Yet another variant of this assumption would be that agents exit the social network after taking an action and stop
communicating entirely. In this case, the results are essentially identical when their action is observed by their neighbors.

10



strategic communication in Subsection 3.4.

2.5 Learning in Large Societies

We are interested in whether equilibrium behavior leads to information aggregation. This is captured

by the notion of “asymptotic learning”, which characterizes the behavior of agents over communication

networks with growing size.

We consider a sequence of communication networks {Gn}∞n=1, where Gn = {N n, En}, and refer

to this sequence of communication networks as a society. A sequence of communication networks

induces a sequence of information exchange games, and with a slight abuse of notation we use the

term equilibrium to denote a sequence of equilibria of the information exchange games, or of the society

{Gn}∞n=1. We denote such an equilibrium by σ = {σn}∞n=1, which designates that σn ∈ INFO(Gn) for

all n. For any fixed n ≥ 1 and any equilibrium of the information exchange game σn ∈ INFO(Gn),

we introduce the indicator variable:

Mn,ε
i =

{
1 if agent i takes an action that is ε-close to the optimal,
0 otherwise.

(1)

In other words, Mn,ε
i = 1 (for some ε) if and only if agent i chooses irreversible action xi, such that

|xi − θ| ≤ ε.

Next definition introduces ε, δ-asymptotic learning for a given society.9

Definition 2. We say that ε, δ-asymptotic learning occurs in society {Gn}∞n=1 along equilibrium σ if

we have:

lim
n→∞

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
< δ.

This definition states that ε, δ-asymptotic learning occurs when the probability that at least (1 − ε)-
fraction of the agents take an action that is ε-close to the optimal action (as the society grows infinitely

large) is at least 1− δ.

Definition 3. We say that perfect asymptotic learning occurs in society {Gn}∞n=1 along equilibrium

σ if we have:

lim
n→∞

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
= 0.

for any ε > 0.

Perfect asymptotic learning is naturally a stronger definition (corresponding to ε and δ being

arbitrarily small in the definition of ε, δ-asymptotic learning) and requires all but a negligible fraction

of the agents taking the optimal action in the limit as n→∞.

However, if their action is not observable, then the analysis needs to be modified in particular, there exist other equilibria
where several agents might exit together expecting others to exit. We do not analyze these variants in the current version
to save space.

9Note that we could generalize Definition 2 by introducing yet another parameter and study ε, δ, ζ-asymptotic learning,
in which case we would require that limn→∞ Pσ

([
1
n

∑n
i=1 (1−Mn,ε

i )
]
> ζ
)
< δ.
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3 Learning and Efficient Communication

In this section, we present our main results on learning and discuss their implications for the aggregate

welfare. Before doing so, we discuss the decision problem of a single agent, i.e., determining the best

time to take an irreversible action given that the rest of the agents behave according to strategy profile

σ. Later, we contrast the single agent problem with that of a social planner, whose objective is to

maximize the expected aggregate welfare. The analysis in the next three subsections assumes that

communication is truthful (cf. Assumption 1).

3.1 Agent i’s problem

The (non-discounted) expected payoff of agent i taking an action after observing k truthful private

signals (including her own) is given by:

π − 1

ρ+ ρ̄k
,

where recall that ρ, ρ̄ are the precisions of the state θ and the idiosyncratic noise respectively. To

see this, note that if agent i takes her irreversible action, then the optimal such action would be

θ̂ = E[θ
∣∣Ini,t] and the associated non-discounted payoff would be equal to:

E[π − (θ̂ − θ)2
∣∣Ini,t] = π − var(θ̂ − θ

∣∣Ini,t) = π − var

(
k∑
i=1

s(i)

k
− θ
∣∣Ini,t
)

= π − 1

ρ+ ρ̄k
,

where s(i) denotes the i-th signal observed by the agent and θ̂ is equal to the sum of k private signals

normalized by k.

By the principle of optimality, the value function for agent i at information set Ini,t and assuming

that the rest of the agents behave according to profile σ is given by:

Eσ(Uni
∣∣Ini,t) = max

{
π − 1

ρ+ρ̄kn,σi,t
(when she takes the optimal irreversible action),

e−rdtE[Eσ(Uni
∣∣Ini,t+dt)∣∣Ini,t] (when she decides to wait, i.e., x = “wait”),

where kn,σi,t denotes the number of distinct private signals agent i has observed up to time t. The first

line is equal to the expected payoff for the agent when she chooses the optimal irreversible action

under information set Ini,t, i.e., E[θ|Ini,t], and she has observed kn,σi,t private signals, while the second

line is equal to the discounted expected continuation payoff.

The following lemma states that an agent’s optimal action takes the form of a threshold rule: there

exists a threshold (kn,σi,T|t|)
∗, such that an agent decides to take an irreversible action at time t as long

as she has observed more that (kn,σi,T|t|)
∗ private signals. Like all other results in the paper, the proof

of this lemma is provided in the Appendix.

Lemma 1. Suppose Assumption 1 holds. Given communication network Gn and equilibrium σ ∈
INFO(Gn), there exists a sequence of signal thresholds for each agent i, {(kn,σi,τ )∗}∞τ=0, that depend on

the current communication round, the identity of the agent i, the communication network Gn and σ

12



such that agent i maximizes her expected utility at information set Ini,t by taking action xni,t(I
n
i,t) defined

as

xni,t(I
n
i,t) =

{
E[θ
∣∣Ini,t], if kn,σi,t ≥ (kn,σi,|Tt|)

∗,

“wait”, otherwise,

A consequence of Lemma 1 is that an equilibrium strategy profile σ defines both a time in which

agent i acts (immediately after communication step τn,σi ), but also the number of signals that agent i

has access to when she acts.

3.2 Asymptotic Learning

We begin the discussion by introducing the concepts that are instrumental for asymptotic learning:

the observation radius and k-radius sets. Recall that an equilibrium of the information exchange game

on communication network Gn, σn ∈ INFO(Gn), induces a timing profile τn,σ, such that agent i

takes an irreversible action after τn,σi communication steps. We call τn,σi the observation radius of

agent i under equilibrium profile σn. We also define agent i’s perfect observation radius, τni , as the

communication round that agent i would exit assuming that all other agents never exit. Note that

an agent’s perfect observation radius is equilibrium independent and depends only on the network

structure. On the other hand, τn,σi is an endogenous object and depends on both the network as well

as the specific equilibrium profile σ. Given the notion of an observation radius, we define k-radius sets

(and similarly perfect k-radius sets) as follows.

Definition 4. Let V n,σ
k be defined as

V n,σ
k = {i ∈ N

∣∣ ∣∣Bn,σ
i,τn,σi

∣∣ ≤ k}.
We refer to V n,σ

k as the k-radius set (along equilibrium σ). Similarly, we refer to

V n
k = {i ∈ N

∣∣ ∣∣Bn
i,τn,i

∣∣ ≤ k}
as the perfect k-radius set.

Intuitively, V n,σ
k includes all agents that take an action before they receive signals from more than

k other individuals at equilibrium σ. Equivalently, the size of their (indirect) neighborhood by the

time they take an irreversible action is no greater than k. From Definition 4 it follows immediately

that

i ∈ V n,σ
k ⇒ i ∈ V n,σ

k′ for all k′ > k. (2)

The following proposition provides a necessary and a sufficient condition for ε, δ-asymptotic learning

to occur in a society under equilibrium profile σ. Recall that erf(x) = 2√
π

∫ x
0 e
−t2dt denotes the error

function of the normal distribution.

Proposition 1. Suppose Assumption 1 holds. Then,

13



(a) ε, δ-asymptotic learning does not occur in society {Gn}∞n=1 under equilibrium profile σ if there

exists k > 0 such that

η = lim sup
n→∞

1

n
·
∣∣V n,σ
k

∣∣ > ε and erf

(
ε

√
kρ̄

2

)
< (1− δ)(1− ε/η). (3)

(b) ε, δ-asymptotic learning occurs in society {Gn}∞n=1 under equilibrium profile σ if there exists

k > 0 such that

ζ = lim inf
n→∞

1

n
·
∣∣V n,σ
k

∣∣ < ε and erf

(
ε

√
kρ̄

2

)
> 1− δ(ε− ζ)

1− ζ
. (4)

This proposition provides conditions such that ε, δ-asymptotic learning takes place (or does not take

place). Intuitively, asymptotic learning is precluded if there exists a significant fraction of the society

that takes an action before seeing a large set of signals, since in this case there is a large enough

probability that these agents will take an action far away from the optimal one. The proposition

quantifies the relationship between the fraction of agents taking actions before seeing a large set of

signals and the quantities ε and δ. Because agents are estimating a normal random variable from noisy

observations (where the noise is also normally distributed), their probability of error is captured by

the error function erf(x), which is naturally decreasing in the number of observations. In particular,

the probability that an agent with k signals takes an action at least ε away from the optimal action

is no less than erf

(
ε
√

kρ̄
2

)
(see Lemma 2 in the Appendix), and this enables us to characterize the

fraction of agents that will take an action at least ε away from the optimal one in terms of the set

V n,σ
k as well as ε and δ. We thus obtain sufficient conditions for both ε, δ-learning to take place and

for it to be incomplete. Finally, recall that equilibria and subsequently k-radius sets depend on the

discount rate (thus, different discount rates result in different answers for ε, δ-learning).

Proposition 1 is stated in terms of the sets V n,σ
k , which depend on the equilibrium (as the condition-

ing on σ makes clear). Our next proposition provides a necessary and sufficient condition for perfect

asymptotic learning to occur in any equilibrium profile as a function of only exogenous objects, i.e.,

the perfect k-radius sets, that depend exclusively on the original network structure. Before stating the

proposition, we define the notion of leading agents. Intuitively, a society contains a set of leading agents

if there is a negligible fraction of the agents (the leading agents) whose actions affect the equilibrium

behavior of a much larger set of agents (the followers). Let indegni = |Bn
i,1|, outdegni =

∣∣{j∣∣i ∈ Bn
j,1}
∣∣

denote the in-degree, out-degree of agent i in communication network Gn respectively.

Definition 5. A collection {Sn}∞n=1 of sets of agents is called a set of leading agents if

(i) There exists k > 0, such that Snj ⊆ V nj
k for all j ∈ J , where J is an infinite index set.

(ii) limn→∞
1
n ·
∣∣Sn∣∣ = 0, i.e., the collection {S}∞n=1 contains a negligible fraction of the agents as the

14
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Figure 2: Leading agents and asymptotic learning.

society grows.

(iii) limn→∞
1
n ·
∣∣Snfollow∣∣ > ε, for some ε > 0, where Snfollow denotes the set of followers of Sn. In

particular,

Snfollow = {i
∣∣ there exists j ∈ Sn such that j ∈ Bn

i,1}.

Proposition 2. Suppose Assumption 1 holds. Then,

(i) Perfect asymptotic learning occurs in society {Gn}∞n=1 in any equilibrium σ if

lim
k→∞

lim
n→∞

1

n
·
∣∣V n
k

∣∣ = 0. (5)

(ii) Conversely, if condition (5) does not hold for society {Gn}∞n=1and the society does not contain

a set of leading agents, then perfect asymptotic learning does not occur in any equilibrium σ.

Proposition 2 is not stated as an if and only if result because the fact that condition (5) does not

hold in a society does not necessarily preclude perfect asymptotic learning in the presence of leading

agents. In particular, depending on their actions, a large set of agents may exit early before obtaining

enough information to learn, or delay their actions and learn. Figure 2 clarifies this point: if the

leading agents (agents A and B) delay their irreversible decision for one communication round, then

a large fraction of the rest of the agents (agents 1 to n) may take (depending on the discount rate)

an irreversible action as soon as they communicate with the leading agents and their neighbors (i.e.,

after the second communication round concludes), thus, perfect asymptotic learning fails. However, if

the leading agents do not “coordinate,” then they exit early and this may lead the rest of the agents

to take a delayed (after the third communication round), but more informed action. Generally, in the

presence of leading agents, asymptotic learning may occur in all or some of the induced equilibria,
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even when condition (5) does not hold.

In the rest of this section, we present two corollaries that help clarify the intuition of the asymptotic

learning result and identify the role of certain types of agents on information spread in a given society.

We focus on perfect asymptotic learning, since we can obtain sharper results, though we can state

similar corollaries for ε, δ-asymptotic learning for any ε and δ. All corollaries are again expressed in

terms of the original network topology.10

In particular, Corollary 1 identifies a group of agents, that is crucial for a society to permit

asymptotic learning: information mavens, who have high in-degrees and can thus act as effective

aggregators of information (a term inspired by Gladwell (2000)). Information mavens are one type

of hubs the importance of which is clearly illustrated by our learning results. Our next definition

formalizes this notion.

Definition 6. Agent i is called an information maven of society {Gn}∞n=1 if i has an infinite in-degree,

i.e., if

lim
n→∞

indegni =∞.

Let MAVEN ({Gn}∞n=1) denote the set of mavens of society {Gn}∞n=1.

For any agent j, let dMAVEN ,nj denote the shortest distance defined in communication network Gn

between j and a maven k ∈MAVEN ({Gn}∞n=1). Finally, let Wn denote the set of agents that are at

distance at most equal to their perfect observation radius from a maven in communication network

Gn, i.e., Wn = {j
∣∣ dMAVEN ,nj ≤ τnj }.

The following corollary highlights the importance of information mavens for asymptotic learning.

Informally, it states that if almost all agents have a short path to a maven, then asymptotic learning

occurs.

Corollary 1. Suppose Assumption 1 holds. Then, asymptotic learning occurs in society {Gn}∞n=1 if

lim
n→∞

1

n
·
∣∣Wn

∣∣ = 1.

Corollary 1 thus clarifies that asymptotic learning is obtained when there are information mavens

and almost all agents are at a “short distance” away from one (less than their observation radius).

As mentioned in the Introduction, a second type of information hub also plays an important role

in asymptotic learning. While mavens have high in-degree and are thus able to effectively aggregate

dispersed information, they may not be in the right position to distribute this aggregated information.

If so, even in a society that has several information mavens, a large fraction of the agents may not

benefit from their information. Social connectors, on the other hand, are defined as agents with a high

10The corollaries are stated under the additional assumption, that the in-degree of an agent is non-decreasing with n.
This is simply a technicality that allows us to simplify the statement of the corollaries.
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out-degree, and thus play the role of spreading the information aggregated by the mavens. Before

stating the proposition, we define social connectors.

Definition 7. Agent i is called a social connector of society {Gn}∞n=1 if i has an infinite out-degree,

i.e., if

lim
n→∞

outdegni =∞.

The following corollary illustrates the role of social connectors for asymptotic learning.

Corollary 2. Suppose Assumption 1 holds. Consider a society {Gn}∞n=1, such that the set of infor-

mation mavens does not grow at the same rate as the society itself, i.e.,

lim
n→∞

∣∣MAVEN ({Gn}∞n=1)
∣∣

n
= 0.

Then, for asymptotic learning to occur, the society should contain a social connector within a short

distance to a maven, i.e.,

dMAVEN ,ni ≤ τni , for some social connector i.

Corollary 2 thus states that unless a large fraction of the agents belongs to the set of mavens and,

subsequently, the rest can obtain information directly from a maven, then, information aggregated

at the mavens is spread through the out-links of a connector (note that an agent can be both a

maven and a connector). These two corollaries highlight two ways in which society can achieve perfect

asymptotic learning. First, it may contain several information mavens who not only collect and

aggregate information but also distribute it to almost all the agents in the society. Second, it may

contain a sufficient number of information mavens, who pass their information to social connectors,

and almost all the agents in the society are a short distance away from social connectors and thus

obtain accurate information from them. This latter pattern has a greater plausibility in practice than

one in which the same agents collect and distribute dispersed information. For example, if a website or

a news source can rely on information mavens (journalists, researchers or analysts) to collect sufficient

information and then reach a large number of individuals, then information can be aggregated.

The results summarized in Propositions 1 and 2 as well as in Corollaries 1 and 2 can be seen

both as positive and negative, as already noted in the Introduction. On the one hand, communication

structures that do not feature information mavens (or connectors) do not lead to perfect asymptotic

learning, and information mavens may be viewed as unrealistic or extreme. On the other hand, as

already noted above, much communication in modern societies happens through agents that play the

role of mavens and connectors (see again Gladwell (2000)). These are highly connected agents that are

able to collect and distribute crucial information. Perhaps more importantly, most individuals obtain
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Figure 3: Hierarchical Society.

some of their information from news sources, media, and websites, which exist partly or primarily for

the purpose of acting as information mavens and connectors.11

3.3 Asymptotic Learning in Random Graphs

As an illustration of the results we outlined in Subsection 3.2, we apply them to hierarchical graphs, a

class of random graphs defined below. Note that in the present section we assume that communication

networks are bidirectional, or equivalently that if agent i ∈ Bn
j,1 then j ∈ Bn

i,1.

Definition 8 (Hierarchical graphs). A sequence of communication networks {Gn}∞n=1, where Gn =

{N n, En}, is called ζ-hierarchical (or simply hierarchical) if it was generated by the following process:

(i) Agents are born and placed into layers. In particular, at each step n = 1, · · · , a new agent is

born and placed in layer `.

(ii) Layer index ` is initialized to 1 (i.e., the first node belongs to layer 1). A new layer is created

(and subsequently the layer index increases by one) at time period n ≥ 2 with probability 1
n1+ζ ,

where ζ > 0.

(iii) Finally, for every n we have

P ((i, j) ∈ En) = p
|Nn` |

, independently for all i, j ∈ N n that belong to the same layer `,

where N n
` denotes the set of agents that belong to layer ` at step n and p scalar, such that

0 < p < 1. Moreover,

P ((i, k) ∈ En) =
1

|N<`|
and

∑
k∈N<`

P ((i, k) ∈ En) = 1 for all i ∈ Nn
` , k ∈ Nn

<`, ` > 1,

where N n
<` denotes the set of agents that belong to a layer with index lower than ` at step n.

11For example, a news website such as cnn.com acts as a connector that spreads the information aggregated by
the journalists-mavens to interested readers. Similarly, a movie review website, e.g., imdb.com, spreads the aggregate
knowledge of movie reviewers to interested movie aficionados.
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Intuitively, a hierarchical sequence of communication networks resembles a pyramid, where the

top contains only a few agents and as we move towards the base, the number of agents grows. The

following argument provides an interpretation of the model. Agents on top layers can be thought of as

“special” nodes, that the rest of the nodes have a high incentive to connect to. Moreover, agents tend

to connect to other agents in the same layer, as they share common features with them (homophily).

As a concrete example, academia can be thought of as such a pyramid, where the top layer includes

the few institutions, then next layer includes academic departments, research labs and finally at the

lower levels reside the home pages of professors and students.

Proposition 3. Suppose Assumption 1 holds and consider society {Gn}∞n=1. There exist r̄ > 0 and a

function ζ(η) such that perfect asymptotic learning occurs in society {Gn}∞n=1 with probability at least

1− η, if the sequence of communication networks {Gn}∞n=1 is ζ(η)−hierarchical and the discount rate

r < r̄.

The probability η that perfect asymptotic learning fails is related here to the stochastic process

that generated the graph. The results presented provide additional insights on the conditions under

which asymptotic learning takes place. It can also be proved that the popular preferential attachment

and Erdős-Renyi graphs do not lead to asymptotic learning (we omit these results to save space). This

can be interpreted as implying that asymptotic learning is unlikely in several important networks.

Nevertheless, these network structures, though often used in practice, do not provide a good description

of the structure of many real life networks. In contrast, our results show that asymptotic learning takes

place in hierarchical graphs, where “special” agents are likely to receive and distribute information to

lower layers of the hierarchy. Although this result is useful in pointing out certain structures where

information can be aggregated efficiently, our analysis on the whole suggests that the conditions for

both perfect asymptotic learning and for ε, δ-learning are somewhat stringent.

3.4 Strategic Communication

Next we explore the implications of relaxing the assumption that agents cannot manipulate the mes-

sages they send. In particular, we replace Assumption 1 with the following:

Assumption 2 (Strategic Communication). Communication between agents is strategic if

mn
ij,t ∈ Rn,

for all agents i, j and time t.

This assumption makes it clear that in this case the messages need not be truthful. Allowing

strategic communication adds an extra dimension in an agent’s strategy, since the agent can choose

to “lie” about (part) of her information set in the hope that this increases her expected payoff. Note

that, in contrast with “cheap talk” models, externalities in our framework are purely informational
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Figure 4: Agents may have an incentive to misreport/not disclose their information.

as opposed to payoff relevant. Thus, an agent may have an incentive to “lie” as a means to obtain

more information from the information exchange process (by inducing a later exit decision from her

neighbors).

Figure 4 illustrates how incentives for non-truthful communication may arise. Here, agent B may

have an incentive not to disclose her information to agent A. In particular, for a set of parameter

values we have that if agent B is truthful to A, then A takes an action after the first communication

round. On the other hand, if B does not disclose her information to A, then A waits for an additional

time period and B obtains access to the information of agents 9, 10 and 11.

Let (σn,mn) denote an action-message strategy profile, where mn = {mn
1 , · · · ,mn

n} and mn
i =

[mn
ij,τ ]t=0,1,···, for j such that i ∈ Bn

j,1. Also let Pσn,mn refer to the conditional probability when agents

behave according to the action-message strategy profile (σn,mn).

Definition 9. An action-message strategy profile (σn,∗,mn,∗) is a pure-strategy perfect Bayesian Equi-

librium of the information exchange game Γinfo(G
n) if for every i ∈ N n and communication round τ ,

we have

E(σn,∗,mn,∗)(U
n
i

∣∣Ini,t) ≥ E((σni,τ ,σ
n
i,−τ ,σ

n,∗
−i ),(mni,τ ,m

n
i,−τm

n,∗
−i ))(U

n
i

∣∣Ini,t),
for all mn

i,τ ,m
n
i,−τ , and σni,τ , σ

n
i,−τ . We denote the set of equilibria of this game by INFO(Gn).

Similarly we extend the definitions of asymptotic learning [cf. Definitions 2 and 3]. We show that

strategic communication does not harm perfect asymptotic learning. The main intuition behind this

result is that it is weakly dominant for an agent to report her private signal truthfully to a neighbor

with a high in-degree (maven), as long as others are truthful to the maven.

Proposition 4. If perfect asymptotic learning occurs in society {Gn}∞n=1 under Assumption 1, then

there exists an equilibrium (σ,m), such that perfect asymptotic learning occurs in society {Gn}∞n=1

along equilibrium (σ,m) when we allow strategic communication (cf. under Assumption 2).

This proposition therefore implies that the focus on truthful reporting was without much loss of

generality as far as perfect asymptotic learning is concerned. In any communication network in which

there is perfect asymptotic learning, even if agents can strategically manipulate information, there is

arbitrarily little benefit in doing so. Thus, the main lessons about asymptotic learning derived above

apply regardless of whether communication is strategic or not.
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Figure 5: Strategic communication may lead to better actions.

However, this proposition does not imply that all learning outcomes are identical under truth-

ful and strategic communication. In particular, interestingly, as illustrated in Figure 5, strategic

communication may lead agents to take a better action with higher probability than under non-

strategic communication (cf. Assumption 1). The main reason for this (counterintuitive) fact is that

under strategic communication an agent may delay taking an action compared to the non-strategic

environment. Therefore, the agent obtains more information from the communication network and,

consequently, chooses an action, that is closer to optimal. In particular, in the example illustrated in

Figure 5, if agents A, B decide not to disclose their information, then agents 1, · · · , n may delay their

action so as to communicate with the neighbors of A1, · · · , An and thus take an action based on more

information.

3.5 Welfare

In this subsection, we turn to the question of efficient communication and compare equilibrium al-

locations (communication and action profiles in equilibrium) with the timing of agents’ actions and

communications that would be dictated by the welfare-maximizing social planner. We identify con-

ditions under which a social planner can improve over an equilibrium strategy profile. In doing so,

we illustrate that communication over social networks might be inefficient because agents do not

internalize the positive externality that delaying their action generates for their peers.

A social planner whose objective is to maximize the aggregate expected welfare of the population

of n agents can implement the timing profile that is a solution to the optimization:

max
spn

n∑
i=1

Espn [Uni ] (6)

We call the resulting timing profile as the optimal allocation and we denote it by spn = (τn,sp1 , · · · , τn,spn ).
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Similarly with the asymptotic analysis for equilibria, we define a sequence of optimal allocations for

societies of growing size, sp = {spn}∞n=1. We are interested in identifying conditions under which the

social planner can / cannot achieve an asymptotically better allocation than an equilibrium (sequence

of equilibria) σ, i.e., we are looking at the expression:

lim
n→∞

∑
i∈Nn Espn [Uni ]−

∑
i∈Nn Eσ[Uni ]

n
.

The next proposition shows a direct connection between learning and efficient communication.

Proposition 5. Consider society {Gn}∞n=1. If perfect asymptotic learning occurs at the optimal allo-

cation sp = {spn}∞n=1, then all equilibria are asymptotically efficient, i.e.,

lim
n→∞

∑
i∈Nn Espn [Uni ]−

∑
i∈Nn Eσ[Uni ]

n
= 0,

for all equilibria σ.

Therefore if perfect learning occurs at the optimal allocation, then perfect learning occurs in all

equilibria σ.

We next provide a partial converse to Proposition 5. Before stating this result, we contrast the

decision problem an individual agent i with that of the social planner. With a slight abuse of notation,

Uni (k, σ) denotes the expected payoff of agent i when agents behave according to profile σ and the

agent has observed k signals. Agent i decides to take an irreversible action at time t and not to wait

for an additional dt, when other agents behave according to σ, if (cf. Appendix)

r + λ

λ

(
π − 1

ρ+ ρ̄kn,σi,t

)
≥ Uni (kn,σi,t + |Bn,σ

i,|Tt|+1| − |B
n,σ
i,|Tt||, σ) (7)

Similarly, in the corresponding optimal allocation agent i exits at time t and does not wait if:

r + λ

λ

(
π − 1

ρ+ ρ̄kn,spi,t

)
≥ Uni (kn,spi,t + |Bn,sp

i,|Tt|+1| − |B
n,sp
i,|Tt||, sp) +

∑
j 6=i

Esp[Unj
∣∣i “waits” at t]− Esp[Unj

∣∣i “exits” at t],

(8)

The comparison of (7) to (8) shows the reason for why equilibria may be inefficient in this setting:

when determining when to act, agent i does not take into account the positive externality that a later

action exerts on others. This externality is expressed by the summation on the right hand side of (8).

We next derive sufficient conditions under which a social planner outperforms an equilibrium allocation

σ. Consider agents i and j such that i ∈ Bn
j,1 and τn,σj > τn,σi + 1, which implies that Bn

j,τn,σj
⊃ Bn

i,τn,σi

(i.e., agent j communicates with a superset of the agents that i communicates with before taking an

action). Also, let kn,σ
ij,τn,σi

denote the additional agents that j would observe if i delayed her irreversible
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action by dt and communication took place. Then, the aggregate welfare of the two agents increases

if the following condition holds:

Unj (kn,σ
j,τn,σj

+ kn,σ
ij,τn,σi

) + Uni (kn,σ
i,τn,σi

+ kn,σ
ij,τn,σi

) > Unj (kn,σ
j,τn,σj

) +
r + λ

λ
Uni (kn,σ

i,τn,σi
), (9)

Let set Dn,σ
k,` denote the following set of agents: j ∈ Dn,σ

k,` , if

(i) kn,σ
j,τn,σj

≤ k.

(ii) There exists an agent i ∈ Bn,σ
j,1 such that

(i) τn,σj > τn,σi + 1.

(ii) If i exits at τn,σi + 1, then j gains access to at least an additional ` signals.

Intuitively, set Dn,σ
k,` contains agents that would obtain higher payoff in expectation if one of their

neighbors delayed taking her irreversible action. In particular, under equilibrium profile σ, agent

j ∈ Dn,σ
k,` takes an action after observing at most k signals. If her neighbor i delayed her action by one

communication round, then she would have access to at least k + ` signals by the time of her action.

The following proposition provides a sufficient condition for an equilibrium to be inefficient.

Proposition 6. Consider society {Gn}∞n=1 and equilibrium σ = {σn}∞n=1. Assume that limn→∞
|Dn,σk,` |
n >

ξ > 0, for k, ` that satisfy the following:

r

λ
π +

2

ρ+ ρ̄(k + `)
<
(

2 +
r

λ

) 1

ρ+ ρ̄k
.

Then, there exists an ζ > 0, such that

lim
n→∞

∑
i∈Nn Espn [Uni ]−

∑
i∈Nn Eσ[Uni ]

n
> ζ,

i.e., equilibrium σ is asymptotically inefficient. Moreover, there exist ε, δ such that ε, δ-asymptotic

learning fails at equilibrium σ.

We close this section with a discussion on the implications of increasing the information that agents

have access to at the beginning of the information exchange process. Consider the following setting:

agents at time t = 0 have access to k public signals in addition to their private signal. This results

in the following tradeoff: on the one hand, agents are better informed about the underlying state,

but then, on the other hand, they will have less incentive to delay taking an action and thus obtain

and share information with others. In particular, one can show that when all agents have access to

the same k public signals, then information sharing will be reduced compared to a setting without

public signals, in the sense that agents take an irreversible action earlier. Moreover, in some cases

the presence of public signals leads to a strictly smaller aggregate welfare. Thus, more information
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is not necessarily better for the aggregate welfare of the agents. This result is similar to those in

Duffie, Malamud, and Manso (2009) and in Morris and Shin (2002), both of which show how greater

availability of public information may reduce welfare.

4 Network Formation

We have so far studied information exchange among agents over a given communication network

Gn = (N n, En). We now analyse how this communication network emerges. We assume that link

formation is costly. In particular, communication costs are captured by an n× n nonnegative matrix

Cn, where Cnij denotes the cost that agent i has to incur in order to form the directed link (j, i) with

agent j. As noted previously, a link’s direction coincides with the direction of the flow of messages.

In particular, agent i incurs a cost to form in-links. We refer to Cn as the communication cost

matrix. We assume that Cnii = 0 for all i ∈ N n. Our goal in this section is to provide conditions

under which the network structures that emerge as equilibria of the network formation game defined

below guarantee asymptotic learning. Our results indicate that easy access to information (i.e., low

cost to form links with some information sources) may preclude asymptotic learning, as it reduces

the incentives for further information sharing. Moreover, asymptotic learning may depend on how

well agents coordinate at equilibrium: we show that there may be multiple equilibria that induce

sparser/denser network structures and lead to different answers for asymptotic learning.

We define agent i’s link formation strategy, gni , as an n-tuple such that gni ∈ {0, 1}n and gnij = 1

implies that agent i forms a link with agent j. The cost agent i has to incur if she implements strategy

gni is given by

Cost(gni ) =
∑
j∈N

Cnij · gnij .

The link formation strategy profile gn = (gn1 , · · · , gnn) induces the communication network Gn =

(N n, En), where (j, i) ∈ En if and only if gnij = 1.

We extend our environment to the two-stage Network Learning Game Γ(Cn), where Cn denotes

the communication cost matrix. The two stages of the network learning game can be described as

follows:

Stage 1 [Network Formation Game]: Agents choose their link formation strategies. The link

formation strategy profile gn induces the communication network Gn = (N n, En).

We refer to stage 1 of the network learning game, when the communication cost matrix is Cn as the

network formation game and we denote it by Γnet(C
n).

Stage 2 [Information Exchange Game]: Agents communicate over the induced network Gn as

studied in previous sections.

We next define the equilibria of the network learning game Γ(Cn). Note that we use the standard

notation g−i and σ−i to denote the strategies of agents other than i. Also, we let σi,−t denote the
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vector of actions of agent i at all times except t.

Definition 10. A pair (gn,∗, σn,∗) is a pure-strategy perfect Bayesian Equilibrium of the network

learning game Γ(Cn) if

(a) σn,∗ ∈ INFO(Gn), where Gn is induced by the link formation strategy gn,∗.

(b) For all i ∈ N n, gn,∗i maximizes the expected payoff of agent i given the strategies of other agents

gn,∗−i , i.e.,

gn,∗i ∈ arg max
gni ∈{0,1}n

Eσ[Πi(g
n
i , g

n,∗
−i )] ≡ Eσ(Uni

∣∣Ini,0)− Cost(gni ).

for all σ ∈ INFO(G̃n), where G̃n is induced by link formation strategy (gni , g
n,∗
−i ).

We denote the set of equilibria of this game by NET (Cn).

Similar to the analysis of the information exchange game, we consider a sequence of communication

cost matrices {Cn}∞n=1, where for fixed n,

Cn : N n ×N n → R+ and Cnij = Cn+1
ij for all i, j ∈ N n. (10)

For the remainder of the section, we focus our attention to the social cliques communication cost

structure. The properties of this communication structure are stated in the next assumption.

Assumption 3. Let cnij ∈ {0, c} for all pairs (i, j) ∈ N n×N n, where c < 1
ρ+ρ̄ . Moreover, let cij = cji

for all i, j ∈ N n (symmetry), and cij + cjk ≥ cik for all i, j, k ∈ N n (triangular inequality).

The assumption that c < 1
ρ+ρ̄ rules out the degenerate case where no agent forms a costly link.

The symmetry and triangular inequality assumptions are imposed to simplify the definition of a social

clique, which is introduced next. Suppose Assumption 3 holds. We define a social clique (cf. Figure

6) Hn ⊂ N n as a set of agents such that

i, j ∈ Hn if and only if cij = cji = 0.

Note that this set is well-defined since, by the triangular inequality and symmetry assumptions, if an

agent i does not belong to social clique Hn, then cij = c for all j ∈ Hn. Hence, we can uniquely

partition the set of nodes N n into a set of Kn pairwise disjoint social cliques Hn = {Hn
1 , · · · , Hn

Kn}.
We use the notation Hnk to denote the set of pairwise disjoint social cliques that have cardinality

greater than or equal to k, i.e., Hnk = {Hn
i , i = 1, . . . ,Kn | |Hn

i | ≥ k}. We also use SCn(i) to denote

the social clique that agent i belongs to.

We consider a sequence of communication cost matrices {Cn}∞n=1 satisfying condition (10) and

Assumption 3, and we refer to this sequence as a communication cost structure. As shown above,

the communication cost structure {Cn}∞n=1 uniquely defines the following sequences, {Hn}∞n=1 and
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Figure 6: Social cliques.

{Hnk}∞n=1 for k > 0, of sets of pairwise disjoint social cliques. Moreover, it induces network equilibria

(g, σ) = (gn, σn)∞n=1 such that (gn, σn) ∈ NET (Cn) for all n. Our goal is to identify conditions on

the communication cost structure that lead to the emergence of networks which guarantee asymptotic

learning. We focus entirely on perfect asymptotic learning, as this enables us to obtain sharp results.

Similar results can be obtained for ε, δ-asymptotic learning.

Proposition 7. Let {Cn}∞n=1 be a communication cost structure and let Assumptions 1 and 3 hold.

Then, there exists a constant k̄ = k̄(c) such that the following hold:

(a) Suppose that

lim sup
n→∞

∣∣Hn
k̄

∣∣
n
≥ ε for some ε > 0. (11)

Then, perfect asymptotic learning does not occur in any network equilibrium (g, σ).

(b) Suppose that

lim
n→∞

∣∣Hn
k̄

∣∣
n

= 0 and lim
n→∞

∣∣Hn
`

∣∣ =∞ for some `. (12)

Then, perfect asymptotic learning occurs in all network equilibria (g, σ) when the discount rate

r satisfies 0 < r < r̄, where r̄ > 0 is a constant.

(c) Suppose that there exists M > 0 such that

lim
n→∞

∣∣Hn
k̄

∣∣
n

= 0 and lim sup
n→∞

∣∣Hn
`

∣∣ < M for all `, (13)

and let agents be patient, i.e., consider the case, when the discount rate r → 0. Then, there

exists a c̄ > 0 such that

(i) If c ≤ c̄, perfect asymptotic learning occurs in all network equilibria (g, σ).

(ii) If c > c̄, there exists at least one network equilibrium (g, σ), where there is no perfect
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(a) Equilibrium network, when (12) holds.
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(b) Equilibrium network, when (13) holds.

Figure 7: Network formation among social cliques.

asymptotic learning and there exists at least one network equilibrium (g, σ) where perfect

asymptotic learning occurs.

The results in this proposition provide a fairly complete characterization of what types of environ-

ments lead to the formation of networks that subsequently induce perfect asymptotic learning. The

key concept is that of a social clique, which represents groups of individuals that are linked to each

other at zero cost. These can be thought of as “friendship networks,” which are linked for reasons

unrelated to information exchange and thus can act as conduits of such exchange at low cost. Agents

can exchange information without incurring any costs (beyond the delay necessary for obtaining infor-

mation) within their social cliques. However, if they wish to obtain further information, from outside

their social cliques, they have to pay a cost at the beginning in order to form a link. Even though

network formation games have several equilibria, the structure of our network formation and infor-

mation exchange game enables us to obtain relatively sharp results on what types of societies lead to

endogenously formed communication networks that ensure perfect asymptotic learning. In particular,

the first part of Proposition 7 shows that perfect asymptotic learning cannot occur in any equilibrium

if the number of sufficiently large social cliques increases at the same rate as the size of the society.

This is intuitive; when this is the case, there are many social cliques of sufficiently large size that none

of their members wish to engage in further costly communication with members of other social cliques.

But since several of these do not contain an information hub social learning is precluded.

In contrast, the second part of the proposition shows that if the number of disjoint and sufficiently

large social cliques is limited (grows less rapidly than the size of the society) and some of them are

large enough to contain information hubs, then perfect asymptotic learning takes place (provided

that future is not heavily discounted). In this case, as shown by Figure 7(a), sufficiently many social

cliques connect to the larger social cliques acting as information hubs, ensuring effective aggregation

of information for the great majority of the agents in the society. It is important that the discount
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factor is not too small, otherwise smaller cliques do not find it beneficial to form links with the larger

cliques.

Finally, the third part of the proposition outlines a more interesting configuration, potentially

leading to perfect asymptotic learning. In this case, many small social cliques form an “informational

ring”(Figure 7(b)). Each is small enough that it finds it beneficial to connect to another social clique,

provided that this other clique also connects to others and obtain further information. This intuition

also clarifies why such information aggregation takes place only in some equilibria. The expectation

that others do not form the requisite links leads to a coordination failure. Interestingly, however, if

agents are sufficiently patient and the cost of link formation is not too large, the coordination failure

equilibrium disappears, because it becomes beneficial for each clique to form links with another one,

even if further links are not forthcoming. Finally, the ring structure is a direct consequence of the

fact that agents are patient (and has been shown to emerge as an equilibrium configuration in other

models of network formation, e.g., Bala and Goyal (2000))

5 Conclusion

We have developed a framework for the analysis of information exchange through communication

and investigated its implications for information aggregation in large societies. An underlying state

determines the payoffs from different actions. Agents decide which agents to form a communication

link with incurring the associated cost. After receiving a private signal correlated with the underlying

state, they exchange information over the induced communication network until taking an (irreversible)

action.

Our focus has been on asymptotic learning, defined as the fraction of agents taking the correct

action converging to one in probability as a society grows large. We showed that asymptotic learning

occurs if and, under some additional mild assumptions, only if the induced communication network

includes information hubs and most agents are at a short distance from a hub. Thus asymptotic

learning requires information to be aggregated in the hands of a few agents. This kind of aggregation

also requires truthful communication, which we show is an equilibrium of the strategic communication

in large societies (partly as a consequence of the fact there is no conflict among the agents concerning

which action is best).

Our analysis also provides a systematic investigation of what types of cost structures, and asso-

ciated social cliques which consist of groups of individuals linked to each other at zero cost (such

as friendship networks), ensure the emergence of communication networks that lead to asymptotic

learning. Our main result on network formation shows that societies with too many (disjoint) and

sufficiently large social cliques do not form communication networks that lead to asymptotic learning,

because each social clique would have sufficient information to make communication with others not

sufficiently attractive. Asymptotic learning results if social cliques are neither too numerous nor too
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large so as to encourage communication across cliques. Our analysis was conducted under a simplifying

assumption that all agents have the same preferences. Interesting avenues for research include inves-

tigation of similar dynamic models of information exchange and network formation in the presence

of ex ante or ex post heterogeneity of preferences as well as differences in the quality of information

available to different agents, which may naturally lead to the emergence of hubs.
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Appendix

Proofs from Section 3

Proof of Lemma 1.

Recall that, by the principle of optimality, agent i’s optimal continuation payoff at information set

Ini,t, when the rest of the agents behave according to strategy profile σ, is given by:

Eσ(Uni
∣∣Ini,t) = max

{
π − 1

ρ+ρ̄kn,σi,t
(when she takes the optimal irreversible action),

e−rdt E[Eσ(Uni |Ini,t+dt)
∣∣Ini,t] (when she decides to wait, i.e., x = “wait”),

where kn,σi,t denotes the number of distinct private signals agent i has observed up to time t. The first

line is equal to the expected payoff for the agent when she chooses the optimal irreversible action

under information set Ini,t, i.e., E[θ|Ini,t], and she has observed kn,σi,t private signals, while the second

line is equal to the discounted expected continuation payoff.

For the latter, we have that with probability λdt, communication takes place in time interval [t, t+

dt], thus the information set of agent i expands; with probability (1−λdt), there is no communication

and the value function for agent i remains unchanged. If communication takes place in interval [t, t+dt],

then agent i observes |Bn,σ
i,|Tt|+1| − |B

n,σ
i,|Tt|| additional signals.

Note that since we assume that signals are identically distributed and independent, the value

function can simply be expressed as a function of the number of distinct signals in Ini,t, k
n,σ
i,t and profile

σ. The agent chooses to take an irreversible action and not to wait if

π − 1

ρ+ ρ̄kn,σi,t
≥ e−rdt E[Eσ(Uni |Ini,t+dt)

∣∣Ini,t]
≥ e−rdt

(
λdtUni (kn,σi,t + |Bn,σ

i,|Tt|+1| − |B
n,σ
i,|Tt||, σ) + (1− λdt)Uni (kn,σi,t , σ)

)
.

Thus, we obtain that the agent chooses not to wait if:

Uni (kn,σi,t + |Bn,σ
i,|Tt|+1| − |B

n,σ
i,|Tt||, σ) ≤ r + λ

λ

(
π − 1

ρ+ ρ̄kn,σi,t

)
. (14)

The left hand side of (14) is upper bounded by π, whereas the right hand side is increasing in the

number of private signals kn,σi,t and in the limit is equal to r+λ
λ π > π. This establishes the lemma.

The next lemma will be used in the rest of the Appendix. It shows that the probability of choosing

an action that is more than ε away from the optimal for agent i ∈ V n,σ
k , i.e., Pσ (Mn,ε

i = 0), is

uniformly bounded away from 0 in terms of the error function.

Lemma 2. Let k > 0 be a constant, such that the k-radius set V n,σ
k is non-empty. Then,

P(Mn,ε
i = 0) ≥ erf

(
ε

√
kρ̄

2

)
for all i ∈ V n

k,σ,
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where erf(x) = 2√
π

∫ x
0 e
−t2dt is the error function.

Proof. Note that because of our normality assumption the empirical mean θ̂ after observing ` private

signals is normally distributed around θ with precision ρθ̂ = `ρ̄. Then, the probability that Mn,ε
i = 0

is simply equal to the probability that the error does not belong to the interval [−ε, ε], i.e.,

P(Mn,ε
i = 0) = erf

(
ε

√
`ρ̄

2

)
.

The lemma follows since agent i ∈ V n,σ
k , thus she takes an irreversible action after observing at most

k private signals.

Proof of Proposition 1. First, we show that learning fails if condition (3) holds, i.e., there exists

a k > 0, such that

η = lim sup
n→∞

1

n
·
∣∣V n,σ
k

∣∣ > ε and erf

(
ε

√
kρ̄

2

)
< (1− δ)(1− ε/η). (15)

From condition (15) we obtain that there exists an infinite index set J such that∣∣V nj
k

∣∣ ≥ η · nj for j ∈ J.

Now restrict attention to index set J , i.e., consider n = nj for some j ∈ J . Then,

Pσ
(

1
n

∑n
i=1M

n,ε
i > 1− ε

)
= Pσ

(
1
n

[∑
i∈V n,σk

Mn,ε
i +

∑
i/∈V n,σk

Mn,ε
i

]
> 1− ε

)
≤ Pσ

(
1
n

[∑
i∈V n,σk

Mn,ε
i + n−

∣∣V n,σ
k

∣∣] > 1− ε
)

= Pσ
(

1
n

∑
i∈V n,σk

Mn,ε
i >

∣∣V n,σk

∣∣
n − ε

) ,

where the inequality follows since we let Mn,ε
i = 1 for all i /∈ V n,σ

k . Next we use Markov’s inequality

Pσ

 1

n

∑
i∈V n,σk

Mn,ε
i >

∣∣V n,σ
k

∣∣
n
− ε

 ≤ Eσ
[∑

i∈V n,σk
Mn,ε
i

]
n ·
(∣∣V n,σ

k

∣∣/n− ε) .
We can view each summand above as an independent Bernoulli variable with success probability

bounded above by erf

(
ε
√

kρ̄
2

)
from Lemma 2. Thus,

Eσ
[∑

i∈V n,σ
k

Mn,ε
i

]
n·
(∣∣V n,σk

∣∣/n−ε) ≤

∣∣V n,σk

∣∣erf(ε√ kρ̄
2

)
n·
(∣∣V n,σk

∣∣/n−ε)
≤ η

η−εerf

(
ε
√

kρ̄
2

)
< 1− δ,

where the second inequality follows from the fact that n was chosen such that
∣∣V n,σ
k

∣∣ ≥ η · n. Finally,

the last expression follows from the choice of k (cf. Condition (3)). We obtain that for all j ∈ J it
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holds that

Pσ

([
1

nj

nj∑
i=1

(
1−Mnj ,ε

i

)]
> ε

)
≥ δ.

Since J is an infinite index set we conclude that

lim inf
n→∞

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
≥ δ,

thus ε, δ-asymptotic learning is incomplete when (3) holds.

Next, we prove that Condition (4) is sufficient for ε, δ-asymptotic learning. As mentioned above, if

agent i takes an irreversible action after observing ` signals, then the probability that Mn,ε
i = 1 is

equal to

Pσ(Mn,ε
i = 1) = erf

(
ε

√
`ρ̄

2

)
. (16)

Similarly with above, we have

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
≤ Pσ

([
1

n

∑
i/∈V

(1−Mn,ε
i )

]
> ε−

∣∣V ∣∣
n

)

≤
Eσ
[∑

i/∈V (1−Mn,ε
i )
]

n
(
ε−

∣∣V ∣∣/n) , (17)

where V =
{
i
∣∣ ∣∣Bn

i,τn,σi

∣∣ ≤ k} and the second inequality follows from Markov’s inequality. By

combining Eqs. (16) and (17) and letting kn,σi denote the number of private signals that agent i

observed before taking an action,

Eσ
[∑

i/∈V (1−Mn,ε
i )
]

n
(
ε−

∣∣V ∣∣/n) ≤

∑
i/∈V 1− erf

(
ε

√
kn,σi ρ̄

2

)
n
(
ε−

∣∣V ∣∣/n) . (18)

We have

erf

(
ε

√
kn,σi ρ̄

2

)
> 1− δ(ε− ζ)

1− ζ
, (19)

for all i /∈ V from the definition of k (cf. Condition (4)). Thus, combining Eqs. (17),(18) and (19), we

obtain

Pσ

([
1

n

n∑
i=1

(1−Mn,ε
i )

]
> ε

)
< δ for all n > N,

where N is a sufficiently large constant, which implies that condition (4) is sufficient for asymptotic

learning.

Similar to perfect k-radius sets, we define sets Xn
k for scalar k as

Xn
k = {i ∈ N n

∣∣ there exists ` ∈ Bn
i,τni

with indegn` > k},
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Figure 8: Proof of Proposition 8.

i.e., the set Xn
k consists of all agents, which have an agent with in-degree at least k within their perfect

observation radius.

Proposition 8. Suppose Assumption 1 holds. Then, perfect asymptotic learning occurs in society

{Gn}∞n=1 in any equilibrium σ if

lim
k→∞

lim
n→∞

1

n
|Xn

k | = 1.

Proof. Consider equilibrium profile σ and society {Gn}∞n=1 such that limk→∞ limn→∞
1
n |X

n
k | = 1.

Define Zn,σk as the following set of agents

Zn,σk = {i ∈ N n
∣∣ there exists ` ∈ Bn,σ

i,τn,σi
with indegn` > k},

i.e., the agents that at equilibrium σ, communicate with an agent with in-degree at least k. Next, we

show that for k large enough (and consequently n large enough), Xn
k = Zn,σk .

Consider i ∈ Xn
k and let Pn = {`, i1, · · · , iK , i} denote the shortest path in communication network

Gn between i and any agent `, with indegn` ≥ k. First we show the following (refer to Figure 8)

i ∈ Xn
k ⇒ j ∈ Xn

k for all j ∈ Pn. (20)

Assume for the sake of contradiction that condition (20) does not hold. Then, let

j = arg min
j′
{distn(`, j′)

∣∣j′ ∈ Pn and distn(`, j′) > τnj′},

where recall that τni denotes the perfect observation radius of agent i. For agents i, j we have τni > τnj

and dist(j, i) + dnj < dist(`, i) ≤ τni , since otherwise j ∈ Xn
k . This implies that Bn

j,τnj
⊂ Bn

i,τni
.

Furthermore,

π − 1

ρ+ ρ̄(|Bn
j,τnj
|)
>

(
λ

λ+ r

)dist(`,j)−τnj (
π − 1

ρ+ ρ̄(|Bn
j,τnj
|+ k)

)
, (21)

In particular, the left hand side is equal to the expected payoff of agent j if she takes an irreversible
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action at time τnj after receiving |Bn
j,τnj
| observations, whereas the right hand side is a lower bound on

the expected payoff if agent j delays taking an action until after she communicates with agent `. The

inequality follows, from the definition of the observation radius for agent j. On the other hand, since

for agent i, ` ∈ Bn
i,τni

, we have

π− 1

ρ+ ρ̄(|Bn
j,τnj
|)
<

(
λ

λ+ r

)dist(`,i)−dist(j,i)−τnj (
π − 1

ρ+ ρ̄(|Bn
j,τnj
|+ k + k′)

)
, for some k′ > 0. (22)

For k large enough we conclude that dist(`, j) < dist(`, i)−dist(j, i), which is obviously a contradiction.

This implies that (20) holds.

Next we show, by induction on the distance from agent ` with in-degree ≥ k that Xn
k = Zn,σk for

equilibrium σ. The claim is obviously true for all agents with distance equal to 0 (agent `) and 1 (her

neighbors). Assume that the claim holds for all agents with distance at most t from agent `, i.e., if

i ∈ Xn
k and dist(`, i) ≤ t then i ∈ Zn,σk . Finally, we show the claim for an agent i such that i ∈ Xn

k

and dist(`, i) = t+ 1. Consider a shortest path Pn from i to `. Condition (20) implies that all agents

j in the shortest path are such that j ∈ Xn
k , thus from the induction hypothesis we obtain j ∈ Zn,σk .

Thus, for k sufficiently large we obtain that i ∈ Zn,σk , for any equilibrium σ.

Finally, by the hypothesis of the proposition, i.e., limk→∞ limn→∞
1
n |X

n
k | = 1, we conclude that

limk→∞ limn→∞
1
n |Z

n,σ
k | = 1, for any equilibrium σ. The latter implies that limk→∞ limn→∞

1
n |V

n,σ
k | =

0, thus asymptotic learning occurs along equilibrium σ from Proposition 1.

Proof of Proposition 2.

The first part of Proposition 2 follows directly from Proposition 8, since

lim
k→∞

lim
n→∞

1

n
|V n
k | = 0⇒ lim

k→∞
lim
n→∞

1

n
|Xn

k | = 1.

To conclude the proof we need to show that if asymptotic learning occurs along some equilibrium σ

when condition (4) does not hold, then the society contains a set of leading agents. In particular,

consider a society {Gn}∞n=1 in which condition (4) does not hold and equilibrium σ = {σn}∞n=1 along

which asymptotic learning occurs in the society. This implies that there should exist a subset {Rn,σ}∞n=1

of agents such that limn→∞
1
n |R

n,σ| > ε and there is an infinite index set J for which

i ∈ Rnj ,σ and τ
nj
i < τ

nj ,σ
i , for j ∈ J. (23)

This further implies that

|Bnj

i,τ
nj
i

| > |Bnj ,σ

i,τ
nj
i

|. (24)

From equations (23) and (24) we obtain that there should exist a collection of agents {Sn}∞n=1 such

that (we restrict attention to index set J):

(i) Rn,σ ⊆ Snfollow.
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(ii) There exists a k > 0 such that Sn ⊆ V n,σ
k .

(ii) limn→∞
1
n |S

n| = 0, since otherwise asymptotic learning would not occur under equilibrium σ.

Note that collection {Sn}∞n=1 satisfies the definition of a set of leading agents [cf. Definition 5] and

Proposition 2 (ii) follows.

Proof of Proposition 3. Consider the following two events A and B.

Event A: Layer 1 (the top layer) has more than k agents, where k > 0 is a scalar.

Event B: The total number of layers is more than k.

From the definition of a hierarchical sequence of communication networks, we have

P(A) =
k∏
i=2

(
1− 1

i1+ζ

)
< exp

(
−

k∑
i=2

1

i1+ζ

)
. (25)

Also,

P(B) ≤ E(L)

k
=

1

k

∞∑
i=2

1

i1+ζ
, (26)

from Markov’s inequality, where L is a random variable that denotes the number of layers in the

hierarchical society. Let ζ(η) be small enough and k (and consequently n) large enough such that∑k
i=2

1
i1+ζ > log 4

η and
∑∞

i=2
1

i1+ζ < k·η
4 . For those values of ζ and k we obtain P(A) < η/4 and

P(B) < η/4. Next, consider the event C = Ac ∩ Bc, which from Eqs. (25) and (26) has probability

P(C) > 1− η/2 for the values of ζ and k chosen above. Moreover, we consider

Event D: The agents on the top layer are information hubs, i.e.,

lim
n→∞

|Bn
i,1| =∞, for all i ∈ N n

1 .

We claim that event D occurs with high probability if C occurs, i.e., P(D
∣∣ C) > 1−η/2, which implies

P(C ∩D) = P(D
∣∣ C)P(C) > (1− η/2)2 > 1− η. (27)

In particular, note that conditional on event C occurring, the total number of layers and the total

number of agents in the top layer is at most k. From the definition of a hierarchical society, agents

in layers with index ` > 1 have an edge to a uniform agent that belongs to a layer with lower index,

with probability one. Therefore, if we denote the degree of an agent in a top layer by Dn1 we have

Dn1 =

T n2∑
i=1

I level2i,1 + · · ·+
T nL∑
i=1

I levelLi,1 , (28)

where T ni denotes the random number of agents in layer i and I levelji,1 is an indicator variable that

takes value one if there is an edge from agent i to agent 1 (here levelj simply denotes that agent i
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belongs to level j). Again from the definition, we have P(I levelji1 = 1) = 1∑j−1
`=1 T

n
`

, where the sum in

the denominator is simply the total number of agents that lie in layers with lower index, and finally,

T n1 + · · · T nL = n.

We can obtain a lower bound on the expected degree of an agent in the top layer conditional on

event C by viewing (28) as the following optimization problem:

min
x2

x1
+ · · ·+ xk

x1 + · · ·+ xk−1

s.t.
∑k

j=1 xj = n,

0 ≤ x1 ≤ k,
0 ≤ x2, · · · , xk−1,

where we make use of the fact that the total number of layers is bounded by k, since we condition

on event C. By solving the problem we obtain that the objective function is lower bounded by φ(n),

where φ(n) = O(n1/k) for every n. Then,

E[Dn1
∣∣C] =

=
k∑
`=2

∑
k1≤k,··· ,k`
k1+···+k`=n

P(L = `, T n1 = k1, · · · , T n` = k`|C) · E[Dn1
∣∣C,L = `, T n1 = k1, · · · , T n` = k`]

≥
k∑
`=2

∑
k1≤k,··· ,k`
k1+···+k`=n

P(L = `, T n1 = k1, · · · , T n` = k`|C) · φ(n) = φ(n), (29)

where Eq. (29) follows since E[Dn1
∣∣C,L = `, T n1 = k1, · · · , T n` = k`] ≥ φ(n) for all values of ` (2 ≤ ` ≤ k)

and k1, · · · , k` (k1 ≤ k, k1 + · · ·+ k` = n) from the optimal solution of the optimization problem. The

same lower bound applies for all agents in the top layer. Similarly we have for the variance of the

degree of an agent in the top layer (we use `, k1, · · · , k` as a shorthand for L = `, T n1 = k1, · · · , T n` = k`)

V ar[Dn1
∣∣C] =

k∑
`=2

∑
k1≤k,··· ,k`
k1+···+k`=n

P(`, k1, · · · , k`|C) · V ar[Dn1
∣∣C, `, k1, · · · , k`]

=

k∑
`=1

∑
k1≤k,··· ,k`
k1+···+k`=n

P(`, k1, · · · , k`|C) ·
(
k2V ar(I

level2
i,1 ) + · · ·+ k`V ar(I

level`
i,1 )

)
(30)

≤
k∑
`=1

∑
k1≤k,··· ,k`
k1+···+k`=n

P(`, k1, · · · , k`|C) ·
(
k2E(I level2i,1 ) + · · ·+ k`E(I level`i,1 )

)
= E[Dn1

∣∣C], (31)

where Eq. (30) follows by noting that conditional on event C and the number of layers and the agents

in each layer being fixed, the indicator variables (defined above) are independent and Eq. (31) follows

since the variance of an indicator variable is smaller that its expectation. We conclude that the variance
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of the degree is smaller than the expected value and from Chebyschev’s inequality we conclude that

P(D) ≥ P(
⋂
i∈Nn1

Dni
φ(n)

> ζ) > 1− η/2,

where ζ > 0, i.e., with high probability all agents in the top layer are information hubs (recall that

limn→∞ φ(n) =∞).

We have shown that when event C∩D occurs, there is a path of length at most k (the total number

of layers) from each agent to an agent at the top layer, i.e., an information hub with high probability.

Therefore, if the discount rate r is smaller than some bound (r < r̄), then perfect asymptotic learning

occurs. Finally, we complete the proof by noting that P(C ∩D) > (1− η/2)2 > 1− η.

Proof of Proposition 4.

Proposition 4 is a direct consequence of the next lemma, which intuitively states that there is no

incentive to lie to an agent with a large number of neighbors, assuming that everybody else is truthful.

Lemma 3 (Truthful Communication to a High Degree Agent). There exists a scalar k > 0, such

that truth-telling to agent i, with indegni ≥ k, in the first time period is an equilibrium of INFO(Gn).

Formally,

(σn,truth,mn,truth) ∈ INFO(Gn),

where mn,truth
ji,0 = sj for j ∈ Bn

i,1.

Proof. The proof is based on the following argument. Suppose that all agents in Bn
i,1 except j report

their signals truthfully to i. Moreover, let |Bn
i,1| ≥ k, where k is a large constant. Then, it is an weakly

dominant strategy for j to report her signal truthfully to i, since j’s message is not pivotal for agent i,

i.e., i will take an irreversible action after the first communication step, no matter what j reports.

Proof (sketch) of Proposition 5. Assume that asymptotic learning occurs at the optimal allocation

sp = {spn}∞n=1. Then,

lim
k→∞

lim
n→∞

1

n
|V n
k | = 0. (32)

This follows since if Equation (32) were not true, then a social planner could replicate the allocation

induced by the perfect observation radius and achieve a higher aggregate welfare. This is possible

since Bn
i,τ ⊇ B

n,sp
i,τ for every τ , where sp denotes the socially optimal strategy profile. From Equation

(32) and Proposition 1 we obtain that asymptotic learning occurs in all equilibria σ. Finally, the

proposition follows using similar arguments as those used in the proof of Proposition 8.

Proof of Proposition 6. The claim follows by noting that the social planner could choose the

following strategy profile: for each j ∈ Dn,σ
k,` delay i’s irreversible action by at least one time period,

where i is an agent such that if i delays then j gains access to a least ` additional signals. Moreover,

it is straightforward to see that there exist ε, δ for which ε, δ-learning fails.
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Proofs from Section 4

Proof of Proposition 7

First we make an observation which will be used frequently in the subsequent analysis. Consider an

agent i such that Hn
SC(i) ∈ H

n
k̄
, where k̄ is an integer appropriately chosen (see below), i.e., the size of

the social clique of agent i is greater than or equal to k̄, |Hn
SC(i)| ≥ k̄. Suppose agent i does not form a

link with cost c with any agents outside her social clique. If she makes a decision at time t = 0 based

on her signal only, her expected payoff is π − 1
ρ+ρ̄ . If she waits for one period, she has access to the

signals of all the agents in her social clique (i.e., she has access to at least k̄ signals), implying that

her expected payoff would be bounded from below by λ
r+λ

(
π − 1

ρ+ρ̄k̄

)
. Hence, her expected payoff

E[Πi(g
n)] satisfies

E[Πi(g
n)] ≥ max

{
π − 1

ρ+ ρ̄
,

λ

r + λ

(
π − 1

ρ+ ρ̄k̄

)}
,

for any link formation strategy gn and along any σ ∈ INFO(Gn) (where Gn is the communication

network induced by gn). Suppose now that agent i forms a link with cost c with an agent outside her

social clique. Then, her expected payoff is bounded from above by

E[Πi(g
n)] < max

{
π − 1

ρ+ ρ̄
,

(
λ

λ+ r

)2

π − c

}
,

where the second term in the maximum is an upper bound on the payoff she could get by having access

to the signals of all agents she is connected to in two time steps (i.e., signals of the agents in her social

clique and in the social clique that she is connected to). Combining the preceding two relations, we

see that an agent i with Hn
SC(i) ∈ H

n
k̄

will not form any costly links in any network equilibrium, i.e.,

gnij = 1 if and only if SC(j) = SC(i) for all i such that |Hn
SC(i)| ≥ k̄. (33)

for k̄ such that
λ

r + λ

(
π − 1

ρ+ ρ̄k̄

)
≥
(

λ

λ+ r

)2

π − c.

(a) Condition (11) implies that for all sufficiently large n, we have∣∣Hnk̄ ∣∣ ≥ ξn, (34)

where ξ > 0 is a constant. For any ε with 0 < ε < ξ, we have

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
= P


 ∑
i| |Hn

SC(i)
|<k̄

1−Mn,ε
i

n
+

∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n

 > ε


≥ P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 . (35)
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The right-hand side of the preceding inequality can be re-written as

P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 = 1− P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
≤ ε


= 1− P

 ∑
i| |Hn

SC(i)
|≥k̄

Mn,ε
i

n
≥ r − ε

 ,

where r =
∑

i| |Hn
SC(i)

|≥k̄
1
n . By Eq. (34), it follows that for n sufficiently large, we have r ≥ ξ. Using

Markov’s inequality, the preceding relation implies

P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 ≥ 1−

∑
i| |Hn

SC(i)
|≥k̄ E[Mn,ε

i ]

n
· 1

r − ε
. (36)

By Lemma 2 and observation (33), E[Mn,ε
i ] for an agent i with |Hn

SC(i)| ≥ k̄ is upper bounded by

P(Mn,ε
i = 0) ≥ erf

ε
√
|Hn

SC(i)|ρ̄
2

 ,

and therefore

E[Mn,ε
i ] ≤ 1− erf

ε
√
|Hn

SC(i)|ρ̄
2

 .

Now assuming that social cliques are ordered by size (Hn
1 is the biggest), we can re-write Eq. (36) as

P

 ∑
i| |Hn

SC(i)
|≥k̄

1−Mn,ε
i

n
> ε

 ≥

≥ 1−

∑|Hn
k̄
|

j=1 |Hn
j |
(

1− erf
(
ε

√
|Hn
j |ρ̄
2

))
(r − ε) · n

≥ 1− r · (1− ζ)

r − ε
≥ 1− ξ · (1− ζ)

ξ − ε
> δ (37)

Here, the second inequality is obtained since the largest value for the sum is achieved when all sum-

mands are equal and ζ = erf

(
ε

√
k̄ρ̄
2

)
. The third inequality holds using the relation r ≥ ξ and

choosing appropriate values for ε, δ.

This establishes that for all sufficiently large n, we have

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
> δ > 0,
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which implies

lim sup
n→∞

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
> δ,

and shows that perfect asymptotic learning does not occur in any network equilibrium.

(b) We show that if the communication cost structure satisfies condition (12), then asymptotic learn-

ing occurs in all network equilibria (g, σ) = ({gn, σn})∞n=1. For an illustration of the resulting commu-

nication networks, when condition (13) holds, refer to Figure 7(a). Let Bn
i (Gn) be the neighborhood

of agent i in communication network Gn (induced by the link formation strategy gn),

Bn
i (Gn) = {j

∣∣ there exists a path P in Gn from j to i},

i.e., Bn
i (Gn) is the set of agents in Gn whose information agent i can acquire over a sufficiently large

(but finite) period of time.

We first show that for any agent i such that lim supn→∞
∣∣Hn

SC(i)

∣∣ < k̄, her neighborhood in any

network equilibrium satisfies limn→∞
∣∣Bn

i

∣∣ =∞. We use the notion of an isolated social clique to show

this. For a given n, we say that a social clique Hn
` is isolated (at a network equilibrium (g, σ)) if no

agent in Hn
` forms a costly link with an agent outside Hn

` in (g, σ). Equivalently, a social clique Hn
` is

not isolated if there exists at least one agent j ∈ Hn
` , such that j incurs cost c and forms a link with

an agent outside Hn
` .

We show that for an agent i with lim supn→∞
∣∣Hn

SC(i)

∣∣ < k̄, the social clique Hn
SC(i) is not isolated

in any network equilibrium for all sufficiently large n. Using condition (12), we can assume without loss

of generality that social cliques are ordered by size from largest to smallest and that limn→∞ |Hn
1 | =∞.

Suppose that Hn
SC(i) is isolated in a network equilibrium (g, σ). Then the expected payoff of agent i

is upper bounded (similarly with above)

E[Πi(g
n)] ≤ max

{
π − 1

ρ+ ρ̄
,

λ

r + λ

(
π − 1

ρ+ ρ̄(k̄ − 1)

)}
Using the definition of k̄, it follows that for some ε > 0,

E[Πi(g
n)] ≤ max

{
π − 1

ρ+ ρ̄
,

(
λ

r + λ

)2

π − c− ε

}
(38)

Suppose next that agent i forms a link with an agent j ∈ Hn
1 . Her expected payoff E[Πi(g

n)]

satisfies

E[Πi(g
n)] ≥

(
λ

r + λ

)2

·

(
π − 1

ρ+ ρ̄
∣∣Hn

1

∣∣
)
− c,

since in two time steps, she has access to the signals of all agents in the social clique Hn
1 . Since
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limn→∞ |Hn
1 | =∞, there exists some N1 such that

E[Πi(g
n)] >

(
λ

λ+ r

)2

π − c− ε for all n > N1.

Comparing this relation with Eq. (38), we conclude that under the assumption that r < r̄ (for appro-

priate r̄), the social clique Hn
SC(i) is not isolated in any network equilibrium for all n > N1.

Next, we show that limn→∞ |Bn
i | =∞ in any network equilibrium. Assume to arrive at a contra-

diction that lim supn→∞ |Bn
i | <∞ in some network equilibrium. This implies that lim supn→∞ |Bn

i | <
|Hn

1 | for all n > N2 > N1. Consider some n > N2. Since Hn
SC(i) is not isolated, there exists some

j ∈ Hn
SC(i) such that j forms a link with an agent h outside Hn

SC(i). Since lim supn→∞ |Bn
i | < |Hn

1 |,
agent j can improve her payoff by changing her strategy to gnjh = 0 and gnjh′ = 1 for h′ ∈ Hn

1 , i.e., j is

better off deleting her existing costly link and forming one with an agent in social clique Hn
1 . Hence,

for any network equilibrium, we have

lim
n→∞

|Bn
i | =∞ for all i with lim sup

n→∞
|Hn

SC(i)| < k̄ (39)

We next consider the probability that a non-negligible fraction (ε-fraction) of agents takes an action

that is at least ε-away from optimal with probability at least δ along a network equilibrium (g, σ). For

any n, we have from Markov’s inequality

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
≤ 1

ε
·
n∑
i=1

E[1−Mn,ε
i ]

n
(40)

We next provide upper bounds on the individual terms in the sum on the right-hand side. We have

E[1−Mn,ε
i ] ≤ erf

(
ε

√
ρ̄|Bn

i |
2

)
. (41)

Consider an agent i with lim supn→∞ |Hn
SC(i)| < k̄ (i.e., |Hn

SC(i)| < k̄ for all n large). By Eq. (39),

we have limn→∞ |Bn
i | = ∞. Together with Eq. (41), this implies that for some ζ > 0, there exists

some N such that for all n > N , we have

E[1−Mn,ε
i ] <

ε ζ

2
for all i with lim sup

n→∞
|Hn

SC(i)| < k̄. (42)

Consider next an agent i with lim supn→∞ |Hn
SC(i)| ≥ k̄, and for simplicity, let us assume that the

limit exists, i.e., limn→∞ |Hn
SC(i)| ≥ k̄.12

12The case when the limit does not exist can be proven by focusing on different subsequences. In particular, along
any subsequence Ni such that limn→∞,n∈Ni |Hn

SC(i)| ≥ k̄, the same argument holds. Along any subsequence Ni with

limn→∞,n∈Ni |Hn
SC(i)| < k̄, we can use an argument similar to the previous case to show that limn→∞,n∈Ni |Bni | = ∞,

and therefore E[1−Mn,ε
i ] < ε ζ

2
for n large and n ∈ Ni.
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This implies that |Hn
SC(i)| ≥ k̄ for all large n, and therefore,

∑
i| lim supn→∞ |Hn

SC(i)
|≥k̄

E[1−Mn,ε
i ]

n
≤
|Hnk |∑
j=1

|Hn
j | · erf

ε
√
ρ̄|Hn

j |
2

 ≤ |Hnk̄ |
n
· k̄,

where the first inequality follows from Eq. (41). Using condition (12), i.e., limn→∞

∣∣Hn
k̄

∣∣
n = 0, this

relation implies that there exists some Ñ such that for all n > Ñ , we have∑
i| lim supn→∞ |Hn

SC(i)
|≥k̄

E[1−Mn,ε
i ]

n
<
ε ζ

2
. (43)

Combining Eqs. (42) and (43) with Eq. (40), we obtain for all n > max {N, Ñ},

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
< ζ,

where ζ > 0 is an arbitrary scalar. This implies that

lim
n→∞

P

(
n∑
i=1

1−Mn,ε
i

n
> ε

)
= 0,

for all ε, showing that perfect asymptotic learning occurs along every network equilibrium.

(c) The proof proceeds in two parts. First, we show that if condition (13) is satisfied, learning occurs

in at least one network equilibrium (g, σ). Then, we show that there exists a c̄ > 0, such that if c < c̄,

then learning occurs in all network equilibria. We complete the proof by showing that if c > c̄, then

there exist network equilibria, in which asymptotic learning fails, even when condition (13) holds. We

consider the case when agents are patient, i.e., the discount rate r → 0. We consider k̄, such that

c > 1
ρ+ρ̄k̄

and c < 1
ρ+ρ̄(k̄−1)

− ε′, for some ε′ > 0 (such a k̄ exists). Finally, we assume that c < 1
ρ+ρ̄ ,

since otherwise no agent would have an incentive to form a costly link.

Part 1: We assume, without loss of generality, that social cliques are ordered by size (Hn
1 is the small-

est). LetHn
<k̄

denote the set of social cliques of size less than k̄, i.e., Hn
<k̄

= {Hn
i , i = 1, . . . ,Kn | |Hn

i | <
k̄}. Finally, let rec(j) and send(j) denote two special nodes for social clique Hn

j , the receiver and the

sender (they might be the same node). We claim that (gn, σn) described below and depicted in Figure

7(b) is an equilibrium of the network learning game Γ(Cn) for n large enough and δ sufficiently close

to one.

gnij =


1 if SC(i) = SC(j), i.e., i, j belong to the same social clique,
1 if i = rec(`− 1) and j = send(`) for 1 < ` ≤ |Hn

<k̄
|,

1 if i = rec(|Hn
<k̄
|) and j = send(1),

0 otherwise

and σn ∈ INFO(Gn), where Gn is the communication network induced by gn. In this communication

network, social cliques with size less than k̄ are organized in a directed ring, and all agents i, such
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that |Hn
SC(i)| < k̄ have the same neighborhood, i.e., Bn

i = Bn for all such agents.

Next, we show that the strategy profile (gn, σn) described above is indeed an equilibrium of the network

learning game Γ(Cn). We restrict attention to large enough n’s. In particular, let N be such that∑|HN
<k̄
|

i=1 |HN
i | > k̄ and consider any n > N (such N exists from condition (13)). Moreover, we assume

that the discount rate is sufficiently close to zero. We consider the following two cases.

Case 1: Agent i is not a connector. Then, gnij = 1 if and only if SC(j) = SC(i). Agent i’s neighborhood

as noted above is set Bn, which is such that π− 1
ρ+ρ̄|Bn| > π−c from the assumption on n, i.e., n > N ,

where N such that
∑|HN

<k̄
|

i=1 |HN
i | > k̄. Agent i can communicate with all agents in Bn in at most |H<k̄|

communication steps. Therefore, her expected payoff is lower-bounded by

E[Πi(g
n)] ≥

(
λ

λ+ r

)∣∣Hn
<k̄

∣∣
·
(
π − 1

ρ+ ρ̄k̄

)
> π − c,

under any equilibrium σn for r sufficiently close to zero. Agent i can deviate by forming a costly

link with agent m, such that SC(m) 6= SC(i). However, this is not profitable since from above her

expected payoff under (gn, σn) is at least π − c (which is the maximum possible payoff if an agent

chooses to form a costly link).

Case 2: Agent i is a connector, i.e., there exists exactly one j, such that SC(j) 6= SC(i) and gnij = 1.

Using a similar argument as above we can show that it is not profitable for agent i to form an additional

costly link with an agent m, such that SC(m) 6= SC(i). On the other hand, agent i could deviate by

setting gnij = 0. However, then her expected payoff would be

E[Πi(g
n)] = max

{
π − 1

ρ+ ρ̄
,

λ

r + λ

(
π − 1

ρ+ ρ̄|Hn
i |

)}
(44)

≤ max

{
π − 1

ρ+ ρ̄
,

λ

r + λ

(
π − 1

ρ+ ρ̄(k̄ − 1)

)}
< π − c− ε′

<

(
λ

r + λ

)∣∣Hn
<k̄

∣∣ (
π − 1

ρ+ ρ̄|Bn|

)
− c− ε,

for discount rate sufficiently close to zero. Therefore deleting the costly link is not a profitable devia-

tion. Similarly we can show that it a (weakly) dominant strategy for the connector not to replace her

costly link with another costly link.

We showed that (gn, σn) is an equilibrium of the network learning game. Note that we described a

link formation strategy, in which social cliques connect to each other in a specific order (in increasing

size). There is nothing special about this ordering and any permutation of the first |Hn
<k̄
| cliques is an

equilibrium as long as they form a directed ring. Finally, any node in a social clique can be a receiver

or a sender.

Next, we argue that asymptotic learning occurs in network equilibria (g, σ) = {(gn, σn)}∞n=1,

where for all n > N , N is a large constant, gn has the form described above. As shown above,
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Hn
`1 X

Hn
`2

(a) Deviation for i ∈ Hn
`1

- property (i).

X

Hn
`

(b) Deviation for i ∈ Hn
` - property (ii).

Figure 9: Communication networks under condition (13).

all agents i for which Hn
SC(i) < k̄ have the same neighborhood, which we denoted by Bn. Moreover,

limn→∞ |Bn| =∞, since social cliques with size less than k̄ are connected to the ring and, by condition

(13), limn→∞
∑

i| |Hn
i |<k̄
|Hn

i | = ∞. For discount rate r sufficiently close to zero and from arguments

similar to those in the proof of part (b), we conclude that asymptotic learning occurs in network

equilibria (g, σ).

Part 2: We have shown a particular form of network equilibria, in which asymptotic learning occurs.

The following proposition states that for discount rate sufficiently close to zero network equilibria fall

in one of two forms.

Proposition 9. Suppose Assumptions 1, 3 and condition (13) hold. Then, an equilibrium (gn, σn) of

the network learning game Γ(Cn) can be in one of the following two forms.

(i) (Incomplete) Ring Equilibrium: Social cliques with indices {1, · · · , j}, where j ≤ |Hn
<k̄
|,

form a directed ring as described in Part 1 and the rest of the social cliques are isolated. We

call those equilibria ring equilibria and, in particular, a ring equilibrium is called complete if

j = |Hn
<k̄
|, i.e., if all social cliques with size less than k̄ are not isolated.

(ii) Directed Line Equilibrium: Social cliques with indices {1, · · · , j}, where j ≤ |Hn
<k̄
|, and clique

with index |Hn
Kn | (the largest clique) form a directed line with the latter being the endpoint. The

rest of the social cliques are isolated.

Proof. Let (gn, σn) be an equilibrium of the network learning game Γ(Cn). Monotonicity of the

expected payoff as a function of the number of signals observed implies that if clique Hn
` is not

isolated, then no clique with index less than ` is isolated in the communication network induced by gn.

In particular, let conn(`) be the connector of social clique Hn
` and E[Πconn(`)(g

n)] be her expected

payoff. Consider an agent i such that SC(i) = `′ < ` and, for the sake of contradiction, Hn
`′ is

isolated in the communication network induced by gn. Social cliques are ordered by size, therefore,

|Hn
`′ | ≤ |Hn

` |. Now, we use the monotonicity mentioned above. Consider the expected payoff of i:

E[Πi(g
n)] = max

{
π − 1

ρ+ ρ̄
,

λ

λ+ r

(
π − 1

ρ+ ρ̄|Hn
`′ |

)}
≤ max

{
π − 1

ρ+ ρ̄
,

λ

λ+ r

(
π − 1

ρ+ ρ̄|Hn
` |

)}
< E[Πconn(`)(g

n)], (45)
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where the last inequality follows from the fact that agent conn(`) formed a costly link. Consider a

deviation, gn,deviationi for agent i, in which gn,deviationi,conn(`) = 1 and gn,deviationij = gnij , i.e., agent i forms a

costly link with agent conn(`). Then,

E[Πi(g
n,deviation)] ≥ λ

λ+ r
E[Πconn(`)(g

n)] > E[Πi(g
n)],

from (45) and for discount rate sufficiently close to zero. Therefore, social clique Hn
`′ will not be

isolated in any network equilibrium (gn, σn).

Next, we show two structural properties that all network equilibria (gn, σn) should satisfy, when

the discount rate r is sufficiently close to one. We say that there exists a path P between social cliques

Hn
`1

and Hn
`2

, if there exists a path between some i ∈ Hn
`1

and j ∈ Hn
`2

. Also, we say that the in-degree

(out-degree) of social clique Hn
`1

is k, if the sum of in-links (out-links) of the nodes in Hn
`1

is k, i.e.,

Hn
`1

has in-degree k if
∑

i∈Hn
`1

∑
j /∈Hn

`1

gnij = k.

(i) Let Hn
`1
, Hn

`2
be two social cliques that are not isolated. Then, there should exist a directed path

P in Gn induced by gn between the two social cliques.

(ii) The in-degree and out-degree of each social clique is at most one.

Figure 9 provides an illustration of why the properties hold for patient agents. In particular, for

property (i), let i = conn(Hn
`1

) and j = conn(Hn
`2

) and assume, without loss of generality, that

|Bn
i | ≤ |Bn

j |. Then, for discount rate sufficiently close to zero and from monotonicity of the expected

payoff, we conclude that i has an incentive to deviate, delete her costly and form a costly link with

agent j. Property (ii) follows due to similar arguments. From the above, we conclude that the only

two potential equilibrium topologies are the (incomplete) ring and the directed line with the largest

clique being the endpoint under the assumptions of the proposition.

So far we have shown a particular form of network equilibria that arise under condition (13), in

which asymptotic learning occurs. We also argued that under condition (13) only (incomplete) ring

or directed line equilibria can arise for network learning game Γ(Cn). In the remainder we show that

there exists a bound c̄ > 0 on the common cost c for forming a link between two social cliques, such

that if c < c̄ all network equilibria (g, σ) that arise satisfy that gn is a complete ring equilibrium for

all n > N , where N is a constant. In those network equilibria asymptotic learning occurs as argued

in Part 1. On the other hand, if c > c̄ coordination among the social cliques may fail and additional

equilibria arise in which asymptotic learning does not occur. Let

c̄n = min
k

{
− 1

ρ+ ρ̄(
∑k

j=1 |Hn
j |+ |Hn

k+1|)
+

1

ρ+ ρ̄|Hn
k+1|)

}
(46)
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where k1 ≤ k < |Hn
<k̄
| and

∑k1
j=1 |Hn

j | ≥ |Hn
Kn | (size of the largest social clique). Moreover, let

c̄ = lim inf
n→∞

c̄n.

The following proposition concludes the proof.

Proposition 10. Suppose Assumptions 1, 3 and condition (13) hold. If c < c̄ asymptotic learning

occurs in all network equilibria (g, σ). Otherwise, there exist equilibria in which asymptotic learning

does not occur.

Proof. Let the common cost c be such that c < c̄, where c̄ is defined as above, and consider a network

equilibrium (g, σ). Let N be a large enough constant and consider the corresponding gn for n > N .

We claim that gn is a complete ring equilibrium for all such n. Assume for the sake of contradiction

that the claim is not true. Then, from Proposition 9, gn is either an incomplete ring equilibrium or

a directed line equilibrium. We consider the former case (the latter case can be shown with similar

arguments). There exists an isolated social clique Hn
` , such that |Hn

` | < k̄ and all cliques with index

less than ` are not isolated and belong to the incomplete ring. However, from the definition of c̄ we

obtain that an agent i ∈ Hn
` would have an incentive to connect to the incomplete ring, thus we reach a

contradiction. In particular, consider the following link formation strategy for agent i: gn,deviationim = 1

for agent m ∈ Hn
`−1 and gn,deviationij = gnij for j 6= m. Then,

E[Πn
i (gn,deviation)] ≥

(
λ

λ+ r

)|Hn
<k̄
|
(
π − 1

ρ+ ρ̄(
∑`−1

j=1 |Hn
j |+ |Hn

` |)

)
− c

> max

{
π − 1

ρ+ ρ̄
,

λ

λ+ r

(
π − 1

ρ+ ρ̄|Hn
` |

)}
= E[Πn

i (gn)],

where the strict inequality follows from the definition of c̄ for r sufficiently close to zero. Thus, we

conclude that if c < c̄, gn is a complete ring for all n > N , where N is a large constant, and from

Part 1 asymptotic learning occurs in all network equilibria (g, σ). On the contrary, if c > c̄, then there

exists an infinite index set W , such that for all n in the (infinite) subsequence, {nw}w∈W , there exists

a k, such that
1

ρ+ ρ̄(
∑k

j=1 |Hn
j |+ |Hn

k+1|)
− c < 1

ρ+ ρ̄|Hn
k+1|

. (47)

Moreover, |Hn
k+1| < k̄ and

∑k
j=1 |Hn

j | ≥ |Hn
Kn |. We conclude that for (47) to hold it has to be that∑k

j=1 |Hn
j | < R, where R is a uniform constant for all n in the subsequence. Consider (g, σ)∞n=1, such

that for every n in the subsequence, gn is such that social cliques with index greater than k (as described

above) are isolated and the rest form an incomplete ring or a directed line and σn = INFO(Gn), where

Gn is the communication network induced by gn. From above, we obtain that for c > c̄, (gn, σn) is an

equilibrium of the network learning game Γ(Cn). perfect assymptotic learning, however, fails in such

an equilibrium, since for every i ∈ Nn, |Bn
i | ≤ R, where Bn

i denotes the neighborhood of agent i.
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