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Abstract

Following Kreps (1979), we consider a decision maker who is uncertain
about her future taste for immediate consumption. This uncertainty leaves
the decision maker with a preference for flexibility: When choosing among
menus containing alternatives for future choice, she weakly prefers menus
with additional alternatives. Existing representations accommodating this
choice pattern cannot address dynamic decision situations like a consumption
savings problem. We provide representations of choice over continuation
problems that are recursive and take the form of Bellman equations. Two
specific models are axiomatized. They feature stationary and Markovian
beliefs over future tastes, respectively. The parameters of the representations,
which are relative intensities of tastes, beliefs over those tastes and the discount
factor, are uniquely identified from behavior. We characterize a natural notion
of ’greater preference for flexibility’ in terms of a stochastic order on beliefs
and give an example of a Lucas tree economy, where a representative agent
with greater preference for flexibility corresponds to larger price volatility in
the sense of second order stochastic dominance.

∗Preliminary. Comments most welcome.
†University of North Carolina, Chapel Hill <rvk@email.unc.edu>
‡Duke University <p.sadowski@duke.edu>
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1. Introduction

A decision maker, DM, who is uncertain about her future taste prefers not
to commit to a course of action today, and so has a preference for flexibility.
While this intuition is inherently dynamic, standard models that accommodate
preference for flexibility, most prominently Kreps (1979) and Dekel, Lipman
and Rustichini (2001) (henceforth DLR; a relevant corrigendum is Dekel at al
(2007), henceforth DLRS), are static.

We provide a dynamic model of preference for flexibility. Following Gul
and Pesendorfer (2004), DM chooses between infinite horizon consumption
problems (IHCPs), which provide lotteries over pairs of consumption and
continuation problems. Our representations are recursive and take the form of
standard Bellman equations.

The domain of IHCPs is extremely rich and allows for very complicated
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choice behavior. For example, choice might depend on time, past consumption
and past tastes. In order to attain the recursive structure of a Bellman equation
we make the following simplifying assumptions. Preferences over IHCPs are
linear, that is, a form of Independence holds. They are also separable with respect
to present consumption and continuation problems. Finally, we consider two
ways to link present consumption and the value of continuation problems.

Firstly, we assume that DM has stationary preferences and is strategically
rational with respect to continuation problems. The corresponding Bellman
equation features stationary beliefs over tastes for instantaneous consumption.

Second, to allow for more interesting dynamics, we replace the assump-
tions of stationary and strategically rational preferences by assuming con-
sumption contingent strategic rationality. This axiom roughly states that DM is
strategically rational, contingent on choosing a particular alternative from a
sufficiently large menu. The corresponding Bellman equation features beliefs
that follow a Markov process, that is, period t consumption preferences are a
sufficient statistic for beliefs about tastes in period t + 1.

Our models could be analyzed using standard dynamic programming
techniques. Therefore, we hope that they will be applied to incorporate deci-
sions under uncertainty without observable states of the world in macroeco-
nomic modelling and in asset pricing models. For example, an agent might be
uncertain about her future preference for leisure, or her future risk aversion in
a portfolio choice problem.

Preference for flexibility is the preference for non degenerate menus over
singletons. Intuitively, one DM has greater preference for flexibility than another,
if she has a stronger preference for menus over singletons. We formalize this
notion. Since preference for flexibility is the behavioral manifestation of uncer-
tainty about tastes, it is ideally characterized in terms of beliefs about those
tastes. All the parameters in our representations can be uniquely identified
from behavior. For a large class of stationary preferences, this allows us to
compare decision makers who disagree only in terms of their beliefs and to
characterize ‘greater preference for flexibility’ in terms of the increasing convex
order of those beliefs.
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We apply this characterization to describe the price volatility in a version
of the Lucas tree economy with three possible output levels. Two different
representative agents, A and B, who are uncertain about their degree of future
risk aversion, behave as in our model. We show that the distribution of the
price of the dividends1 in an economy inhabited by representative agent A
second order stochastically dominates the price distribution in an economy
inhabited by B if, and only if, B has more preference for flexibility than A. This
result suggests that price volatility might be the consequence of uncertainty
about future risk aversion.2

The unique identification of the parameters of the representation from
choice in the stationary as well as the Markovian case contrasts with the non-
uniqueness in the models of Kreps and DLR, where the separation of beliefs
and utilities is not behaviorally meaningful. It is worthwhile to demonstrate
why it is not possible to disentangle beliefs and probabilities in the static
problem analyzed by DLR. Suppose there is a representation of the form

V(c) = ∫
SK

max
α∈c

us(α) dµ(s)

where SK is a set of subjective states, and each us is a vNM utility, and µ is a
probability measure. Now, consider a function f ∶ SK → R that is measurable
and bounded and also has 1

f
bounded (µ-a.s.). Define the state dependent

utility function ũs = ( ∫
1
f
dµ)f(s)us, and the measure µ̃ ∶= [ 1

f
µ]/( ∫

1
f
dµ). It is

clear that µ̃ is also a probability measure and we also have the representation

V(c) = ∫
SK

max
α∈c

ũs(α) dµ̃(s)

It is in this sense that utilities and beliefs can not be separately identified in the
static model. As we will see, DLR’s model can be viewed as an extreme case
of our representation, where there is no intertemporal tradeoff. In the general

1Usually, one would normalize the prize of the dividend, and consider changes in the prize
of the asset. For our results it is more instructive to normalize the prize of the asset and allow
the pice of the dividend to adjust.

2Uncertainty about future risk aversion should also imply a propensity to delay invest-
ment, or to underinvest. In ongoing research we formally explore this connection between
underinvestment and price volatility.
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case, there is at least some intertemporal tradeoff. We show that this tradeoff
allows the separate identification of beliefs and utilities.

Sadowski (2010) instead considers DLR’s model as the extreme case
of a situation where observable states of the world contain some relevant
information and shows that generically beliefs over tastes become uniquely
identified. Shenone (2010) introduces a numeraire with state independent
evaluation to identify beliefs uniquely in the same sense they are uniquely
identified in Anscombe and Aumann (1963).

Other models of dynamic preference for flexibility impose strong con-
straints on either the domain or the preferences. Rustichini (2002) considers
deterministic sequences of choice problems. This domain can not accommodate
a basic intertemporal consumption problem. Higashi et al. (2009) provide a
stationary representation, where the preference for flexibility stems exclusively
from a random discount factor. The representation does not generalize static
models of uncertain tastes for immediate consumption and can not accommo-
date dynamic evolution of uncertainty.

The remainder of the paper is structured as follows. Section 1.2 gives
a preview of our results. Section 2 lays out the model. Section 3 provides a
general representation of preference for flexibility with a non finite prize space.
Section 4 provides the foundations for a Bellman equation with stationary
beliefs. Section 5 concerns the case of Markovian beliefs. A characterization
of ‘greater preference for flexibility’ can be found in section 6 and section 7
applies the result to compare two (discretized) Lucas tree economies. This is
an early first draft. Consequently the body of the paper is lacking comments
and interpretations and most proofs follow inline. However, some proofs are
relegated to an appendix.

1.1. Preview of Results

Choice from an infinite horizon consumption problem (IHCP), determines (a
lottery over) consumption in the present period and a continuation problem,
which is a new infinite horizon consumption problem starting next period.
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We explicitly model only today’s choice between consumption problems for
tomorrow. We consider continuous preferences over such problems that are
non-trivial and satisfy independence.

In DLR, menus contain lotteries over some finite prize space. The set
of all continuation problems, in contrast, is not finite. We first provide a
representation result after DLR for infinite prize spaces. In the case of a
finite price space, the collection of future tastes that are relevant is essentially
unique. This uniqueness may fail when the prize space is infinite. We proceed
to put additional structure on preferences to obtain representations with a
meaningful relevant taste space. In particular, preferences are assumed to be
separable in consumption and the continuation problem. In addition we assume
monotonicity, the central assumption in Kreps (1979), which states that more
choice is always (weakly) preferable.

Our first model is based on stationary beliefs. It requires two more
assumptions: First, preferences are stationary, that is, the ranking of any two
IHCPs is the same as the ranking of two IHCPs that agree on consumption
and provide the respective original IHCPs as continuation problems. Second,
preferences satisfy continuation strategic rationality, which requires that there is
no preference for flexibility with respect to continuation problems. Let x, z ∈ Z
be IHCPs and let k ∈ K be consumption; p ∈ x denotes a lottery over K × Z. The
axioms listed above are the behavioral content of a representation of Stationary
Preference for Flexibility (SPF),

U(x) = ∫
SK

max
p∈x

{∫
K×Z

[us(k) + δU(z)]dp(k, z)} dµ(s)

where δ < 1 is the discount factor, SK is the space of tastes for consumption, a
collection of vNM rankings, us represents taste s ∈ SK and µ is a probability
measure on SK. All the parameters of the representation are unique in the
appropriate sense. This representation provides a truly dynamic theory of
preference for flexibility: It takes the recursive form of a Bellman equation
and features uncertain tastes for immediate consumption in a setting where
consumption choices can affect what is available in the future. However, it can
not accommodate a dynamic evolution of uncertainty.

In our second representation beliefs follow a Markov process. We first
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simplify the problem by posing an axiom that limits the number of relevant
states. The combination of stationarity and continuation strategic rationality is
very strong. Up to the intertemporal tradeoff it allows eliciting the ranking of
IHCPs in a static setting. We drop stationarity and replace continuation strategic
rationality with consumption contingent strategic rationality. This axiom roughly
requires that, for a large enough set of alternatives, the ranking of continuation
problems when paired with a particular consumption alternative satisfies
strategic rationality. We call the corresponding representation a representation
of Markovian Preference for Flexibility (MPF): There is a measure µ0 on SK,
such that V(x,µ0) represents the preference, where

V(x,µ) = ∫
SK

max
p∈x

{∫
K×Z

[us(k) + δV(z,µs)]dp(k, z)} dµ(s)

and where there is a transition operator A with A(s) = µs. The MPF representa-
tion is similar to the SPF representation, but here beliefs about future tastes for
consumption follow a Markov process. Again the discount factor δ is unique.
Furthermore, the relative intensities of tastes and beliefs are unique for any set
of states that is ergodic with respect to the Markov process. Across ergodic sets
of states, beliefs and utilities are only jointly identified, as in DLR.

Comparing two preferences that each have a SPF representation, we
say that one has more preference for flexibility than the other, if they agree
on the ranking of singletons, and the first prefers a nondegenerate menu
over a singleton, whenever the second does. In order to characterize this
property in terms of the beliefs in the SPF representations, we compare two
preferences whose representations differ only in terms of beliefs. In the context
of the corresponding axiom, called Numeraire, one preference has a greater
preference for flexibility than another if, and only if, it is dominated in the
increasing convex order on the relevant part of the taste space. For the case
of only three prizes, the relevant part of the taste space turns out to be one
dimensional, and the condition on beliefs amounts to second order stochastic
dominance.
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2. The Model

Let K be a finite set of prizes with typical member k and P(K) the set of lotteries
over K, with typical lotteries being α,β,γ. We follow Gul and Pesendorfer (2004)
in defining infinite horizon consumption problems (IHCPs). A consumption
problem yields a consumption (lottery) α in the present period and a new
infinite horizon problem starting in the next period. Let Z = K(P(K × Z)) be
the collection of all Infinite Horizon Continuation problems (IHCP).3

Typical elements x,y, z ∈ Z are interpreted as menus of lotteries over
consumption and continuation problems. Typical lotteries in P(K×Z) are p,q, r.
We will be interested in menus of lotteries over present consumption and
continuation problems. Menus of consumption lotteries will be represented
by closed subsets of P(K), and denoted by K(P(K)), with typical members
being a,b, c. By the recursive nature of Z, continuation problems are members
of Z. As above, P(Z) is the space of lotteries over Z, and a menu is a closed
subset of lotteries, denoted by K(P(Z)); typical members are A,B,C. To ease
the notational burden, we will often write K for K(P(K × Z)), KK for K(P(K))

and KZ for K(P(Z)).

Technical Note: Even though K is finite, Z is infinite and infinite dimen-
sional. Gul and Pesendorfer (2004) show that Z is metrisable and compact,
hence P(K × Z) when endowed with the topology of weak convergence is
metrisable, so K(P(K × Z)) is also metrisable with the Hausdorff metric.

Each probability measure p over K × Z induces marginal distributions pk
and pz over K and Z respectively. For c ∈ KK and A ∈ KZ, we write (c,A) to
denote the rectangular menu {(pk,pz) ∶ pk ∈ c,pz ∈ A}. When there is no risk
of confusion, we identify prizes and continuation problems with degenerate
lotteries. That is, we will denote the lottery over Z that gives z ∈ Z with
probability 1 by z.

A preference relation ≽ ⊂ Z × Z is a complete, transitive binary relation.
We will assume without further comment that ≽ is nontrivial. Continuity of the

3See Gul and Pesendorfer (2004) for the recursive construction of Z. Notice that even if C is
finite, Z is necessarily infinite dimensional (and infinite).
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preference relations requires that the sets {x ∶ x ≽ y} and {x ∶ y ≽ x} are always
closed. We consider a continuous preference relation ≽ on Z and this too shall
be a standing assumption. Therefore, a preference for us will be a nontrivial,
complete, transitive and continuous binary relation.

In what follows, we will take the convex sum of sets to be the Minkowski
sum, namely tx + (1 − t)y ∶= {tp + (1 − t)q ∶ p ∈ x,q ∈ y} whenever t ∈ [0, 1]. We
are now ready to state our main structural axiom.

Axiom 1 (Independence). x ≻ y implies αx + (1 − α)z ≻ αy + (1 − α)z for all
α ∈ (0, 1].

Independence is a familiar axiom from the theory of choice under risk.
But it is not immediately obvious what is ruled in and what is ruled out by
Independence in this dynamic setting. Nevertheless, to focus on other issues
that are more compelling at the present, we shall, in what follows, assume that
Independence always holds.

Dekel, Lipman and Rustichini (2001) (henceforth DLR) studied the domain
K(P(F)) where F is a finite set. It is easy to see that our domain is one where
F is infinite. We therefore need an additive EU representation after DLR for
infinite prize sets. We obtain such an abstract representation next.
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3. A General Representation

Let Z be a compact metric space, C(Z) the Banach space of uniformly contin-
uous functions on Z, and let M(Z) be the space of all finite, signed, regular
Borel measures on Z (with the associated sigma algebra). Then, ⟨C(Z),M(Z)⟩

is a dual pair.

Let P(Z) ⊂ M(Z) represent the space of probability measures on Z and
fix p0 ∈ P(Z). Define X ′ ∶= span (P(Z) − p0) which is a subspace of M(Z). Let
X ′⊥ ∶= {x ∈ C(Z) ∶ ⟨x,x ′⟩ = 0 for all x ′ ∈ X ′} be the annihilator of X ′, so that X ∶=
{x ∈ C(Z) ∶ ⟨x,x ′⟩ ≠ 0 for some x ′ ∈ X ′}. It is easy to see that X ′⊥ = {α1 ∶ α ∈ R} is
the space of constant functions. This verifies that dim(X ′⊥) = 1 = codim(X), and
X⊕ X ′⊥ = C(Z). Moreover, ⟨X,X ′⟩ is a dual pair.

Let U ′ be the closed unit ball of X ′ (assuming X ′ has the total variation
norm), and U the closed unit ball of X. Let K denote the space of weak*
compact, convex subsets of P(Z). Let ϕ ∶ K → R be Lipschitz continuous and
linear. For ease of notation, we shall write ∂U as U. This will serve as our
universal subjective state space. Each x ∈ U is a continuous function on Z, and
hence a vNM function. Moreover, as established earlier, no x ∈ U is constant on
Z. Notice that U is metrisable (by the norm), hence normal and Hausdorff. Let
ban denote the set of bounded, normal, finitely additive (signed) measures, ie
charges on AU, the algebra generated by the open sets in U. We can now state
the following.

Theorem 3.1. The function ϕ ∶ K → R is linear and Lipschitz if and only if there
exists a finite charge µ ∈ ban(AU) such that

ϕ(A) = ∫
U
hA dµ

= ∫
U
sup
x′∈A

⟨x,x′⟩ dµ(x)

for all A ∈K.

Proof. See appendix.

Preferences that neither value a preference for flexibility nor a preference
for commitment are special, and shall be said to possess strategic rationality.
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More formally, a preference ≽ is strategically rational if for all menus A and B,
it is the case that A ≽ B implies A ∼ A ∪ B. We shall see next that a preference is
strategically rational if, and only if, the charge that represents the preference ≽
is carried by a singleton. We begin with a lemma.

Lemma 3.2. Let S ⊂ U. Then, ∣S∣ = 1 if, and only if, for all p,q ∈ P(Z) and for all
u1,u2 ∈ S, u1(p) ⩾ u1(q) if and only if u2(p) ⩾ u2(q).

Proof. The ‘only if’ part is easily seen. To see that ‘if’ part, notice that by
definition of U, there exists p0 ∈ P(Z) such that u(p0) = 0 for all u ∈ U. Moreover,
∥u∥∞ = 1 for all u ∈ U. Therefore, no u1 ∈ U is a positive affine transformation of
some other u2 in U.

Now suppose ∣S∣ > 1, and let u1,u2 ∈ U be distinct. But by definition of S,
u1 and u2 represent the same expected utility preference ≽∗ on P(Z). Therefore,
by the expected utility theorem and since u1(p0) = u2(p0) = 0, u1 = αu2 for some
α > 0, which contradicts the definition of U, wherein ∥u∥∞ = 1 for all u ∈ U. This
proves our claim.

Recall that the carrier of the charge µ is defined as

Sµ ∶=⋂{N ∶ N is closed, and µ(Nc) = 0}.

The carrier of the charge always exists, and is clearly well defined. For any
p,q ∈ P(Z), define Sp,q ∶= {u ∈ U ∶ u(p) > u(q)} and S○p,q ∶= {u ∈ U ∶ u(p) = u(q)}.
Notice that Sp,q is always open and S○p,q is always closed, since p is a continuous
(linear) functional on U, which is a closed set. We can now prove

Lemma 3.3. Suppose ≽ on K is strategically rational. Then, for all p,q ∈ P,
min{µ(Sp,q),µ(Sq,p)} = 0.

Proof. We shall prove the contrapositive. Suppose then that there exist p,q such
that min{∣µ(Sp,q)∣ , ∣µ(Sq,p)∣} = ∣µ(Sp,q)∣ > 0. It is clear then that {p,q} ≁ {p},{q},
which proves our claim.

Lemma 3.4. Suppose for all p,q ∈ P(Z), min{∣µ(Sp,q)∣ , ∣µ(Sq,p)∣} = 0. Then,
∣S∣ = 1.
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Proof. If for all p,q ∈ P, min{µ(Sp,q),µ(Sq,p)} = 0, then either (i) Sµ ⊂ Sp,q ∪ S○p,q,
or (ii) Sµ ⊂ Sq,p ∪ S○p,q, but not both (by the definition of Sµ and since Sp,q and
Sq,p are open).

In other words, for all p,q ∈ P(Z), and for all u1,u2 ∈ U, u1(p) ⩾ u1(q) if,
and only if, u2(p) ⩾ u2(q). Lemma 3.2 now implies that ∣S∣ = 1, as required.

We may now put all this together, as follows.

Theorem 3.5. Let ≽ be a preference on K, represented by the charge µ. Then ≽ is
strategically rational if, and only if, the carrier of the charge Sµ is a singleton, ie
∣Sµ∣ = 1.

Proof. The ‘if’ part of the claim is clear. We shall prove the ‘only if’ part. By
Lemma3.4, strategic rationality implies

min{∣µ(Sp,q)∣, ∣µ(Sq,p)∣} = 0

for all p,q ∈ P(Z). By Lemma 3.4, we can then conclude that ∣Sµ∣ = 1, as
desired.
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4. Stationary Intertemporal Choice

We now consider the behavioural axioms for stationary intertemporal choice.

Axiom 2 (Separability). 1
2(c,{x}) +

1
2(c

′,{x ′}) ∼ 1
2(c

′,{x}) + 1
2(c,{x

′})

Axiom 3 (Stationarity). {(α,x)} ≻ {(α,y)} if, and only if, x ≻ y.

Axiom 4 (Monotonicity). x ∪ y ≽ x

Axiom 5 (Continuation Strategic Rationality). (α,x) ≻ (α,y) implies (α,x) ∼
{(α,x), (α,y)}.

To state our first result, let us define SK ∶= {s ∈ R∣K∣ ∶ ∑ si = 0; ∥s∥2 = 1} to
be the set of all twice-normalized vNM utility functions over instantaneous
consumption. For every lottery α ∈ P(K), s(α) = ⟨s,α⟩. SK is the canonical model
of subjective states. In this subjective setting, tastes and subjective states will be
treated as synonyms. Similarly, in what follows, all probability measures will
interpreted as subjective beliefs, and the two terms will be used interchangeably.
We can now define the central representation of this section.

Definition 4.1. Let (us) be a collection of vNM utilities of the form us = sλs

where λs ⩾ 0 for each s ∈ SK, and λs is µ-integrable. Let µ be a probability
measure on SK, and let δ ∈ (0, 1). A triple ((us),µ, δ) is a Stationary Preference
for Flexibility (SPF) since each ((us),µ, δ) induces a function U ∈ C(Z) wherein

(4.1) U(x) = ∫
SK

max
p∈x

{∫
K×Z

[us(k) + δU(z)]dp(k, z)} dµ(s)

We shall now show that the triple ((us),µ, δ) induces a unique U ∈ C(Z)

that satisfies equation (4.1) above.

Proposition 4.2. For each triple ((us),µ, δ), there is a unique continuous func-
tion U ∈ C(Z) that satisfies the Bellman equation (4.1) above.

Proof. Let W ∈ C(Z), and consider the Bellman operator Φ ∶ C(Z)→ C(Z), given
by

(ΦW)(x) ∶= ∫
SK

max
p∈x

{∫
K×Z

[us(k) + δW(z)]dp(k, z)} dµ(s)

13



It is easy to see that Φ is monotone, that isW ⩽W ′ implies Φ(W) ⩽ Φ(W ′), and
satisfies discounting, ie Φ(W + ρ) ⩽ Φ(W) + δρ where ρ ⩾ 0. If we assume that
Φ(W) ∈ C(Z) for all W ∈ C(Z), it follows that Φ is a contraction mapping (with
modulus δ), and has a unique fixed point, which establishes the proposition.
All that remains is to establish that Φ is an operator on C(Z).

For each x ∈KZ, s ∈ SK and W ∈ C(Z), define

f(x, s) = max
p∈x ∫K×Z

[us(k) + δW(z)]dp(k, z)

For each s ∈ SK, it is clear that

∣f(x, s)∣ ⩽ max
p∈x ∫K×Z

∣us(k) + δW(z)∣ dp(k, z)

⩽ max
a∈KK

∣max
α∈a

us(α)∣ +max
A∈KZ

∣max
y∈A

δW(y)∣

= λsmax
a∈KK

∣σa(s)∣ +max
A∈KZ

∣max
y∈A

δW(y)∣

⩽ λsM1 +M2

where M1,M2 > 0 and σa is the support function of the menu a ∈ KK.4 Recall
that λs is µ-integrable, and σa(s) is continuous in a for each s (indeed the
continuity is uniform), hence the bounds above.

By definition of us and W, us + δW ∈ C(K × Z), and is a continuous, linear
functional on P(K × Z), where the latter is endowed with the topology of
weak convergence. Therefore, for each s, by the Maximum Theorem, f(x, s) is
continuous in x.

Consider any sequence (xn) that converges to x. By the bounds estab-
lished above, ∣f(xn, s)∣ ⩽ λsM1 +M2, and λsM1 +M2 is µ-integrable. Moreover,

lim
n→∞

(ΦW)(xn) = lim
n→∞∫SK

f(xn, s)dµ(s)

= ∫
SK

lim
n→∞

f(xn, s)dµ(s)

= ∫
SK

f(x, s)dµ(s)

= (ΦW)(x)

4For each a ∈ KK, σa ∶ SK → R is defined as σa(s) ∶= maxα∈a ⟨s,α⟩. See DLR or Chatterjee
and Krishna (2009) for properties of the support function.
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Since x and (xn) are arbitrary, we conclude that ΦW ∈ C(Z) wheneverW ∈ C(Z).
In the equalities above, we have used the Dominated Convergence Theorem to
interchange the order of limits and integration, and the continuity of f(⋅, s) for
each s to establish the pointwise limit. This completes the proof.

We shall say that a SPF represents a preference ≽ if the induced utility
function U represents ≽. We can now state our main representation theorem.

Theorem 4.3. For any preference ≽, the following are equivalent:

(a) ≽ satisfies axioms 1–5.

(b) There is a SPF that represents ≽.

Moreover, the SPF ((us),µ, δ) above is unique up to a common scaling of the collection
(us).

Some remarks about the result above are in order. As demonstrated abpve,
in the additive EU representation of DLR, µ and (us) are jointly identified
and cannot be disentangled. Nevertheless, in the theorem above, beliefs µ are
identified uniquely. Roughly, this is because the continuation problem z is
valued equally in every subjective state s ∈ SK. In DLR the subjective utilities
are state dependent, which makes it impossible to disentangle probabilities
and utilities. But the existence of continuation problems that are valued equally
in all states can now serve as a numeraire, so that we can, in fact, disentangle
utilities (us) and probabilities, as in the representation theorem. DLR suggest
and Shenone (2010) carries out identification of beliefs in a static model of
preference for flexibility by introducing a numeraire, like money. In our
dynamic model the numeraire naturally appears in the form of continuation
problems and, as we will see in the next section, this does not even depend on
the assumption of stationarity. Of course, our actual argument is more involved
than the rough intuition above, because changing the SPF also changes the
function U that values continuation problems.

We will now prove Theorem 4.3 via a sequence of lemmas, and define
some auxiliary concepts in the process. Notice that KK ×KZ ⊂ K(P(K × Z)).
This allows us to introduce two induced preference relations.
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Definition 4.4. Fix A∗ ∈ KZ and a∗ ∈ KK. Define the induced preference
relations ≽K and ≽Z on K(P(C)) and KZ respectively as follows:

(a) for all a,b ∈KK, a ≽K b if, and only if, (a,A∗) ≽ (b,A∗), and

(b) for all A,B ∈KZ A ≽Z B if, and only if, (a∗,A) ≽ (a∗,B).

Our first lemma states that the definitions of ≽K and ≽Z do not depend on
the choice of a∗ and A∗ respectively.

Lemma 4.5. The preferences ≽K and ≽Z are independent of a∗ and A∗ respec-
tively.

Proof. Fix any Ã ∈KZ. Applying in turn, Independence, Separability and again
Independence, we see that (a, Ã) ≻ (b, Ã) iff 1

2(a, Ã)+ 1
2(b,A

∗) ≻ 1
2(b, Ã)+ 1

2(b,A
∗)

iff 1
2(b, Ã)+ 1

2(a,A
∗) ≻ 1

2(b, Ã)+ 1
2(b,A

∗) iff (a,A∗) ≻ (b,A∗) iff a ≻C b. The other
part of the lemma is proved analogously.

Notice that since ≽ is nontrivial, it follows from Stationarity that ≽K and
≽Z are also nontrivial. (If ≽K is trivial, Stationarity would imply that ≽ is also
trivial.) Now that we have a preference relation ≽K, we want to represent it
with a utility function, as in DLR. This is next.

Lemma 4.6. The preference ≽K is represented by

UK(c) = ∫
SK

max
α∈c

⟨s,α⟩ dµK(s)

where SK is as defined above and µK is a probability measure, defined on SK
(with the Borel σ-algebra).

Proof. In the lemma above, s(α) = ⟨s,α⟩ is just extension by linearity. The proof
is just the representation theorem of DLR.

We also have a representation for the preference ≽ in Theorem 4.3 above.
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Lemma 4.7. The preference ≽ above is represented by

U(x) = ∫
S ′

max
p∈x

{∫
K×Z

U ′
s(k, z)dp(k, z)} dµ(s)

where S ′ = {U ′ ∈ C(Z) ∶ ∥U ′∥∞ = 1, U ′ not constant} is as defined above and µ
is a probability charge, defined on U (with the Borel σ-algebra), and for each
s ∈ U, U ′

s ∈ C(K × Z), the space of uniformly continuous functions on K × Z.

Proof. This is merely a restatement of Theorem 3.1 above.

Finally, we have a representation of ≽Z as follows.

Lemma 4.8. The preference ≽Z can be represented by

UZ(A) = max
pz∈A ∫Z

U(z) dpz(z)

where U ∈ C(Z) is the utility representation of ≽ obtained in lemma 4.7 above.

Proof. Lemma 4.7 says that ≽Z can be represented by a charge on S ′ = {U ′ ∈

C(Z) ∶ ∥U ′∥∞ = 1, U ′ not constant}. By Theorem 3.5 above, Continuation
Strategic Rationality implies that the carrier of the charge is a singleton, so

UZ(A) = max
pz∈A ∫Z

U ′(z) dpz(z)

where U ′ is unique up to positive affine transformation. Stationarity implies
that U ′ and U are equivalent, modulo a positive affine transformation.

Before moving to the proof of Theorem 4.3, we state some more auxiliary
results. For each A ∈KZ, we know that by the representation of ≽K

(☀) U(c,A) = η1(A)∫
SK

max
pk∈c

⟨s,pk⟩ dµ(s) + θ1(A)

and for each a ∈K(P(C)),

(♣) U(a,A) = η0(a)max
pz∈A ∫

U(z) dp(z) + θ0(a)

We want to show that η1(A) and η0(a) are independent of A and a respectively.
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Lemma 4.9. In equations (☀) and (♣) above, η1(A) and η0(a) are independent
of A and a respectively.

Proof. Suppose first that η0 is not constant, so there exist a,b ∈K(P(C)) such
that η0(a) > η0(b). Since ≽ is nondegenerate, there exist x,y ∈ Z such that
U(x) > U(y). Therefore, by Stationarity, (a,x) ≻ (a,y) and similarly when b is
offered as consumption in the present. We then see that [η0(a) − η0(b)]U(x) >

[η0(a)−η0(b)]U(y). We can rewrite this as η0(a)U(x)+η0(b)U(y) > η0(b)U(x)+

η0(a)U(y). Collecting all these inequalities, we see that

U( 1
2(a,x) +

1
2(b,y))

= 1
2[η0(a)U(x) + θ0(a)] +

1
2[η0(b)U(y) + θ0(b)]

> 1
2[η0(b)U(x) + θ0(b)] +

1
2[η0(a)U(y) + θ0(a)]

= U( 1
2(b,x) +

1
2(a,y))

which violates Separability. Notice that the inequality was established above.

The proof that η1 is constant is similar, once we recognise that by Station-
arity and nontriviality of ≽, there always exist a and b such that UC(a) > UC(b).
We now follow the first part of the proof, to establish that η1 must be con-
stant.

We now move to the proof of Theorem 4.3.

Proof of Theorem 4.3. Notice that each rectangular menu (c,A) has two repre-
sentations, as in equations (☀) and (♣) above. Therefore, it follows by matching
coefficients and constants that U can be written as

U(c,A) = ∫
SK

max
p∈(c,A)

{∫
K×Z

[us(k) + δU(z)] dpk(k)dpz(z)} dµ(s)

It follows immediately from this that δ < 1. To see this, consider constant
consumption menus, where c = α and x = (α,x). This sum converges if, and
only if, δ < 1. Moreover, the measure µ has marginal µC on SK and a Dirac
point measure on the marginal SZ. Therefore, we identify µ with µC and ignore
SZ while integrating over possible states.
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We now address the issue of uniqueness. We claim that since U does not
depend on s, µ can be determined uniquely. To see this, notice first that for
any SPF ((us),µ, δ) that induces the utility function U over IHCPs, the SPF
((ρus),µ, δ) induces the utility function U ′ = ρU over IHCP’s, whenever ρ > 0.

Suppose now, to the contrary, that there is another representation

Ũ(c,A) = ∫
SK

max
p∈(c,A)

{∫
K×Z

[ũs(k) + δ̃Ũ(z)] dpk(k)dpz(z)} dµ̃(s)

of the preference ≽. By the expected utility theorem, U must be a positive affine
transformation of Ũ. Therefore, scaling (ũs) by a positive number means we
can assume, without loss of generality, that U(x) = Ũ(x) for all x ∈K, that is U
and Ũ are identical on K.

We now claim that us = ũs for all s, δ = δ̃, and µ = µ̃. To see this,
notice that for any fixed A, U(⋅,A) still represents ≽K. Therefore, µ and µ̃ are
mutually absolutely continuous. That is, we have f = dµ̃

dµ as the Radon-Nikodym
derivative, so we can write µ̃ = fµ.

Now, fix some c ∈KK, and consider x,y ∈KZ. Clearly,

δ[U(x) −U(y)]∫
SK

fdµ(s) = U(c,x) −U(c,y)

= Ũ(c,x) − Ũ(c,y)

= δ̃[U(x) −U(y)]∫
SK

dµ(s)

By choosing x and y so that U(x) ≠ U(y), this implies ∫ fdµ = δ/δ̃. But we know
that ∫ dµ̃ = ∫ fdµ = 1 since µ̃ is a probability measure, so it must be that δ = δ̃.
Therefore, all that is left to prove is that us = fsũs, µ-a.s., and that f = 1 µ-a.s.
We begin with some notation and a useful fact.

Let p∗ ∶= ( 1
∣K∣ , . . . ,

1
∣K∣) be the uniform measure on the set of consumption

outcomes that also gives 0 utility in each subjective state, and let Br ∶= {p ∈

∆∣K∣−1 ∶ ∥p − p∗∥2 ⩽ r} be a menu for r > 0. For any state s ∈ SK and ε > 0, define
Nε(s) = {s ′ ∈ SK ∶ ∥s − s ′∥2 < ε} to be the ε-neighbourhood of s in SK. The
following follows immediately from the definition of subjective states in DLR.

Fact. Fix Br. For any s∗ ∈ suppµ and ε > 0, there exists p ∉ Br such that
us(p) ⩾ maxq∈Br us(q) iff s ∈ Nε(s∗).
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Suppose now that us ≠ fũs µ-a.s. Then, fixing Br, s∗ ∈ SK and ε > 0, there
exists p such that us(p) ⩾ maxq∈Bδ us(q) iff s ∈ Nε(s∗). Let z ∈ K be arbitrary.
Recall also that us = sλs and ũs = sλ̃s for each s ∈ SK, where λ, λ̃ ⩾ 0, µ-a.s. Then,

∫
SK

λs[ ⟨s,p⟩ − r]1{Nε(s∗)}dµ(s) = U(Br ∪ {p}, z) −U(Br, z)

= Ũ(Br ∪ {p}, z) − Ũ(Br, z)

= ∫
SK

λ̃s[ ⟨s,p⟩ − r]1{Nε(s∗)}f(s)dµ(s)

But since s∗ and ε were arbitrary, it follows that λs = fsλ̃s, µ-a.s. All that remains
is to show that f = 1 µ-a.s.

Suppose f ≠ 1, µ-a.s. Then, there exists m∗ such that the set E ∶= {s ∈ SK ∶

f(s) < 1 − 1
m∗

} has positive measure, that is µ(E) > 0. By proposition 2.26 of
Lee (2003), for each ε > 0, there exist Fε ⊂ E ⊂ Oε where Fε is closed and Oε is
open, such that µ(Oε ∖ Fε) < ε, and a function ϕ(⋅;Oε, Fε, ε) ∶ SK → R such that
ϕ(s;Oε, Fε, ε) = 0 for s ∈ Ocε and ϕ(s;Oε, Fε, ε) = 1 for s ∈ Fε. Moreover, by the
construction of Theorem 6 in Chatterjee and Krishna (2009), there exist menus
(of consumption) Aε and B, where B is independent of ε, such that ϕ is the
difference of the support functions of Aε and B. In particular, for all s ∈ F,

max
p∈Aε

us(p) −max
p∈B

us(p) = ϕ(s;Oε, Fε, ε) = λs

Let θ be the menu that gives the agent p∗ in each period. Since us(p∗) = 0
for all s ∈ SK, this implies U(θ) = 0. Now consider the menu xε ∶= {(Aε,θ), (B,y)}
where y ∈K is some continuation problem. Notice that

U(xε) −U(B,y) = ∫
Oε∖Fε

D(ε)dµ + ∫
Fε

max{λs − δU(y), 0}dµ

and

Ũ(x) − Ũ(B,y) = ∫
Oε∖Fε

D̃(ε)f(s)dµ + ∫
Fε

max{λs − fsδU(y), 0}dµ

where D(ε) and D̃(ε) are functions such that

lim
ε→0

∫
Oε∖Fε

D(ε)dµ = 0

= lim
ε→0

∫
Oε∖Fε

D̃(ε)f(s)dµ
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By definition of U and Ũ, it must be that the above displays are equal, ie
U(xε) −U(B,y) = Ũ(xε) − Ũ(B,y).

But notice the following facts: (i) fs < 1− 1
m

∗ on F, (ii) we can always choose
y such that 0 < µ({λs > δU(y)}) < µ({λs > fsδU(y)}) and the set {s ∈ F ∶ λs −

δU(y)} has positive measure, and (iii) max{λs−δU(y), 0} ⩽ max{λs−fsδU(y), 0},
where the inequality is strict on a set of positive measure due to the appropriate
choice of y.

Therefore, ∫Fε max{λs − fsδU(y), 0}dµ − ∫Fε max{λs − fsδU(y), 0}dµ > 0,
and is nonincreasing in ε. Also, ∫Oε∖Fε D̃(ε)f(s)dµ − ∫Oε∖FεD(ε)dµ is strictly
decreasing in ε, so that by the regularity of µ and the definition of D(ε) and
D̃(ε), there is an ε∗ > 0 such that Ũ(xε∗) − Ũ(B,y) > U(xε∗) −U(B,y), which is a
contradiction. Thus, f = 1, µ-a.s., which proves our claim.
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5. Nonstationary Intertemporal Choice

An important feature of stationary dynamic choice is that regardless of what
subjective state the agent is in at any moment of consumption, the distribution
of subjective states in the future remains the same. In this section, we enrich
this behaviour. This requires some new definitions, and strengthening of some
axioms seen before.

For a fixed collection at−1 ∶= (a0,a1, . . . ,at−1) ∈ Kt−1Z for t ⩾ 1 (where
a−1 = ∅), define, for all t ⩾ 0, ≽t ⊂ Z × Z as follows: x ≽t y if, and only if,
(at−1,x) ≽ (at−1,y). Each preference ≽t also induces the binary relations ≽tK and
≽tZ as in section 4 above. Separability implies that this definition is independent
of the choice of at−1. The nonstationary context requires a strengthening of our
nontriviality assumption on ≽. We call this Dynamic Nontriviality.

Axiom 6 (Dynamic Nontriviality). For all t ⩾ 0, ≽t and therefore ≽tK and ≽tZ are
nontrivial.

Dynamic nontriviality says that after any consumption history, the agent
will always value consumption and continuation problems nontrivially, which
means that he values IHCPs nontrivially. In the context of stationary choice,
this follows immediately from Stationarity.

5.1. Axioms for Nonstationary Choice

To keep the main new axiom as well as the following theorem simple, we
confine attention to preferences that require only a finite relevant state space to
describe ≽tK at any time t ⩾ 0.

Axiom 7 (Finiteness). For all a ∈ KK and t ⩾ 0, there is a finite set b ⊂ a with
b ∼tK a.

Dekel, Lipman and Rustichini (2009) show this axiom indeed implies
that the representation of ≽tK requires only finitely many relevant states. The
intuition is clear: Consider a menu a that is supported by a constant support
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function. This menu provides a different strictly best alternative in every state
s of the universal state space S. If any finite subset b of a is as good as a itself,
then only a finite subset S′ ⊂ S of states can be relevant. The following is the
main behavioural axiom of this section.

Axiom 8 (Choice Contingent Strategic Rationality). If a ∪ b ≻tK b, then there is c
such that a ∪ b ∪ c ≻tK b ∪ c and

(a,A) ∪ (b ∪ c,A ∪ B) ≽t (a,B) ∪ (b ∪ c,A ∪ B)

implies
(a,A) ∪ (b ∪ c,A ∪ B) ∼t (a ∪ b ∪ c,A ∪ B).

The implications of the axiom are most easily understood in the context
of finitely many relevant consumption states. Every such state must be relevant
in some period t. Further, for each relevant state s, there are menus a ∪ b ≽tK b,
such that a delivers greater (ex post) utility than b only in state s. Moreover,
a ∪ b ∪ c ≽tK b ∪ c implies that a also outperforms c in that state. Contingent on
a providing a better consumption choice than b ∪ c in period t, the preference
satisfies strategic rationality with respect to the continuation problems. Since
the axiom holds for all a ∪ b ≽tK b, we can establish strategic rationality for any
one of the relevant states. The menu c in the qualifier of the menu implies
that the axiom does not generically imply the stronger continuation strategic
rationality axiom assumed in the previous section. The axiom implies that the
consumption state in period t is a sufficient statistic for period t+ 1 preferences
over continuation problems. We can now define the class of representations
that are central to this section.

Definition 5.1. Consider a family (us) of vNM utilities, where us = sλs for some
λs > 0 and s ∈ S ⊂ SK where S is countable. Let µ ∈ P(S) be a probability measure
on S, and let A ∶ S → P(S) be a transition operator from states to probability
measures on S, so that A(s) = µs, and let δ ∈ (0, 1). A tuple ((us),µ0,A, δ) is a
representation of Markovian Preference for Flexibility (MPF), and induces a
utility over IHCPs V(x,µ0), where V is defined recursively as

V(x,µ) = ∫
SK

max
p∈x

{∫
K×Z

[us(k) + δV(z,µs)]dp(k, z)} dµ(s)

23



where A(s) = µs. We refer to (us) as the relevant set of subjective tastes, µ0

as initial beliefs, µs as state contingent beliefs over future subjective states,
(µs) ∪ µ0 as the collection of all beliefs, and δ as the discount factor.

Let S∗ denote the set of relevant states, those states that can be reached,
given µ0 and A. A set of states E ⊂ S∗ is ergodic if (i) conditional on being in
the set E of states, the probability of transitioning to another state outside E
is zero, and (ii) there is no proper subset of E with this property. We can now
state the main theorem of this section.

Theorem 5.2. A preference ≽ satisfies Axioms 1, 2, 4, 6–8 if, and only if, it has a
SPF representation ((us),µ0,A, δ) where µ0 and all A(s) = µs have finite support. In
this representation, δ is unique, and for any ergodic set of states S ′ ⊂ S∗, the relative
intensities of tastes, λs ′/λs ′′ as well as relative beliefs µ0(s ′)/µ0(s ′′) and µs(s ′)/µs(s ′′)
are unique for all s ′, s ′′ ∈ S ′ and any s ∈ S∗. Across sets of ergodic states, (us) and
(µs) are at least jointly identified as in DLR.

The proof consists of showing that a representation exists, where the
discount factor may also depend on the state, and then showing that any such
representation, with a state dependent discount factor, can be renormalized to
give an SPF with a unique discount factor, and then establishing the uniqueness
of the parameters of the SPF proves the theorem. It is more instructive to first
assume the existence of a representation with a state dependent discount factor,
and show that there is also a unique representation with a constant discount
factor, and defer showing the existence of such a representation.

5.2. Representation with Constant Discounting

We now show this via a number of steps.

§ 5.2.1. Existence of Representation with Constant Discount Factor

Suppose

V(x,µ0) = ∫
S
max
p∈x

{∫
C×Z

[us(c) + δ (s)V(z,µs)]dp(c, z)} dµ0(s)
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represents ≽. We now prove that a representation with constant discount
factor exists. Note that S∗ is countable. Consider a MPF representation, which
features a constant discount factor,

V̂(x, µ̂0) = ∫
Ŝ
max
p∈x

{∫
C×Z

[ûs(c) + δ̂V̂(z, µ̂s)]dp(c, z)}dµ̂(s)

Let ξ be the collection of scaling factors for the relevant tastes, that is
ξ(s) = λs/λ̂s. Abusing notation, we write ⟨µ,ξ⟩ to denote ∑

s ′∈S ′
µ(s ′)ξ(s ′). The

uniqueness result in DLR applies to the representation of ≽tK for all t. Hence,
Ŝ∗ ≡ S∗ and µ̂ (s) =

µ(s)ξ(s)
⟨µ,ξ⟩ must hold for all µ ∈ (µs) ∪ µ0. Then clearly

∫
S∗

max
p∈x

{∫
C×Z

[ûs(c) +
δ (s)

ξ (s)
V(z,µs)]dp(c, z)}dµ̂0(s)

represents ≽, as it is a renormalisation of V(x,µ0). Therefore, δ̂V̂(z, µ̂s) =
δ(s)
ξ(s)V (z,µs) must hold for all s ∈ S∗. At the same time V̂(z, µ̂) = V(x,µ)

⟨µ,ξ⟩ . Hence,

δ̂ =
δ(s)
ξ(s) ⟨µs,x⟩. To show that there is such a representation, we have to show

that there is ξ such that δ(s)
ξ(s) ⟨µs,ξ⟩ is constant for all s ∈ S∗.

Consider a situation where S∗ = {s1, s2, ...}. Since a common rescaling of
all tastes is always possible, we can confine attention to ξ with ∑i⩾1 ξ(si) = 1.
We proceed by induction. Consider the following induction hypothesis:

Suppose the following is true for n−1: For any κ < 1 such that ∑i⩾n ξ(si) =
κ, there exist ξ(si;κ,n − 1) such that (i) ∑i⩽n−1 ξ(si;κ,n − 1) = 1 − κ, and (ii) for
all i ⩽ n − 1, ⟨µsi ,ξ⟩

δ(si)
ξ(si) is a constant.

We now establish that the proposition is also true for n, if it is true for n−1.
Let ∑i>n ξ(si) = 1 − κ and suppose ξ(sn) = r ⩾ 0. For each r ∈ [0, 1 − κ], by the
induction hypothesis, we can find ξ(si;κ,n−1) such that (i)∑i⩽n−1 ξ(si;κ,n−1) =
1−κ− r, and (ii) for all i ⩽ n−1, ⟨µsi ,ξ⟩

δ(si)
ξ(si) is a constant. Clearly, when r ≈ 1−κ,

this constant is strictly bigger than δ(sn) ⟨µsn ,ξ⟩ /ξ(sn), and when r ≈ 0, this
constant is some positive number, that is strictly less than δ(sn) ⟨µsn ,ξ⟩ /ξ(sn).
Therefore, by the intermediate value theorem, there exists an r∗ such that the
hypothesis holds for n. It is easy to see that the induction hypothesis holds for
n − 1 = 1, which proves our claim.
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§ 5.2.2. Uniqueness of δ

We now claim that δ is unique in any MPF representation. Suppose not, then
there would be a MPF representation ((ûs), µ̂0, Â, δ̂) with δ̂ = δ

ξ(s) ⟨µs,ξ⟩. This

is only possible for ξ(s)
⟨µs,ξ⟩ constant. This requires ξ(s) to be constant on the

support of µs, and therefore δ̂ = δ.

§ 5.2.3. Uniqueness Properties of ((us),µ0,A)

The intertemporal trade off between consumption and continuation problems
in the additively separable MPF representation implies that rescaling us by 1

ξ(s)

also must lead to a rescaling of δV(⋅,µs) by 1
ξ(s) . As noted above, V̂(⋅, µ̂) = V(⋅,µ)

⟨µ,ξ⟩ .

It is useful to recall some facts from linear algebra. For an n × n matrix
Q, ρR ∈ R is a right eigenvalue if there exists a vector xR such that QxR =

ρRxR. The vector xR is referred to as the eigenvector corresponding to the
eigenvalue ρR. Also, ρL ∈ R is a left eigenvalue if there exists a vector xL
such that x⊺LQ = ρLxL (where x⊺L is the transpose of xL), and the vector xL is
referred to as the eigenvector corresponding to the eigenvalue ρL. Notice that
any scalar multiple of an eigenvector is also an eigenvector. Therefore, when
speaking about the uniqueness of an eigenvector, we identify all eigenvectors
that are scalar multiples of each other. It can be shown that the set of left and
right eigenvalues is the same, so we may refer to eigenvalues without further
qualification. However, the left and right eigenvectors are, in general, not
identical. The following lemma allows us to connect the number of left and
right eigenvectors.

Proposition 5.3. Let Q be a n × n stochastic matrix (that is, all the rows are
nonnegative and sum to 1). Suppose ρ = 1 is an eigenvalue of Q and suppose
also that there is a unique left eigenvector corresponding to the eigenvalue
ρ = 1. Then, there is a unique right eigenvector.

Proof. Notice that if Q is ergodic, there is a unique left eigenvector correspond-
ing to ρ = 1. Let this left eigenvector be xL. Then, xL solves x⊺L[Q − I] = 0, where
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I is the identity matrix. We know that the solutions from the space orthogonal
to the column vectors of the matrix Q − I. By the Rank-Nullity Theorem, Lang
(1987, Chapter 3, Theorem 3.2), we know that

column rank + dim space of solutions = n

row rank + dim space of solutions = n

But the row rank and the column rank are equal; see, for instance Lang (1987,
Chapter 5, Theorem 3.2). Therefore, the dimension of the set of left and right
eigenvectors is the same, and equal to 1. This is equivalent to saying that there
is a unique right eigenvalue (up to scalar multiples).

Given that δ is constant, it must be true that ξ(s) = ⟨µs,ξ⟩ for all s in
the support of µs. Clearly, 1 is a solution to this equation. More generally,
any constant vector ξ is a solution to this equation. By the proposition above,
every solution must be a scalar multiple of 1. The observation above helps us
conclude that ξ(s ′)/ξ(s ′′) = 1 for all s ′, s ′′ ∈ S ′.

At any time t there only finitely many states that are or have been relevant
for consumption. Consider any ergodic subset of these states, for A. Each such
set has, by ergodicity of the set, a unique stationary distribution, which by
definition must be ξ. The trade off of gains in different ergodic sets of states
is, from the ex-ante perspective, analogous to trade of across states in DLR’s
original model, and the same indeterminacy of beliefs results.

In “steady state”, that is at a point in time where subjective tastes have
reached an ergodic set, all the parameters of the representation are unique.

5.3. Existence of Representation for Nonstationary Choice

As before, ≽ is a preference relation on Z. We know that a preference ≽ satisfies
Independence and Monotonicity if and only if there exists a finite charge µ
such that the function

V(x) ∶= ∫
S ′

max
p∈x

⟨p, s⟩ dµ(s)
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for all x ∈K, represents ≽.

This theorem is proved above. In particular, SK×Z is the unit ball of a
certain hyperplane in the space C(K × Z), the space of uniformly continuous
functions on K × Z. We also have the following proposition.

Proposition 5.4. A preference ≽ satisfies Independence, Monotonicity and
Separability if and only if there exists a finite measure µK and a finite charge
µZ such that the function

V(x) ∶= ∫
SK×SZ

max
p∈x

[u(pk, sk) + v(pz, sz)] dµK(sk)dµz(sz)

for all x ∈K, represents ≽.

Proof. The proof is the same as the proof of separability in the stationary case,
in lemma 4.9. In that proof, we only used Separability, Independence and
Monotonicity, and stationarity to show that ≽K is not trivial. Instead, here we
use the axiom Dynamic Nontriviality which says that ≽tK is nontrivial for all
t ⩾ 0. The proof then follows that of lemma 4.9.

This is an important observation, since it allows us to separate the val-
uation of the present and the future. This is useful since it is much easier to
analyze SK × SZ than SK×Z, since C(K) × C(Z) is much simpler than C(K × Z).
(We note that SK × SZ ⊂ SK×Z.)

First some notation. For each s ∈ SK, define Π(s) ∶= {t ∈ SZ ∶ (s, t) ∈ SK×SZ},
as the fiber over s. Moreover, for each s ∈ SK, µK(s) ∶= ∫Π(s) dµ(s, t) = µ(Π(s)).
That is, µK is the measure induced by µ on SK.

We can now state our next proposition, that places a lot of structure on
how the future is valued.

Proposition 5.5. Consider a preference functional of the form

V(x) ∶= ∫
SK×SZ

max
p∈x

[u(pk, sk) + v(pz, sz)] dµ(sk, sz)

representing a preference ≽, where x ∈K, such that proj
SK

(suppµK) <∞. The
following are equivalent.
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(a) The set Π(s) is a singleton for each s ∈ S∗.

(b) The preference ≽ satisfies Axioms 6, 7 and 8.

Proof. Recall that p∗ ∶= ( 1
∣K∣ , . . . ,

1
∣K∣) is the uniform measure on the set of con-

sumption outcomes that also gives 0 utility in each subjective state, and
Bδ ∶= {p ∈ ∆∣K∣−1 ∶ ∥p − p∗∥2 ⩽ δ}. For a consumption menu, A, denote it’s ε
neighbourhood by N(A; ε).

Since the support of µK is finite, there is an ε1 > 0 such that for any
s ∈ suppµK, p ∈ N(Bδ; ε1) is chosen only in state s and something else from Bδ

is chosen in all the other states. So, fix the state s and the corresponding p,
and notice that by construction, Bδ ∪ {p} ≽K Bδ. Therefore, by Consumption
Continuation Strategic Rationality, there is c ∈KK such that (i) Bδ ∪ {p} ∪ c ≽K

Bδ∪c, and (ii) (Bδ∪{p}∪c,{x,y}) ∼ (p,y)∪(Bδ∪c,{y, z}) for all x,y ∈KZ. Then,
it must be the case that

∫
Π(s)

max
(q,ỹ)∈

{p,y}∪(Bδ∪c,{y,z})

[u(q, s) + v(ỹ, t)] dµZ(t∣s)

=∫
Π(s)

[u(p, s) + max
ỹ∈{y,z}

v(ỹ, t)] dµZ(t∣s)

where the left hand side is the utility from the menu (p,y) ∪ (Bδ ∪ c,{y, z})
contingent on being in state s, and the right hand side is the utility from the
menu (Bδ ∪ {p} ∪ c,{x,y}) also contingent on being in state s. (In any other
state s ′ ≠ s, because there is a preference for flexibility, the agent will always
pick from Bδ × {y, z}, which is available to both menus.)

But notice that, by definition, u(p, s) > u(q, s) for all q ∈ Bδ, which means
that for almost all t ∈ suppµZ(t∣s),

max
(q,ỹ)∈

{p,y}∪(Bδ∪c,{y,z})

[u(q, s) + v(ỹ, t)] ⩽ u(p, s) + max
ỹ∈{y,z}

v(ỹ, t).

But since the integrals above are equal, this actually means that for almost all
t ∈ suppµZ(t∣s), we actually have

max
(q,ỹ)∈

{p,y}∪(Bδ∪c,{y,z})

[u(q, s) + v(ỹ, t)] = u(p, s) + max
ỹ∈{y,z}

v(ỹ, t).
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Let us assume, without loss of generality, that y ∈ argmax{y,z} v(ỹ, t). Recalling
that u(p, s) > u(q, s), we conclude that almost all t ∈ suppµZ(t∣s), v(y, t) ⩾

v(z, t). But this is equivalent to saying that there is a singleton in Π(s) that is
assigned full measure by µZ(t∣s).

Notice that the lemma says that for every way of valuing present con-
sumption, there is a unique way of valuing future consumption. This is how we
exploit recursivity. From here, the Markovian representation follows relatively
easily.

Another comment is in order. Without the above proposition, the repre-
sentation is both unwieldy and difficult to interpret. In particular, it would
suggest that there are things quite apart from consumption utility that de-
termines how the agent values streams of consumption. While this may be
interesting (and natural) in some contexts, we prefer to stay as close as possible
to standard infinite horizon consumption models and the subjective state space
of DLR. We can now finish the proof of the theorem.

§ 5.3.1. Existence of a Recursive Representation

Note that ≽t satisfies separability, monotonicity, independence and non-trviality.
Consequently, it can be represented by a DLR representation. On the one hand,
according to Proposition 5.2, ≽1 is represented by

Vt(x) = ∫
SK

max
p∈x

[û(pk, s) + v̂(pz, s)]dµ̂(s)

for some µ̂. On the other hand, recalling the definition of ≽t, consider a
representation of ≽1:

V1(x)∝ V(a,x) = ∫
SK

max
p∈(a,x)

[us(pk) + v(x, s)]dµ(s)

= ∫
SK

max
pK∈a

us(pk)dµ(s) + ∫
SK

v(x, s) dµ(s)

or
V1(x)∝ ∫

SK

v(x, s)dµ(s)
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where µ has the same support as µ̂.

Hence,
v(x, s) = ∫

SK

max
p∈x

[û(pk, s) + v̂(pz, s)]dµ̃(s)

for some µ̃ with the same support as µ̂. Now rescale û(⋅, s ′) to become us ′(⋅)
for all s ′ ∈ SK. Let ξ(s ′) =

û(⋅,s ′)
u(⋅,s ′) . Find the corresponding measure µs(s ′) =

µ̃(s ′)ξ(s ′)
∫SK ξ(s

′)dµ̃(s ′) . Finally, let δ(s) ∶= ∫SK ξ(s
′)dµ̃(s ′) to arrive at the representation

V(x,µ0) = ∫
SK

max
p∈x

{∫
K×Z

[us(k) + δ(s)∫
SK

max
p ′∈z ∫K×Z

[us ′(k
′)+

+ v(z ′, s ′)dp ′(k ′, z ′)]dµs(s ′)] dp(k, z)} dµ(s)

Induction over t gives the recursive representation

V(x,µ0) = ∫
SK

max
p∈x

{∫
C×Z

[us(c) + δ (s)V(z,µs)]dp(c, z)}dµ(s).

6. Comparative Statics

Preference for flexibility is the preference for non degenerate menus over
singletons. Intuitively, one DM has more preference for flexibility than another,
if she has a stronger preference for menus over singletons. To formalize this
notion, compare two preference rankings that have an SPF representation, and
agree on singletons.

Definition 6.1. If ≻ and ≻∗ have an SPF representation, ≻∗ has a greater prefer-
ence for flexibility than ≻ if

α ≻K β if, and only if, α ≻∗K β

and
a ≻K β implies a ≻∗K β

for all α,β ∈ P(K), a ∈KK.
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Since preference for flexibility is the behavioral manifestation of uncer-
tainty about tastes, it is ideally characterized in terms of beliefs. In our dynamic
context the intertemporal tradeoff separately identifies beliefs and intensities.
This allows us to compare decision makers that agree in terms of the inten-
sities of their tastes but may differ in their beliefs. To do so, suppose there
are two prizes, m,M ∈ K, that can play the role of numeraires across tastes:
M is unequivocally better than m, and the strength of the preference for M
over m is independent of the relevant taste s. Intuitively, this requires that
the cost of giving up an ε amount of M (in probability) for an extra unit of
continuation consumption is the same for each taste. In order to capture the
behavioural content of this requirement in an axiom, let α,β ∈ P(K) be such
that α(m) > β(m) > ε. Define α ′ such that α ′(m) ∶= α(m)− ε, α ′(M) ∶= α(M)+ ε

and α ′(k) ∶= α(k) for all other k ∉ {M,m}. Analogously define β ′. Therefore,
α ′ differs from α in that α ′ has an ε lesser mass on m than α, but an ε greater
mass on M than α, while agreeing on all other prizes. Moreover, β ′ differs
from β in the same way. The following axiom now ensures the existence of
numeraires.

Axiom 9 (Numeraire). x ∪ (α,pz) ∼ x ∪ (α ′, 0) implies z ∪ (β,pz) ∼ z ∪ (β ′, 0) for
all z, pz ∈K(Z).

Recall that the normalization of the taste space S in the representation
SPF above was arbitrary. Consider instead a renormalization that takes into
account intensities.

Definition 6.2. Let ((us),µ, δ) be the SPF representation of ≻. For us = sλs,
renormalize the taste space SK according to the intensities (λs), and include
only relevant tastes, that is, tastes in the support of µ:

Sλ ∶= {sλs ∶ s ∈ supp(µ) ⊂ S}

The unique SPF representation of ≻ can be rewritten in terms of Sλ as

U(x) = ∫
Sλ

max
p∈x

{∫
K×Z

[ ⟨s,pk⟩ + δU(z)] dp(k, z)} dµ(s)
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and denoted by (Sλ,µ, δ), where µ now denotes a probability measure over
Sλ with full support. Let s(k) denote the component of s that corresponds to
prize k ∈ K. It can be verified that Axiom Numeraire indeed implies that Sλ
can be normalized such that s(M) = 1 and s(m) = 0 for all s ∈ Sλ. Consequently,
Sλ ⊂ R∣K∣−2 and if ≻ and ≻∗ both satisfy Axiom Numeraire, then S∗λ = Sλ. In
order to characterise a notion of greater preference for flexibility, we need the
following definition.

Definition 6.3 (Increasing convex order). Let µ and µ∗ be probability measures
with support in Sλ. Then, µ dominates µ∗ in the increasing convex order if for
every increasing convex function ϕ ∶ R∣K∣−2 → R, ∫ ϕdµ ⩽ ∫ ϕdµ∗.

We can now characterise a greater preference for flexibility in terms of
the measure µ.

Proposition 6.4. If ≻ and ≻∗ have an SPF representation and satisfy Axiom
Numeraire, then ≻∗ has a greater preference for flexibility than ≻ if, and only if,
µ dominates µ∗ in the increasing convex order.

Sketch of Proof. Since Sλ is bounded, we can restrict attention, without loss of
generality, to convex functions u defined on the closed convex hull conv(Sλ)
of Sλ. Moreover, we can restrict attention to increasing convex functions that
are Lipschitz, with rank less than 1. Call this set Φ. But the set of increasing,
piecewise linear, convex functions with Lipschitz rank less than 1, Φ0, is dense
in Φ. Therefore, we will be done if we can show that for all nonnegative
functions ϕ ∈ Φ0, ∫ ϕdµ ⩽ ∫ ϕdµ∗.

But notice that the utility of a lottery p is a linear function of the state s ∈ Sλ.
Therefore, the utility of any finite menu is a piecewise linear convex function.
Indeed, for any nonegative function ϕ ∈ Φ0 with ϕ(0) = 0, we can construct a
finite menu x such that the utility of the menu x is U(x) = ∫ ϕ(s)dµ(s). Thus,
a greater preference for flexibility corresponds exactly to dominance in the
increasing convex order.
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To illustrate this result, consider the example of two decision makers, DM
and DM*, both of whom have monotone preferences over {0, 1/2, 1} and are
uncertain about their future risk aversion. Further, suppose their preferences, ≻
and ≻∗ respectively, have an SPF representation and satisfy Axiom Numeraire
for m = 0 and M = 1.5 Axiom Numeraire suggests that we may take u(0, s) = 0,
and u(1, s) = 1 for all s ∈ Sλ. What is uncertain is the utility of 1/2, which is
s ∈ Sλ = [0, 1].

Proposition 6.5. DM* has a greater preference for flexibility than agent DM if,
and only if, µ second order stochastically dominates µ∗.

This follows easily from proposition 6.4, since in one dimension, the
increasing convex order corresponds to second order stochastic dominance.
Nevertheless, we provide a proof, both because it is simple, and because it is
illustrative.

Proof. A lottery is α = (α0,α1/2,α1). The utility of a lottery α to DM is

U(α) = α1 + α1/2∫ sdµ(s)(6.1)

DM* has a greater preference for flexibility than DM. This means that they rank
singletons the same. Given the normalisations, this corresponds to requiring
U∗(α) +U(α) for all lotteries α ∈ P(K). Equation (6.1) then implies that their
taste measures µ and µ∗ must have the same mean, that is, they must satisfy

∫ sdµ(s) = ∫ sdµ∗(s)(6.2)

Also, that DM* has a greater preference for flexibility than DM means that for
each menu {α,β}, U∗(α,β) ⩾ U(α,β).

5For example the choice of DM who is uncertain about the parameter of risk aversion
ρ in the CRRA utility uρ(k) = k1−ρ satisfies this assumption, as uρ(1) = 1 and uρ(0) = 0
for all ρ > 0, ρ ≠ 1. Note that this is not the isoelastic CRRA utility often used in standard
models. Isoelasticity would imply that there is no ‘numeraire’ that would facilitate the cardinal
comparison of utilities across different levels of risk aversion. This cardinal comparison is
central in a model of uncertainty about future risk aversion, but meaningless in standard
models.
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Consider a menu {α,β} such that r ∶= (α1−β1)/(β1/2−α1/2) ∈ [0, 1]. Clearly,
α is preferred by DM to β in state s ∈ Sλ if, and only if, s ⩽ r. Therefore, the
(expected) utility of the menu {α,β} to DM is

U(α,β) = ∫
r

0
[α1 + sα1/2]dµ(s) + ∫

1

r
[β1 + sβ1/2]dµ(s)

= U(α) + [β1/2 − α1/2]∫
1

r
(s − r)dµ(s)

with a similar expression for DM*.

Notice that by choosing the lotteries p and q appropriately, we can force
r to take every value in [0, 1]. Therefore, DM* has a greater preference for
flexibility than DM if, and only if, for each r ∈ [0, 1], ∫

1
r
(s − r)dµ∗(s) ⩾ ∫

1
r
(s −

r)dµ(s).

Since µ and µ∗ have the same mean, this is equivalent to requiring that

∫

r

0
(s − r)dµ(s) ⩾ ∫

r

0
(s − r)dµ∗(s) for all r ∈ [0, 1](6.3)

Therefore, DM* has a greater preference for flexibility than DM if, and only
if, (6.2) and (6.3) hold. But (6.2) and (6.3) correspond exactly to requiring that
µ second order stochastically dominates µ∗ (see, for instance, p 33 of Laffont
(1989)), which completes the proof.

The propositions may appear to hold even in a static context, since they
are valid for every period t. However, the comparison of decision makers who
agree in terms of the intensities of their tastes but may differ in their beliefs is
only possible, because the intertemporal tradeoff separately identifies beliefs
and intensities. In contrast, the notion of ‘greater preference for flexibility’
proposed in DLR for the static context cannot rely on beliefs, µ, but only
on the (uniquely identified) support of µ. In terms of behavior this implies
that, instead of characterizing whether one DM has a stronger preference
for flexibility than another, DLR can only characterize whether one DM has
any preference for flexibility, whenever the other does. Note that neither
ranking is complete. While ours can only compare preferences that agree on
the ranking of singletons, the ranking in DLR can only compare preferences
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with representations for which the support of the measure is ordered by set
inclusion.

Next we connect our behavioral notion of ‘greater preference for flexibility’
to price behavior in a simple Lucas tree economy.

7. A Lucas Tree Economy

We shall consider a discretised version of the Lucas tree after Lucas (1978).
There is an economy with a representative agent, and one productive asset.
The asset produces y ⩾ 0 units of output, or dividends in each period. Output
varies over time, according to the Markov process F(y ′,y), with stationary
distribution ϕ.

The agent has z ∈ [0, 1] shares in the asset, which gives him a proportional
right to the output. Specifically, with probability z, he gets all the output,
and with complementary probability, he gets none of the output. He is in
(taste) state s ∈ S in each period, and his tastes evolve according to the Markov
measure µ(s ′, s).

There is a market where the agent can trade for the probability q of
getting all of the output of output and shares for the next period’s output. The
price of a unit of q is normalized to 1 in each state (y, s), while the price of a
share is p(y, s). Therefore, the agent’s value function, when he owns z shares
in the asset is

v(z,y, s) = max
q,x

[u([q;y], s) + δ∬ v(x,y ′, s ′)dF(y ′,y)dµ(s ′, s)]

subject to
q + p(y, s)x ⩽ z + p(y, s)z

where [q;y] is the the lottery that gives y with probability q and 0 with
probability 1 − q. Then, u([q;y], s) = qu(y, s) + (1 − q)u(0, s).

As in proposition 6.5 above, we shall assume that u(0, s) = 0 for all s ∈ S. By
following the arguments in Lucas, we can show that for each continuous p(y, s),
there exists a unique continuous, bounded, nonnegative function v(z,y, s) that
satisfies the Bellman equation above, and is concave in z.
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We know that in equilibrium, we must have q = z + p(y, s)z − p(y, s)x,
so that u([q;y], s) = u(y, s)[z + p(y, s)z − p(y, s)x]. Following the arguments
in Lucas (1978), we can show that the pricing function p(y, s) is the unique
solution to the functional equation

p(y, s) =
g(y, s)
u(y, s)

+ δ∬
u(y ′, s ′)
u(y, s)

p(y ′, s ′)dF(y ′,y)dµ(s ′, s)(7.1)

where
g(y, s) = δ∬ u(y ′, s ′)dF(y ′,y)dµ(s ′, s)

We remark that we could just as easily have normalized the price of a share to
be 1 in each state (y, s), in which case the price of a unit of q (the probability
for immediate consumption) becomes ψ(y, s) = 1/p(y, s). In what follows, it
will be more natural to work with the price ψ(y, s).

7.1. Stationary Distributions

Consider the special case where the Markov chains F and µ are iid over time.
Then, g(y, s) is a constant (albeit one that clearly depends on F and µ), and the
pricing equation (7.1) can be rewritten as

f(y, s) = g + δ∬ f(y ′, s ′)dF(y)dµ(s)

where f(y, s) = p(y, s)u(y, s). Since g is constant, the unique solution is given
by

f(y, s) =
g

1 − δ

=
δ

1 − δ∬
u(y ′, s ′)dF(y ′)dµ(s ′)

=
δ

1 − δ
E[u; F,µ] =∶ Λ(F,µ)

which can be rewritten as
ψ(y, s) =

u(y, s)
Λ
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7.2. Preference for Flexibility and Price Volatility

Suppose, as before, that there are only three levels of output, 0, 1/2 and 1. We
are now in a position to relate the distribution of prices with the distribution
of tastes. Consider two exchange economies, with representative agents A
and B respectively. (We shall refer to economies as A and B respectively.) We
shall assume, as above, that both agents have preferences which have an SPF
representation and satisfy axiom Numeraire with M = 1 and m = 0. We shall
also assume that ≻A and ≻B agree on the intertemporal tradeoff for getting 1
instead of 0, which implies δA = δB.

Recall that Λi = δ
1−δ E [u; F,µi] for i = A,B and in state (y, s), the price of a

unit of probability of consumption q is

ψi(y, s) =
u(y, s)
Λi

for the economy inhabited by agent i. Notice first that E [u; F,µi] = ∫ [0 ⋅ f0 +
s ⋅ f1/2 + 1 ⋅ f1]dµi(s) = f1 + f1/2 ∫ sdµi(s) is independent of i, where fj is the
probability that output is j ∈ {0, 1, 2}. This implies ΛA = ΛB = Λ. Hence,

ψi(0, s) = 0

ψi(1, s) =
1
Λ

ψi(1/2, s) =
s

Λ

for i = A,B and s ∈ [0, 1]. In both economies the price of a unit (in probability)
of consumption is constant across tastes, if output is either 0 or 1. Let ψi(0)
and ψi(1) denote these prices. However, since tastes are stochastic, we can say
something about the distribution of prices in the two economies for the case
where output is y = 1/2. We let Hi(λ) = P (ψ(1/2, s) ⩽ λ) denote this distribution
in economy i.

Proposition 7.1. In the two economies above, ψA(0) = ψB(0) = 0, ψA(1) =

ψB(1) = 1
Λ
, and HA second order stochastically dominates HB if, and only if,

agent B has a greater preference for flexibility than agent A.
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Proof. Recall that the distribution of tastes s in economy i is given by the
measure µi. By the arguments above, we have shown that the distribution of
ψA(1, s), HA, second order stochastically dominates the distribution of prices
HB, if, and only if, µA second order stochastically dominates µB. But by
proposition 6.5 above, this happens exactly when B has a greater preference for
flexibility than A, which completes the proof.
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8. Proof of Theorem 3.1

We collect here proofs that could not find a home in the paper.

8.1. A General Representation

Let us recollect the notation from the paper. Let Z be a compact metric space,
C(Z) the Banach space of uniformly continuous functions on Z, and let M(Z) be
the space of all finite, signed, regular Borel measures on Z (with the associated
sigma algebra). Then, ⟨C(Z),M(Z)⟩ is a dual pair.

Let P(Z) ⊂ M(Z) represent the space of probability measures on Z and
fix p0 ∈ P(Z). Define X ′ ∶= span (P(Z) − p0) which is a subspace of M(Z). Let
X ′⊥ ∶= {x ∈ C(Z) ∶ ⟨x,x ′⟩ = 0 for all x ′ ∈ X ′} be the annihilator of X ′, so that X ∶=
{x ∈ C(Z) ∶ ⟨x,x ′⟩ ≠ 0 for some x ′ ∈ X ′}. It is easy to see that X ′⊥ = {α1 ∶ α ∈ R} is
the space of constant functions. This verifies that dim(X ′⊥) = 1 = codim(X), and
X⊕ X ′⊥ = C(Z). Moreover, ⟨X,X ′⟩ is a dual pair.

Let U ′ be the closed unit ball of X ′ (assuming X ′ has the total variation
norm), and U the closed unit ball of X. By Alaoglu’s theorem, U ′ (the unit ball
in X ′) is weak* compact and metrisable. Let d be a metric that induces the
weak* topology on U ′. Let F be the space of all weak* closed, convex subsets
of U ′. For any weak* compact, convex subset A of X ′, let hA ∶ X → R be its
support function, ie hA(x) = sup

x ′∈A ⟨x,x ′⟩. The support function is sublinear
and Mackey continuous (Theorem 5.102, Aliprantis and Border, 1999), and
hence is also norm continuous (Corollary 6.27, Aliprantis and Border, 1999),
since the Mackey and norm topology coincide on normed spaces.

Notice that a support function is completely defined by the values it takes
on ∂U, the boundary of U. Therefore, for any sublinear and norm continuous
function h ∶ X → R, we shall consider its restriction to ∂U, denoted by h. We
shall call a function h ∶ ∂U→ R a support function if its unique extension to X by
positive homogeneity is sublinear and norm continuous, ie is a support function
in the sense described above. (Thus, we have support functions defined on both
X and ∂U. Which function we are referring to will be clear from the context,
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and also from the notation — support functions defined on X will have a ‘bar’
on top, while support functions defined on ∂U will not.)

For any support function h ∶ ∂U → R, define Ah = {x ′ ∈ X ′ ∶ ⟨x,x ′⟩ ⩽

h(x), ∀x ∈ ∂U}. Support functions have the following duality. For any weak*
compact subset A of X ′, AhA = A and for any support function h, h = hAh . The
support function has the following useful properties: (i) A ⊂ B if and only if
hA ⩽ hB, (ii) hA+λB = hA + λhB whenever λ ⩾ 0, and (iii) hA∩B = hA ∧ hB and
hconv(A∪B) = hA ∨ hB.

Recall that the polar of the set U is U○ ∶= {x ′ ∈ X ′ ∶ ∣⟨x,x ′⟩∣ ⩽ 1}, so that U′○.
Moreover, (U ′○ = U○○ = U. Notice that with this definition, sup

x∈∂U hU ′(x) = 1.

Let λ > 0. The space Fλ of compact, convex subsets of λU′ can be metrised
by the Hausdorff metric ρd. We shall write F1 as F. Let us now show that the
Hausdorff distance between two sets can be measured by the uniform distance
between their support functions. The following result is essentially Lemma
6.41 in Aliprantis and Border (1999).

Proposition 8.1. Let A,B ∈ F. Then,

ρd(A,B) = sup{ ∣hA(x) − hB(x)∣ ∶ x ∈ U}

= sup{ ∣hA(x) − hB(x)∣ ∶ x ∈ ∂U}

where ∂U = {x ∈ U ∶ ∥x∥ = 1} is the boundary of U.

Proof. Recall that A ⊂ B if and only if hA ⩽ hB. Also, a characterisation of the
Hausdorff metric is

ρd(A,B) = inf{ε > 0 ∶ B ⊂ A + εU ′ and A ⊂ B + εU ′}.

But hA+εU ′ = hA + εhU ′ . Therefore, B ⊂ A + εU ′ if and only if hB(x) − hA(x) ⩽
εhU ′(x) ⩽ ε for all x ∈ ∂U. Thus, ∣hA(x) − hB(x)∣ ⩽ ε for all x ∈ ∂U if and only if
ρd(A,B) ⩽ ε. In light of the characterisation of the Hausdorff metric, the claim
is proved.

The second equality displayed above follows immediately from the posi-
tive homogeneity of support functions.
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An easy corollary of the above proposition is the following. For λ > 0,
and λA,λB ∈ Fλ, ρd(λA,λB) = λρd(A,B). This follows from the fact that for a
support function hλA = λhA.

Let K denote the space of weak* compact, convex subsets of P(Z)−p0, and
notice that K ⊂ Fλ for some λ > 0. Define K0 ∶= {h ∈ RX ∶ h = hA for some A ∈K}.
Let ϕ ∶ K → R be Lipschitz continuous and linear. This induces a Lipschitz
continuous linear functional Φ ∶ K0 → R, so that ϕ(A) = Φ(A) for all A ∈

K. Proposition 8.1 ensures that the two functions preserve the appropriate
limits, in the sense that for any sequence (An) in K0, An →w∗ A if and only if
sup

x∈∂U ∣hAn(x) − hA(x)∣→ 0.

For ease of notation, we shall write ∂U as U. This shall serve as our
universal subjective state space. Each x ∈ U is a continuous function on Z, and
hence a vNM function. Moreover, as established earlier, no x ∈ U is constant on
Z.

Notice that U is metrisable (by the norm), hence normal and Hausdorff.
Also, K0 ⊂ Cb(U), the space of all bounded, continuous functions on U. Since
Φ ∶ K0 → R is Lipschitz continuous and linear, by the Hahn-Banach theorem,
it has a linear extension to Cb(U) that we shall denote as Φ. (First extend Φ
to the span(K0) by linearity, and then extend to Cb(U) by the Hahn-Banach
theorem.) Moreover, Φ has the same Lipschitz constant as Φ.

When Z is finite, it is prudent to let p0 be the uniform measure. Then,

U ∶= {x ∈ R∣Z∣ ∶ ∑z x(z) = 0 and ∥x∥2 = 1} is compact. Moreover, span(K0)
is then dense in Cb(U) = C(U) (since U is compact). This means there is a

unique Φ that extends Φ ∶ K0 → R to Cb(U). Unfortunately, the density result

doesn’t seem to be true when Z is infinite. At any rate, we aren’t able to settle

this one way or the other. This means we can’t ensure the uniqueness of Φ.

Let ban denote the set of bounded, normal, finitely additive (signed)
measures, ie charges on AU, the algebra generated by the open sets in U. We
can now state the following.

Theorem 8.2. The function ϕ ∶ K → R is linear and Lipschitz if and only if there
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exists a finite charge µ ∈ ban(AU) such that

ϕ(A) = ∫
U
hA dµ

= ∫
U
sup
x′∈A

⟨x,x′⟩ dµ(x)

for all A ∈K.

Proof. The ‘if’ part is clear. We shall only prove the ‘only if’ part.

By the construction above, we see that there exists Φ ∶ Cb(U)→ R that is
linear and continuous (hence Lipschitz continuous) such that Φ∣K0 = ϕ. By a
Riesz representation theorem, for instance Theorem 13.10 of Aliprantis and
Border (1999), we see that there exists a finite normal charge µ such that
Φ(f) = ∫ f dµ for all f ∈ Cb(U). Using the definition of the support function
then proves our theorem.
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