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Abstract

Several recent empirical studies document the frequent occurrence of �snip-

ing� � the act of submitting last-second bids � in online auctions. At �rst

glance, sniping would appear to be super�uous, given the second-price struc-

ture of online auctions. This conclusion, however, neglects the sequential

arrival of new auctions and the implicit option value of losing the current auc-

tion. The option is the expected surplus from bidding on subsequent auctions.

By waiting until the last moment to bid, a bidder maximizes her information

about the value of the surplus. Since a bid is binding, last-second bidding

precludes her from being locked into a potentially suboptimal bid submitted

earlier. To illustrate the dynamics of the model, I provide a quantitative so-

lution for the option value.
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One of the more striking characteristics of online auctions is the preponderance

of bidding activity in the closing minutes of an auction. Anyone with even a casual

familiarity with eBay, the dominant brand in the space, has surely witnessed an

auction with little to no activity for the �rst six days, 23 hours, and 55 minutes,

with a sudden �urry of frenzied bidding in the subsequent and �nal �ve minutes.

The phenomenon is so widespread it has both a name, �sniping�, and secondary

websites devoted strictly to facilitating it (e.g., esnipe.com, auctionsniper.com, just-

snipe.com). Sniping has been formally documented byWilcox (2000), Roth and Ock-

enfels (2002), Bajari and Hortaçsu (2003), Schindler (2003), and Gonzalez, Hasker

and Sickles (2009), among others. Roth and Ockenfels (2002), for example, �nd that

in a sample of 240 auctions, 89 (37%) have bids placed in the last minute and 29

(12%) in the last ten seconds.

On the face of it, last-second bidding is puzzling to game theorists. Internet

auction sites like eBay typically run second-price auctions, with the winning bidder

paying the second-highest bid plus some nominal increment. As originally conceived

by Vickrey (1961), the raison d'etre of second-price auctions is for bidders to submit

their private valuations. The optimal strategy is independent of the actions of the

other players. One can verify this result is robust to making the second-highest bids

public, as is the case in online auctions. (See, for example, Bajari and Hortaçsu,

2004.)

The Vickrey result, however, requires certain assumptions that may not apply

to real-world auctions. Speci�cally, standard second-price auction theory typically

assumes that each bidder has an independent private valuation of the asset in ques-

tion, a characterization which may apply to auctions for homogeneous goods like,

say, consumer electronics but may not be relevant for heterogeneous goods like art,

for which one's valuation may be conditional on what others' valuations are. There is

considerably more incentive not to reveal one's private information in an art auction

than in a consumer electronics auction, given the free rider problem in the former.

Indeed, when bidders have interdependent or common valuations, last-second bid-

ding may be justi�ed, as argued by Schindler (2003), Bajari and Hortaçsu (2003),

and Hossain (2008).1

Nevertheless, the rationale for last-second bidding when bidders have indepen-

dent private valuations remains comparatively unclear. One might speculate that in

bidding early, a player announces her presence in the marketplace, thereby altering

1Hossain (2008), for example, conjectures that some bidders do not know how much they value
an auction but only know whether they value it more than the current price. Such bidders learn
their valuation through the bidding process, which creates incentive for better informed agents to
withhold their bids until the last second.
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the strategies of the other players. In the context of the standard Vickrey model,

of course, this argument is not relevant. The design of second-price auctions is such

that bidding one's private valuation is the strictly dominant strategy. When the

second-highest bid is public during the auction period, last-second bidding is cer-

tainly optimal if one believes other bidders play retaliatory strategies. If it were the

case that another bidder's strategy is always to outbid the prevailing high bid, last-

second bidding would be the best response, but this scenario simply substitutes the

original question for another: why would a bidder would play such a win-at-all-costs

strategy?

To date, there is only a limited literature which has sought to explain the oc-

currence of sniping in auctions for goods without common valuations. Roth and

Ockenfels (2002) o�er a pair of possibilities: one, that last-second bidding is the

best response to inexperienced bidders who play as if the format were a standard

�rst-price English auction; two, that last-second bidding represents tacit collusion

by experienced bidders, who keep the �nal price low in the process. The latter

possibility is explored more rigorously in Ockenfels and Roth (2006), in which the

authors note that very late bids have a positive probability of not being successfully

submitted, and this opens a way for bidders to implicitly collude and avoid bidding

wars. Ely and Hossain (2009) test the e�cacy of early versus late bidding � squat-

ting versus sniping, in their terminology � in an experimental setting. Finding that

sniping leads to statistically but not necessarily economically signi�cant increases

in surplus, they hypothesize that squatting discourages competition by announcing

the bidder as an interested party in the given auction, while sniping attenuates the

possibility of an escalating bidding war. Barbara and Bracht (2006) argue sniping

is rational since early bidders can retract bids prior to the auction's close.

What to this point has been overlooked is the sequential and random arrival

of new auctions. Internet auction sites typically trade in homogeneous or near-

homogeneous goods. While true homogeneity in online auctions is rare given the

high proportion of used items, near-homogeneity is ubiquitous. A bidder comes to

eBay looking for a television or a bike or an MP3 player. She may or may not be

�exible in terms of the degree of heterogeneity she is willing to accept, but it seems

reasonable enough to assume that the average bidder does not come to an auction

site to bid on one speci�c auction, upon whose conclusion she will exit the market,

win or lose. More likely, a bidder comes to an auction site to search for multiple

auctions, any one of which would suit her need. She may periodically revisit the

site to update her search, identifying newly opened auctions which �t her criteria.

Moreover, she has some deadline by which she wants to have won an auction.
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In this paper, I argue that insofar as the preceding characterization is correct,

last-second bidding is the optimal strategy for a su�ciently patient bidder. The

intuition is based on two simple observations. First, a patient bidder knows that if

she loses the current auction, she will have the opportunity to bid on a subsequent

one. With sequential auctions, there is an option value to losing an auction. Second,

by waiting until the last moment to bid on an auction, a bidder will maximize her

information about the value of that option. The value is conditional on how many

subsequent auctions she might bid and the surplus she would extract if she were

to bid. As future auctions get bid up, the option value decreases; as additional

auctions open, the option value increases. If she had bid early, her preferred bid just

prior to the auction's close may be below what she has already submitted. Since she

can only revise her bid upward, she will be locked into a higher bid than she would

like. By waiting until the last second to bid, she learns more about the value of the

option to lose the current auction. Her bid conditional on this updated information

set is consequently at least as good as a bid conditional on any earlier information.

When monitoring the auction market is costly or uncertain, the bidder may contract

the bidding out to a sniper service, knowing that such a bid can be cancelled if she

revisits the market and wishes to revise her bid.

Though the option value is in practice subjective, I provide an analytic solution.

According to this solution, the bidder's preferred bid is increasing with each subse-

quent auction. On early auctions, she prefers to bid relatively small amounts in an

attempt to maximize the surplus, knowing that if she loses, she can bid on later-

closing auctions. As her deadline approaches, she is willing to bid more as her future

opportunities to win an auction diminish. In expectation, she will bid relatively low

on the current auction and progressively higher on each future auction until she wins

or her deadline expires. It follows that the more patient the bidder, the less she will

bid on the current auction. In the limit, as her deadline extends to in�nity, she will

consistently bid the lowest possible amount that has some positive probability of

being accepted. Thus, so-called �low ball� bidding is justi�ed for su�ciently patient

bidders.

The contribution of this paper is providing a rationale for last-second bidding

which does not rely on common valuations, behavioral motives, or any particular

institutional features2 of an auction. The random arrival of new auctions implies that

last-second bidding is optimal for patient bidders. The optimality is expressed with

respect to a strategy not to win a particular auction but rather to maximize one's

2For example, provisions for bidders to retract bids or for sellers to o�er extendable auction
closing times.
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expected surplus conditional on winning any auction. While the narrative is couched

in terms of Internet auctions, the underlying intuition is much more generalizable.

One could, for example, drop the speci�cation that auctions are second-price and

apply the key results of this paper to a housing search model, wherein a bidder may

postpone placing an o�er on a particular house for as long as possible while searching

for substitutes on which to potentially bid. Indeed, the intuition may apply to any

model of auctions involving search. I stress here that this paper is not intended

to invalidate existing theories of last-second bidding � for example, the behavioral

mechanism proposed by Ely and Hossain (2009) is particularly persuasive. Rather,

my intent is to demonstrate that whatever the true motivation of sniping, it is in

fact an optimal strategy in common circumstances.

The primary innovation is the timing component of bidding in sequential auc-

tions. The extant literature on sequential auctions typically models the situation

in which the number of auctions � and often the number of bidders � is known

rather than random. Engelbrecht-Wiggans (1993) examines sequential auctions for

stochastically-equivalent objects. Arora, Xu, Padman and Vogt (2004) model opti-

mal bids in sequential closed-bid second price auctions. Wang (2006) argues that an

early bid raises opponents' conditional expectation of the next auction's price, which

in turn raises their bids on the current auction and lowers the bidder's surplus if

she wins. With random arrival of auctions, however, bidders must consider not only

how much to bid but also when to bid. In that regard, perhaps most comparable

to my paper is Said (2008), who in a considerably more generalized model explores

the option value of sequential auctions with random arrivals.

This paper is arranged as follows. Section 1 presents a simpli�ed example, to

guide the underlying intuition. The generalized model is given in Section 2. A

solution for the option value is given in Section 3. Section 4 discusses the determi-

nation of the bidder's beliefs regarding winning bids, and Section 5 outlines possible

extensions. Section 6 concludes.

1 A simple example

A bidder is looking to purchase a bike for up to $100 within the next six days. She

has identi�ed an auction for a bike she is interested in, and this auction ends in three

days. She would prefer to identify as many auctions as possible: for any auction she

lost, she could potentially bid on the auction closing next. As it stands, however,

she has found only one suitable auction. Should new auctions arrive, they are open

for bidding for three days.
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The bidder could bid some amount x ≤ 100 immediately, but she could also wait

three days. She assumes that the value of the bike to other bidders is independent

of her value and that whether or not she bids on the auction does not a�ect the

amounts other interested parties are willing to bid on that or any other similar

auction. Under this assumption, there is no downside to waiting. Whether she bids

today or in 3 days a�ects neither the probability she wins the auction with a bid

of x nor the price at which she would pay if she won. By waiting three days, she

could monitor the auction site for new listings, and one of broad two outcomes will

occur: either new auctions arrive or they do not. Moreover, given the duration new

auctions are open, in three days she will know exactly how many bikes she can bid

on before her deadline.

Suppose, however, that she bids x today. In three days, she revisits the site and

calculates her preferred bid x∗ just before the auction ends conditional on whether or

not new auctions for bikes she is interested in have opened. Comparing x∗ to x, and

bearing in mind that bids can only be revised upward, there are three possibilities.

The �rst is x∗ > x. She can update her bid to x∗, so no advantage was lost by

bidding early. The second is x∗ = x. In this case, the timing of her bid proved

inconsequential. The last is x∗ < x. Her preferred bid is less than x, implying she is

worse o� having bid three days earlier. She would be locked into a bid higher than

she would prefer. Note that the preceding analysis does not require any speci�c

calculation of x or x∗. It is based only on the fact that one of the three possibilities

must occur. Given the requirement that bids be revised only upward, bidding just

prior to the earliest auction's closing time weakly dominates bidding at any time

earlier.

2 The model

There are a series of second-price auctions, each for a unit of a homogeneous good.

An auction is uniquely identi�ed by its closing time a. a refers interchangeably

to both a speci�c auction and its closing time. Time t is discrete. At t, the time

remaining in an open auction is a− t.
At the start of each period, a new auction opens with probability λ. The spec-

i�cation implies that sellers are not strategically timing when they are listing their

auctions and that two auctions never close at the same time. A newly listed auction

closes after a �xed duration D, so an auction opening at t will close at t+D.

Bidders may submit bids on a at any time t < a. Bidding is anonymous and

conducted remotely, so the number of bidders interested in a is unknown. An auction
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arriving at t is open for bidding at t with a minimum bid of 0. The winning bidder

is revealed at time a, and she pays the second highest bid.3

At the start of each period, all prior bids on an auction are posted publicly

except for the current high bid. The highest publicly posted bid on a at t, denoted

b(a, t), consequently represents the lower bound of the current high bid.4 I will refer

to b(a, t) as the minimum bid on a at t: If the bidder does not have the high bid on

a, a bid submitted on a must be larger than b(a, t). If she has the current high bid

on a, she may only submit a bid higher than her existing bid. That is, bids may be

revised upward but not downward.

The state s(t) is characterized by the set of auctions a ∈ A(t) that are open

for bidding at t as well as the corresponding set of minimum bids b(a, t) ∈ B(t) for

those auctions. s(t) can be thought of as the results of a search for auctions of this

type of good at t.

2.1 Bidder Strategy at t

I will focus on the optimal strategy of a bidder i at time t, taking the behavior of

all other bidders as given. By not endogenizing the behavior of her competitors, I

allow for a wide range of possible bidding strategies amongst them.5

Bidder i has a private valuation V drawn from the interval [0, 1]. She has a �xed

bidding horizon T : she will exit the market upon winning an auction or the time

equaling T , whichever comes �rst. T measures i's patience, with low realizations

implying a need to obtain the item sooner than later. The distributions of T and V

are independent, meaning it is not necessarily the case that if she is impatient, she

also has a higher valuation. See Appendix A for a listing of all variables.

She is interested in eligible auctions: those which close on or before her dead-

line. At t, there are N ≡ N(t) eligible auctions for bidder i. Formally, a =

[a1 a2 ... aN ], a ⊂ A(t) represents the set of auctions for which an ≤ T , and bn ≡
b(an, t), b = [b1 b2 ... bN ] represents the corresponding set of minimum bids. Auc-

tions are indexed sequentially, with an < an+1 for all n. Figure 1 presents a sample

timeline.

3On Internet auctions sites like eBay, the posted bid typically represents the second-highest
bid plus some nominal increment ε > 0. For analytical clarity, I implicitly assume ε = 0, though
altering the model such that ε > 0 does not materially a�ect the analysis.

4Given that all but the current high bid in each auction are publicly posted, a bidder knows if
she has the current high bid.

5Though one might argue that the game should be modeled symmetrically by solving for a
multiplayer equilibrium, that approach is not necessarily appropriate for auctions. Solving for
such an equilibrium typically requires all bidders to play �rationally�, which, though mathematically
more elegant, may not necessarily be more realistic. Indeed, it may be the case that in an auction,
there are players who play o�-equilibrium strategies that are di�cult to support analytically.
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Figure 1: Sample timeline with t = 0, D = 4 and T = 6. There are two auctions
currently open for bidding, the �rst closing in 2 periods and the second closing in 4.
Given the bidder's deadline T , additional eligible auctions could open up at periods
1 and 2. An auction opening up after period 2 will close after T .

She assigns probability fn(yn) to the maximum bid yn among all other bidders on

an at its close, where fn(yn) > 0 for all yn ∈ [0, 1].6 The corresponding cumulative

distribution function Fn(yn) is equivalent to the probability she wins an with a

bid of yn. The exact speci�cation of fn(yn) is left purposefully ambiguous since it

represents a subjective belief of the bidder. The only restriction I place is that the

distribution of yn is independent of bids on earlier-closing auctions.

Assumption 1. A bid on an auction has no e�ect on the maximum bid among her

competitors on that auction or any auction closing subsequently:

fn(yn|xm) = fn(yn)∀n ≥ m

Put di�erently, Assumption 1 states that the bidder cannot a�ect the likelihood

that a bid of x wins an auction by bidding some x′ on that auction or any earlier

auction. In the absence of this restriction, one must consider potentially extremely

complex conditional distributions specifying how much and when bidder i's com-

petitors would choose to bid as functions of how much and when i chose to bid.

Later in this section, I will show that given Assumption 1, it is in fact optimal for

a bidder to behave accordingly and not to condition her bid for an on others' bids

for an or for any earlier auction.7

Assumption 2. The bidder only submits bids on a1, the current auction.

Intuitively, the sequential nature of auctions suggests that she approach the

bidding problem sequentially and focus on a1: henceforth, the current auction. If

she does not win a1, then she will focus on a2. If she does not win a2, then she

6Consequently, in the event of a single bid placed on an auction, the minimum bid equals 0. If
no other bids are submitted, the winning bidder wins the item at 0.

7Note that the assumption does necessarily not rule out a bidder j 6= i from playing a retaliatory
strategy whereby j immediately outbids i whenever i submits a bid. Assumption 1 allows for j to
play such a strategy insofar as it does not a�ect what j's ultimate maximum bid on an will be.
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will focus on a3, and so on. Later, I will argue that this is in fact optimal, but

for now the speci�cation will be taken as given. This restriction keeps the strategy

space compact by precluding the bidder from playing strategies involving bids on

later-closing auctions.

Given Assumptions 1 and 2, i's strategy at t will involve

1. Determining whether to submit a bid on a1 immediately or not.

2. If submitting a bid on a1, determining the optimal amount x∗1 to bid.8

I will approach each of these questions separately.

2.1.1 Optimal Amount to Bid

Assume, for the moment, that the bidder wants to submit a bid on a1 at t. I denote

the option value of losing a1 as π2 ≡ π2 (s(t)). π2 represents the expected surplus

from bidding optimally on the set of eligible auctions ending after a1, conditional on

the state at t. Crucially, for a bidder with a su�ciently high realization of T , the

set of eligible auctions includes those which are not currently open but may arrive

in the future.

Conditional on submitting the bid at t, her objective function is

max
x1

∫ x1

b1

(V − y1)f1(y1)dy1 + [1− F1(x1) + F1(b1(t))]π2 (1)

The �rst term is the expected surplus from bidding x1 and winning the auction,

while the second term is the expected surplus from losing and potentially bidding on

subsequent eligible auctions. Thus, Equation (1) is the expected surplus of bidding

on all eligible auctions, starting with a1. The resulting �rst order condition is

f1(x∗1)(V − x∗1)− f1(x∗1)π2 = 0

Assuming fn(yn) > 0 for all yn ∈ [0, 1], I have

x∗1 = V − π2 (2)

x∗1 is her preferred bid at t. By bidding x∗1 = V − π2, she ensures that if she wins,

she is at least as well o� as she would be if she chose not to bid on a1 at all. If

8This de�nition of strategy may seem too simple, given the relatively complicated auction
environment (stochastic minimum bids on existing auctions and random arrivals of new auctions).
One must keep in mind, however, that the bidder is repeatedly conducting this strategy at each
new period.
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she bids V − π2 and wins, the maximum she pays is V − π2, implying her minimum

surplus would be V − (V − π2) = π2. Since a bid submitted at t must be greater

than the prevailing minimum bid, Equation (2) implies that she would only submit

her bid if V − π2 > b1. If V − π2 ≤ b1, the preferred bid is lower than the minimum

she is allowed to submit. Accordingly, the bidder would refrain from bidding on a1,

since bidding some x1 > b1 ≥ V − π2 would yield lower expected surplus than not

bidding at all.

Remark 1. The preferred bid x∗1 is independent of the current minimum bid b1.

Insofar as a bidder j 6= i is similar to i, this result implies that no such bidder j

has an incentive to bid up a1 beyond x
∗
1,j, thus providing justi�cation for Assumption

1. If b1 is high, it will preclude her from submitting her bid, but it will not a�ect

the amount that she would bid if she could.

Remark 1 echoes the main result in Section 3 of Vickrey (1961). One may observe

that Equation (2) is simply the objective function of a bidder in a single second-price

auction in which she receives π2 if she loses. The characteristics of the optimal bid

x∗1 follow accordingly.

2.1.2 Optimal Time to Bid

Di�erentiation of Equation (1) yields the preferred bid at t, but one must consider

whether submitting a bid at t is in fact optimal. x∗1 > b1 represents a once-and-for-all

bid on a1 conditional on the state at t. That is, if the bidder were to commit herself

to bidding on a1 immediately and not revising the bid in the future regardless of

whether circumstances change (though maintaining the option to bid on subsequent

auctions should she lose), her optimal bid would be x∗1. This is a highly contrived

scenario, of course, but the conceit begs the question of whether there is a superior

strategy to submitting x∗1 at t. Should the bidder wait until the time is closer to a1?

Before addressing this question, I �rst place some structure on the option value

π2. In a practical sense, just as fn(yn) is subjective, so too is π2. Each bidder

has her own procedure for incorporating the current state into her beliefs about

the distributions of yn, which would then be used to estimate π2. Nevertheless, I

conjecture some common characteristics of π2. Insofar as my conjecture is accurate,

I can then derive the optimal timing strategy.

Conjecture 1. π2, the option value of losing the current auction, satis�es the fol-

lowing conditions:

1. From t to t + 1, π2 increases when an eligible auction opens and decreases

otherwise.
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2. π2 is decreasing in the minimum bid on any eligible auction closing after a1.

The �rst condition captures the bidder's preference for more eligible auctions

on which to bid. Implicitly, being more patient (higher T ) is bene�cial insofar as it

allows the bidder potentially to bid on more auctions. The second condition conveys

the declining option value of losing a1 as bids on later-closing auctions increase. The

higher b2 is, for example, the less expected surplus from bidding on a2, implying the

option value of losing a1 decreases.

At this point, I refrain from further specifying π2. It is su�cient to interpret it

as a subjective calculation by the bidder, conditioning on the current state. The

exact manner in which she calculates π2 is less important than the assumption that

she does calculate it and that it matches the generic qualities listed in Conjecture 1.

In Section 3, I explicitly solve for π2 under a set of assumptions, though the intent

there is more to corroborate mathematically the current narrative rather than to

provide a literal quantitative bid strategy.

Having proposed some dynamics for π2, I can now solve for the optimal time

to bid. Recall that x∗1 is calculated on the assumption that the bidder wants to

submit at bid a t. But she must determine whether there is some point t̃ > t in

the future such that bidding optimally at t̃ will be preferable to submitting x∗1 at

t. Assuming x∗1 > b1, she must consider two broad contingencies. The �rst is that

a1 closes immediately: t = a1 − 1. In this case, the bidder cannot postpone the

decision of whether or not to bid on a1. If she doesn't bid, she expects a surplus of

π2 from bidding on the remaining auctions. If she does bid, she knows bidding x∗1
will yield at least the same surplus as not bidding. Hence, she should submit x∗1 if

V − π2 > b1 and not bid otherwise. This is a last-second bid.

The second and more interesting case is that a1 does not close immediately:

t < a1 − 1. In the interval between t and a1, the option value π2 will change as

new information is revealed. It may change because new auctions open. It may

change because later-closing auctions get bid up. The interval of time between t

and a1 − 1 reveals information to the bidder and, in doing so, alters her calculation

of the value of losing auction a1. Let t1 ≡ a1 − 1 represent the last period before

the current auction closes, and let π̃2 ≡ π2 (s(t1)) represent the option value at t1.

The corresponding optimal bid x̃∗1 is given by

x̃∗1 = V − π̃2

The bidder knows ex ante that at t1, she will want to bid x̃
∗
1 no matter whether she

had bid some amount previously or not. The question is whether she could a�ect
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fn(·) or s(t1) (and therefore π̃2) with an earlier bid on a1.

Proposition 1. If π2 satis�es Conjecture 1, the weakly dominant strategy is to bid

on a1 when t = a1 − 1 and V − π2 > b1.

Proof. For Proposition 1 to hold, the bidder cannot advantageously a�ect s(t1) or

fn(·) through strategic early bidding. According to Conjecture 1, a more advanta-

geous s(t1) would have either more eligible auctions or lower bids on later-closing

auctions (or both). Neither is a�ected by an early bid on a1. The number of el-

igible auctions at t1 is governed by the arrival rate λ and is assumed independent

of bidding. Similarly, by Assumption 1, the distribution of bids on any auction is

independent of her bidding on a1. The state at t1 is inevitable, implying so too is

the corresponding option value π̃2 and preferred bid x̃∗1. If she submitted some bid

x1 prior to t1, should this bid turn out to be more than x̃∗1, she will be locked into

a sub-optimal bid.

If S1 represents the set of all possible states at t1, the only undominated bids

within the continuum of possible bids placed at t < a1 − 1 are those less than

mins∈S1 V − π2(s). Though an undominated strategy would be to bid mins∈S1 V −
π2(s) any earlier period, this repeated bidding is super�uous and would not generate

any additional surplus than simply bidding at the last second. Proposition 1 implies

that as a practical strategy to implement, last-second bidding is optimal.

One can frame Proposition 1 in terms of the example in Section 1. A bidder

identi�es a set of auctions on which to bid, with the possibility of that set increasing

in size as time passes and new auctions open. She must decide a) whether or not to

bid on the auction closing soonest and b) how much, if any, to bid. If the earliest

auction does not close for a long time � in this case, three days � there is no bene�t to

bidding now. Over the next three days, new auctions may arrive, and new bids may

be placed on later-closing auctions. Her estimate of the option value of losing the

current auction will be updated. Whatever bid she might place initially is unlikely

to be the bid she would place in three days, given the additional information she

will have at that date. Moreover, since her bid on the auction should not a�ect the

strategies of her competitors for that auction (see Remark 1), she cannot a�ect the

probability of winning the auction with a bid of x by bidding early.

In light of Proposition 1, let us reconsider Assumption 2, which stated that the

bidder only considers bidding on a1. Suppose the bidder is considering a bid on a

later-closing auction an. She would do so if it would either improve her expected

surplus from eventually bidding on a1 or if winning an with an early bid would yield

higher expected surplus than bidding on a1. Neither is true. Submitting a bid on
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a later-closing auction an is not optimal as a strategy to win a1, as it increases

the minimum bid bn, which should reduce her competitors' option value of losing

a1 (according to Conjecture 1). One would expect their bids on a1 mechanically to

increase, which would alter the distribution f1(·) unfavorably and reduce the bidder's
expected surplus from bidding on a1. Similarly, submitting a bid on a later-closing

auction an will not yield higher expected surplus than bidding optimally on a1.

Recall that bidding optimally on a1 ensures the surplus is at least as large as the

expected surplus from bidding optimally on a2. Bidding optimally on a2 should

ensure the surplus will be at least as large as the expected surplus from bidding

optimally on a3, and so forth. The expected surplus of bidding on an thus has an

upper bound of π2, which is equivalently the lower bound of bidding optimally on

a1.

2.1.3 Optimal Bid Strategy

The preceding analysis implies the optimal strategy at t is

1. If t = a1 − 1 and x∗1 = V − π2 > b1, bid x
∗
1.

2. Otherwise, wait one period and repeat from Step 1.

Implicit in this strategy is that if a1 exists and b1 < V , the bidder need only revisit

the market at a1 − 1 to potentially bid. Assuming she is noti�ed directly if she has

won (i.e., she does not have to visit the market to verify whether she has won), if she

does not win she need only visit at a2− 1 if a2 existed at t = a1− 1 or at a1 +D− 1

otherwise.

Three examples are illustrated in Figure 2. In Panel (a), the bidder should revisit

the market at t = 1 to potentially bid on a1. If she does not win, she should revisit

the market at t = a2−1 = 3. In Panel (b), the bidder should bid on a1 immediately.

If she does not win a1, she should revisit the market at t = a2 − 1 = 2. In Panel

(c), the bidder should bid on a1 immediately. If she does not win a1, she should

revisit the market at t = 4, given that the earliest a subsequent auction could close

is a2 = 5.

3 A Solution for π2

In this section I provide a quantitative solution for π2 under a set of modest as-

sumptions.9 Given its computational complexity, the analysis is intended not as

9As mentioned previously, the option value π2 is a subjective calculation by the bidder. To
place any explicit structure on it, then, is to o�er merely one possibility of how a bidder might
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Figure 2: Panels (a), (b), and (c) illustrate optimal bid timing for three di�erent
scenarios, all with D = 4. The solid arrow in Panel (a) indicates the bidder should
optimally revisit the market at that time, while the dashed arrows in all three panels
indicate the bidder should revisit the market at the indicated time only if she does
not win a1.

a realistic solution for bidders to implement but rather as providing mathematical

intuition for Conjecture 1 in the preceding section.

π2 can be solved using dynamic programming. Let Equation (1) be de�ned as

π1, the expected surplus of bidding on a1. π1 is a function of π2, the expected

surplus of bidding on a2. Similarly, π2 is a function of π3, the expected surplus of

bidding on a3. π3 is a function of π4, and so forth. In this manner, one can iterate

forward through successive auctions, even those that may not yet exist, calculating

the surpluses and option values of each (potential) auction.

Given the uncertainty about whether additional auctions will arrive in the future

and what the bids on any current or future auctions will be, the bidder would ideally

like to be clairvoyant. She would like to somehow know in advance the sequence

of auctions on which she could bid between now and T as well as the bids her

competitors will place on each auction. She could pick the auction which will have

the lowest maximum bid y amongst all other bidders and, assuming y < V , bid

some amount x ∈ (y, V ) on that auction. Failing this, she would settle for knowing

only the sequence of auctions but not the bids that will be placed on them. For each

auction an, she could integrate over fn(·) to determine the option value of losing,

which in turn would yield her optimal bid on a1. When t ≥ T − D, she knows

this sequence, as no new eligible auctions can arrive before her deadline. When

t < T − D, however, she does not know this sequence, as it has not been fully

realized. New eligible auctions can arrive between t + 1 and T − D. In this case,

the best the bidder can do is to project forward how she would bid on later-closing

calculate it. Di�erent bidders could have di�erent calculations, based in part on their individual
endowments (T and V ), their beliefs (the distributions fn(yn)), and the state s.
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auctions if certain events were to unfold.

Speci�cally, in calculating π2 when t < T −D, the bidder can iterate over poten-

tial future timelines. This process involves mapping out all possible permutations

of auction arrivals and calculating the associated expected surpluses, conditional on

fn(·). What makes fn(·) potentially thorny to implement is that rational bidders

realize the distribution of yn may be state-dependent. If, for example, there is an

unusual glut of auction openings, the distribution of bids on each auction is likely

to be pushed downward to account for the decreased competition. Similarly, if the

minimum bids on all open auctions are higher than normal, the distribution of bids

on each auction is likely to be pushed upward to account for the increased competi-

tion. In the interest of expositional clarity, I make the simplifying assumption that

fn(·) is state-independent:

Assumption 3. fn(yn|s) = f(y) for all n and s.

Under Assumption 3, the bidder acts as though the state does not a�ect the

distribution of bids on any given auction. A practical interpretation would be that

under �average� conditions, however de�ned, she believes the distribution of maxi-

mum bids across auctions for the same good is �xed. When this assumption may fail

is when conditions are not average, as may be the case with an unusual in�ux of open

auctions or an abnormal frenzy of bidding on later-closing auctions. In any case,

Assumption 3 is not necessary for my solution to π2. One could use state-dependent

beliefs to calculate π2 and yield similar results. Without the assumption, however,

one must conceptualize what it would mean for fn(·|s) to potentially vary over every
possible state s, a (mental) task which adds complexity but not necessarily depth

to the underlying intuition.

As constituted, the game corresponds to one in which a bidder i needs to win an

auction by T , auctions arrive exogenously according to some process λ, and bids by

her competitors are una�ected by her bidding, with their collective maximum bid

on each auction conforming to some distribution f(·). Bidders on an auction are

not adjusting their bids as functions of what others have bid on it, nor are sellers

arriving to the market as a function of what the current bids are. A narrative for her

competitors' bidding is implied by Result 1, while a narrative for auction arrivals is

that sellers provide new listings based on liquidity needs and not as a reaction to

the bidding observed in the market.

The process for solving for π2 will depend on the current time relative to the

bidder's deadline T and the duration of newly opened auctions D. When t ≥ T −D,

the iterative procedure to solve for π2 is straightforward since the set of auctions on

which she can bid is not subject to change. The bidder knows with certainty the
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sequence of auctions on which she may potentially bid, and the only uncertainty

is what other bidders will bid on those auctions. When t < T − D, the procedure

becomes considerably more complex since the set of auctions on which she can bid

prior to her deadline is random. In this case, she must iterate over all possible

permutations of auction openings that could evolve from the current state. I will

consider each of these two cases (t ≥ T −D and t < T −D) separately. In order to

distinguish it from a generic π2, I will refer to my proposed solution as π∗2.

3.1 π∗2 when t ≥ T −D
Let π∗n represent the expected surplus of bidding on an, including the option value

of losing an and bidding on any subsequent auction:

π∗n = max
xn

∫ xn

bn

(V − y)f(y)dy + [1− F (xn) + F (bn)] π∗n+1 (3)

Equation (3) is the auction an analog of Equation (1) for a1. From the bidder's

point of view, π∗n is equivalent to removing auctions a1 to an−1 from consideration

and calculating the expected surplus of bidding on the remaining auctions. The

resulting �rst-order condition yields a familiar optimal bid:

x∗n = V − π∗n+1

x∗n represents the hypothetical bid the bidder would place on an in the event that she

does not win any auction prior. The option value π∗n+1 is equivalent to the expected

surplus from bidding optimally on the next auction an+1 and all subsequent eligible

auctions. When t + D ≥ T , there is no uncertainty about the number of auctions

on which she can bid, so the last auction on which she might potentially bid is aN .

π∗N+1 ≡ 0 since there are neither eligible auctions after aN nor the possibility of such

auctions opening. For t ≥ T −D, the solution for πn is given by

• π∗N+1 = 0

• if V − π∗n+1 > bn

π∗n =

∫ x∗n

bn

(V − y)f(y)dy + [1− F (x∗n) + F (bn)]π∗n+1

where x∗n = V − π∗n+1. Otherwise π
∗
n = π∗n+1

The solution yields a preferred bid of V on the last auction aN , exactly the Vickrey

solution for a single auction. The reader may have anticipated this result: bidding
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Figure 3: Timeline for Example 1, with D = 3 and T = 3.

on aN is conditional on losing all previous auctions and having no subsequent auc-

tions on which to bid. With only one auction to bid on, the game collapses into

the canonical game in Vickrey (1961). Consistent with the existing literature on

sequential auctions (see, for example, Milgrom and Weber, 2000), the solution im-

plies that her preferred bid is in expectation increasing after each successive auction

(x∗1 ≤ x∗2 ≤ ... ≤ x∗N∗).

Example 1. The bidder's deadline (T ) is in 3 periods, and newly-listed auctions

close (D) in 3 periods. There are currently two eligible auctions, with the �rst (a1)

closing in one period and the second (a2) closing in three periods. The timeline is

illustrated in Figure 3. To keep the intuition as simple as possible, I set the current

time equal to 0, all minimum bids bn equal to 0, and f(y) equal to 1 for all y.

Given D = 3, a1 and a2 are the only two auctions on which she will be able to

bid before her deadline. Her optimal bid on a2 would be V , since if she is still in

the market at t > 1, she will have only that one auction on which to bid. Knowing

this, she can calculate the expected surplus of winning a2:

π∗2 =

∫ V

b2

(V − y)f(y)dy =
V 2

2

This determines her the optimal bid on a1, which she submits immediately:

x∗1 = V − π∗2 = V − V 2

2

3.2 π∗2 when t < T −D
When t < T − D, the bidder is uncertain about the set of auctions on which she

could potentially bid before her deadline T . After each successive unit of time, either

an auction arrives or it does not. She can map out the potential permutations of

auction arrivals over the interval t to T −D and iteratively calculate the expected

surplus from bidding on each auction, conditional on the state that is realized.
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The arrival process governed by λ allows me to model the evolution of states as

a binomial tree, with each node corresponding to a unique state. Though the set of

future states is technically in�nite, since for every auction there is a continuum of

minimum bids that could exist at a given point in the future, I can abstract from

potential changes in minimum bids since their e�ect on π∗2 will largely be captured

by f(y). Changes in minimum bids will a�ect the expected surplus from winning

a given auction, but the expected surplus is calculated using f(y), which already

assumes changes in minimum bids will occur.

The tree is not recombinant. An auction arrival followed by a non-arrival may

generate a di�erent strategy than a non-arrival followed by an arrival. Suppose,

for example, that over a 3 period interval, a single auction arrives. If the bidder's

deadline is in 7 periods, her optimal strategy may be di�erent if the auction arrived

in the �rst period versus if it arrived in the third period.

Figure 4 illustrates the tree over four periods, with the current time set to 0. �Up�

branches correspond to an auction arriving at t and �down� branches correspond to

no auction arriving. The initial state is s0 and contains all the information currently

available to the bidder. One period later, the state will be either s1 if an auction

opens or s2 otherwise. The state s5, for example, is the state s0 updated with an

auction opening at t = 2 (and closing at 2+D). The non-recombinant nature of the

binomial tree means that future states are path-dependent. A state with successive

states is a parent, and a state descended from an existing state is a child. s0 is a

parent of s1 and s2, while s8 is a child of s3. A state s at some t prior to T − D
has two children, denoted as s+ if an auction opens in the next period and s− if an

auction does not open. From s, the probabilities of reaching s+ and s− are λ and

1− λ, respectively. Each potential state s is associated with a state-time t(s). For

example, t(s0) is 0, while t(s1) and t(s2) are 1, and so on.

The tree has T −D− t terminal nodes, each corresponding to a unique state. A

terminal state s̄ has state-time t(s̄) = T −D. A terminal state is signi�cant in that,

upon being realized, there is no further uncertainty regarding the set of auctions on

which to bid. At a terminal state s̄, the solution for the optimal bids and expected

surpluses of the remaining auctions follow exactly as in Section 3.1, but with N∗(s̄)

indexing the last eligible auction.

Given that di�erent sets of auction will exist across di�erent states, I use sub-

script n|s notation to indicate the nth auction conditional on state s being reached.

For example, a3|s3 represents the auction closing 3rd from now if an auction were to

open in both of the next two periods, while π∗4|s3 is the option value of losing that

auction.
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Figure 4: Binomial Tree when t < T −D. s0 represents the current state, with the
subsequent nodes corresponding to potential future states. Up nodes indicate an
auction opens at t, while down nodes indicate an auction did not open at t.

I can now provide a generic solution for π∗2, having de�ned a nomenclature for

the evolution and timing of states. At the current time t, π∗2 is equivalent to π
∗
2|s0 . s0

is, by assumption, a non-terminal state, so I will initially focus on a generic solution

for π∗n|s in non-terminal states. In conceptualizing how to calculate π∗n|s, the bidder

must consider whether an nth auction exists at state s and what her bidding strategy

on that auction would be if it existed. If the auction does not exist, she can simply

restate π∗n|s as a probability-weighted average of the expected surplus of bidding on

the nth auction next period:

π∗n|s = λπ∗n|s+ + (1− λ)π∗n|s− (4)

If the auction exists and was to close immediately (t(s) = an|s − 1), her objective

function would be

π∗n|s = max
xn|s

∫ xn|s

bn|s

(V − y)f(y)dy + [1− F (xn|s) + F (bn|s)]π
∗
n+1|s (5)

which yields the state-dependent equivalent of Equation (2): x∗n|s = V − π∗n+1|s if
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V − π∗n+1|s > bn|s and no bid otherwise.

If the auction exists at s but was not closing immediately, she must decide

whether she would bid immediately or to wait until the last second. I will assume the

latter: that in calculating expected surplus on future auctions, the bidder anticipates

waiting until the last second to bid on any auction.

Assumption 4. Given a non-terminal state s, an associated state-time t(s), and an

auction an|s, the bidder anticipates postponing bidding until the last possible period.

Mathematically, Assumption 4 implies that for an|s such that t(s) < an|s − 1,

π∗n|s = λπ∗n|s+ + (1− λ)π∗n|s−

One may question whether this assumption is justi�ed. Note that the scenario

is roughly a state-dependent equivalent to the scenario examined in Section 2.1.2.

Proposition 1 demonstrated that last-second bidding was optimal conditional on π∗2
satisfying the conditions in Conjecture 1. In this case, at t = an|s − 1 there will be

a single optimal bid x∗n|s conditional on the state that is realized at an|s − 1. If the

bidder were to bid some xn|s on an|s prior to an|s − 1, unless she correctly guessed

which state is eventually realized, xn|s would not be optimal and she would want to

revise it to x∗n|s. By assumption, her bid on an|s has no e�ect on the distribution

f(·), so bidding early o�ers no strategic advantage to her. Thus it is logical that

in projecting how she would bid on future auctions, she anticipates that she will

submit only last-second bids.

Having established how the bidder anticipates bidding in the future, I can now

explicitly solve for π∗2. The binomial tree in Figure 4 may remind the reader of

a similar representation for stock prices from the options pricing literature.10 In

pricing options, one may use a binomial tree to map out all possible future price

paths and work backward from the terminal prices to solve recursively for the option

price at each prior period of time. The same approach applies in the present context.

The bidder can iterate forward through future states, calculating each π∗n|s as a

function of π∗n+1|s′ where t(s
′) > t(s), until she reaches the terminal states. For each

terminal state s̄, she can solve for the expected surplus of the last auction in that

state (aN∗(s̄)|s̄) and then work backward through earlier states having solved for the

various state-dependent option values π∗n+1|s. The resulting solution is given by

• π∗N∗(s̄)+1|s̄ = 0

10See Baxter and Rennie, 1996, for a particularly lucid explanation.
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Figure 5: Timelines for Example 2, with D = 3 and T = 4

• if t(s) ∈ {an|s − 1, T −D} and V − π∗n+1|s > bn|s:

π∗n|s =

∫ x∗
n|s

bn|s

(V − y)f(y)dy + [1− F (x∗n|s) + F (bn|s)]π
∗
n+1|s

where x∗n|s = V − π∗n+1|s.

If t(s) ∈ {an|s − 1, T −D} and V − π∗n+1|s ≤ bn|s:

π∗n|s = π∗n+1|s

Otherwise:

π∗n|s = λπ∗n|s+ + (1− λ)π∗n|s−

Since all future auctions have an opening bid of 0, bn|s equals 0 for all auctions which

do not currently exist and bn otherwise.

Example 2. t+D + 1 = T

Consider the same scenario as in Example 1 but with the bidder's deadline

extended one period to T = 4. Next period, there are two possibilities: an auction

opens or it does not. The former is denoted by s1 and occurs with probability λ,

while the latter is denoted by s2 and occurs with probability 1−λ. Any auction which
arrives after next period is not relevant since it closes after the bidder's deadline.

The timelines are illustrated in Figure 5.

If the bidder loses a1, she will have either two auctions on which to bid or only

one auction on which to bid. More importantly, if she loses a1, she will know whether

there are two or one auction on which to bid. Consequently, the expected surplus
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from bidding on a2 is conditional on which state is reached, s1 or s2. If an auction

arrives at t = 1, she will be at s1; otherwise, she will be at s2. Her optimal bids and

expected surplus are

x∗3|s1 = V

π∗3|s1 =

∫ V

0

(V − y)f(y)dy =
V 2

2

x∗2|s1 = V − π∗3|s1 = V − V 2

2

π∗2|s1 =

∫ V−π3|s1

b2

(V − y)f(y)dy + [1− F (V − π∗3|s1) + F (b2)]π∗3|s1

= V 2 − V 3

2
+
V 4

8

If an auction does not arrive at t = 1, her optimal bid and expected surplus are

x∗2|s2 = V

π∗2|s2 =

∫ V

b2|s1

(V − y)f(y)dy =
V 2

2

The option value of losing a1 is the probability-weighted average of the conditional

expected surpluses of bidding on a2:

π∗2 = π∗2|s0 = λπ∗2|s1 + (1− λ)π∗2|s2 (6)

One can solve for π2 by substituting into Equation (6). Since t = a1− 1, she should

bid x∗1 = V − π∗2 immediately.

Example 3. The previous example is conveniently constructed, as there is no timing

strategy involved. At t = 1, there are no further auctions to consider, and the

timeline is static for the remainder of the bidding horizon. But what if T > 4?

What if, for example, T = 5, as in Figure 6?

In this case, if the bidder were to lose a1, she knows she can bid on a2. Further-

more, she knows that she could wait to submit a bid on a2 until t = 2. By waiting,

she observes whether auctions arrive at t = 1 and t = 2, and she can condition her

eventual bid on that information. One can express her option value of losing a1 as

π∗2 = λπ∗2|s1 + (1− λ)π∗2|s2

= λ2π∗2|s3 + λ(1− λ)π∗2|s4 + (1− λ)λπ∗2|s5 + (1− λ)2π∗2|s6 (7)
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Figure 6: Timelines for Example 5, with D = 3 and T = 5

The state-dependent optimal bids and surpluses are

x∗4|s3 = x∗3|s4 = x∗3|s5 = x∗2|s6 = V

π∗4|s3 = π∗3|s4 = π∗3|s5 = π∗2|s6 =
V 2

2

x∗3|s3 = x∗2|s4 = x∗2|s5 = V − V 2

2

π∗3|s3 = π∗2|s4 = π∗2|s5 = V 2 − V 3

2
+
V 4

8

x∗2|s3 = V − V 2 +
V 3

2
− V 4

8

π2|s3
∗ =

3

2
V 2 − 3

2
V 3 +

9

8
V 4 − 11

16
V 5 +

5

16
V 6 − 3

32
V 7 +

1

64
V 8

As before, one can solve for π∗2 by substituting into Equation (7). Since t = a1 − 1,

she should bid x∗1 = V − π∗2 immediately.

3.3 Comparative Statics

In this section, I establish a series of propositions which characterize π∗2.

Proposition 2. Under Assumptions 3 and 4, π∗2 satis�es the conditions in Conjec-

ture 1.

Proof. Proofs of this and all subsequent propositions are in Appendix B.
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Recall that the principal purpose of solving for π∗2 is to corroborate Conjecture

1. Insofar as the bidder calculates π2 according to the procedure outlined in this

section, Proposition 1 implies that last-second bidding is optimal.

Proposition 3. For an in�nitely patient bidder, the option value of losing the �rst

auction approaches the bidder's private valuation: π2 → V as T →∞.

For a bidder willing to bid some low amount repeatedly, over a long enough

timeline there is a high probability that at some point the bid will be accepted,

yielding the bidder high surplus (nearly) equal to her valuation. Proposition 3 thus

provides justi�cation for �low ball� bids: low bids which have little probability of

being accepted.

Proposition 4. a) π2 is increasing with respect to V . b) If t + D < T , π2 is

increasing with respect to λ.

The option value increases with the bidder's private valuation V , since a higher

V increases both the probability of winning the current auction (by increasing the

optimal bid x∗1) and the expected surplus conditional on winning. Similarly, higher

λ implies more future auctions on which to bid, which in turn raises the option value

of losing earlier-closing auctions.

4 Determination of fn(·)
Nearly all the computational results from the model depend on fn(·), the bidder's
belief about the highest bid on an amongst her competitors. I have to this point

been agnostic on the determination of these beliefs. This is less for convenience than

for practicality: decoding fn(·) analytically is nebulous, at best. I present here an

attempt to solve for fn(·) in order to demonstrate the futility of such an endeavor.

The realization of yn is dependent on, among other things, the number of com-

petitors Jn who are in the market for auction an. Assume for a moment that Jn is

known. Amongst these other bidders, bidder i may divide them into two categories:

those that are speci�ed similarly to i and those that are not. Insofar as some bidder

j 6= i is similar to i, j's bid on an will be a function of her patience Tj and her

private valuation Vj.

Start with the extreme case where all other bidders j are speci�ed similarly to i

and where every bidder is in the market for only one period. The bidders interested

in auction an submit their full valuations Vj, and the cumulative distribution of

the maximum bid yn is the cumulative distribution of Vj raised to the Jnth power.
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This is simple enough to calculate, assuming one has a reasonable estimate of the

distribution of Vj.

Now suppose that bidders who enter the market potentially remain there for more

than one period. Then, on a given auction, there may be some bidders submitting Vj

(if their deadlines are approaching) and some submitting xj < Vj, where xj takes into

account the option value of losing the auction. These option values are contingent

on their respective deadlines Tj and their respective beliefs fn,j(·), both of which are

unknown to i. i's beliefs are thus conditional on j's beliefs, which by symmetry are

conditional on i's beliefs, which are conditional on j's beliefs, ad in�nitum. This

mobius strip of higher order beliefs may not easily be resolved analytically. If one

were to then include bidders whose strategies did not conform to those of i, then not

only must i factor their bids into fn(·) but also must she consider how these bids

factor into j's beliefs fn,j(·). Modeling the resultant higher-order beliefs becomes

even more complex.

Perhaps most relevantly, in actuality Jn is unknown and cannot be estimated,

given the anonymous nature of the bidding process. The same group of bidders will

not necessarily bid on each successive auction that i is interested in. New bidders

may enter the market, and existing bidders may leave it. Some of her competitors

for a1 may not have identi�ed or even be interested in the auction a2. The sum total

of all these complexities suggests the near-impossibility of �solving� for fn(·). As a
practical matter, it best left as subjectively determined by each bidder.11

4.1 State-Dependent Beliefs

Even if subjective, fn(·) may nevertheless be state-dependent (contrary to Assump-

tion 3). Consider two states s′ and s′′ with the same state time (t(s′) = t(s′′)) such

that

• There are more auctions in state s′ than in s′′, or

• The minimum bids on all auctions are at least as low in s′ as in s”

The bidder may speculate that F (·|s′) > F (·|s′′), given the decreased competition

in state s′.12

How would state-dependent beliefs a�ect the solution π∗2 in the previous section?

As previously noted, Assumption 3 is not in fact necessary for the solution to remain

intact. If one were to replace each f(y) with fn(yn|s) in Section 3 (and if Assumption

11fn(·) may be informed, for example, by the history of winning bids
12In Example 3, for example, it is reasonable for the bidder to believe that F2(·|s3) > F2(·|s6)

given that at s3 there are more auctions on which to bid than in s6.
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1 still holds), the necessary re�nement to the solution would be a rede�nition of

terminal states as those corresponding to a state-time of T − 1 instead of T − D.

With state-dependent beliefs about the distribution of yn, the expected surplus is

evolving with the state, even if the set of auctions on which to bid is �xed. The

game tree increases by a factor of 2D−1, but the mechanics of the solution remain

intact.

5 Extensions

For pedagogical purposes, I have kept the model as simple as possible. Every auc-

tion is for a homogeneous good and is open for bidding for a common duration D,

and the bidder is able to monitor the auction market continuously. As these speci�-

cations may not necessarily apply to real-life auction markets, I consider the e�ects

of relaxing various assumptions of the model.

5.1 Non-homogeneous Goods

I have modeled a sequence of auctions for a homogeneous good, though in practice

this is not what one observes. Internet auctions for even the most often-listed items

are almost invariably di�erentiated in one form or another: by model, condition, or

location, for example. To accommodate di�erences across bidders in their tolerances

for di�erentiated goods, I can introduce di�erent types of a substitutable good, any

one of which would satisfy the bidder's needs.

Suppose that the bidder is willing to accept any one of q ∈ Q types of the good,

with q corresponding to a speci�c type. For each type, she has a private valuation

Vq ∈ [Lq, Hq] and belief fq(·) with support [Lq, Hq] regarding the maximum bids by

all other bidders for auctions of that type. At t, at most a single auction opens.

A type q auction opens with probability λq, with
∑

q∈Q λq ≤ 1. The bidder has

type-speci�c utility Uq(p), where p is the dollar surplus from winning the auction.

The number of elements in Q indicate the degree of �exibility the bidder has. If

the size of Q is small, the bidder is discriminating, accepting only a narrow range

of items, while if the size of Q is large, the bidder is �exible, willing to consider an

array of di�erent items.

Denoting a1's type as q1, I can write her objective function as

max
x1

∫ x1

b1

Uq1(Vq1 − y1)fq1(y1)dy1 + [1− Fq1(x1) + Fq1(b1)]πU2

The optimal x∗1 is given by x∗1 = Vq1−U−1
q1

(πU2 ) where πU2 is the option value denom-
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inated in units of expected utility, not dollars. Given Proposition 4, I conjecture

that the bidder's expected surplus is increasing with respect to the size of Q and,

consequently, that her preferred bid on the current auction is decreasing with respect

to the size of Q. The more willing the bidder is to accept substitutes, the higher the

expected surplus she will extract from her bidding.

Example. Consider the example from Section 1, but now suppose that instead that

there are two types of bikes, good quality and bad quality. The bidder has found

a single auction: a bad quality bike with a current minimum bid of $50 closing in

three days. Bad quality bikes typically sell for anywhere between $0 and $200, while

good quality bikes typically sell for $500 to $1000. She is willing to pay up $100

for the former and $800 for the latter. Her utility function for each type is given by

Uq(p) = p/(Hq − Lq).
On a given day, there is equal probability that an auction for a good quality bike

arrives, a bad quality bike arrives, and no bike arrives (1/3 each). She could bid

x1 ≤ Vbad = 100 immediately, but alternatively she could wait for three days and

revisit the auction site just before the bad quality bike auction closes. If she were to

bid immediately, she runs the risk of winning and extracting at most 50/200 = 0.25

units of utility.

Suppose that the bidder submits a bid today of $100 and revisits the site in three

days, just prior to the auction's closing time. At that time, she �nds

1. The auction for the bad quality bike has been bid up to $90, and

2. Two good-quality bikes have been listed, one closing in two days and the other

closing in three days.

She estimates that her expected utility from bidding on the two good-quality

bikes is 0.25, implying her preferred bid on the current auction for the bad-quality

bike is now x∗1 = 100 − 0.25(200) = 50. Her pre-existing bid of $100, however,

locks her into the auction for the bad-quality bike, for which her maximum possible

surplus if she wins is now 0.05. She would prefer to have bid less on the current

auction, which would have simultaneously 1) lowered the ex ante probability she

wins the bad-quality bike, 2) raised the surplus utility conditional on winning the

bad-quality bike, and 3) raised the probability she can bid on the good-quality bikes

and extract high surplus utility. Her earlier bid has proven suboptimal.

5.2 Monitoring Costs

In the optimal strategy outlined in Section 2, it is implicitly assumed that bidders

can constantly monitor the auctions and bid at any time. In fact, there may be
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exogenous constraints on their time, limiting their access to the auction market. To

accommodate this friction, one could assign probability γi(t) that the bidder will

have access to the market at t. With uncertain monitoring, a value can be attached

to the ability to submit a non-binding bid.

Again, consider the example from Section 1, but suppose the bidder does not

know today if she will be available to revisit the auction market just prior to the

current auction's close to determine if new auctions have arrived. She would be

willing to bid some relatively high amount x assuming new auctions don't arrive in

the next three days. As she is uncertain whether she will revisit the market, she

may contract out the bidding to a sniper service, which will submit a last-second

bid on behalf of its client. An early high bid e�ectively handcu�s the bidder from

recalibrating her bidding strategy if new auctions open. If γi(t = a1 − 1) is low

enough, she can bid x through the sniper service, knowing that the sniping contract

is non-binding and can be amended if she is able to revisit the market at some point

prior to a1 and incorporate new information into an updated bid.

5.3 Search Intensity

As originally speci�ed, the arrival rate λ would appear to be a common arrival rate.

Some bidders, though, may search with higher intensity than others. This could be

modeled by simply recasting the arrival rate as λ(σi), where σi is bidder i's search

intensity. One might presume the arrival probability is increasing and concave with

an upper limit less than or equal to 1. The option value of losing an auction for a

high search intensity bidder would be high relative to that for a low-search intensity

bidder, since in expectation the former would have more subsequent auctions on

which she could bid.

5.4 Discounting

For some goods, it may be that winning an auction sooner is more valuable than

winning one later. In this case, one may want to include a discount factor to capture

the time value of money and/or intertemporal preferences. The discount factor

would be applied in the calculation of the option value so as to lower the expected

surplus of later-closing auctions. For example, given a continuously compounded

discount rate r, Equation (5) becomes:

πn|s = max
xn|s

∫ xn|s

bn|s

(V − y)f(y)e−r(an|s−t)dy + [1− F (xn|s) + F (bn|s)]πn+1|s
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where r represents the discount rate. Assuming r > 0, discounting decreases the

expected surplus of future auctions, which then increases the optimal bid x∗1. The

inclusion of r implies that the bidder's patience has two dimensions. T represents her

willingness to stay in the market, while r represents her preference for earlier-closing

auctions.

5.5 Multiple values of D

I have assumed all auctions are open for the same duration D. In practice, it may

be the case that sellers can choose from a variety of durations. eBay, for example,

allows sellers to choose 1-, 3-, 5-, 7-, and 10-day auctions. The model may easily be

amended to allow multiple values of D, each with a di�erent arrival probability λd.

Assuming that the arrival processes are such that two auctions never close at the

exact same time, I conjecture the results would remain qualitatively similar as with

a single D. The game tree is Section 3.2 would have more branches at every node,

though the iterative procedure to solve for π∗2 would not change.

5.6 Sealed Bid Auctions

The model can easily be amended to consider sealed bid second-price auctions. In

particular, if the minimum bids are not posted, b is simply the zero vector. The

calculations of π∗2 and x∗1 remain intact with b(a, t) = 0 for all a and t.

5.7 Risk-averse bidders

In maximizing expected surplus, bidders are implicitly risk-neutral. This speci�-

cation may not be controversial in the context of Internet auctions for small-value

goods like bikes or television, but it is less tenable for big-value items like housing.

To accommodate such scenarios, one could easily recast bidders as risk averse. Con-

ceptually, this is a simple transformation: conditional on winning a single auction,

bidders maximize their expected utility rather than expected surplus. For example,

the objective function in Equation (1) becomes

max
x1

∫ x1

b1

U(V − y1)f1(y1)dy1 + [1− F1(x1) + F1(b1)] πU2

where U(·) is her utility function and πU2 is the expected utility from bidding on all

subsequent auctions. Unfortunately, one may quickly observe the analytic problem

that arises, in that integrating over the product of U(·) and f(·) may not have a

closed-form solution.
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6 Conclusion

Taking both the arrival of new auctions and the bidding of other participants as

exogenous, I demonstrate that last-second bidding is the optimal strategy if the

bidder is su�ciently patient. Losing an auction has an option value, as a bidder can

potentially bid on subsequent auctions. A bidder should postpone submitting a bid

until as late as possible, as this will allow her to better estimate the option value

of losing. The contracting of sniping services is shown to be optimal if the bidder

is uncertain whether or not she could revisit the market just prior to the current

auction's close.

A solution for the option value is provided. According to this solution, the

bidder's preferred bids on each subsequent auction are increasing, with a maximum

of her private valuation on the �nal auction. The more patient the bidder is, the

less she prefers to bid on any auction. When her deadline extends to in�nity, her

optimal strategy is to consistently submit the lowest possible bid, as this will ensure

the maximum surplus if and when she wins.

I stress here that this paper is intended not as the explanation for observed last-

second bidding in online auctions but as an explanation for it. I acknowledge the

possibility and indeed likelihood that one or many of the previously theorized expla-

nations are in fact correct, particularly those that suggest some sort of behavioral

mechanism in play. One may interpret this paper as providing a rationale for why

such strategies may nevertheless be optimal.
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Appendix

A Summary of Key Variables

Variable Description
bidder- and time-invariant

D Duration of newly arrived auction is open
λ Probability a new auction opens in a given period

bidder-invariant, time-speci�c

t Current time
A(t) set of all auctions open at t
B(t) set of minimum bids for all auctions in A(t)

s ≡ s(t) state at t

bidder-speci�c, time-invariant

T bidder's deadline (time constraint)
V bidder's private valuation

bidder- and time-speci�c

an Unique closing time of the eligible auction ending nth
from the current time

a = [a1 a2 ... aN ] Vector of eligible auctions (i.e., those closing before T ).
Elements are ordered chronologically by closing time

bn ≡ b(an, t) The current minimum (second highest) bid on auction
an

b = [b1 b2 ... bN ] Vector of minimum bids on eligible auctions
x∗1 Optimal bid on a1, the current auction
yn Highest bid on an amongst all other bidders

fn(yn) and Fn(yn) bidder's beliefs about the p.d.f. and c.d.f. of yn,
respectively

π2 ≡ π2 (s(t)) Option value of losing a1, conditional on the state.
Equivalently, the expected surplus from optimally
bidding on a2 (and all subsequent eligible auctions)

bidder- and state-speci�c

an|s The nth auction at state s
πn|s The expected surplus from bidding optimally on an|s
t(s) The state-time associated with s
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B Proofs

Proof of Proposition 2. Condition 1 corresponds to the inequalities

π∗2|s < π∗2|s+ and π∗2|s > π∗2|s− (8)

evaluated at s = s0. Since t(s0) < a2|s0 − 1, I have

π∗2|s = λπ∗2|s+ + (1− λ)π∗2|s−

Satisfaction of the inequalities in (8) requires

λπ∗2|s+ + (1− λ)π∗2|s− < π∗2|s+

π∗2|s+ > π∗2|s−

π∗2|s+ > π∗2|s− is true as s+ and s− are identical except s+ has an additional auction

closing at t(s) + 1 +D.

Condition 2 corresponds to the inequality

dπ∗2/dbn ≤ 0∀n > 1 (9)

One can show that dπ∗2|s/dπ
∗
n|s > 0 for all n > 2, implying that the sign of dπ∗n|s/dbn

determines the sign of (9). Di�erentiation of Equation (5) yields

dπ∗n|s/dbn =

−(V − bn)f(bn) · 1 < 0 if x∗n|s > bn

0 otherwise

Since dπ∗n|s/dbn ≤ 0, it must be the case that dπ∗2/dbn ≤ 0.

Proof of Proposition 3. Let Pr[ε] denote the probability of winning a single auction

with a �xed bid of ε. The condition π2 → V is equivalent to Pr[ε] → 1 for some

ε ≥ 0. Suppose that there are no auctions currently open but that until her deadline

the bidder plans to bid ε on every auction which does arrive. If she knew there would

be N auctions on which she eventually could bid, the probability that she wins one
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auction with a �xed bid ε is

Pr[ε] = F (ε) + [1− F (ε)(F (ε) + [1− F (ε)(F (ε) + [1− F (ε)(...

=
N∑
n=1

F (ε) [1− F (ε)]n−1 (10)

As T → ∞, it must be the case that N → ∞ as well. As N → ∞, Pr[ε] →
F (ε)/F (ε) = 1, as implied by F (ε) ∈ [0, 1] and Equation (10).

Proof of Proposition 4. Proofs by induction: In order to show dπ∗2/dV > 0, it is

su�cient to demonstrate dπ∗n|s/dV ≥ 0 for all n > 1 and all s. For any terminal

state s̄ and associated �nal auction N∗(s̄),

dπ∗N∗(s̄)|s̄
dV

=

F (V )− F (bN∗(s̄)|s̄) > 0 if V > bN∗(s̄)|s̄

0 otherwise
(11)

Similarly, for any state s such that t(s) ∈ {an|s − 1, T −D}

dπ∗n|s
dV

=



>0︷ ︸︸ ︷
F (V − π∗n+1|s)− F (bn) +[

1− F (V − π∗n+1|s) + F (bn)
]︸ ︷︷ ︸

>0

dπ∗
n+1|s
dV

if V − π∗n+1|s > bn|s

dπ∗
n+1|s
dV

otherwise

(12)

For all other s,
dπ∗n|s
dV

= λ︸︷︷︸
>0

dπ∗n|s+

dV
+ (1− λ)︸ ︷︷ ︸

>0

dπ∗n|s−

dV
(13)

From (11), (12) and (16), one can induct that dπ∗n|s/dV ≥ 0 for all n > 1 and all s.

Similarly, note that the inequality dπ∗2/dλ > 0 is equivalent to dπ∗2|s0/dλ > 0.

For terminal states s̄,
dπ∗n|s̄
dλ

= 0 (14)

For non-terminal states s where t(s) = an − 1

dπ∗n|s
dλ

=
[
1− F (V − π∗n+1|s) + F (bn)

]︸ ︷︷ ︸
>0

dπ∗n+1|s

dλ
(15)
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For non-terminal states s where t(s) < an − 1

dπ∗n|s
dλ

= (π∗n|s+)− (π∗n|s−)︸ ︷︷ ︸
>0 (by Prop. 2)

+ λ︸︷︷︸
>0

dπ∗n|s+

dλ
+ (1− λ)︸ ︷︷ ︸

>0

dπ∗n|s−

dλ
(16)

From (14), (15), and (16), one can induct that dπ∗n|s/dλ ≥ 0 for all n > 1 and

all s. Since s0 is a non-terminal state and t(s0) = 0 < a2 − 1, (16) implies that

dπ∗2|s0/dλ > 0.
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