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Abstract

A signaling mechanism has been proposed as a device to improve agent welfare

in decentralized two-sided matching markets. An example of such an environment is

the job market for new Ph.D. economists. We study a market game of incomplete

information between �rms and workers. Workers have almost aligned preferences over

�rms: each worker has �typical�commonly known preferences with probability close to

one and �atypical�idiosyncratic preferences with the complementary probability close

to zero. Firms have some commonly known preferences over workers. We show that

the introduction of a signaling mechanism is harmful for this environment. Though

signals transmit previously unavailable information, they also facilitate information

asymmetry that leads to coordination failures. As a result, the introduction of a

signaling mechanism lessens the expected total number of matches.
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1 Introduction

Signaling as an actual mechanism design instrument was �rst implemented by the Ad Hoc

Committee1 of American Economic Association (AEA) in December 2006 to facilitate match

formation in the job market for new Ph.D. economists. This market begins in early Fall

each year, when departments of economics departments advertise open faculty positions

and graduate students nearing completion of their dissertations apply for these positions

according to their preferences. Additionally, each student has an opportunity to send two

signals to two departments prior to the market.2 Each signal states only that the student

has indicated her interest to a given department. The signals are private, only the faculty

of the chosen department knows the student�s signal. The main part of the market happens

later, when departments invite students to interviews and �nally select the candidates to

whom they make job o¤ers. However, each department can interview only a small portion of

available students, which creates congestion in the market. The decision which candidates

to invite for interviews is a strategic one. An average department probably does not want

spend time interviewing candidates who are being interviewed by the elite departments.

The Ad Hoc Committee introduced the signals in order to alleviate congestion at the

interviewing stage. Signaling is essentially a costless communication, or cheap talk. There

is no penalty attached for lying, and claims do not directly a¤ect payo¤s3. Therefore, sig-

nals can only enlarge the set of equilibria. Crawford and Sobel (1982) show that cheap

talk can be credible in an equilibrium, if parties have common interests. Moreover, costless

communication leads to new equilibria that are Pareto-superior to the one without com-

munication. Therefore, one may conjecture that cheap talk should be also bene�cial for

decentralized matching markets. Roth (2008b) suggests also that the limited number of

signals can credibly transmit information about students�preference, which could help to

reduce the coordination failures faced by the market participants and facilitate better match

formation (see also "Signaling for Interviews in the Economics Job Market" AEA (2005)4

for more discussion). Recently, Coles et al. (2009) obtain results that support this intuition.

They consider many-to-many matching markets among �rms and workers, whose prefer-

ences are ex-ante block-correlated. Speci�cally, there are several blocks of �rms. Workers

have the same and commonly known ranking of �rms across the blocks and idiosyncratic

1The Ad Hoc Committee was established in 2005 in order to develop ways to facilitate the job market for
new Ph.D. economists. Its members are Alvin E. Roth (chair), John Cawley, Philip Levine, Muriel Niederle,
and John Siegfried.

2This mechanism is implemented via the AEA website: http://www.aeaweb.org/joe/signal/.
3Ration talk is a better name for signals in our setting. Though signals are costless, an agent can send

only a limited number of signals.
4The document was created by the Ad Hoc Committee to provide advice to participants in the job market

for new Ph.D. economists; http://www.aeaweb.org/joe/signal/signaling.pdf.

2



preferences over �rms within blocks that are uniformly distributed (preferences are equally

likely). Firms�preferences are uniformly distributed over the range of all possible preference

order lists. Each worker can send several signals to �rms. Coles et al. (2009) show that the

introduction of signals increases the expected number of matches and the welfare of workers

in equilibrium.

Another example of a market where signaling plays a signi�cant role is the market for

clinical psychologists, described by Roth and Xing (1997). They show that the ability of

candidates to convey information about the likelihood to accept an o¤er is crucial in the

market. Program directors for internships in clinical psychology have a tendency to hire

applicants who explicitly express their readiness to accept an o¤er immediately, even if these

applicants are of a low quality.

Preference signaling also plays an important role in match formation in the U.S. college

admission market. More than a hundred colleges adopted some form of early admission

program in the 1990s (Avery et al., 2003), and many schools �ll a signi�cant fraction of their

entering class with early applicants. There are two types of early admission programs: early

action programs, where students may apply early but without any commitment to enroll,

and early decision programs, where students commit to enroll if accepted. Many schools

also require that applicants not send early applications to other schools. Colleges view an

early application as a signal of a student�s enthusiasm for a particular school. Avery and

Levin (2009) show that selective (or elite) schools bene�t from adopting early action policy.

At the same time, a lower ranked school, by adopting early decision policy, can attract some

highly quali�ed but cautious students, drawing them away from highly ranked schools.

Our main concern in this paper is the job market for new Ph.D. economists. We consider

a model similar to that of Coles et al. (2009) and show that signals impede match formation

in some environments. Though signals transmit information about agents�preference truth-

fully, they also introduce information asymmetry. The information asymmetry facilitates

coordination failures that decrease the expected number of matches and ambiguously a¤ects

the welfare of agents. The negative e¤ect on agents�welfare in new cheap talk equilibria is

in line with Farrell and Gibbons (1989)�s results, though it di¤ers in its intuition.5 Cost-

less communication in their two-agent bargaining model gives the buyer an opportunity to

pretend to have a lower value and the seller an opportunity to pretend to have a higher

value (compared to the truthful information transmission in our model). This enhances

their bargaining positions at the cost of the risk of no trade. New cheap talk equilibria are

characterized by both less trade and a reduction in the expected gains from trade.

We analyze one-to-one a matching market between workers and �rms in this paper. We

examine an environment in which workers have almost aligned preferences. Each worker has

5We are thankful for Lones Smith who drew our attention to this comparison.
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either "typical" commonly known preferences with a probability close to one or "atypical"

preferences taken from some distribution with the complementary probability close to zero.

The preferences of workers are ex-ante independently distributed.6 Firms have some �xed

and commonly known preferences over workers. We consider a decentralized matching game

with three stages. First, each worker chooses a �rm, to which she sends her signal. Each

worker sends up to one signal; workers send signals simultaneously. Only �rms that receive

signals observe them. Second, �rms make decisions about job o¤ers by taking into account

signals received at the �rst stage. Each �rm can make only one o¤er. Finally, each worker

chooses an o¤er to accept among the available o¤ers. Each worker can accept at most one

o¤er.

We show that if �rms respond to signals in this environment, i.e. treat signals informa-

tively, the introduction of signals decreases the expected number of matches. The e¤ect of

signals on the welfare of agents is ambiguous. Intuitively, signals help workers with atypical

preferences to obtain better matches. This also increases the welfare of some �rms. At the

same time, signals deprive some agents of their matches. Overall, our analysis suggests that

signals play two important roles: 1) they reduce coordination failures because they transmit

previously unavailable information about workers�preferences, and 2) they introduce infor-

mation asymmetry. They transmit information about the preferences of workers to a limited

number of �rms, leaving the other �rms uninformed. This information asymmetry facilitates

coordination failures.

Finally, we analyze how the welfare implications change if all agents observe the sig-

nals each �rm receives, i.e. signals are public. Though the expected number of matches

increases compared to the o¤er game with private signals, public signals still impede match

formation for some environments. Public signals do not transmit enough information about

worker preferences. This induces some �rms to compete for the same workers, which creates

mismatches.

A simple example

Let us illustrate why signals can facilitate coordination failures by a simple example with

three �rms and three workers. The �rms rank the workers in the same way (w1; w2; w3), i.e.

they strictly prefer worker w1 to worker w2 to worker w3. Each worker�s preference is either

typical (f1; f2; f3) with probability 1 � " or atypical with the complementary probability
"; where " is small. The atypical preferences are uniformly distributed among all possible

preference order lists. All workers are acceptable to all �rms and vice versa.

If signals are not allowed, the only possible match in an equilibrium is the assortative

6We assume that typical workers rank �rms according to some public ranking. For example, typical
candidates in the job market for new Ph.D. economists rank departments of economics in their �eld according
to the U.S. News and World Report ranking.
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match, in which each �rm is matched to the corresponding worker. If signals are allowed, we

consider the following equilibrium strategies of agents.7 Each worker with typical preferences

sends her signal to the corresponding �rm (worker wi sends her signal to �rm fi). Each worker

with atypical preferences sends her signal to the best �rm worse or equal to the corresponding

one (according to typical preferences). Each �rm makes its o¤er to a worker better or equal

to the corresponding one, only if it receives a signal from her. Each �rm ignores all signals

from workers worse than the corresponding one. If a �rm receives no signals, it makes an

o¤er to the best worker worse than the corresponding one.

Figure I.

Let us consider the realization of preference pro�les when only worker w1 is atypical and

�rm f3 is her favorite �rm. Worker w2 and worker w3 are typical. Figure I illustrates the

equilibrium behavior. Worker w1 sends her signal to �rm f3. Worker w2 and worker w3 send

their signals to �rm f2 and �rm f3 correspondingly. Firm f3 makes an o¤er to worker w1, and

�rm f1 anticipates that worker w1 is atypical and makes an o¤er to worker w2. However, the

coordination failure arises because �rm f2 has no information about worker w1�s type and

cannot anticipate �rm f1�s behavior. Firm f2 also makes its o¤er to worker w2; however, it

eventually ends up unmatched because worker w2 accepts �rm f1�s o¤er. Thus, the number

of matches for some realization of preferences is smaller than the number of matches when

the signals are not allowed. Therefore, the expected number of matches is also smaller.

Related literature

A substantial part of the literature on two-sided matching markets focuses on central-

ized markets that employ the deferred acceptance algorithm proposed by Gale and Shapley

(1962). The outcome of this algorithm is a "stable" matching, in which no agent is matched

to an unacceptable agent on the other side of the market, and no pair of agents is unmatched

if it prefers to be matched. Centralized clearinghouses organized around the deferred accep-

tance algorithm can deliver thickness to the market, help to deal with the congestion, and

make it safe to participate (Roth, 2008b). These desirable properties have allowed some pre-

viously failed markets to be successfully reorganized. Roth (2008a) and Roth and Sotomayor

7See Theorem 1 for the proof that these strategies constitute a sequential equilibrium.
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(1990) present an excellent overview of the main theoretical accomplishments in this area.

As an illustration that preference signaling can be useful in centralized matching markets,

Abdulkadiroglu et al. (2008) show that the introduction of signaling technology can improve

the ex-ante e¢ ciency of the deferred acceptance algorithm in case of weak preferences.

Still, many labor markets are decentralized or at least preceded by decentralized oppor-

tunities for participants to match. Therefore, analysis of decentralized matching markets

outcomes and the devices that facilitate match formation for them are an important issue.

Good examples of papers that study models of decentralized matching markets with non-

transferable utility are Pais (2006) and Niederle and Yariv (2009). The former one models

decentralized matching markets by means of a sequential game where �rms are randomly

given the opportunity to make job o¤ers. It shows that every stable match can be reached

as the outcome of an equilibrium play of the game. The latter ones study decentralized

matching markets under incomplete information. They show that strong assumptions are

required for the existence of equilibrium strategies that yield a stable outcome in the presence

of uncertainty and frictions.

Shimer (2005) and Konishi and Sapozhnikov (2008) study models of decentralized match-

ing markets with transferable utility. The former paper studies the assignment of hetero-

geneous workers to heterogeneous jobs in a game with transferable utility. It shows that

in an equilibrium when workers use anonymous strategies, i.e. agents� strategies depend

on agent�s type, not on a particular identity of an agent, a worker�s wage is increasing in

her job�s productivity and a �rm�s pro�t is increasing in its employees�productivity. The

latter one studies an assignment game of Shapley-Shubik, where each �rm makes a take-

it-or-leave-it salary o¤er to one applicant. They show that applicants�(�rms�) equilibrium

salary vectors are bounded above (below) by the minimal competitive salary vector; this

suggests that adopting the minimum competitive salary vector as the equilibrium outcome

for decentralized markets does not have a strong justi�cation.

Finally, we want to note that this paper does not analyze search for matches. Agents

usually need to perform costly search to locate a better partner in decentralized matching

markets. Contrary to search literature (see Chade and Smith, 2006; Lee and Schwarz, 2007;

Kircher, 2008), we assume that agents perfectly know the payo¤s from their matches.

The paper proceeds as follows. Section 2 outlines our general model and introduces some

notations. Equilibrium analysis is presented in Section 3. Section 4 analyzes the welfare of

agents in the model with and without signals. Section 5 compares these welfare implications

with the results in the previous literature and discusses two controversial roles of signals in

matching markets. The case of public signals is considered in Section 6. Finally, Section 7

discusses some assumptions of our model and concludes.

6



2 Model

We consider a two-sided matching model with W workers and F �rms, W � F . The set

of workers and the set of �rms are denoted as W and F correspondingly. Both W and F
include the empty set. Each worker w orders �rms according to some strict preference list

�w. Similarly, each �rm f orders workers according to some preference list �f . �W and �F
together comprise the set of all possible workers�and �rms�preference lists.

Each agent a has cardinal utility compatible with her/its preference list �a8. If worker w

with preferences �w is matched with �rm f , she receives cardinal utility uw(f; �w). Similarly,

if �rm f with preferences �f is matched with worker w, it receives cardinal utility uf (w; �f ).

We assume that agent utility depends only on the rank of an agent with which it is matched.

Speci�cally, the utility of an agent from being matched with an agent on the kth position in

her/its preference list equals ua(k). We assume that agents have the same utility function;

i.e. for any agent a, ua(k) = u(k). Our results do not depend on the last assumption;

however, this assumption simpli�es the exposition.

Additionally, agent�s cardinal utility from being unmatched is normalized to zero. We

also assume that there is no worker whom �rms do not want to hire, and there is no worker

who prefers being unemployed to being matched with some �rm; i.e. for any k; u(k) > 0.

Each agent knows only her/its preferences and has some ex-ante common beliefs about

the other agents�preferences. We consider an environment where each �rm f has some �xed

publicly known preference list �f . Each worker is one of two types: �typical�or �atypical�. A

�typical�worker w is denoted as w(T ). All workers of typical type have the same commonly

known preference list �0. An �atypical�worker w is denoted as w(A). The preferences of

atypical workers are identically and independently distributed according to some distribution

A(�W). Each worker is ex-ante typical with probability 1� " and atypical with probability
"; for some " 2 (0; 1). Our main analysis considers the case when " is small.9 We also assume
that the distribution of atypical preferences, A(�W); has a full support, i.e. each �rm can

be the top �rm of an atypical worker with positive probability10.

To model the in�uence of signals on congested markets, we consider a model with three

periods:

1. Agents�preferences are realized. Each worker sends a signal to at most one �rm; signals

are sent simultaneously. Signals are observed only by �rms who have received them.

2. Each �rm makes an o¤er to at most one worker; o¤ers are made simultaneously11.
8We employ cardinal utilities compatible with ordinal ranking similar to Bogomolnaia and Moulin (2001).
9The exact bound on " depends on the parameters of distribution A(�W). However, for each distribution

A(�W), one could �nd an upper bound of ". We provide a more detailed discussion in Section 7.
10Formally, for any f 2 F and any w 2 W Pr(f = max�w(f

0 : f 0 2 F)) > 0.
11In practice, some �rms should rationally make several o¤ers, anticipating that some workers probably
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3. Each worker may accept at most one o¤er from the set of o¤ers she receives.

We restrict our analysis to pure strategies.12 A strategy of worker w is a duple sw =

(s1w; s
2
w) that represents her decisions at the �rst and third stages. A strategy of a worker at

the �rst stage is to choose a �rm she sends her signal to, s1w : �W ! F . A strategy of a worker
on the last stage is to choose an o¤er among those available to her, s2w : �W�2F ! F ; where
2F = fh : h � Fg. A strategy of �rm f is its decision at the second stage. Firm f chooses the
worker to whom it makes an o¤er based on a set of signals it receives, sf : 2W !W, where
2W = fh : h � Wg: The dependence of �rm strategy on preferences is omitted, because we

assume that each �rm has some �xed preferences.

For a given strategy pro�le of agents s = (sw; sf ) and realized agents�types � 2 (�W)W �
(�F)

F one can determine the �nal matching and agents�utilities. We denote the utility of

agent a given a strategy pro�le s and a pro�le of types � as �a(s; �): The interim expected

payo¤ of worker w with preferences �w from strategy sw when the other agents follow a

strategy pro�le s�w equals

uw(swjs�w; �w) =
X

��w
t(��w)�w((sw; s�w); (�w; ��w));

where t(��w) denotes the joint distribution of all agents except worker w preferences. The

interim expected payo¤ of �rm f given a subset of received signals h � W, beliefs �f (�jh);
and other agents�strategy pro�le s�f is

uf (sf js�f ; h) =
X

�
�f (�jh)�f (sf ; s�f ; �):

We employ the concept of sequential equilibrium for multi-stage games with observed

actions and incomplete information in order to solve the game (see Fudenberg and Tirole,

1991).

reject their o¤ers. We do not model these strategic decisions.
12The analysis of the o¤er game in which agents can use mixed strategies does not give additional intuition

to our main result that signals could impede match formation for some environments. However, this analysis
is available upon request.
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De�nition 1 A strategy pro�le (sw; sf ) and posterior beliefs �f (�jh) for each �rm f and

each subset of workers h � W is a sequential equilibrium if

� for any w 2 W ; �w 2 �W : s1w(�w) 2 argmax�2F uw(�js�w; �w);

� for any f 2 F ; h � W : sf (h) 2 argmax�2W uf (�js�f ; h); and

� for any w 2 W ; �w 2 �W ; h0 � F : s2w(h0; �w) 2 argmax2h0 uw(; �w);

where beliefs are de�ned using Bayes�rule.13

Now we introduce some notations that will be useful in our further discussion. Though

worker strategy is a duple sw = (s1w; s
2
w), we will talk mainly about worker strategies at

the �rst stage. The reason is that each worker has a strictly dominant strategy at the last

stage�accept the best o¤er available�since she knows her preferences and the preferences
are strict. To simplify notation, we omit the upper index and write sw(�w) instead of s1w(�w).

For convenience, we name �rms according to the typical preference list �0 = (f1; :::; fF );

i.e. f1 is the best �rm, f2 is the second best, etc. Similarly, we name workers in the following

way: worker w1 is the best worker among all workers W according to �rm f1�s preferences,

w1 = max�f1 (wjw 2 W); worker w2 is the best worker amongWnfw1g according to �rm f2�s
preferences, w2 = max�f2 (wjw 2 Wnfw1g); and so on. Generally, worker wi = max�fi (wjw 2
Wnfw1; :::; wi�1g) if i � F . The other workersWnfw1; :::; wFg are named according to some
prespeci�ed order.14

We say a subset of workers h � W is reached for �rm f when workers follow strategy

pro�le sW if ex-ante probability that only workers from set h send their signals to �rm f

strictly more than zero.

De�nition 2 A subset of workers h � W is reached for �rm f when workers follow strategy

pro�le sW if

Pr(hf = h) =
X

�
t(�)

Y
w2h

Isw(�w)=f
Y

w0 =2h
(1� Isw0 (�w0 )=f ) > 0;

where Isw(�w)=f =

(
1 if sw(�w) = f

0 otherwise
and t(�) denotes the joint distribution of all agents�

preferences.

We also say that �rm f responds to worker w�s signal, when workers follow strategy

pro�le sW ; if her signal changes the strategy of �rm f with positive probability.

13O¤-equilibrium beliefs are de�ned by considering the limits of completely mixed strategies.
14For instance, if all �rms have the same preferences ��, workers are named according to this preference

list �� = fw1; :::; wW g.
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De�nition 3 Firm f responds to worker w�s signal, when workers follow strategy pro�le

sW , if there exists a subset of workers h; w =2 h, such that both h and h [ w are reached for
�rm f , and sf (h) 6= sf (h [ w).

We proceed with equilibrium analysis in the next section.

3 Equilibrium analysis

As a benchmark, we �rst consider an environment in which workers cannot send signals.

Then, the model outlined above is a static game of incomplete information. Therefore,

the notion of sequential equilibrium coincides with the notion of Bayesian equilibrium and

agents�beliefs are irrelevant. There is a unique equilibrium match in this case.

If signals are not allowed and " is small, the only optimal strategy of �rm f1 is to make

an o¤er to its best worker w1 = max�f1 (wjw 2 W). The second top �rm anticipates that

worker w1 is likely to accept �rm f1�s o¤er. Hence, the only optimal strategy of �rm f2 is to

make an o¤er to its best worker among Wnfw1g ; w2 = max�f2 (wjw 2 Wnfw1g) and so on.
Workers accept the best available o¤er. Overall, there is the maximum number of matches,

F (since F � W ), in the equilibrium when signals are not allowed.

Proposition 1 (No signaling equilibrium) For su¢ ciently small ", there is a unique
equilibrium when signals are not allowed: �rm fj; j = 1; :::; F; makes an o¤er to worker wj;

worker wi; i = 1; :::; F; accepts the best available o¤er.

We further call the match in our benchmark model as �no signaling�match.

Now, we analyze the set of equilibria in the matching market with signals. Though signals

are voluntary in our model, they could still play a negative role and draw away �rm o¤ers.

In order to eliminate such equilibria, we assume that if �rm f makes an o¤er to worker w

when it does not receive her signal, �rm f makes an o¤er to worker w when it receives her

signal.15

Assumption PRS (Positive Role of Signals). For any �rm f 2 F and any worker w 2
W and any h � W; w =2 h, if sf (h) = w then sf (h [ w) = w.

We further distinguish three types of equilibria in the matching model with signals.

15See Example A1 in Appendix for an example of an equilibrium in which Assumption PRS is violated.
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De�nition 4

� An equilibrium is �babbling� if no �rm responds to any signal.

� An equilibrium is �informative�, if at least one �rm responds to some worker�s signal.

� An equilibrium is �very informative�, if each �rm responds to all signals from workers

better or equal to its no signaling match.

The set of the �rst and second type equilibria, i.e. babbling and informative, exhaust the

set of all possible equilibria in our model. The set of equilibria of the last type is a subset of

the set of informative equilibria.

A babbling equilibrium always exists in our model because signals are costless. If �rms

do not respond to signals, signals play no role in equilibria. Hence, the only possible match

in a babbling equilibrium is no signaling match.

Proposition 2 For su¢ ciently small "; the only possible match in a babbling equilibrium is

no signaling match.

If some �rms respond to signals, then signals transmit information about workers�pref-

erences in an equilibrium, which changes the overall matching outcome. However, there is

a great multiplicity of informative equilibria. One may suggest to use re�nements proposed

by (Cho and Kreps, 1987) and (Banks and Sobel, 1987).16 However, these criteria are very

powerful in the case of one sender and one receiver. The situation with many senders and

receivers is more di¢ cult. Though these criteria signi�cantly reduce the number of equilibria,

they do not guarantee uniqueness.

However, it is su¢ cient to restrict ourselves to the case in which each �rm responds to all

signals from workers better or equal to its no signaling match, i.e. very informative equilib-

ria, in order to guarantee uniqueness. This equilibrium consists of the following strategies.

Worker wi sends her signal to the best �rm among the �rms that prefer worker wi to their

no signaling match �(wi) = (fj 2 F : wi �fj wj): If �rm fj receives at least one signal from

the set of workers �(fj) = (w 2 W : w �fj wj); i.e. workers better or equal to worker wj, it
makes its o¤er to the best such worker; otherwise, it makes an o¤er to its best worker among

Wnfw1; :::; wjg:

16Cho and Kreps (1987) analyze never a weak responce, intuitive criterion, D1, and D2 re�nements. Banks
and Sobel (1987) analyze divinity and universal divinity re�nements.
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Theorem 1 For a su¢ ciently small "; under Assumption PRS the set of strategies,

� swi(�wi) = max�wi (f 2 �(wi));

� sfj(h) =
(
max�fj (w : w 2 h) if h \�(fj) 6= ?
max�fj (w : w 2 Wnfw1; :::; wjg) if h \�(fj) = ?

;

and the set of �rms� beliefs consistent with agents� strategies constitute a unique very

informative equilibrium.17

The above theorem is remarkable because it shows that the equilibrium of the model is

unique, if we restrict our attention to the case in which �rms use signals most extensively.

However, we should point out that we do not intend to eliminate all other equilibria. First,

the theorem illustrates typical agents�behavior in an informative equilibrium. Workers do

not just send signals to the best �rms. They send their signals to the best �rms that respond

to these signals, which is in line with AEA advice to participants in the job market for new

Ph.D. economists (see AEA, 2005). Similarly, �rms do not respond to all signals. Instead

they respond to the signals from workers better than those they could secure in the no

signaling equilibrium. Second, our results of welfare comparison do hold for most other

sequential equilibria.

4 Welfare properties of equilibria

We evaluate the e¤ect of signals on the matching market from an ex-ante perspective. We

mainly use the following quantitative characteristics: the expected number of matches, the

expected total welfare of �rms, and the expected total welfare of workers.

Let us denote the ex-post number of matches for the pro�le of preferences � 2 �W ��F ,
when agents follow the pro�le of strategies s as m(s; �). Then, the expected number of

matches can be expressed as

E[M(s)] =
P

� t(�)m(s(�); �);

where t(�) denotes the joint distribution of all agents�preferences. Similarly, the expected

total welfare of workers and �rms can be expressed as

E[W�rm(s)] =
P

f

P
� t(�)�f (s(�); �); and

E[Wworker(s)] =
P

w

P
� t(�)�w(s(�); �)

17We should point out that there is a multiplicity of beliefs that could support this equilibrium on o¤-
equilibrium path.
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correspondingly.

Proposition 1 shows that the expected number of matches in any no signaling equilibrium

is the maximum one. Hence, it is impossible that the expected number of matches in any

informative equilibrium exceeds the expected number of matches in any "no signaling" equi-

librium. Example 1 and Example 2 demonstrate the case of strict inequality and equality

for this welfare criterion.

Example 1 is presented in the introduction and considers the very informative equilibrium

with three �rms and three workers. To avoid a repetition, we do not discuss it here.

Example 1 (Fewer expected number of matches) There are three �rms and three work-
ers .Firms have the same ranking over workers (w1; w2; w3). The typical worker preference

list is �0 = (f1; f2; f3). Atypical worker preferences are uniformly distributed. Firm fj;

j = 1; 2; 3; and worker wi, i = 1; 2; 3; equilibrium strategies are

� swi(�wi) = max�wi (f 2 �(wi));

� sfj(h) =
(
max�fj (w : w 2 h) if h \�(fj) 6= ?
max�fj (w : w 2 Wnfw1; :::; wjg) if h \�(fj) = ?

;

and the set of �rms�beliefs consistent with agents�strategies.

Example 2 shows that some informative equilibria could have the maximum expected

number of matches. Intuitively, it is possible that if some �rm fj secures a better match

with some atypical worker wi, �rm fi always makes its o¤er to �rm fj�s no signaling match,

worker wj, in an equilibrium. Therefore, �rms exchange their matches and it does not

decrease the number of matches.

Example 2 (Equal expected number of matches) Let us consider three �rms and three
workers. All �rms have the same preferences �fj = fw1; w2; w3g: Let us consider the following
equilibrium strategies:

� sw1(�w1) = max�w1 (f : f 2 ff1; f2g) and swi(�wi) = fi, i = 2; 3;

� sfj(h) =
(
max�fj (w : w 2 h) if h \�(fj) 6= ?
max�fj (w : w 2 Wnfw1; :::; wjg) otherwise

; for j = 1; 2;

� sf3(h) =
(
max�f3 (w : w 2 h) if h \�(f3) 6= ?
w3 otherwise

:
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The set of equilibrium beliefs is such that if �rm f1 or f2 receives a signal from worker

w1, it believes that it is worker w1�s top �rm. If �rm f3 receives a signal from worker w1; its

belief coincides with her prior, i.e. worker w1 is typical with probability 1 � " and atypical
with probability ". Similarly, if any �rm fj receives a signal from worker w2 or w3, its belief

coincides with its prior. To put it brie�y, only �rm f1 and �rm f2 respond to worker w1�s

signal. All other signals are ignored. One may check that the described strategies constitute

an informative equilibrium.

The results about the expected total welfare of �rms and the expected total welfare of

workers are not so straightforward and depend on the relative magnitudes of u(k). The

intuition is that signals in an informative equilibrium play two roles. On the one hand,

signals help to secure �better�matches between some atypical workers and �rms. On the

other hand, the introduction of signals leaves some workers and �rms unmatched. Example

3 illustrates that the introduction of signals is bene�cial for a matching market according

to egalitarian welfare criterion if and only if the decrease in the number of matches is o¤set

by better matches of atypical workers. A similar example can show that the total welfare of

�rms changes ambiguously.

Example 3 (Welfare of �rms and workers) Let us again consider the game of Example
1. Workers�cardinal utilities from being matched to �rst, second, and third choice are �+�; �;

and � � � correspondingly. The expected total welfare of workers in no signaling match

E[W nosignals
worker ] =

P3
i=1

�
(1� ")u(i) + "1

3

P3
l=1 u(l)

�
= 3�:

One may check that the expected total welfare of workers in very informative equilibrium is18

E[W signals
worker ] = 3� +

�
�1
3
� + 19

6
�
�
"

Hence, the expected total welfare of workers increases, if and only if the di¤erence in utilities

between adjacent �rms is large enough, � > 2
19
�.

The theorem below summarizes the results derived above.

Theorem 2 For a su¢ ciently small " :

� the expected number of matches in any informative equilibrium is weakly fewer than in

any no signaling equilibrium;

� the e¤ect of signals on the expected total welfare of �rms and the expected total welfare
of workers is ambiguous.

18Terms of the order of "2 and "3 are ignored.
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We have compared above the properties of any informative and no signaling equilibrium.

However, more strict result holds for very informative equilibrium. Under the assumption

that there are at least three workers and there exists a worker w, such that there are at

least three �rms that weakly prefer worker w to their no signaling matches, jffj 2 F :

w �fj wjgj � 3; the expected total number of matches is strictly fewer in very informative
equilibrium than in the corresponding no signaling match. The intuition for this result is

similar to the one for Example 1. If �rms respond to signals, some of the realized matches

di¤er from no signaling match. Moreover, if at least three �rms respond to some worker�s

signal the exchange of matches�the situation presented in Example 2�is impossible for each
realization of preferences. Therefore, the expected number of matches is smaller than the

maximum one in this case.

Theorem 3 For su¢ ciently small "; if there are at least three workers and for some worker
w, j�(w)j � 3, the expected number of matches is strictly smaller in the very informative

equilibrium than in the corresponding no signaling equilibrium.

Theorem 2 proves that the expected total welfare of workers changes ambiguously with

the introduction of signals. However, the following proposition shows that signals are harmful

to workers only because they deprive them of matches. Workers receive weakly better o¤ers

conditional on the fact that they receive any o¤er.

Proposition 3 If a worker receives an o¤er in any informative equilibrium, this o¤er is
from a �rm weakly better than her no signaling match.

It is easy to see that the above statement is not true for �rms, because some �rms may

have to make o¤ers to workers worse than their no signaling match if she is atypical.

5 Role of signals in matching markets

Coles et al. (2009) show that the introduction of signals increases the expected number of

matches and the welfare of workers. However, they consider an environment where agents�

preferences are block-uniform. Speci�cally, there exists a partition F1; : : : ;FB of the �rms
into blocks and

1. For any b < b0, where b; b0 2 f1; : : : ; Bg, each worker prefers every �rm in block Fb to
any �rm in block Fb0;

2. Each worker�s preferences within block Fb are uniform and uncorrelated, for all b;
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3. Firm preferences over workers are uniform and uncorrelated.

This paper shows that Coles et al. (2009) results rely on the assumption that preferences

are block-uniform. If the preferences of workers are almost aligned and the preferences

of �rms are �xed and commonly known, the introduction of signals decreases the expected

number of matches. The e¤ect of signals on the expected total welfare of agents is ambiguous.

Overall, Table I presents the e¤ects from the introduction of the signals for the two di¤erent

environments: almost complete (this paper) and block-uniform distribution of preferences.

Preferences No signals Matches E[Wworker] E[W�rm]

Almost complete 0 � � �
Block-uniform 0 + + �

Table I. Almost complete VS Block-uniform distribution preferences.

A natural question is why signals in�uence matching markets in di¤erent ways. We argue

that the signals play two di¤erent roles: transmit information and facilitate information

asymmetry. On the one hand, the introduction of signals helps atypical workers to transmit

information about their preferences and locate a better match. On the other hand, signals

transmit information only to some �rms, thus facilitating information asymmetry. This

information asymmetry leads to coordination failures that decrease the number of matches.

When there is ex-ante small amount of information about agents�preferences, information

transmission plays a more important role in match formation. This happens when agents�

preferences are ex-ante block-uniform, as in Coles et al. (2009). However, when there is

almost complete information about agents�preferences�as in the model of this paper�the
introduction of signals leads to coordination failures. Table II presents the comparison.

Preferences Transmit information Facilitate information asymmetry

Almost complete Small Large
Block-uniform Large Small

Table II. The roles of signals

Overall, the signals play controversial roles in the match formation process. This could

make them a less powerful tool than it was previously anticipated.
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6 Public signals

One could conjecture that should signals be public, they would always bene�t match forma-

tion. Public signals introduce no asymmetry of information among �rms. Firms have the

same beliefs about the distribution of workers�preferences and the same beliefs about the

strategies other �rms use. Therefore, �rms should be able to make o¤ers that are more likely

to be accepted. Unfortunately, this intuition is incorrect. This section illustrates that the

expected number of matches in an equilibrium of the o¤er game with public signals could

be smaller than the expected number of matches in the o¤er game without signals.

We consider a market with three �rms and three workers. The distribution of agents�

preferences is the same as in Section 2. Each worker can send at most one signal and accept

at most one o¤er. Each �rm has only one vacant position and can make at most one o¤er.

The timing of the game is as follows:

1. Agents�preferences are realized. Each worker sends a signal to at most one �rm; signals

are sent simultaneously. All agents observe what signals each �rm receives.

2. Each �rm makes an o¤er to at most one worker; o¤ers are made simultaneously.

3. Each worker chooses an o¤er to accept from the set of o¤ers she receives.

The only di¤erence from the game we considered previously is that all agents observe the

signals each �rm receives. The strategies of workers are the same as in Section 2. However,

a strategy of �rm f now depends on the set of signals each �rm receives, sf : FW !W.19

As previously, the only equilibrium outcome of the o¤er game with signals is a full

match. However, the expected number of matches could be smaller than three if we allow

workers to send public signals. Intuitively, public signals do not transmit enough information

about workers�preferences. This could introduce a considerable amount of uncertainty about

workers�preferences. Therefore, some �rms can optimally engage in a competitive behavior

for some workers; i.e. �rms make their o¤ers to the same worker in an equilibrium. This

produces mismatches.

Example 4 There are three �rms and three workers. Firms have the same ranking over
workers, which we denote as (w1; w2; w3). The typical worker preference list is (f1; f2; f3).

The atypical worker preferences are uniformly distributed. We assume that all �rms have the

same cardinal utility and their utility from being matched to second top worker, i.e. u(2); is

at least twice as great as the cardinal utility from being matched to the third top worker, i.e.

u(3).

19Note that we again omit the dependence of strategies on �rms�preferences, as we assume that each �rm
has �xed commonly known preferences.
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We consider the following strategies of agents in the o¤er game with public signals.

Worker wi sends her signal to the best �rm among the �rms that weakly prefer worker wi to

their no signaling match �(wi) = (fj 2 F : wi �fj wj):

swi(�wi) = max�wi (f 2 �(wi)):

Firms use the following strategies.

1. Firm f1 makes an o¤er to worker w1, if it receives a signal from her; otherwise, it

makes an o¤er to worker w2.

2. Firm f2 makes an o¤er to worker w1; if it receives a signal from her. Firm f2 makes

an o¤er to worker w3, if either worker w1 sends a signal to �rm f1 and worker w2
sends a signal to �rm f3 or worker w1 sends a signal to �rm f3 and worker w2 sends

a signal to �rm f2. In all other cases, �rm f2 makes an o¤er to worker w2.

3. Firm f3 makes an o¤er to the best worker from whom it receives a signal. If it receives

no signals, it makes an o¤er to worker w3:

Each �rm�s beliefs on the equilibrium path are consistent with agents�strategies and each

�rm o¤-equilibrium beliefs coincide with priors.

Let us consider the strategies outlined in Example 4. Mismatches happen when both

worker w1 and worker w2 are atypical. If at least two atypical workers send their signals

to the same �rm, only one worker receives an o¤er from it. Since, signals are public, all

other �rms infer that the other worker is atypical. This creates a considerable amount of

uncertainty about the worker preferences. Since, this worker could be a good one, �rms have

incentives to compete for her.

Another reason for excessive competition among �rms is that signals may not transmit

information about workers�top �rms. Some workers send their signals to �rms that di¤er

from their top ones in an equilibrium, because they want to attract feasible o¤ers. There-

fore, several �rms could have incentives to make an o¤er to a given worker. This creates

competition among �rms, which again lead to mismatches.
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Figure II. Public signaling.

Proposition 4 formally proves that the set of strategies in Example 4 constitutes a se-

quential equilibrium.

Proposition 4 The set of strategies in Example 4 constitutes a sequential equilibrium.

The implications of the above example can be summarized by way of two observations.

First, public signals do not transmit enough information about workers�preferences. This

could introduce uncertainty about workers preferences and induce excessive �rm competition

for the same workers. This results in mismatches.

In addition, mismatches in the o¤er game with public signals occur only if there at least

two atypical workers, which happens only with probability of the order "2. In contrast,

mismatches in the o¤er game with private signals occur with the probability of the order ".

Therefore, mismatches happen less often when signals are public.

7 Conclusion

There is a general belief that preference signaling should facilitate match formation (see

Crawford and Sobel, 1982; Roth, 2008b; AEA, 2005). This belief is also supported by Coles

et al. (2009) who show that the introduction of signals increases the expected number of

matches and welfare of workers. We show in this paper that this belief can be erroneous for

some matching markets. We exemplify an environment in which the introduction of signals

harms matching markets: it decreases the expected number of matches and ambiguously

a¤ects the welfare of �rms and the welfare of workers. Based on this example, we argue that
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signals play controversial roles in match formation. Though they help to transmit infor-

mation about participants�preferences, they also facilitate information asymmetry among

them. While the former e¤ect reduces coordination failures and facilitates better match for-

mation, the latter e¤ect acts in the opposite direction. Finally, we show that making signals

observable to all agents does not change the welfare applications. We leave here as an open

empirical question which e¤ect dominates in real matching markets.

In conclusion, we want to discuss some assumptions of our model. We analyze the

introduction of signals to congested decentralized matching markets, as we believe the job

market for new Ph.D. economists to be. The fact that we do not analyze any centralized

clearinghouse mechanism and stable matches captures the idea of decentralized markets. The

fact that we analyze a one-period model captures the idea of congestion. Moreover, several

(but �nite) periods of interactions between �rms and workers would give an opportunity for

�rms to secure better matches; but signals would still introduce information asymmetry. If

each worker sent several signals, these would transmit information to a greater number of

�rms, but each signal would be less informative. Several vacant positions would make only

the preferences of �rms more complicated and would not in�uence the results. Overall, the

roles of signals in match formation are robust to these modi�cations.

The results of this paper are in terms of a su¢ ciently small ". However, what we re-

ally need is the uniqueness of equilibrium in the benchmark model without signals. The

multiplicity of equilibria does not allow a clean comparison between models with and with-

out signals. One could check that there is a unique equilibrium in no signaling model with

uniform distribution of atypical preferences if " < min(mini(
u(i)�u(i+1)

u(i)
); u(F )
u(F )+0:5u(1)

):

We should also highlight that we rely on cardinal utility in our analysis. Our results could

not be extended to an ordinal framework, because an Ordinal Bayesian Nash Equilibrium

(see d�Aspremont and Peleg, 1988) may not exist in our environment.
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A Appendix

Proof of Proposition 1.
Let us show this statement for each �rm sequentially. Each worker wi has preferences

�0 = (f1; :::; fF ) with probability 1�" and with complementary probability some preferences
distributed according to A(�W). Let us consider �rm f1 which has some preferences �f1. If it

makes an o¤er to worker w1 = max�f1 (wjw 2 W), its o¤er will be the best worker w1�s o¤er
with probability at least 1 � ". Hence, its expected utility from making an o¤er to worker

w1 equals at least (1 � ")u(1) which is greater than u(2) for su¢ ciently small ". Hence,
independently on other �rms�strategies, �rm f1�s optimal strategy is to make an o¤er to its

best worker.

Let us assume that each �rm fk, k < j; makes its o¤er to worker wk. Now we consider

the decision of �rm fj. The expected payo¤ from making an o¤er to some worker among

fw1; :::wj�1g is less than "u(1). In the same time the expected payo¤ from making o¤er to

some worker among Wnfw1; :::wj�1g is at least (1 � ")u(j): Hence, given the strategies of
other �rms and su¢ ciently small ", the optimal strategy of �rm fj is to make an o¤er to its

best worker among Wnfw1; :::wj�1g.�

Proof of Proposition 2.
The only undominated strategy of a worker at the last stage is to choose the best o¤er

among available ones. Then, under the condition that �rm f does not respond to any signal,

for any h � W reached in an equilibrium sf (h) = const. Let us assume that there exists

a realization of agents�preferences such that �rm f1 is matched to some worker wi, i > 1;

in the equilibrium. Hence, for any h � W ; reached in the equilibrium, sf1(h) = wi. Hence,
the expected �rm 1�s payo¤ equals at most u(2). However, the strategy sf1(h) = w1 for

any h � W is compatible with assumption that �rm f1 does not respond to any signals

and gives payo¤ (1� ")u(1) independently of strategies of other �rms. Hence, sf1(h) = wi
cannot be an equilibrium strategy. Similar argument could be applied to any other �rm fj,

j = 2; :::; F:�
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Proof of Theorem 1.
We prove the theorem by way of several lemmata. In the proof of the lemmata we presume

that " is su¢ ciently small. First, we establish that a �rm believes about a particular worker

is typical with probability more than 1� " either when it receives her signal or when it does
not receive her signal. Second, we show that �rms do not make their o¤ers to a worker better

than no signaling match if they do not receive her signal. The third lemma proves that if a

�rm does receive a signal from a worker better than its no signaling match, it makes its o¤er

to the best such worker. Finally, using the statements of lemmata we show that the set of

strategies stated in the theorem constitutes a unique very informative equilibrium.

First two lemmata do not require the assumption that each �rm fj, j = 1; :::; F; responds

to all signals from workers better or equal to worker wj according to its preferences.

Lemma A1 For any worker w 2 W, any �rm f 2 F , and any h � W either �f (�w =

�0jh [ w) � 1 � " or �f (�w = �0jhnw) � 1 � ". Similarly, either �f (�w 6= �0jh [ w) � " or
�f (�w 6= �0jhnw) � ".

Proof.
Let us denote as �T and �A the probabilities that typical and atypical type of worker

w correspondingly send a signal to �rm f . Then, if worker w sends her signal to �rm f;

(1� ")�T + "�A > 0; we derive its beliefs using Bayes�rule(
�f (�w = �0jh [ w) =

(1�")�T
(1�")�T+"�A

�f (�w = �0jhnw) =
(1�")(1��T )

(1�")(1��T )+"(1��A)

One can verify that (
�f (�w = �0jh [ w) � 1� " , �T � �A
�f (�w = �0jhnw) � 1� " , �T � �A

Hence, either �f (�w = �0jh[w) � 1�" or �f (�w = �0jhnw) � 1�". If worker w never sends
her signal to �rm f , (1� ")�T + "�A = 0; �rm f�s beliefs are �f (�w = �0jhnw) = 1� " and
�f (�w = �0jh [ w) is arbitrary. The second statement directly follows from the �rst one. �

Lemma A2 (O¤er to better workers) If �rm fj does not receive a signal from worker

w strictly better than worker wj, w �fj wj it does not make an o¤er to her in an equilibrium.
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Proof.
We prove this statement for �rms sequentially. Let us �rst show its validity for j = 2.

The only worker that could be better than worker w2 for �rm f2 is worker w1 by construction.

If w2 �f2 w1 we are done. Assume that w1 �f2 w2:
There are two possibilities: either worker w1(T ) sends her signal to �rm f1, i.e. sw1(�0) =

f1; or she does not send her signal to �rm f1, i.e. sw1(�0) 6= f1, in an equilibrium.
Assume worker w1 employs strategy sw1(�0) = f1. If �rm f2 does not receive worker w1

signal, �rm f2 believes she is atypical with probability less than "; �f2(�w1 6= �0jhnw1) � "
(Lemma A1). According to assumption F � W; �rm f2 can secure a match with some worker
wi; i � 2; with probability at least 1 � ". Hence, �rm f2 does not make an o¤er to worker

w1 in an equilibrium.

Worker w1 employs strategy sw1(�0) 6= f1 in an equilibrium only if �rm f1 makes its o¤er
to worker w1 with probability equals to one, and �rm f2 has a chance to be matched with

worker w1 only if she is atypical. Assume �rm f2 makes an o¤er to worker w1 when it does

not receive her signal. If w1(T ) sends her signal to �rm f2 in an equilibrium, according to

Assumption PRS �rm f2 should also make an o¤er if it receives a signal from w1. However,

if it receives a signal from w1, the probability that worker w1 is atypical less than " (Lemma

A1), which contradicts equilibrium behavior.

Now, we assume that worker w1(T ) does not send her signal to �rm f2 in an equilibrium.

If �rm f2 does not receive worker w1�s signal, �rm f2 believes that she is atypical with

probability less or equal ", �f2(�w1 6= �0jhnw1) � " (Lemma A1). Therefore, it is again

suboptimal for �rm f2 to make an o¤er to worker w1 if it does not receive a signal from her.

We have shown above that it is suboptimal for �rm f2 to make an o¤er to worker w1 if

it does not receive a signal from her. Let us assume that it is suboptimal for any �rm fj;

j < k to make its o¤er to a worker wt, t < j; if �rm fj does not receive a signal from it and

show that the claim for �rm fk:

We consider some worker wi, i < k. Firm fi makes its o¤er to workers fw1; :::; wi�1g with
probability less than " (i� 1) : In addition, worker wi is atypical with probability ". Hence,
�rm fk can secure a match with worker wi with probability equals at most i" if it does not

receive a signal from her: For small enough " �rm fk�s o¤er to worker wi is suboptimal. �

Now, we assume that each �rm fj, j = 1; :::; F; responds to all signals from workers better

or equal to worker wj according to its preferences. The following lemma shows that �rm fj

makes its o¤er to some worker w better or equal to worker wj if worker w�s signal is the best

signal �rm fj receives.
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Lemma A3 (Response to signals) Assume that F > W: Then, for any h � W sfj(h) =

max�fj (w : w 2 h) if h \�(fj) 6= ? in very informative equilibrium20:

Proof.
We prove this statement for �rms sequentially. Let us consider �rm f1 and worker w1.

Assume that worker w1 employs strategy sw1(�0) 6= f1. Then, �rm f1 believes that for any

h � W �f1(�w1 = �0jhnw1) � 1� ". Therefore, for su¢ ciently small ", �rm f1 always makes

its o¤er to worker w1, which contradicts to our assumption that it responds to worker w1�s

signal. Therefore, under the assumption that �rm f1 responds to a signal from worker w1,

the only possible worker w1�s equilibrium strategy is sw1(�0) = f1. In this case, for any

h � W �rm f1�s belief is �f1(�w1 = �0jh [ w1) � 1 � ". Hence, �rm f1�s highest expected

payo¤ when it receives worker w1�s signal is from making an o¤er to worker w1. Hence, for

any h � W; �rm f1�s strategy sf1(h [ w1) = w1 is optimal.
Assume now that for any t � j < k, and for any h � W, �rm fj employs strategy for

sfj(h) = max�fj (w : w 2 h) if h\�(fj) 6= ?:We prove below that �rm fk�s optimal strategy
for any h � W and sfk(h) = max(w : w 2 h) if h \�(fk) 6= ?:
There are two possibilities: either swk(�0) 6= fk or swk(�0) = fk: For the former case, for

any h � W �fk(�wk = �0jhnwk) � 1 � ": Hence, it is optimal for �rm fk to make an o¤er

to worker wk when it receives no signals from workers better or equal to worker wk; i.e. for

any h0 � W such that h0 \ �(fk) = ?; sfk(h0) = wk. Hence, it is also optimal for �rm fk

to make an o¤er to worker wk when worker wk�s signal is the best signal it receives, i.e. for

any h00 � W such that such that h00 \�(fk) = wk; sfk(h00) = wk: Therefore, �rm fk does not
respond to worker wk�s signal. Contradiction.

For the latter case, swk(�0) = fk, if �rm fk does not receive a signal from worker wk, it

anticipates that she is atypical. Therefore, �rm fk does not make its o¤er to her. If �rm

fj receives signals from any worker wi � wk no other �rm fp; p 6= j and p > i; makes its

o¤er to worker wi according to Lemma A2: The only o¤ers that compete with �rm fj�s o¤er

could be the ones from the set ffp; p < ig: However, any �rm fp, p < i; could make an

o¤er to worker wi only if worker wp is atypical, which happens with probability ". Hence,

the interim expected payo¤ for �rm fj from making its o¤er to worker wi equals at least

(1 � (i � 1)")u0; where u0 = ufj(wi; �fj). Firm fj expected payo¤ from making an o¤er to

any other worker from set �(fj) is smaller than (1� (i� 1)")u0 as this worker either has not
sent a signal to �rm fj or has a smaller rank in �rm fj�preferences. The expected payo¤

from making an o¤er to some worker Wn�(fj) is smaller either. Therefore, �rm fj optimal

strategy is; sfj(h) = max�fj (w : w 2 h) if h \�(fj) 6= ?. �
20If F =W the claim is still valid with the same assumption for all �rms except �rm fF . Firm fF should

respond to a signal from any worker strictly better than the corresponding one.
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Now we are ready to prove the theorem. Let us show that the set of strategies, stated

in the theorem, constitutes an equilibrium. We �rst prove that if all agents, except �rm fl;

follow the strategies, stated in the theorem, �rm fl�s strategy is optimal given its belief is

consistent with the other agents�strategies. If �rm fl receives a signal from worker wt; t < l;

�rm fl believes that itself is the best �rm among �(wt) = ffj 2 F : wt �fj wjg. Let us
assume that worker wt is the best worker who sends a signal to �rm fl. Worker wt does not

accept �rm fl�s o¤er only if she receives an o¤er from some �rm fk 2 Wn�(wt). However, it
happens only if worker wk is atypical, i.e. with probability less than ". Hence, �rm fl interim

expected payo¤ from making an o¤er to worker wt equals at least (1� (n� 1) ")u0; where
u0 = ufl(wt; �fl). Firm fl�s o¤er to a worker better than worker wt is not optimal according

to Lemma A1. Firm fl�s expected payo¤ from making an o¤er to some worker w, wt �fl w;
is also smaller than making an o¤er to worker wt for su¢ ciently small ": Overall, �rm fl�s

strategy is optimal.

Let us show that, if all agents, except worker wt; follow the strategies, stated in the

theorem, worker wt�s strategy is optimal. Firm ft does not make an o¤er to worker wt when

it receives a signal from a better worker. Therefore, if worker wt is typical, her payo¤ from

sending a signal to �rm ft equals at least [1� (l � 1)"]u(t). If worker wt does not send her
signal to �rm ft it loses her o¤er and she could get payo¤ at most u(t � 1), which is less
than [1� (l � 1)"]u(t) for su¢ ciently small ". There is also no reason for worker wt to send
her signal to a �rm better than �rm ft; because this �rm does not respond to her signal

according to its equilibrium strategies. Hence, worker wt(T )�s strategy is optimal. Using

similar logic one can show that worker wt(A)�s strategy is also optimal.

Now we show that the above strategies constitute the unique very informative equilibrium.

Lemmata A2 and A3 imply that each �rm fl, l = 1; :::; F; has to follow the following strategies

in an equilibrium:

for any h � W ;
(
sfl(h) 6= wl if h \�(fl) = ?
sfl(h) = wl if h \�(fl) = wl

Straightforwardly, the only worker wl(T )�s optimal strategy is to send her signals to �rm

fl, swl(�0) = fl, otherwise, �rm fl�s does not make an o¤er to student wl:

Let us consider �rm f � = max�wl (f
0 2 �(wl)). Firm f � responds to signals from workers

better or equal than no signaling match and its equilibrium beliefs are �f�(�wl = �0jhnwl) �
1�" and �f�(�wl 6= �0jh[wl) = 1. Therefore, if �rm f � does not receive a signal better than
worker wl�s one, it�s optimal strategy is to make an o¤er to worker wl. Taking into account

that �rm f � can receive a signal from a better worker with probability less than (l � 1)",
worker wl(A)�s optimal strategy is to send her signal to �rm f � (for su¢ ciently small "):

Hence, the strategies, stated in the theorem, constitute the unique equilibrium. �
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Proof of Theorem 3.
Assumption that A(�W) has a full support and that the strategies of the very informative

equilibrium guarantee that some worker wi sends her signals to each �rm in the set �(wi) =

jffj 2 F : wi �fj wjgj with positive probability. Then, using logic of Example 1 and
Example 2 it is straightforward to show that when there are at least three �rms in the set

�(wi) and there are at least three workers the mismatch happens with positive probability.

Therefore, the expected number of matches strictly smaller than in the corresponding no

signaling equilibrium. �

Proof of Proposition 3. The statement directly follows from the strategies of the very
informative equilibrium. �

Example A1 (An equilibrium when assumption PRS does not hold) Let us consider
two �rms and two workers. We assume that all �rms have the same preferences over workers

�f1 = �f2 = fw1; w2g: Also we assume that each typical worker has preferences �0 = (f1; f2)
and each atypical worker has preferences �A = (f2; f1) with probability equal to one. Firms

prefer worker w1 to worker w2. Agents employ the following strategies:

- sw1(�0) = f2; sw1(�A) = f1

- sw2(�0) = f1; sw2(�A) = f2

- for any h � W sf1(h) =

(
w1 if w1 =2 h
w2 if w1 2 h

, sf2(h) =

(
w1 if w1 =2 h
w2 if w1 2 h

Agents�believes are:

- for any h � W �fj(�wi : fj = max�wi (f 2 F)jhnwi) = 1 and �fj(�wi : fj = min�wi (f 2
F)jh [ wi) = 1

It is easy to show that the above strategies and the set of beliefs constitute a sequential

equilibrium. One may extend this example for the environment with more �rms and workers.

Proof of Proposition 4.
Let us �rst prove that �rms�strategies are optimal. Note that if �rm f receives a signal

from worker w1 it believes that it is her top �rm. Therefore, it is optimal for her to make

her an o¤er. Now, if �rm f1 that does not receive a signal from worker w1, �rm f1 believes

that worker w1 is atypical and will not accept its o¤er. Then, �rm f1 strategy of making an

o¤er to worker w2 is optimal for any signaling pattern, because it believes that her o¤er will
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be accepted at least with probability 1
2
. The worst case is when worker w2 is atypical and

sends her signal to �rm f3.

Now we consider �rm f2 optimal strategy. Let us consider the case when worker w1
sends her signal to �rm f1 and worker w2 sends signal to �rm f3. Firm f2 believes worker

w2 prefers �rm f3 to itself. Since, �rm f3 makes an o¤er to worker w2, and �rm f1 makes an

o¤er to worker w1; the only worker that could accepts �rm f2 o¤er is worker w3. If worker

w1 sends he signal to �rm f3 and worker w2 sends her signal to �rm f2. In this case �rm f1

makes an o¤er to worker w2, who is typical with probability (1� 1
3
"). Since, worker w1 most

preferred �rm is �rm f3; the optimal strategy of �rm f2 to make an o¤er to worker w3.

Let us consider the case �rm f3 receives signals from all workers. In this case �rm f3

makes an o¤er to worker w1. It is optimal for �rm f1 and �rm f2 to make an o¤er to worker

w2 because her preferences over these �rms could be equally likely. Hence, the payo¤ from

making an o¤er to worker w2 equal 12u(2) > u(3). Similar, one could show that in other

cases it is optimal for �rm f2 to make an o¤er to worker w2:In a similar way one could show

that it is always optimal for �rm f3 to make an o¤er to the best worker it receives a signal

from.

Let us now show each worker uses optimal strategy. Worker w1 strategy is optimal,

because any �rm makes her an o¤er upon receiving her signal. There is no incentive for

worker w2 to make an o¤er to �rm f1 since, all �rms upon observing such behavior has

believes about workers preferences that coincides with the priors. Therefore, worker w2
optimal strategy is to send her signal to the best �rms among f1 and f2.

Since �rms do not put attention to worker w3 signals, there is no reason for her to deviate

from the equilibrium strategy. �
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