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CORRELATED EQUILIBRIUM AS AN EXPRESSION OF 
BAYESIAN RATIONALITY 

BY ROBERT J. AUMANNI 

Correlated equilibrium is formulated in a manner that does away with the dichotomy 
usually perceived between the "Bayesian" and the "game-theoretic" view of the world. 
From the Bayesian viewpoint, probabilities should be assignable to everything, including 
the prospect of a player choosing a certain strategy in a certain game. The so-called 
"game-theoretic" viewpoint holds that probabilities can only be assigned to events not 
governed by rational decision makers; for the latter, one must substitute an equilibrium 
(or other game-theoretic) notion. The current formulation synthesizes the two viewpoints: 
Correlated equilibrium is viewed as the result of Bayesian rationality; the equilibrium 
condition appears as a simple maximization of utility on the part of each player, given his 
information. 

A feature of this approach is that it does not require explicit randomization on the part 
of the players. Each player always chooses a definite pure strategy, with no attempt to 
randomize; the probabilistic nature of the strategies reflects the uncertainty of other players 
about his choice. Examples are given. 

KEYWORDS: Correlated equilibrium, Bayesian rationality, information, noncooperative 
games, strategic equilibrium, Nash equilibrium, common priors, Harsanyi doctrine. 

1. INTRODUCTION 

0 wad some pow'r the giftie gie us 
To see oursels as ithers see us! 

-Burns 

THE EQUILIBRIUM CONCEPT of Nash (1951), together with its refinements, is 
without doubt the single game-theoretic tool that is most often applied in 
economics. Yet, though at first the definition seems simple and natural enough, 
a little reflection leads to some puzzlement as to why and under what conditions 
the players in an n-person game might be expected to play such an equilibrium. 
Recall that it is defined as an n-tuple of strategies in which the component strategy 
of each player maximizes that player's utility given that the other players are 
playing their components. Now why should any player assume that the other 
players will play their components of such an n-tuple, and indeed why should 
they? This is particularly perplexing when, as often happens, there are multiple 
equilibria; but it has considerable force even when the equilibrium is unique. 
Indeed, there are games whose Nash equilibria appear quite unattractive even 
though they are unique (see Harsanyi, 1977, p. 125); and even without such 
examples, it does not seem clear why the players would play even a unique Nash 

1 Research supported by the Institute for Mathematical Studies in the Social Sciences, Stanford 
University, under National Science Foundation Grant SES 83-20453; by the Institute for Mathematics 
and its Applications, University of Minnesota; and by the Mathematical Sciences Research Institute, 
Berkeley. We are grateful to Lloyd Shapley for an illuminating conversation, a decade back, that 
clarified for us the equivalence between the two definitions of correlated equilibrium; to Kenneth 
Arrow, for motivating us to write this paper; to Bob Weber, for the very apt quotation from Burns; 
and to Dave Kreps and two anonymous referees, for splendid editorial work. 

2 E.g., Selten (1975), Myerson (1978), Kreps and Wilson (1982), Kalai and Samet (1984), Kohlberg 
and Mertens (1986). 
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equilibrium. In a two-person game, for example, Player 1 would play his com- 
ponent only if he believes that 2 will play his; this in turn would be justified only 
by 2's belief that 1 will indeed play his component; and so on. To many this will 
sound like a plain old circular argument: consistent, perhaps, but hardly com- 
pelling. 

Nash equilibrium does make sense if one starts by assuming that, for some 
specified reason, each player knows which strategies the other players are using. 
But this assumption appears rather restrictive. 

Another criticism of equilibrium that has been advanced is that it appears 
inconsistent with the modern subjectivist, Bayesian view of the world. According 
to the Bayesian view, subjective probabilities should be assignable to every 
prospect, including that of players choosing certain strategies in certain games. 
Rather than playing an equilibrium, the players should simply choose strategies 
that maximize their utilities given their subjective distributions over the other 
players' strategy choices. 

It is the purpose of this paper to provide a simple rationale for equilibrium. 
Surprisingly, our rationale is precisely in terms of the "criticism" in the previous 
paragraph. We will show that, far from being inconsistent with the Bayesian view 
of the world, the notion of equilibrium is an unavoidable consequence of that 
view. It turns out, though, that the appropriate equilibrium notion is not the 
ordinary mixed strategy equilibrium of Nash (1951), but the more general notion 
of correlated equilibrium. 

Specifically, we will show the following. Let us be given an n-person game G 
in strategic (i.e. normal) form. Assume that (i) as in Savage (1954), each player 
has a subjective probability distribution over the set of all states of the world; 
and (ii) it is common knowledge3 that each player chooses a strategy that 
maximizes his expected utility given his information. Then the strategies chosen 
by the players constitute a correlated equilibrium of G. Conversely, each corre- 
lated equilibrium of G can be obtained in this way for an appropriate choice of 
the parameters. A precise formulation and proof will be found in Section 3. 

To some readers, this may seem obvious. Once one has the formulation, it is 
indeed embarrassingly easy to prove, as we shall see. But it should not be confused 
with certain characterizations of Nash equilibrium, which look similar but are 
actually much more transparent. There one assumes not only that each player is 
a utility maximizer, but that he knows the strategies actually being used by all 
other players. We make no such assumption; indeed, in our treatment, the players 
do not in general know how others are playing. We assume only that it is common 
knowledge that all the players are Bayesian utility maximizers, that they are 
rational in the sense that each one conforms to the Savage theory. Such an 
assumption underlies most of game theory, and of economic theory as well; we 
show that it, by itself, is enough to assure that the outcome is a correlated 
equilibrium. 

3An event is common knowledge among a set of agents, if it is known to all, it is known to all that 
it is known to all, and so on ad infinitum. See Lewis (1969) and, for a precise mathematical formulation, 
Aumann (1976). 
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An important feature of our approach is that it does not require explicit 
randomization on the part of the players. Each player always chooses a definite 
pure strategy, with no attempt to randomize; the probabilistic nature of the 
strategies reflects the uncertainty of other players about his choice. This will be 
discussed in detail in Section 6. 

The basic idea of this paper is extraordinarily simple; the main theorem is 
proved in less than a dozen lines. Some conceptual issues do arise, but still, we 
cannot grasp how such a simple idea grew into a paper of this length. A reader 
just interested in the main points, who knows what a correlated equilibrium is, 
should read Sections 3 and 6 only. Those not familiar with correlated equilibria 
should read Section 2 first. 

2. CORRELATED EQUILIBRIUM 

Let G be an n-person game in strategic form. For i = 1, . . ., n, denote by S' 
the set of pure strategies-henceforth actions-of Player i, and by h'(s) the payoff 
to i for an n-tuple S:=(S1,...,Sn) of actions.4 Set S:=S1 - - xS' and h:= 
(h',..., hn). Define a correlated strategy n-tuple in G as a function f from a 
finite5 probability space F into S; that is, as a random variable whose values are 
n-tuples of actions. 

Correlation is a more general form of strategy randomization than mixing. In 
both cases, the players base their choice of an action on observation of a random 
event; with mixed strategies, the observations are independent, whereas with 
correlated strategies, they need not be. To see that mixed strategies may be 
formally viewed as correlated strategies, take F to be the product probability 
space F1 x ... x Ff, where F' is the probability space by means of which i's 
mixed strategy is defined-the set of outcomes of his roulette spin. The simplest 
examples of "true" correlation (nonindependent action choices) occur when all 
players base their choices on observation of the same random variable. For 
example, in the prisoner's dilemma of Figure 1, the symmetric efficient outcome 
can be achieved if both players simultaneously observe a single toss of a fair 
coin, then play (top, right) or (bottom, left) according as to whether heads or tails 
came up. It cannot, however, be achieved by mixed strategies. 

In general, the observations of the players need be neither identical nor 
independent. Chance chooses an element y of F, then suggests to each player i 

2,2 0,6 

6,0 1,1 I 

FIGURE 1 

4The symbol := means that the expression on the left is being defined. 
5I.e., with a finite number of points (and so also of events). The finiteness of F plays no role in 

the sequel; we assume it only to avoid complicating the model with irrelevant generality. 
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that he take the action f'(y) (:= (f(y)'). If all players follow the suggestions, the 
correlated strategy n-tuple f results. 

The functionf may be identified with the n-tuple (f',... ,fn). If g' is a different 
function from F to S', then as usual, 

(f- 
i 

gi) = (f1 fi-1 gi,fi+1 f.n) 

Throughout the sequel, E denotes "expectation." Iff is a correlated strategy 
n-tuple, note that h'(f) is a real-valued random variable. 

DEFINITION 2.1: A correlated equilibrium (c.e.) in G is a correlated strategy 
n-tuple f such that 

(2.2) Eh'(f)> Eh'(f-' gi) 

for each player i and each g' that is a function off'. 

In form this definition is very similar to that of Nash equilibrium. Equilibrium 
is achieved when no player can gain by deviating from the suggestions, given 
that the others obey them. The deviations g' are restricted to be functions of f' 
(i.e., compositions of some other function with f) because i is informed off'(y) 
only, and so can distinguish only between members of F that are distinguished 
by ft. 

It will be useful to define the distribution of a correlated strategy n-tuple f as 
the function that assigns to each n-tuple s of actions the number Prob {f-'(s)}. 
Much like mixed strategies, correlated strategy n-tuples can for most practical 
purposes be identified with their distributions. Thus the correlated strategy n-tuple 
discussed above (Figure 1) can, using a familiar notation, be written '(top, 
right) + (bottom, left). Another way to represent the distribution is to insert the 
appropriate probability in each square of the payoff matrix; for the above example, 
the distribution is that of Figure 2. 

This distribution is not a correlated equilibrium distribution (c.e.d.), i.e., it does 
not represent a correlated equilibrium. Indeed, in the prisoner's dilemma, it is 
always worthwhile for Player 1 to play bottom, also if it is suggested that he play 
top. Figure 3 contains an example of a game ("the battle of the sexes") and a 
correlated strategy distribution that is in equilibrium. If top is suggested to 1, 
then he knows that left was suggested to 2, so he would lose by deviating to 
bottom; similarly if bottom is suggested, and for Player 2. 

By similar methods it may be seen that any convex combination of Nash 
equilibria is a correlated equilibrium. But there are also other kinds of correlated 

0 2 

2 0 

FIGURE 2 
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2,1 0,0 0 2 

0,0 1,2 0 2 

FIGURE 3 

6,6 2,7 

7,2 0,0 

FIGURE 4 

equilibria. For example, Figure 4 illustrates a two-person game ("chicken") with 
three Nash equilibria, whose payoffs are (2.7), (7.2), and (42, 42). The distribution 
of Figure 5 may be seen to be a correlated equilibrium, whose payoff (5,5) is 
outside the convex hull of the Nash equilibrium payoffs. It follows that the 
distribution of Figure 5 is itself outside the convex hull of the Nash equilibria. 
Other examples of correlated equilibria that are outside the convex hull of the 
Nash equilibria may be found in Aumann (1974); for a particularly beautiful 
example, see Moulin and Vial (1978). 

Computationally, correlated equilibria are simpler objects than Nash equilibria. 
The correlated equilibrium distributions of a given game G constitute a compact 
convex polyhedron whose defining linear inequalities can be explicitly written 
down. Here we treat only the two-person case, which is notationally less cumber- 
some; the principle, however, is no different in the general case. 

Let n=2; set 1:=IS'1, m:=1S21, hjk:=h(j,k) for jeS1 and keS2. Let 1 and 
Ek denote summation over all j in S1 and all k in s2 respectively. The distribution 
of a correlated strategy pair is an lm-tuple (Pik), where j and k range over S 
and s2 respectively, 

Pjk ' 0 forallj and k, and E2 Pjk=1. 
j k 

We will call such objects simply distributions for short. 

I 1 
3 3 

3 0 

FIGURE 5 
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PROPOSITION 2.3: A distribution (Pjk) is a correlated equilibrium distribution if 
and only if 

(2.4) E(hJk- hqk)Pik O for all j, q in S, and 
k 

E (h2 - h2)pjk > 0 for all k, r in S2. 
J 

PROOF: For (2.2) it is necessary and sufficient that for each i, the expectation 
still obeys the inequality when conditioned on each possible value of f, i.e. on 
each possible "suggestion" to Player i (a suggestion is called possible if it has 

positive probability). Suppose j is a possible suggestion to Player 1, i.e., Ek Pjk > 0. 
Given this suggestion, the conditional probability of 1 that k was suggested to 2 
is Pik/lk Pjk, hence l's conditional expected payoff is Ek hkPjk/pkPjk, which we 
denote Hl(jlj). If 1 were to deviate to the action q, his conditional expected 
payoff would be EkhqkPjk/lZkPjk, since the payoffs change, but l's information 
remains the same; we denote this by Hl(qlj). The equilibrium condition (2.2) 
for i = 1 says that deviation to q is not worthwhile, i.e., that H1(j Ij) H1(q Ij); 
if we multiply through by ZjPjk, we obtain (2.4). Similarly, (2.5) is seen to express 
the equilibrium condition (2.2) for i = 2. 

Definition 2.1 appears a little different from our 1974 definition of correlated 
equilibrium; there, the players may get more information about y than just the 
suggested action fi(y). It turns out, though, that practically speaking, the two 
definitions are equivalent. This will be discussed again below (Section 4g). 

3. BAYESIAN RATIONALITY IN GAMES 

We assume exogenously given an n-person game as in the previous section. 
Also exogenously given are the following: (i) a finite6 set 2, with generic element 
w; (ii) for each player i in G, a probability measure p' on 2; (iii) for each player 
i in G, a partition iP' of 2. The set 2 represents the set of all possible states of 
the world, and each w denotes a specific such state. The probability measure p' 
is i's prior on fL. The partition iP is i's information partition; if the true state of 
the world is oo E P E Pi, then i knows that some element of P is the true state of 
the world, but he does not know which one it is. 

The term "state of the world" implies a definite specification of all parameters 
that may be the object of uncertainty on the part of any player of G. In particular, 
each w includes a specification of which action is chosen by each player of G 
at that state wC. Conditional on a given wo, everybody knows everything; but in 
general, nobody knows which is really the true w. Taking the "atoms" of 2 to 
represent complete specifications of all possible variables enables us to represent 
all aspects of uncertainty on the part of any player-including uncertainty about 
the uncertainty of other players-by means of the partitions s'. This constitutes 
the standard model for "differential" ("incomplete") information in multi-person 
contexts; its implications will be discussed in more detail in the next section. 

6 See Section 4c. 

6 
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We will use the following assumption: 

COMMON PRIOR ASSUMPTION: All the priors p1 are the same; that is, there is 
a probability measure p on Q2 such that pl = p2= ...= pn = p. 

This is sometimes called the Harsanyi Doctrine. It does not imply that all 
players have the same subjective probability. The subjective probability of a 
player is his posterior given his information; these may well be different. Roughly 
speaking, the common prior assumption says that differences in probability 
estimates of distinct individuals should be explained by differences in information 
and experience. This, too, will be discussed further in the sequel, and we will 
also indicate how our results must be modified when the common prior assumption 
is relaxed or abandoned. 

Denote by s'(w) the action chosen by Player i in the game G at the state to 

of the world. Formally, each si is simply an exogenously specified function from 
f2 to S'; it may be considered item (iv) in the informational model of the world 
specified at the beginning of this section. We make the modest assumption that 
each player i knows which action he chooses, i.e., that s' is measurable7 w.r.t. 
(with respect to) '. 

Let s(w) := (s(c),... , s (Gt)) be the n-tuple of actions chosen at state Wt. Call 
a player i Bayes rational at t if his expected payoff given his information, 
E(h'(s)j1??')(w), is at least as great as the8 amount E(h'(s , si) 9'i)(w) that it 
would have been had he chosen an action si other than the action s"(w) that he 
did in fact choose; in brief, if he chooses an action that maximizes his payoff 
given his information. 

MAIN THEOREM: If each player is Bayes rational at each state of the world, 
then the distribution of the action n-tuple s is a correlated equilibrium distribution. 

PROOF: We must exhibit a probability space F and a function f: F-> S that 
is a correlated equilibrium and that has the same distribution as s. Indeed, if we 
set F:= (12, p), then s itself is such a function. To see this, let i e N, and let 
g': Q - S' be any function of si. Since si is $??'-measurable, g' also is; that is, it 
is constant on each P in P'. The Bayes rationality of i at each state implies that 
for each such P and each s' in Si, 

E(h'(s) I P) > E(h'(s- , si) I P). 

7A random variable is measurable w.r.t. a partition if it is constant on each element of the partition. 
Intuitively, this means that the r.v. contains no more information than the partition; a person who 
knows which event in the partition obtains, also knows the value of the r.v. 

8Recall that if x is a random variable, then E(x I ' ) is defined as the r.v. whose value at a specific 
to is E(xI P), where P is the event in 91" that contains co. (P represents i's knowledge, the smallest 
event that he knows to have occurred.) 
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Taking si to be the constant value of g' throughout P yields 

E(h (s) I P) - E(h1(s-', g') I p); 

multiplying both sides by Prob P and summing over all P in OP' yields 

E (h'(s)) >, Eh'(s-' g') 

For f = s, this is precisely the condition (2.2) that defines correlated equilibrium. 

4. DISCUSSION 

(a) Personal Choice as a State Variable. The chief innovation in our model is 
that it does away with the dichotomy usually perceived between uncertainty about 
acts of nature and of personal players. Of course, a player always knows which 
decision he himself takes; here, this information is not treated differently from 
private information he may have about other aspects of the state of the world. 

This point is a little subtle and is worth some discussion. In traditional Bayesian 
decision theory, each decision maker is permitted to make whatever decision he 
wishes, after getting whatever information he gets. In our model this appears not 
to be the case, since the decision taken by each decision maker is part of the 
description of the state of the world. This sounds like a restriction on the decision 
maker's freedom of action; at a given state co, it is as if the model forces him to 
take the decision dictated by cw. 

But closer examination reveals that "freedom of choice" is not an issue. The 
model describes the point of view of an outside observer. Such an observer has 
no a priori knowledge of what the players will choose; for him, the choices of 
the players are part of the description of the states of the world. This does not 
mean that the players cannot choose whatever they want, but only that the 
observer will not in general know what they want. 

This "outside observer" perspective is common to all differential information 
models in economics (as well as to all extensive games that are not of perfect 
information). In such models, each player gets some information or "signal"; he 
hears only the signal sent to him, not that of others. In analyzing this situation, 
each player i must first look at the whole picture as if he were an outside observer; 
he cannot ignore the possibility of his having gotten a signal other than the one 
he actually got, even though he knows that he did not actually get such a signal. 
This is because the other players do not know what signal he got. Player i must 
take the ignorance of the other players into account when deciding on his own 
course of action, and he cannot do this if he does not explicitly include in the 
model signals other than the one he knows he got. The "outside observer" referred 
to above is thus a surrogate for the ignorance of the system as a whole-the lack 
of common knowledge-of the signals received by each player. 

Similarly, each player is of course free to choose whatever action he wishes. 
That we include his action as part of the description of the state of the world is 
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only a convenient way of expressing the fact that the other players do not know 
which action he wishes to choose. 

The reader may still be puzzled by the fact that in deriving his posterior about 
other players' choices, each player conditions on his own information, which 
includes his own choice. How can a player's own choice help him to guess what 
other players will do? 

But again, this paradox is illusory. The player is not really conditioning on his 
choice, but on the substantive information that leads him to make this choice. 
This substantive information leads to a posterior on the other players' choices, 
which in turn leads to an optimal choice, or to a set of such choices. Intuitively, 
the fact that a player's choice is part of his information is used not so much in 
deriving his own posterior about what others will do, but rather in estimating 
the others' posteriors about what he will do. They cannot simply make arbitrary 
"guesses" about this, but must take into account that he is maximizing given his 
own information. Since he is reasoning similarly about them, it appears that one 
might be led to troubling circular reasoning. This precisely is avoided by the 
model of the previous section. 

To sum up, a game in which the players do not know what the other players 
do should be treated like any other model of differential information, where the 
possible values of the parameters about which some of the players are ignorant 
are used as specifications of the state of the world. 

(b) Common Knowledge of Information Partitions and Priors. A question that 
often crops up when models of differential information are discussed is whether 
there can be uncertainty on the part of one player about the information partitions 
P' of other players. 

The answer is "no". While Player 1 may well be ignorant of what Player 2 
knows-i.e., of the element of p2 that contains the "true" state co of the world-1 
cannot be ignorant of the partition .2 itself. Indeed, p2 is part of the description 
of the model, and does not enter the description of any particular co; it therefore 
cannot be the object of uncertainty, it must be common knowledge. 

This is not an assumption, but a "theorem", a tautology; it is implicit in the 
model itself. Since the specification of each co includes a complete description 
of the state of the world, it includes also a list of those other states co' of the 
world that are, for Player 2, indistinguishable from co. If there were uncertainty 
about this list on the part of Player 1 (or of any other player), then the description 
of co would not be complete; one should then split co into several states, depending 
on which states are, for 2, indistinguishable from co. Therefore the very description 
of the co's implies the structure of p2, and similarly of all the ?'i. The description 
of the co's involves no "real" knowledge; it is only a kind of code book or 
dictionary. The structure of the >iP also involves no real knowledge; it simply 
represents different methods of classification in the dictionary. 

The situation with priors is similar. Once one accepts the Bayesian viewpoint, 
that each player has a prior on Q, it follows that there cannot be any uncertainty 
on the part of one player about other players' priors. Each player's prior must 
be common knowledge among all players. (This in itself does not imply the 

9 
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further assumption, which we have made, that all the priors are the same; this 
further assumption will be discussed separately below.) 

The reasoning leading to the conclusion that the priors are common knowledge 
is similar to that leading to the conclusion that the OP' are common knowledge. 
It is enough to convince ourselves that Player l's prior p1(co) for each given state 
co of the world is common knowledge. If it were not, then the description of co 
would be incomplete; we would be able to split co into several states, depending 
on the various possibilities for pl(co). 

The reader may ask why we adduce verbal, informal arguments for these 
assertions, rather than proving them as formal theorems. The answer is that the 
assertions have no formal content. Within the model, knowledge refers to events, 
i.e., sets of states. One can ask whether at a given state c, a player i knows an 
event A; this is the case if and only if A includes that element of OP' that contains 
co. But neither a partition nor a prior is an event; formally speaking, the concepts 
of knowledge and common knowledge do not apply to them. In the above informal 
discussion, when we refer to the partitions, say, as "common knowledge", we 
mean that all players know them, all know that all know them, and so on, where 
"know" has its informal, everyday meaning. 

It is important to realize that while the above assertions (that the partitions 
and priors are common knowledge) aid us in understanding the model, they do 
not affect the conclusions. Each player uses only his own prior and his own 
partition in reaching a decision; within the model, it does not matter that he 
"knows" the partitions and priors of the others. It is only in interpreting the 
results that these points become significant. 

(c) Finiteness of the Model. Unlike the finiteness of F assumed in Section 2, 
the finiteness of Q does involve some loss of generality. For example, in describing 
uncertainty about other people's uncertainty, it is perhaps more natural to allow 
a continuum of states. Models that do this in full generality and entirely explicitly 
are, in fact, available; e.g., Mertens and Zamir (1985). 

We nevertheless chose the finite model, because the point we make is basically 
very simple, and has nothing to do with whether the model is finite or infinite. 
This simplicity might be obscured by an infinite model, with its relatively heavy 
apparatus of a-fields, measures, integrals, Radon-Nikodym derivatives, and so 
on. Such an analysis can probably be carried out in a manner analogous to that 
presented here; but we have not actually done this, and the possibility of unexpec- 
ted difficulties cannot be excluded. 

In the last analysis, the world is usually considered finite; in a sense, finite 
models do appear more natural. An infinite model is appropriate when there is 
something to be gained from it, when we are dealing with a phenomenon that is 
not conveniently expressible in a finite framework. The choice of model is a 
matter of convenience; here, the finite model is the more convenient and trans- 
parent one. 

(d) 7he Converse. Let us call the system consisting of 12, p, the OP', and s an 
information system. The main theorem asserts that under Bayesian rationality, 
every information system corresponds to a correlated equilibrium. The converse 
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also holds: Under Bayesian rationality, every correlated equilibrium corresponds 
to some information system. More precisely, for each game G and each correlated 
equilibrium f of G, there is an information system for which it is Bayes rational 
for the players to play in accordance with s, and the resulting distribution is the 
same as that of f 

For the proof, note that f itself provides an example of such an information 
system. We need only define (12, p):= F, s:= f and OP' to be the partition of Q 
generated by f ' (i.e., co and co' are in the same element of ?P' iff f (co) = f (cow')).9 
Bayesian rationality is then a restatement of (2.2). Thus under Bayesian rationality, 
the set of all information systems corresponds precisely to the set of all correlated 
equilibria. 

(e) Exogeneity and Endogeneity. As we indicated at the beginning of the previous 
section, it is probably best to think of the information system as exogenous. But 
a case could be made for another view. While a part of each player's information 
is undoubtedly generated by overt signals from the outside world, another part 
is obtained by reasoning about how other players reason. For example, this is 
so for the information that a strictly dominated strategy will not be used. Some 
readers might prefer to call that kind of information "endogenous." In actuality, 
much information is a mixture of both kinds, which it is not easy to untangle. 

The distinction between "exogenous" and "endogenous" is often useful in 
economics, but it should not be pushed too far. In the natural sciences, such a 
distinction is little used.10 When discussing the motion of the planets, should the 
motion of Uranus be considered "exogenous" and that of Neptune "endogenous", 
or the other way around? Perhaps it is not so terribly important. What is important 
is the relationship between the motions. 

The purpose of this paper is to record the observation that common knowledge 
of rationality implies correlated equilibrium. For this, it is not very important 
whether the information of the players-or even their actions-are considered 
exogenous or endogenous. 

(f) Mixed Strategies. In view of the fact that the players may wish to use mixed 
strategies, the reader might question the assumption that each player knows his 
own action. There is no problem if, as usual, one thinks of a mixed strategy 
simply as a random device for helping the player make up his mind, so that in 
the end he does know which action he takes. But it is conceivable that a player 
can actually commit himself to a mixed strategy before he knows its pure outcome; 
in that case, the assumption in question seems formally incorrect. 

The simplest way to circumvent the difficulty is to say that if indeed it is 
possible for a player i to commit himself irrevocably to a definite mixed strategy, 
then such a commitment should itself be considered an action-a member of 
S'-and then, of course, there is no difficulty. It should be noted that this will 

9 Note that the definitions of Q2, p, and s go in exactly the opposite direction from the corresponding 
ones in the proof of the main theorem, where we defined F = (f2, p), f := s. But the proof of the main 
theorem is not simply a mirror image of this one, since there p' was not necessarily generated by f '. 

10 We are aware of the pitfalls of blindly applying the methodology of one science to another. But 
neither should one go to the other extreme, of blindly rejecting all parallels. 
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not change the set of possible outcomes; adding an action whose payoffs are a 
convex combination of the payoffs to other actions does not change the set of 
correlated equilibria. 

(g) Alternative Definitions of Correlated Equilibrium. In our 1974 definition of 
correlated equilibrium, each player i is endowed with an information partition 
Ji on the underlying probability space (the space of possible outcomes of the 
randomizing device). After finding out which element of Ji took place, i may 
take any action he wishes. Thus an equilibrium is a function from outcomes of 
the randomizing device to action n-tuples, whose ith component is Ji-measurable 
(each player knows which action he takes). The equilibrium condition is as in 
Section 2 above. 

At first blush, this definition appears different from that of this paper (2.1), 
since here a player is told only what action he takes, and is given no further 
information. For fixed Ji, the definitions are indeed different. But if the Ji are 
allowed to vary, the set of correlated equilibrium distributions obtained under 
the 1974 definition is the same as that of this paper. 

To see this, note that the 1974 set-up is formally identical with that of Section 
3 above, with Ji instead of 9?'. Thus the fact that every c.e.d. in the 1974 sense 
is also a c.e.d. in the current sense is simply a restatement of our main theorem. 
The converse is immediate, since we may, if we wish, take Ji to consist of the 
coarsest partition of the underlying probability space for which i's action is 
measurable. 

The reason that in this paper we chose the definition without the Ji is that it 
makes the explicit calculation of the set of all c.e.d.'s more transparent. 

(h) Common Knowledge and Universality. The formulation of our result in the 
introduction assumes common knowledge (c.k.) of rationality. The formal treat- 
ment of Section 3 assumes universal rationality, i.e., rationality at each point of 
the state space (2. These two formulations are equivalent. Indeed, our 1976 
treatment of c.k. implies that the universal event Q2 is itself c.k. (i.e., anything 
that is true at all possible states of the world is common knowledge). Conversely, 
a c.k. event can without loss of generality be assumed universal, because one can 
always restrict the universe to the smallest c.k. event (i.e., to that member of the 
meet A OP' of the information partitions that contains the true state c of the world). 

5. THE COMMON PRIOR ASSUMPTION 

This section is devoted to a discussion of the only element of our model that 
is not a tautological consequence of the Bayesian approach: the common prior 
assumption (CPA for short; see Section 3). 

Common priors are explicit or implicit in the vast majority of the differential 
information literature in economics and game theory. As soon as one writes, "let 
p (rather than p') be the probability of...", one has assumed common priors. 
The assumption is pervasive in the enormous literature on rational expectations, 
trading in securities, bargaining under incomplete information, auctions, repeated 
games, signalling, discrimination, insurance, principal-agent, moral hazard, 
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search, entry and exit, bankruptcy, what have you. Citing the relevant papers 
would make our references longer than our text. Occasionally the definitions do 
pay lip-service to the possibility of distinct priors pi; but usually this is quickly 
abandoned, and in the theorems and examples, one returns to common priors." 

In game theory, the standard representation of extensive games12 involves 
moves of "chance" or "nature" where each alternative has a single probability, 
common to all players. The standard formulation of Nash equilibrium (1951) 
uses mixed strategies for which the probabilities are common to all players. Both 
these definitions have been used hundreds-perhaps thousands-of times in 
economic applications, almost without question. 

Why is this so? Why has the economic community been unwilling, in practice, 
to accept and actually use the idea of truly personal probabilities, in much the 
same way that it did accept the idea of personal utility functions? After all, in 
the development of Savage (1954), both the utilities and the probabilities are 
derived separately for each decision maker. Why were utilities accepted as 
personal, but probabilities not? 

Perhaps the most basic reason is that utilities directly express tastes, which are 
inherently personal. It would be silly to talk about "impersonal tastes", tastes 
that are "objective" or "unbiased." But it is not at all silly to talk about unbiased 
probability estimates, and even to strive to achieve them. On the contrary, people 
are often criticized for wishful thinking-for letting their preferences color their 
judgment. One cannot sensibly ask for expert advice on what one's tastes should 
be; but one may well ask for expert advice on probabilities.13 

On a more pragmatic level, the CPA expresses the view that probabilities 
should be based on information; that people with different information may 

" A notable exception is Harrison and Kreps (1978). 
12von Neumann and Morgenstern (1944), Kuhn (1953). 
13 That Bayesian decision theory a la Savage derives both utilities and probabilities from preferences 

does not imply that it does not discriminate conceptually between these two concepts. Savage used 
preferences to get a rigorous handle on probabilities, a coherent formulation free of inner contradic- 
tions. At the same time, he strove, to the extent possible, to rid his probabilities of personal elements, 
to make them fit for use not only in decision theory but also for scientific induction. He was fond 
of pointing out that after sufficiently many observations, all "reasonable" priors lead to similar 
conclusions. His -postulate P4 (roughly speaking, that the probability of an event is independent of 
the prize offered contingent on that event) can only be understood in terms of a probability concept 
that has an existence of its own in the decision maker's mind, quite apart from preferences on acts. 
He wrote that ". . . the ... view sponsored here does not leave room for optimism or pessimism ... to 
play any role in the person's judgment" (1954, p. 68). And again, "All views of probability are rather 
intimately connected with one another. For example, any necessary view can be regarded as an 
extreme personalistic view in which so many criteria of consistency have been invoked that there is 
no role left for individual judgment" (1954, p. 60). 

Savage is dead-so much the worse for us-and one can only speculate as to how he would have 
regarded the CPA. As far as we know, he never dealt formally with more than one decision maker 
at a time. The CPA can be brought formally into his framework via an axiom that says that under 
common knowledge of rationality, risk averse agents with precisely the same information will never 
bet against each other (one must, in some appropriate way, exclude hedging). Contrary to the modern 
vogue, Savage was not a minimalist; he did not try to make his axioms as few and weak as possible, 
but as useful as possible. At one point he wrote that "the personalistic view incorporates all ... criteria 
for reasonableness in judgment known to me, and . . . when any criteria that may have been overlooked 
are brought forward, they will be welcomed..." (1954, p. 67). It's just possible that he would have 
welcomed the CPA. 
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FIGURE 6 

legitimately entertain different probabilities, but there is no rational basis for 
people who have always been fed precisely the same information to do so. 

Differently put, a major message of modern economic theory is the vital 
importance of information in economic activity, and of differences in information. 
Under the CPA, differences in probabilities express differences in information 
only. Thus the CPA enables one to zero in on purely informational issues in 
analyzing economic (and other interactive) models with uncertainty. 

If, in spite of all this, we abandon the CPA, all is not lost. One can define a 
subjective correlated equilibrium as in Section 2, replacing the single probability 
p on F by n different probabilities p, . . . , p'. In the main theorem, then, one 
must only replace "correlated equilibrium distribution" by "subjective correlated 
equilibrium distribution." 

While such an approach is mathematically perfectly consistent, it yields results 
that are far less sharp than those obtained with common priors. For example, if 
a 2-person 0-sum game G in strategic form has a unique pair s of optimal (maxmin 
and minmax) strategies, which are moreover pure, then one would certainly 
expect rational players to play s; the reasoning leading to this conclusion, which 
was spelled out in detail by von Neumann and Morgenstern (1944), is extremely 
compelling. And indeed, s is the only correlated equilibrium point 14 in g. But, it 
is far from the only subjective correlated equilibrium point. For example, in the 
game of Figure 6, the unique pair of optimal strategies is (top, left); it leads to 
the payoff + 1 for the row player, and -1 for the column player. But the subjective 
distribution indicated in Figure 7 is a subjective correlated equilibrium; its payoff 
is +3 for each player (in spite of the game being zero sum!), and it makes no 
use at all of the unique optimal strategies. 

0, 0 0, 0 0, 0 

1 1 1 1 0,0 3'6 6 3 

0,06933i6 

FIGURE 7 

14 More generally, in any 2-person 0-sum game, all correlated equilibria are convex combinations 
of pairs of optimal strategies. 
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This game is not a fluke. Quite generally, the concept of subjective correlated 
equilibrium places very few restrictions on the possible outcomes. To get the 
flavor of this, note that for any two-person game, not necessarily zero-sum, in 
which there are no weakly dominated actions, there is a subjective correlated 
equilibrium at which both players assign positive probability to each outcome 
(action pair); and there is also a subjective correlated equilibrium that gives each 
of the two players an expected payoff as close as you wish to his maximum 
possible payoff. Such results indicate that the subjective correlated equilibrium 
is a relatively "weak" concept, giving little information; and that while logically 
consistent, it involves a conceptual inconsistency between the players, which 
distorts and hides the conflict of interests that is the subject of game-theoretic 
analysis. 

The case of distinct priors was considered by John Harsanyi (1967) in his 
path-breaking papers on games of incomplete information; he called it the 
"inconsistent case." The idea of subjective randomization was introduced and 
developed in our 1974 paper; this idea depends essentially on distinct priors. 
Neither idea had any considerable echo. Apparently, economists feel that this 
kind of analysis is too inconclusive for practical use, and side-steps the major 
economic issues. 

6. RANDOMNESS AS AN EXPRESSION OF IGNORANCE 

In the traditional view of strategy randomization, the players use a randomizing 
device, such as a coin flip, to decide on their actions. This view has always had 
difficulties. Practically speaking, the idea that serious people would base important 
decisions on the flip of a coin is difficult to accept. Conceptually, too, there are 
problems. The reason a player must randomize in equilibrium is only to keep 
others from deviating; for himself, randomizing is unnecessary. 

The first to break away from the idea of explicit randomization was J. Harsanyi 
(1973). He showed that if the payoffs to each player i in a game are subjected 
to small independent random perturbations, known to i but not to the other 
players, then the resulting game of incomplete information has pure strategy 
equilibria that correspond to the mixed strategy equilibria of the original game. 
In plain words, nobody really randomizes. The appearance of randomization is 
due to the payoffs not being exactly known to all; each player, who does know 
his own payoff exactly, has a unique optimal action against his estimate of what 
the others will do. 

Here we take this reasoning one step further. Even without perturbed payoffs, 
the players simply do not know what actions the other players will take. In 
"matching pennies", each player knows very well what he himself will do, but 
ascribes 2- probabilities to the other's actions, and knows that the other ascribes 
those probabilities to his own actions. 

With this view, mixed strategy equilibria appear quite special and rather 
unnatural. They imply that the players always act as if they all had the same 
beliefs about what all other players will do, and as if these beliefs were common 
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knowledge. (The actions themselves, of course, need not be common knowledge, 
except in the case of pure strategy equilibria.) In particular, they act as if15 each 
player i always knew exactly what each other player believes about his (i's) 
actions. 

Correlated strategy n-tuples, on the other hand, do allow for varying beliefs 
about the beliefs of other players. In the distribution of Figure 8, for example, 
Player 1 may ascribe probabilities that are either 2-2 or 3-- to Player 2's actions; 
and 2 can never know what 1 believes about his (2's) actions. Such phenomena 
are often of the essence in the analysis of real situations, but they are ruled out 
by the mixed strategy paradigm. 

In games with more than two players, correlation may express the fact that 
what 3, say, thinks that 1 will do may depend on what he thinks 2 will do. This 
has no connection with any overt or even covert collusion between 1 and 2; they 
may be acting entirely independently. Thus it may be common knowledge that 
both 1 and 2 went to business school, or perhaps to the same business school; 
but 3 may not know what is taught there. In that case 3 would think it quite 
likely that they would take similar actions, without being able to guess what those 
actions might be. 

For example, consider the game of Figure 9 (Aumann, 1974). Players 1, 2, and 
3 pick the row, column, and matrix respectively. No mixed strategy equilibria 

0,0,3 0,0,0 2,2,2 0,0,0 0,0,0 0,0,0 

1,0,0 0,0,0 0,0,0 2,2,2 0,1,0 0,0,3 

FIGURE 9 

15 The phrase "act as if" means that we ignore irrelevant information, information that does not 
affect the actions of the players. Technically speaking, the corresponding assertions hold when each 
player conditions on his own action only. Without this caveat, they are false. For example, consider 
a three-person game in which each player chooses 0 or 1, and then is paid 0 or 1 according as to 
whether the sum of the chosen numbers is even or odd. It is a Nash equilibrium for each player to 
play 0 or 1 with 2-2 probabilities. One explicit scenario for this is that each player decides on his 
action in accordance with a completely private coin toss. A second scenario is like the first, except 
that 2 observes I's toss. In that case, 2 believes with certainty that 1 will do what he in fact will do, 
but this belief is not shared by 3, who still ascribes probabilities 2-2 to l's actions. A third scenario 
is like the second, except that 2's observation of I's toss is transmitted through a noisy channel; in 
that case, 1 will not know what 2 believes about I's action. (In each case, the scenario is assumed 
common knowledge.) The point is that for practical purposes, all three scenarios are equivalent, since 
the additional information never causes any player to change his action. 



CORRELATED EQUILIBRIUM 17 

yield any player more than 1. But there is a correlated equilibrium yielding 
(2, 2, 2): Player 3 picks the middle matrix with certainty, while 1 and 2 pick (top, 
left) with probability 2, and (bottom, right) with probability 4. This does not imply 
collusion between 1 and 2; it simply means that it is common knowledge that 3 
has no idea what they will do, but does think with certainty that they will either 
play (top, left) or (bottom, right). This, of course, is an extreme situation; it will 
perhaps be more common to find situations where in 3's estimate, the actions of 
1 and of 2 are neither prefectly correlated nor independent. Again, such situations 
are plentiful, but cannot be described by means of mixed strategies. 

7. THE LITERATURE 

The idea presented here was briefly outlined in Appendix 4 of Aumann (1981). 
Kadane and Larkey (1982) also expressed the idea that the theory of games 
should be consistent with Bayesian decision theory. But they ignored the fact 
that a rational player must take into account how other players reason about 
him, and concluded that under Bayesian theory, nothing at all could be said 
about what each player thinks others would do. One must, they said, turn to 
disciplines such as psychology to gain insight into how rational agents should 
or would play a game. 

More recently, Bernheim (1984) and Pearce (1984) have independently 
developed the theory of rationalizability. This is related to the notion of subjective 
correlated equilibrium mentioned in Section 5 above; a rationalizable outcome 
is much like one that occurs with positive probability in a subjective correlated 
equilibrium (see Tan and Werlang, 1984, and Brandenburger and Dekel, 1985). 
Nevertheless, there are differences; for example, rationalizability as currently 
defined does not permit one player to perceive the strategies of other players as 
correlated (see Section 6 above). 
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