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Econometrica, Vol. 52, No. 4 (July, 1984) 

RATIONALIZABLE STRATEGIC BEHAVIOR 

BY B. DOUGLAS BERNHEIMI 

This paper examines the nature of rational choice in strategic games. Although there are 
many reasons why an agent might select a Nash equilibrium strategy in a particular game, 
rationality alone does not require him to do so. A natural extension of widely accepted 
axioms for rational choice under uncertainty to strategic environments generates an 
alternative class of strategies, labelled "rationalizable." It is argued that no rationalizable 
strategy can be discarded on the basis of rationality alone, and that all rationally justifiable 
strategies are members of the rationalizable set. The properties of rationalizable strategies 
are studied, and refinements are considered. 

1. INTRODUCTION 

THE NOTION OF EQUILIBRIUM proposed by Nash [19] has come to play a dominant 
role in economic applications of noncooperative games. While analyses of Nash 
equilibria have unquestionably contributed to our understanding of economic 
behavior, it would be unreasonably optimistic to maintain that Nash "solved" 
the problem of noncooperative strategic choice. There is a small literature 
(beginning with Ellsberg [6]) and a much larger oral tradition which argues that 
Nash behavior is neither a necessary consequence of rationality, nor a reasonable 
empirical proposition. 

In this paper I take the view that although there may be various reasons why 
an agent might select a Nash strategy, the notion of an equilibrium has little 
intrinsic appeal within a strategic context. When an agent reaches a decision in 
ignorance of the strategies adopted by other players, rationality consists of 
making a choice which is justifiable by an internally consistent system of beliefs, 
rather than one which is optimal, post hoc. This point of view is not original; 
indeed, most serious justifications of the Nash hypothesis embrace such an 
approach, arguing that agents will expect the game to yield a Nash outcome, and 
consequently will choose their equilibrium strategies. Nevertheless, when we 
think in terms of maximizing utility subject to expectations rather than realiza- 
tions, it becomes clear that the Nash hypothesis, far from being a consequence of 
rationality, arises from certain restrictions on agents' expectations which may or 
may not be plausible, depending upon the game being played. We are then quite 
naturally led to ask: are there any restrictions of individuals' expectations (and 
hence choices) which are required by rationality alone, rather than by (subjec- 
tive) plausibility? This paper is concerned with defining, justifying, character- 
izing, and refining a criterion for rational strategic choice, which I label 
"rationalizability." 

l I would like to thank Franklin M. Fisher, Eric Maskin, Kevin Roberts, Peter Diamond, Joseph 
Farrell, and two anonymous referees, as well as those attending presentations of this paper, for 
helpful comments. Jeanne Dowd, Alice Sanderson, and Lucia Alviano provided much appreciated 
technical assistance. This paper is based on Chapter 2 of my dissertation. 

1007 



1008 B. DOUGLAS BERNHEIM 

In the following section, I motivate the concept of rationalizability as a natural 
extension of Savage's [21] axioms of choice under uncertainty. Section 3 develops 
a rigorous framework for analyzing individual strategic choice, and presents 
mathematical definitions of rationalizability, along with existence theorems. 
Alternative routes to rationalizability are considered in Section 4, where it is 
shown that several plausible modes of boundedly rational behavior will lead to 
strategic choices which are, in some sense, almost rationalizable. The widespread 
use of the Nash equilibrium concept in economic analysis makes it critical to 
examine the relationship between Nash equilibrium strategies ("Nash strategies" 
for short) and rationalizable strategies. This is done in Section 5. This analysis 
leads naturally into an investigation of the topological properties of rationalizable 
strategies. Multiplicity is found to be a rather severe problem. As this may, 
understandably, be viewed as a practical limitation, Section 6 undertakes refine- 
ments of the criterion. These refinements are viewed as "plausibility" require- 
ments, which we may add to our minimal requirement of rationality. Applica- 
tions to particular economic problems are undertaken in Section 7. 

This work is closely related to that of Pearce [20], who independently devel- 
oped the notion of rationalizability. Our papers are complementary in many 
ways. In particular, I focus attention on the properties of rationalizable strategies 
in general normal form games, devoting relatively little space to refinements. 
Pearce emphasizes the development of refinements, particularly for extensive 
form games. 

2. MOTIVATION 

(a) Problems with an Equilibrium Approach 

The only natural equilibrium notion for a strategic game is that of Nash: it is 
the only state of the game which, when properly anticipated, is self-fulfilling. 
However, this should not be taken to imply that agents will naturally select their 
Nash strategies. The economist's predilection for equilibria frequently arises from 
the belief that some underlying dynamic process (often suppressed in formal 
models) moves a system to a point from which it moves no further. However, 
where there are no equilibrating forces, equilibrium in this sense is not a relevant 
concept. Since each strategic choice is resolved for all time at a specific point 
during the play of a game, the game itself provides no dynamic for equilibration. 
Further, there is no sensible way to introduce a dynamic while still preserving 
individual rationality. 

Specifically, it is fruitless to argue that repetitions of a game generate conver- 
gence to equilibrium. Unlike the stylized dynamics of competitive equilibrium, 
where the movement of prices forms a structural link between repetitions of an 
economy, there is nothing structural tying together successive plays of a game. 
Thus, if players are unaware that the game is being repeated, there is no 
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meaningful dynamic. On the other hand, if they are aware of the repetitions, then 
the repeated game is itself a new game, entirely distinct from its components. 
Convergence of component choices may then have nothing whatsoever to do 
with attainment of equilibrium in the game actually played. Attempts to intro- 
duce equilibrating forces simply generate larger composite games, and the nature 
of strategic choices in these larger games remains inherently one-shot. 

Since agents select normal form strategies in ignorance of others' choices, they 
cannot optimize subject to the actual selections of their opponents. As no 
sensible dynamic can eradicate this ignorance, we must justify any theory of 
strategic choice in terms of what it implies about the internal consistency of 
beliefs held by each player. If we begin to think of rationality in terms of internal 
consistency, it is obvious that players are not ordinarily compelled by deductive 
logic to select their Nash strategies. As Luce and Raiffa [15, p. 63] point out: 

Even if we were tempted at first to call a (Nash) non-conformist 'irrational', we would 
have to admit that (his opponent) might be 'irrational' in which case it would be 'rational' 
for (him) to be 'irrational'-to be a (Nash) non-conformist. 

Accordingly, many of the more compelling justifications of Nash equilibria are 
cast in terms of how agents form expectations. Such arguments attempt to 
establish that Nash strategies are salient. 

In certain situations, one is immediately struck by the salience of Nash 
selections. Consider, for example, a game in which all participants have an 
opportunity to reach a nonbinding agreement prior to playing the game, and 
assume that they manage to reach such an agreement.2 Unless they decide to 
play Nash strategies, the agreement will be meaningless, since some players will 
have an incentive to reneg. But once they agree on a Nash equilibrium it will 
naturally be realized during actual play, since every player will anticipate it. 
Nevertheless, other outcomes may be perfectly rational. It is possible that a 
player would make some other choice because he expected his opponent to 
deviate from the agreement, justifying this by the conjecture that his opponent 
expects him to deviate from the agreement, and so forth. Though possible, such 
an occurrence seems, in context, improbable (except, perhaps, for the case of a 
Nash equilibrium in weakly dominated strategies). 

This extreme hypothetical suggests more generally that the salience of Nash 
equilibrium may provide a landmark around which common expectations can 
form. In the language of Schelling [22], Nash equilibrium may be "focal." If 
agents share the common belief that Nash equilibrium is normally realized, they 
no longer entertain the rationally admissible doubt that an opponent will fail to 
conform. 

However, in many circumstances the salience of the Nash solution breaks 

2Presumably, the bargaining process is itself governed by some game, hence this line of argumen- 
tation may simply beg the question. For an intriguing discussion of information transmission in this 
nonbinding stage, see Farrell [8]. 
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down. By way of analogy, consider Schelling's example of two individuals who 
must meet in New York City without prior communication. Although all 
selections are logically indistinguishable, agents with similar cultural back- 
grounds generally "win" (e.g. natives go to Grand Central Station; tourists go to 
the Empire State Building). However, if agents are chosen from different groups 
(a native plays a tourist), and if each knows the other's predisposition, then there 
is no unique focal alternative, and the outcome is not obvious. 

This analogy makes two important points. First, the salience of any particular 
mode of behavior depends critically upon whether that salience is universally 
recognized. In the context of strategic choice, suppose the reader was to play a 
game against the author of this paper. Would the reader deviate from his Nash 
selection, believing that I would make an unconventional choice, or would I, 
conjecturing that the reader would play Nash, succumb to convention? The 
question is one of psychology, not rationality. Analysis of strategic economic 
situations requires us, implicitly or explicitly, to maintain as plausible certain 
psychological hypotheses. The hypothesis that real economic agents universally 
recognize the salience of Nash equilibria may well be less accurate than, for 
example, the hypothesis that agents attempt to "out-smart" or "second-guess" 
each other, believing that their opponents do likewise. 

Second, the salience of any particular mode of behavior breaks down when 
prescribed actions are not unique. This is often true of Nash equilibria. Consider 
for example a three-person game with two distinct Nash equilibria. Even if 
agents are predisposed to anticipate equilibrium, which one will be anticipated? 
It is entirely plausible that a particular agent will conjecture that one opponent 
anticipates one equilibrium, while his other opponent anticipates the second 
equilibrium. The original agent may then select a strategy other than the Nash 
choice in either equilibrium. Further, such an agent must realize that his 
opponents may make similar calculations, and so on, leading to a large number 
of justifiable alternatives. 

The question of multiplicity has recently received a tremendous amount of 
attention, and numerous refinements of the Nash concept have been proposed.3 
However, even if some technique always isolated unique equilibria, it would 
represent a psychological hypothesis rather than a characterization of rationality, 
and would be empirically relevant only if it formalized characteristics that are 
already universally perceived as salient. 

(b) Individual Rationality and "Rationalizability" 

If Nash equilibrium is a theory of plausible behavior only, it is natural to ask 
whether we can formalize criteria for rational strategic choice. Presumably, this 
would consist of a broader class of strategies. Requiring equilibrium would be 
one way to refine this set through the imposition of (potentially) plausible 
behavioral restrictions. 

3See, for example, Harsanyi [11], Selten [23, 24], Myerson [18], Kreps and Wilson [13]. 
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In devising a criterion of strategic choice, I take as my point of departure the 
axioms of rational choice under uncertainty, as formalized by Savage [21]. In 
particular, an individual is rational in the sense of Savage if he optimizes subject 
to some probabilistic assessment of uncertain events, where this assessment is 
consistent with all of his information. For strategic games in normal form, it is 
natural to proceed on the basis of two premises: (1) agents view their opponents' 
choices as uncertain events, and (2) all agents abide by Savage's axioms of 
individual rationality, and this fact is common knowledge (in the sense of 
Aumann [2]). Rationalizability is the logical consequence of these two premises. 
In the current paper, I also assume that the payoff functions of the game are 
common knowledge. This restriction is inessential.4 

To understand the implications of the above premises, consider the decision 
confronting an agent (A) who must select his normal form strategy in complete 
ignorance of the choice made by a single opponent (B ).5 Since the state of the 
world, as perceived by A, is uncertain, he must construct some assessment of B's 
action and optimize accordingly. Certain strategies are plainly irrational, in that 
they are not best responses to any possible subjective assessment. 

Our second premise requires that A's assessment be consistent with everything 
which he knows about the game. Among other things, A knows that B has an 
assessment of what A will do for which B's strategy is a best response. A's 
assessment is then inconsistent with his knowledge if it implies that B will, with 
nonzero probability, select a strategy which is not a best response to some 
probabilistic assessment of what A might do. A must not only have an assess- 
ment of what B will do subject to which A's choice is a best response, but for 
every forecast of B's strategy to which A ascribes positive probability, A must 
also be able to construct some conjecture of B's assessment of A's action, for 
which this forecast of B's strategy is a best response. Since conformity with 
Savage's axioms is common knowledge, this reasoning can be extended indefi- 
nitely. If it is possible to justify the choice of a particular strategy by constructing 
infinite sequences of self-justifying conjectured assessments in this way, then I 
call the strategy "rationalizable." It would be irrational for a player to choose 
any nonrationalizable strategy, as his assessment would contradict (by construc- 
tion) something which he knew about the game. On the other hand, any choice 
satisfying the rationalizability criterion is justifiable in an internally consistent 
way. 

I conclude this section with a simple example-the game illustrated in Figure 
1. This example is chosen to provide a concrete and easily understood illustration 
of the concepts described above; it is not intended to reflect a situation in which 
the Nash equilibrium is particularly implausible (I have already discussed the 
kinds of game for which that is the case). 

It is possible to show that there is only one mixed strategy Nash equilibrium in 

4An earlier version of this paper allowed for alternative information structures, such as incomplete 
information. 

5"Opponent" is used loosely; interests may coincide. 
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b, b2 b3 b4 

a, 0,7 2,5 7,0 0,1 
a2 5,2 3,3 5,2 0,1 

A a3 7,0 2,5 0,7 0,1 
a4 0,0 0,-2 0,0 10,-1 

NOTE: The first element of each entry indicates the payoff to A, while the 
second indicates the payoff to B. 

FIGURE 1. 

this game, consisting of both players choosing their second strategies, a2 and b2, 
with certainty. It is clear that these strategies are rationalizable. Can this be said 
for any other choices? In fact, a very simple pattern of degenerate probabilistic 
assessments (i.e., point forecasts) can be used to justify the first and third choices 
of either player. Consider a,. A will play a, if he conjectures that B will play b3. 
He could justify this by conjecturing that B conjectures a choice of a3 for A. This 
is internally consistent if A's conjecture of B's conjecture of A's conjecture of B's 
action is b1, which is in turn justified by a higher level conjecture that A will play 
a,. By finding such a cycle, we establish that all strategies in the cycle (a,, b3, a3, 

bl) are rationalizable: it is possible to justify any of these strategies by using the 
cycle to generate the necessary sequence of conjectured forecasts. Such point 
forecasts are unrealistic, and are employed here for expositional purposes only- 
in general, strategies are rationalized by nondegenerate assessments. On the other 
hand, neither a4 nor b4 is rationalizable. Justification of a4 can only be made by a 
conjecture placing nonzero probability on the event that B will play b4. But it is 
possible to show that b4 cannot be justified by any subjective beliefs about A's 
actions.6 

Are the first and third strategies of these players reasonable choices? The 
answer depends in part on whether or not one is a "true believer." However, the 
following is suggestive. If A and B confine themselves to their first and third 
strategies, they effectively play a guessing game between four corners. If we 
assume that they have equal probabilities of outguessing each other, then the 
expected outcome of playing the game in this way is 3.5 for each player, whereas 
the payoff for Nash equilibrium is only 3.0 for each. In other words, A and B 
would, if given the opportunity, prefer to rule out their Nash strategies. If both 
are aggressive, this may be accomplished by psychological predisposition. 

3. RATIONALIZABLE STRATEGIES 

(a) Definitions 

A game G in normal form consists of I players (indexed by i), each of whom 
chooses a strategy si from some strategy set Si in complete ignorance of the 

6Iterative deletion of dominated strategies could also have eliminated a4 and b4. The similarity is 
not accidental, yet the two procedures are not equivalent. I return to this point in Section 3. 
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selections made by other players.7 The payoff to player i is given by the ith 
component of the payoff mapping g(.), which maps strategies into von Neu- 
mann-Morgenstern [26] utility, g: S - R', where S = X = Si. Each component 
function will be written as gi(s), s = (sj)j= ...,. I will also use s_i to indicate 

(si).ji. Since the set of players, strategy sets, and payoff functions completely 
determines the game, G can be equivalently represented by the triplet (I, (S)}, 
g(.)). 

We will need to differentiate between a player's choice, his forecast of another 
player's choice, his conjecture of another's forecast of a third's choice, and so 
forth. To keep track of which conjecture is which, I introduce the following 
notation: A' is the set of all sequences (il . .., iN),1 ij I for 1 j < n, where 
1 n < oo, il - i, and im, im,+ for 1 m < n. I will use 8 to denote a 
particular element of this set. That is 8 E A' if 8 is a finite sequence of numbers, 
each of which lies between 1 and I, the first of which is not i, and if no two 
successive numbers in 8 are identical (the reasons for imposing these restrictions 
will appear below). The following operations may be performed on sequences: 
1(6) indicates the last element in 8; L(8) indicates the length of 8; 68 + 62 
concatenates 8, and 82 (e.g., (8,5) + (6,2) = (8,5,6,2)). Note that A' is not closed 
under +. 

Now we are equipped to describe conjecture. Formally, we proceed as follows. 
Let Ai be the set of all Borel subsets of Si. 

DEFINITION 3.1: Any mapping : .A --> J U J2 U ·* * U , is called a sys- 
tem of beliefs for player i iff V68 A', O(8) C S(^. 

Take 8 = (i,. .., i,). O(8) has the following interpretation: s E O(6) if and 
only if i thinks it is possible that i1 thinks it is possible that ... i,_ thinks it is 
possible that i, will choose s. For this conjecture to be sensible 0(8) must lie in 

i,'s strategy space. Furthermore, it is not meaningful to discuss a player's 
conjecture of his own conjecture, hence we restrict the domain of e to sequences 
belonging in A,. 

The case where e(8) is a singleton has a particularly straightforward interpre- 
tation: 0(8) is i's conjecture of i,'s conjecture of ... i,_,'s conjecture of i,'s 
strategy. If O(8) has only one element for all 8 in A' (everyone acts as though 
certain), we will say that E is a system of point beliefs. In particular, we will see 
that Nash strategies are justifiable through systems of point beliefs. 

As discussed in Section 2, rationality requires that a player's conjectures be 
consistent with everything he knows about the game. In part, this implies that he 
believes all players optimize subject to subjective assessments; certain conjectures 
are thereby ruled out. Without knowing these assessments, we can nevertheless 
summarize the optimization decision through the use of best response correspon- 
dences. For any s_j E S_j, let fj(s_) denote j's best responses when his 

7The simultaneity of choices assumed here does not, of course, rule out sequential games; see 
Section 6(b). 

1013 
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opponents choose s_j, and let Fj (,U _,) be j's set of best responses (maximizers of 
expected utility) given thatj holds subjective beliefs ,U_j concerning the probabil- 
ity of opponents choosing particular strategies (j1 -j is a Borel probability 
measure over S_). 

A question arises here as to whether an agent's probabilistic conjectures can 
allow for correlation between the choices of other players. In a purely non- 
cooperative framework, such correlation would be nonsensical: the choices of 
any two agents are by definition independent events; they cannot affect each 
other.8 Consequently, I restrict players to have uncorrelated probabilistic assess- 
ments of their opponents' choices. This requires some notation. Let Mj be the set 
of Borel probability measures over Sj, and let M -j be the set of Borel proba- 
bility measures over S-i where any 1i E M- can be decomposed as follows: 
j( x #1A,) = _lIi7pi(A ), where Ai is a Borel subset of Si, and 1i E Mi V i. 

The requirement of rationality implies that beliefs satisfy a consistency condi- 
tion: 

DEFINITION 3.2: A system of beliefs E is said to be consistent iff VS E A' and 

VS,(,) E e(6), there exists E M_l(,), for which sl(,) E Fl(^)(t&l(^)), and 

IA -1(s)[ X *Il(8)O[a + (1)11 = 1. 

That is, if 8 = (il, . .. , i), then anything which i thinks it is possible that 
... i,n- thinks it is possible that i,n might do, must be a best response to some 

subjective distribution over is's opponents' strategies, where anything receiving 
nonzero probability in this distribution must be something which i thinks it is 
possible that ... in thinks his opponents might possibly do. 

We are now prepared to define rationalizability: 

DEFINITION 3.3: si is a rationalizable strategy for player i iff there exists some 
consistent system of beliefs e for player i and some probability measure 

u-i E M_i such that si E Fi(i_i), and lt1[ X 1#i[(])]] = 1. 

That is, there is some subjective probability distribution over consistent fore- 
casts which justifies the choice of si. In the particular case where 0 is a system of 
point beliefs, we say that si is a point rationalizable strategy. 

(b) Existence and Construction 

We begin with a bit of notation. Pi(G) will indicate the set of point- 
rationalizable strategies for player i in the game G, and P(G) will be the 
Cartesian product of those sets. Let X = X =/'j, and let the mapping X: 

8Communication between agents may introduce correlation, but such communication should then 
be modelled as part of the game, in which case we are back to a purely noncooperative framework. 
The assumption of no correlation can easily be relaxed if one is concerned with allowing for ad hoc 
forms of prior communication. 
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- cJ be defined by X(B) = X i=Use i Bf o 7T' i(S) where -r_i is the projection 
mapping from S to S_,. X(B) yields the cross product of sets which, for each i, 
consist of all best responses to strategies in r7_i(B). Now I define two sets which, 
under certain conditions, turn out to be the same as the sets of point rationaliz- 
able strategies. The first is the maximal set B C S satisfying B = A(B); this will 
be labelled P'(G). Under quite general conditions, this set is well-defined (see 
Proposition 3.1). P'(G) has the following interpretation: it is the largest set B for 
which (1) if i thinks each of his opponentsj will choose a strategy in rj(B), then i 
will play in Ti(B), and (2) any choice in Ti(B) is a best response to some selection 
of strategies from j.(B) for j i. These two properties are satisfied by the set 
consisting of any Nash equilibrium (as long as best responses are single valued at 
the equilibrium), but that set is not, in general, maximal. 

The second set with which we shall be concerned is defined as follows: 
P"(G)= nk=OXk(S). Here, Xk(-) is defined recursively as X o Xk-l(.). It is 

simple to show that Xk(S) forms a nested sequence of sets. Thus, P"(G) can be 
constructed as follows. Beginning with S, for each player i delete any strategies 
which are not best responses to at least one combination of opponents' choices in 
S_i; the resulting set is X(S). Next, for every player i, delete any strategies in 
7Ti o° (S) which are not best responses to at least one combination of opponents' 
choices in r_-i o X(S). Infinite repetition of this process generates the set P"(G). 

Existence of point-rationalizable strategies for finite and infinite strategy 
spaces, along with the equivalence results mentioned above, is established in our 
first result: 

PROPOSITION 3.1: Assume Si C R" is compact Vi, and g is continuous. Then 
P(G) = P'(G) = P"(G) 0. (Proof in Appendix.) 

Rationalizability receives similar treatment. Let Ri(G) be the set of rationaliz- 
able strategies for player i in the game G, and let R(G) be the Cartesian product 
of these sets. We begin by noting that if a strategy is point rationalizable, it is 
rationalizable; simply take all subjective probability distributions to be degener- 
ate. Existence of rationalizable strategies is then an immediate corollary of 
Proposition 3.1. 

To obtain equivalences similar to those in Proposition 3.1, we proceed in a 
manner analogous to that adopted for point rationalizability. Let the mapping 
A:J -> be defined by A(B)= = X sil si Fi( _i) for some -i E M- 
with supp _-i cC 7r_(B)}. Define R'(G) as the maximal set B C S satisfying 
B = A(B), and let R"(G) = nok0Ak(S). These sets are analogous to P'(G) and 
P"(G), respectively. We obtain the following counterpart of Proposition 3.1: 

PROPOSITION 3.2: Assume Si C Rn is compact Vi, and g is continuous. Then 
R(G) = R'(G)= R"(G) = 0. (The proof mimics that of Proposition 3.1, and is 
therefore omitted.) 

1015 



1016 B. DOUGLAS BERNHEIM 

The procedure used to construct R "(G) (and hence, R(G)) is similar to 
iterative deletion of strongly dominated strategies; however, there are three 
important differences. (1) A retains strategies which are Bayes decisions for a 
particular class of subjective beliefs (correlations between opponents' strategies 
have been ruled out). For I = 2, no beliefs are ruled out, and this procedure is 
equivalent to deletion of strongly dominated strategies.9 For I > 2, A produces a 
smaller set. (2) A encounters no ambiguity about which player's strategies should 
be deleted first, since they are in effect deleted simultaneously.10 (3) Since the 
rationalizability criterion was generated from primitive concepts, the resulting set 
itself has an important interpretation, and is not simply a technique for refining 
equilibria. 

(c) Pure vs. Mixed Strategies 

Thus far, I have not specified whether Si contains pure or mixed strategies. 
This ambiguity was intentional, since the preceding analysis applies equally well 
in either case. In this section, I discuss the relationships between rationalizable 
pure and mixed strategies. 

Notationally, the objects defined in the two previous subsections will be 
indexed with an "m" or a "p" to denote that they correspond to the cases of 
mixed or pure strategy sets respectively. Assume that each agent has a finite 
number (ki) of strategies. Then Sm is the ki-dimensional simplex, and the vertices 
of this simplex form SP. Applying mappings Am and Am repeatedly to Sm yields 
the point rationalizable and rationalizable mixed strategy sets Pim(G) and R.'(G) 
respectively, and so forth. We now examine the relationships between PP(G), 
RP(G), Pim(G), and R,m(G). 

It is clear from definitions that PP(G) S RP(G) and Pim(G) 5 R1m(G) (point 
rationalizable strategies are rationalizable). Further, PP(G) 5 P,`'(G), and RP(G) 
5 R,m(G) (if something is (point) rationalizable in pure strategies, it is (point) 
rationalizable in mixed strategies). The reader should be careful to note that 
RP(G)# P/m(G) (rationalizability in pure strategies is not the same as point 
rationalizability in mixed strategies)." 

A perhaps surprising result is that, in a certain sense, allowing for use of mixed 
strategies does not expand the set of rationalizable outcomes for a game. In 
particular, any pure strategy which is a component of a rationalizable mixed 
strategy is also rationalizable as a pure strategy. Formally, for any set B let C(B) 
denote the convex hull of B. 

9See Ferguson [9] for a discussion of the relation between Bayes decisions and dominance. 
l'With more than two players, the order in which dominated strategies are deleted affects the 

resulting set of strategies. 
"At the first level of conjectures, these things look the same; it doesn't matter whether agent i 

responds to a mixed strategy or a prior assessment, as long as the subjective distribution he faces is 
the same. However, for point rationalizability in mixed strategies, all the elements of this conjecture 
must be best responses to the same higher order mixed strategy conjecture, while with rationalizabil- 
ity in pure strategies, they may be best responses to different higher order assessments. 
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PROPOSITION 3.3: If for some game G, SP is finite, then Vi Rf(G) C Rim(G) 
C C(Rf(G)). (Proof in Appendix.) 

Intuitively, allowing for probabilistic assessments convexifies the set of oppo- 
nents' alternatives; allowing for mixed strategies cannot create new possibilities. 
To construct Rm(G) from Rf(G), we find each point in Xj1iC(Rf(G)) for 
which i's expected payoff has multiple maxima, and include all mixed strategies 
which place positive probability on only those maximizing choices. 

4. ALTERNATIVE ROUTES TO RATIONALIZABILITY 

Practically speaking, we might not expect agents to check the consistency of 
their beliefs for more than a finite number of levels. This leads us to ask whether 
the theory of strategic behavior developed above is robust to deviations from 
perfect rationality. In particular, we say that a strategy is k (point) rationalizable 
if the first k levels of conjectures used to justify it are consistent (in Definition 
3.2, we require consistency only for 8 with L(8) < k). The following result 
establishes that if k is sufficiently high, k (point) rationalizable strategies are 
almost (point) rationalizable. 

PROPOSITION 4.1: Assume Si C Rn is compact Vi, and g is continuous. Ve > 0 
there exists K such that if k > K and si is k (point) rationalizable, then there exists 
a (point) rationalizable strategy s* where d(si,s*) < E. (Proof in Appendix.) 

Unfortunately, it seems unlikely that, in practice, k will be sufficiently high for 
us to rely on this asymptotic result. We therefore consider another type of 
bounded rationality. As I have argued, it is nonsensical to speak of dynamic 
convergence to equilibrium when agents are rational. However, by bounding 
rationality, dynamics are easily generated. In particular, I examine the Cournot 
dynamic, where the evolution of strategies is described by s(t + 1) C f(s(t)) = 

(fi(s- I(t)), . . . , f(s-(t))). Since thef are correspondences, f(s) may not have a 
unique value. Nevertheless, for any initial so repeated application of f(.), along 
with some rule to resolve ambiguities, generates a sequence of strategies. We 
employ a very strong notion of stability, which requires convergence of all 
possible sequences evolving from every initial point. 

DEFINITION 4.1: Let h:X- X be some correspondence from an arbitrary 
space X into itself, and suppose d(., *) is some distance metric on X. We say that 
Y C X is globally set stable under the process h(.) iff given any initial x0 E X 
and any sequence {xk} formed by taking xk+l C h(xk), VE > 0 there exists K 
such that Vxk with k > K, there is some x* E Y for which d(xk, x*) < E. 

The following result is a corollary of Proposition 4.1 (under the generalized 
Cournot process, after k periods agents select k-rationalizable strategies). 

1017 
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PROPOSITION 4.2: Assume Si C Rn is compact Vi and g is continuous. P(G) is 
globally set stable under the process f(*). 

In other words, if sequential play is described by a Cournot process, players' 
choice will become almost point-rationalizable over time. In fact, if strategy 
spaces are finite, the sequence of plays must actually consist of point- 
rationalizable strategies past a certain number of iterations. The stability result is 
quite strong, and cannot be obtained for Nash equilibria. It is worth mentioning 
that this dynamic can be generalized in a number of ways to enhance its 
plausibility without doing violence to Proposition 4.2; consequently, our theory 
of strategic behavior is robust with respect to an interesting range of alternative 
behavioral assumptions. 

5. RELATION TO NASH STRATEGIES AND TOPOLOGICAL PROPERTIES 

If for a particular game Nash strategies are the only rationalizable strategies, 
then there are very compelling reasons why agents would choose them. It is 
therefore important to establish conditions under which this equivalence holds. 
Let N*(G) indicate the set of Nash equilibria for the game G, represented as 
points in S.12 Recalling that i is the projection mapping into the ith component 
subspace Si, define Ni(G) = 7Ti(N*(G)), where Ni(G) is the set of Nash strategies 
for player i. The Cartesian product of these sets will be denoted N(G). The 
reader should be careful to distinguish this from N*(G), since N*(G) C N(G). 

It is trivial to verify that pure (mixed) strategy Nash equilibria are point- 
rationalizable in pure (mixed) strategies. Along with Proposition 3.3, this implies 
that the pure strategy components of mixed strategy Nash equilibria are rational- 
izable in pure strategies; evidently, one need not believe that players employ 
mixed strategies to accept the plausibility of mixed strategy equilibria. 

A more interesting and difficult problem is to determine when Nash strategies 
are the only rationalizable choices. Here we shall undertake the somewhat easier 
task of finding necessary and sufficient conditions for Ni(G) = Pi(G). Two 
necessary conditions are easily obtained: 

PROPOSITION 5.1: Assume P(G) = N(G). Then (a) N(G) = X(N(G)), and (b) if 
Si C R n Vi and g is continuous, then N(G) is globally set stable under fJ ). 

Since N(G) C X(N(G)), failure of the condition in part (a) implies that some 
player has a best response to a vector of Nash strategies for his opponents which 
is not itself a Nash selection. The proof is simple: anything which is a best 
response to point rationalizable strategies is point rationalizable, and Nash 
strategies are point rationalizable. Intuition suggests that if I > 2 and Nash 
equilibrium is not unique, then ordinarily condition (a) will fail, since forecasting 

12Thus, if S consists of pure strategies, N*(G) is the set of pure strategy Nash equilibria. 



RATIONALIZABLE STRATEGIC BEHAVIOR 1019 

opponents' choices from two separate equilibria will typically lead to a best 
response that is not Nash. Part (b) follows directly from Proposition 4.2. 
Regardless of whether or not one believes that the generalized Cournot process 
reflects plausible behavior, stability under this process is essential for establishing 
that Nash behavior is the unique consequence of rationality. 

It is possible to extend these conditions by restricting attention to an important 
subclass of games, those for which existence of Nash equilibria can be guaran- 
teed. In practice, it is convenient to consider a somewhat smaller space of games 
than is actually necessary for this purpose. For any I (number of agents) and 
{ Si} where Vi Si is a compact, convex, nonempty, nondegenerate Euclidean 
subset, let r(i, { Si}) denote the set of I person games played on strategy sets { Si} 
for which the best response correspondence of every player is a C 1 mapping. 

In order to make statements concerning genericity of results, we must endow 
these spaces with appropriate topologies. Since we are currently concerned with 
point rationalizability, and since games with identical best response mappings 
have identical point rationalizable sets, we can take as equivalent all games 
giving rise to the same best response mappings. It is then natural to select a 
notion of distance based upon these mappings. Thus, I endow the set m(1, { Si1}) 
(which is now simply a set of C 1 best response mappings) with the topology of 
uniform C1 convergence. In this topology, two games are "close" if agents' best 
responses are close for all possible conjectures, and if agents respond similarly to 
local changes in conjectures. 

The following result concerning the topological properties of point rationaliz- 
able sets is important in its own right, as well as being instrumental for 
determining the relationship between N(G) and P(G). 

PROPOSITION 5.2: For any G E r(I, { si }) if either (a) for some s E N*(G), some 
eigenvalue of Dfs lies outside the unit circle, (b) N(G) is not globally set stable, or 
(c) Nash equilibrium is not unique, then P(G) contains a continuum of strategies 
(proof in Appendix). 

Unless Nash equilibrium is unique, globally stable, and satisfies a strict form 
of local stability, there will be continua of point rationalizable strategies. Since 
these requirements are extremely demanding, we would ordinarily expect multi- 
plicity to be a severe problem. 

To establish generically necessary conditions for N(G) = P(G), we need a 
simple result which can be proven through standard topological arguments 
(omitted): on an open dense set of games in r(i, { Si}), there are a finite number 
of Nash equilibria.'3 Combining this with Proposition 5.2, we have: 

PROPOSITION 5.3: On an open dense set of games in r(A, {Si}), if P(G)= 

13 Methodological references include Guileman and Pollack [10], Hirsh [12], and Milnor [16]; 
familiar applications to Walrasian economics include Debreu [4] and Dierker [5]. 
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N(G), then the Nash equilibrium s is unique, globally stable, and no eigenvalue of 
Dfs lies outside the unit circle. 

Generically, uniqueness, global stability, and a strict form of local stability are 
necessary conditions for Nash strategies to be the only rationalizable alternatives. 
Note that if N(G) C P(G) on an open dense set of games, then this proposition 
would be vacuous. However, as shown later in this section, this is not the case. 

Are these necessary conditions for N(G) = P(G) sufficient as well? It is 
possible to obtain a result for the case of I = 2 if we strengthen slightly the local 
stability requirement. 

DEFINITION 5.1: We will say that the Nash equilibrium s E N*(G) is strictly 
locally stable iff best response correspondences are single valued at s, and there 
exists c > 0 such that Vso E B(s, E) (the ball around s of radius e), (a) for any 
sequence Sk formed by taking Sk E f(Sk- 1), limkooSk = s, and (b) d(s, f(so)) < 
d(s, so). 

PROPOSITION 5.4: For I = 2, the following are sufficient conditions for P(G) 
- N(G): (a) Si C Rn compact, convex, nonempty; g continuous; Nash equilibrium 
unique, globally stable, strictly locally stable. (b) Si finite; N(G) globally set stable 
and X(N(G)) = N(G) (proof in Appendix). 

Although the properties listed above are not sufficient for the case of I > 2 (a 
counterexample is available from the author upon request), it is possible to 
obtain a simple, easily verifiable condition which immediately implies finiteness 
of rationalizable strategies, as well as P(G) = N(G). Specifically, we have: 

PROPOSITION 5.5: If Vs,s' E S, d(f(s), f(s')) < d(s,s')/(I - 1)1/2, then 
rationalizable strategies are unique, and P(G) = N(G) (proof in Appendix). 

For the case of I = 2, we need only verify that f( ) is a contraction mapping. 
For I > 2, the contraction must be sufficiently "fast." 

We close this section with some final comments concerning the topological 
structure of P(G) and the relationship between N(G) and P(G). In P(I, {Si}), 
there are open sets of games which have multiple equilibria. Consequently, by 
Propositions 5.2 and 5.3, there are open sets of games for which there are 
continua of rationalizable strategies, an insignificant subset of which are Nash 
strategies. If these sets were dense P(I, {Si}) as well, then Proposition 5.3 would 
be vacuous. However, an immediate corollary of Proposition 5.5 is that there are 
open sets of games for which P(G) = N(G) and P(G) is finite (the contraction 
condition is robust to sufficiently small perturbations in the game). 

In spite of these final comments, the preceding analysis has shown multiplicity 
of rationalizable strategies (in particular, lack of finiteness) to be a severe 
problem from the standpoint of predictive theory. It is therefore valuable to 
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investigate various plausible psychological hypotheses which serve to refine this 
criterion. This is the topic of the next section. 

6. REFINEMENTS 

(a) Games in Normal Form 

Some modifications of rationalizability are useful for eliminating certain 
undesirable strategies. In particular, it is somewhat troubling that weakly domi- 
nated strategies may be rationalizable. Mark Machina has suggested a game 
called "guess the lowest positive integer" which drives this point home forcefully. 
It is played by two agents, each of whom names a positive integer. If an agent 
names a lower number than his opponent, he receives a payoff of 1; if he names 
a higher number, he receives - 1, and if agents' choices are identical, they both 
receive 0 (the game is zero-sum). The only choice which makes any sense is 1. 
However, any positive integer k is point rationalizable. 

Before suggesting a refinement designed to eliminate such anomalies, I must 
underscore two points. First, the general criticism embodied in this example is 
applicable to Nash equilibria as well, since the Nash criterion does not require 
players to make nondominated choices in equilibrium. Second, there is nothing 
strictly irrational about choosing weakly dominated strategies. If a player is 
literally certain that his opponents will not make particular choices, such strate- 
gies may be perfectly sensible. Weakly dominated choices strike us as untenable 
not because they imply internal inconsistency, but because such certainty seems 
implausible. 

A modification of the "trembling hand perfectness" notion developed by 
Selten [24] and adapted to normal form games by Myerson [18] allows us to 
formally incorporate this lack of complete certainty into conjectures. Specifically, 
assume that each agent i has a finite number (ki) of pure strategies, and let 
Sim be his mixed strategy space (the ki-dimensional simplex). For all i = 

( .i.l, . , i,k) > 0, let S1m(E) be the restriction of Sim to mixed strategies which 
give the jth pure strategy for player i a probability weight not less than Eij. For 
E = (e,, ... ., E) define an E-rationalizable strategy to be a member of the set of 
rationalizable strategies where each player i is restricted to choose an element of 
Sim(Es), and where these restrictions are common knowledge. Any strategy si is 
said to be perfectly rationalizable for player i if it is the limit of E-rationalizable 
strategies as all Eij go to zero.14 

Selten and Myerson motivate this type of refinement by viewing complete 
rationality as a limiting case of incomplete rationality. For this notion of 

14In the "lowest positive integer" game, a slight modification of this refinement is needed, since 
strategy spaces are infinite. Let E be an infinite dimensional vector with Ek > 0 for all k, and 

' 
1Ek < 1. Define S1m(E) to be the set of mixed strategies which place a probability weight of at 

least Ek on the kth strategy. Here, "E goes to zero" must entail Ek ---0, rather than simply 
component-wise convergence. For this construction, 1 is the only perfectly rationalizable strategy. 
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perfectness to be sensible, it is essential that we think of agents as capable of 
making mistakes with infinitessimal probability. In related work, Pearce [20] 
suggests that by restricting trembles to strategies which are rationally justifiable 
(perhaps the rationalizable set), we might dispense with this incomplete rational- 
ity motivation altogether. This leads him to a refinement labelled "cautious 
rationalizability." The reader is referred to his paper for a more complete 
discussion of these issues. 

(b) Games in Extensive Form 

As with Nash equilibria, games in extensive form provide particularly fertile 
ground for refinements of rationalizability. In fact, most Nash modifications for 
such games can be applied directly to the rationalizability criterion without 
requiring equilibrium. 

In particular, it is quite natural to apply Selten's [23] subgame perfectness 
criterion directly to rationalizability. (I will focus here on point forecasts, but 
the extension to probabilistic forecasts is immediate.) This is accomplished 
through slight modifications of Definitions 3.2 and 3.3. We refer to a system of 
point beliefs as subgame consistent iff VS E/ A', (iS) is a best response to 
XJ7l1(6) (S( + (j)) in every proper subgame. A strategy si is then subgame 
rationalizable if there is a subgame consistent system of point beliefs such that si 
is a best response to Xj1,_,(i((j)) in every proper subgame. 

Now suppose we have an I-player game of perfect information (play is entirely 
sequential) where no player is indifferent between any terminal nodes (with a 
finite number of terminal nodes, players will generically have strict rankings). We 
know by backward induction that there will be one subgame perfect equilibrium. 
What strategies will be subgame rationalizable? Again, backward induction is 
appropriate. 5 This establishes: 

PROPOSITION 6.1: Assume that for a game of perfect information, no player is 
indifferent between any terminal nodes. Then subgame rationalizable strategies are 
unique, and form the subgame perfect Nash equilibrium. 

A formal proof is omitted. Though conceptually simple, the thrust of this result 
is rather remarkable: equilibrium is, generically, a consequence of subgame 
rationalizability (rationality plus a weak plausibility condition) for a large set of 
games. 

As with subgame perfectness, it is possible to apply other refinements of Nash 
equilibrium, such as sequentiality (Kreps and Wilson [13]) or trembling hand 
perfectness (Selten [23]), directly to rationalizability. Rather than pursue these 

15Consider any subgame consisting of a player j choosing between two terminal nodes. His 
decision is unambiguous. Thus, for all 8 with 1(8) = j, 3(8) must involve j making his best choice at 
this last node. All players know what j's choice will be at this node, they know that others know it, 
etc. Effectively, the tree has been shortened. We then repeat the procedure. Since there is never 
indifference, e(.) is uniquely determined by the recursion. 
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FIGURE 2. 

possibilities here, I argue that the framework of rationalizability suggests addi- 
tional refinements. In order to conserve space, I opt for an informal develop- 
ment. 

This discussion will concern the game illustrated in Figure 2, taken from Kreps 
and Wilson [13]. There are two (perfect, sequential) Nash equilibria, (1,R) and 
(m,L). It is frequently argued that only the second of these is reasonable: r is a 
weakly dominated strategy for player A, the deletion of which makes R a weakly 
dominated strategy for player B. However, the well known problems with 
iterative deletion of weakly dominated strategies render this "solution" unsatis- 
factory.'6 

As is easily verified, the subgame rationalizable strategies for A and B in this 
game are, respectively, (1, m) and (L, R). Our first pass at a solution is just the 
Cartesian product of these sets. However, the framework of rationalizability 
immediately suggests a further refinement. Since we have not required players to 
select equilibrium strategies (this implies that beliefs are homogeneous), informa- 
tion about beliefs may be transmitted through actions taken during the evolution of 
an extensive form game. At every information set, each player knows that only 
certain justifiable (subgame rationalizable) choices for his opponents could have 
led to this set. By observing play, he can narrow down the set of possible 
conjectures made by these opponents. Specifically, contingent upon reaching 
information set I,B deduces that A must believe that B will play L with high 
probability. B knows that A must have chosen m, since this is the only justifiable 
(subgame rationalizable) strategy for A consistent with reaching I. Therefore, 
given that I is reached, B will never play R; we may exclude from B's set of 
reasonable strategies any subgame rationalizable choice for which B chooses at 
information set I (for this simple game, R is eliminated). Since A may deduce 
this as well, he would never select 1, knowing that B would have chosen L at 
information node I. Thus, (m,L) is the only acceptable outcome for this game. 

It is possible to formalize the notion that the evolution of a game conveys 

16For example, the solution will depend on the order in which strategies are deleted. It is also 
possible that strategies deleted in one round would not have been deleted in a later round. The 
rationale for the exclusion of such strategies is unclear. 
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information about actions and beliefs, and to extend it to more general settings, 
but space does not permit a full treatment here. The interested reader is referred 
to the work of Pearce [20] for a formal development. The preceding example is 
intended to illustrate the potential value of rationalizability in refining theories of 
strategic behavior in extensive form games. I reiterate that the approach used for 
ruling out the undesirable equilibrium in this example is fundamentally incom- 
patible with an equilibrium orientation, since such an orientation necessarily 
homogenizes beliefs.17 

7. APPLICATIONS 

(a) Oligopoly Theory 

Consider an industry consisting of N firms, each with marginal cost C and no 
fixed costs. The inverse demand will be given by 

p f K-Q if Q<K, 
0 if Q> K, 

where Q is quantity, p is price, and K is some constant. The game is played as 
follows; each firm produces a quantity q E [0, q] (where q exceeds the monopoly 
output) before knowing the choice of any other firm. Anything produced is sold, 
so total production determines price. The goal of any individual firm is to 
maximize profits. 

What strategies are rationalizable in this game? Fortunately, the stability 
properties of this model are well known (see Theocharis [25]), so it is easy to 
provide an answer to this question. When N = 2, Nash equilibrium can be shown 
to be unique, globally stable, and strictly locally stable. Thus, by Proposition 5.4, 
the Nash strategies are the only rationalizable alternatives. However, for N > 3, 
the unique equilibrium is known to be unstable. Proposition 5.2 then implies that 
continua of rationalizable strategies will exist. 

Precisely how large are these rationalizable sets? Proposition 3.1 provides a 
way of constructing them: we iteratively apply the mapping A to S. Take the case 
of N > 3. Since q > (K - C)/2 = qm (the monopoly output), f,( X ,0, l) = 

17In a larger sense, this is true even for games of incomplete information: all players concur on the 
beliefs and actions of a player of a certain type. 

It is possible that one might be able to capture the effects described here in a Bayesian equilibrium 
setting, where players' "types" correspond to their psychological predispositions to play certain 
strategies. Such an approach quickly encounters conceptual difficulties, as our refinement implies that 
the probability of encountering an opponent of a particular type (predisposed towards playing "t") is 
zero. Assigning any other probability would occasionally lead to the solution (1, m), which we wish to 
rule out. However, this zero probability restriction must be imposed on the Bayesian solution, and is 
not generated through a natural refinement. 
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[0, q], so A(S) = X l[0, q]. Apply A(.) once more: 

fn(X [O, m]) =[O,qm]. 

Convergence is obtained. For N > 3, any output between 0 and the monopoly 
output is rationalizable. Extreme outputs are, of course, rationalized by extreme 
(perhaps improbable) conjectures. 

(b) Macroeconomic Rational Expectations 

One popular view of Muthian [17] rational expectations maintains that if every 
agent knows the true model of the economy, then each will be able to deduce (up 
to a stochastic term) the actual state which the economy attains in any period. 
Rational expectations equilibrium (REE) is, in this view, a consequence of 
individual rationality. In light of Evans' [7] observation that an REE can be 
represented as the Nash equilibrium of an appropriately formulated game, it 
should not be surprising that the framework developed in this paper permits 
rigorous analysis of such issues. In particular, for any agent, the expectations 
held by other agents are unknowns, about which he must form conjectures in 
order to forecast the behavior of markets. If we relax the equilibrium requirement 
that all agents conjecture correctly, instead demanding only that expectations are 
logically consistent with agents' knowledge, we are led to consider the class of 
"rationalizable expectations." These issues are examined in a companion piece 
(Bernheim [3]). 
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APPENDIX 

Note: Throughout much of this Appendix I suppress G in the notation, e.g., writing P instead of 
P(G). In many places, the analysis focuses on a single game; hence carrying G through is 
cumbersome. 

PROOF OF PROPOSITION 3.1: 
Step 1: P" # 0. Let B be some compact subset of S. As is easy to verify, the continuity of g 

guarantees that X(B) is nonempty and compact. Note also that if X(B) C B, then X2(B) C X(B). Since 
S is nonempty, compact, and X(S) C S, then by induction Xk(S) is nonempty, compact, and 
X k+ l(s) CX k(S). P" 7 0 follows from the fact that the infinite intersection of compact nested sets is 
nonempty. 

Step 2: P" =X(P"). Since Vk Xk(S)= X f=1i o Xk(S), P"= X fl7i(P"). Thus it suffices 
to show that fi o 7_ i(P") = 7i(P") Vi. (a) Suppose si, E o 7r_,(P"). There exists s E P" such 
that Si Efi o 7 ri(s). s E P" implies s EXk(S) Vk > 0. Consequently, si Ef o , _i(Xk(S))= 7T o 
Xk+ (S) Vk. But then s, E ri(P"). (b) Suppose s, v,(P"). Let B = fi- (s) (the pre-image of si in 
S_i)-si E 7Ti(P") implies si E fi o 7T_,(Xk(S)), so B must be nonempty. Standard arguments estab- 
lish that B is closed. Consider the sequence of compact, nested sets B fn -_i 0 Xk(S). Since the 
infinite intersection of these sets is nonempty, B n T- i(P") 7 0. So, si Ef o 7r i(pa"). 

1025 
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Step 3: P' = P". First note that for any two sets B, B' C S, X(B) U X(B') g X(B U B') (this is easy 
to check). Now suppose that F" =f P'. Then, there must be A c- S for which X(A) = A, and some k 
such that A n Xk(S)= A, but A nlXk+ i(S)C A. Write Xk(S)= A U,Xk(S). Then X(A)U,Xo Xk(S) 
c X(A U Ak(S)) by the above result, or A U Xk+ I(S) C X' 'I(5). Intersecting both sides with A, 
A C A n Xk+ '(S)-a contradiction. 

Step 4: P = P'. (a) Suppose, Si e -T,(P'). By definition, f -'(si)n f - 1i(P') #R1 0. v E A" with 
L(S) = i, choose 8(S) e 7r,()[f, '(si)n fl ',,(P')]. We must then have 8(e) E soi()(P'), so we can 
repeat this procedure recursively to form the entire mapping 0(.). Thus si E Pi. 

(b) Suppose there exists some s, E Pi, but si (4 zj(P'). There exists a mapping 8 satisfying the 
requirements of Definition 3.1 for s . Let 

Tj= U o(S) 
7) = Ue 8 EA~ 

i(6)-] 

and let T be the Cartesian product of these sets. By construction, T C X(T). Further, T U P' c 
X(T) U X(P') - X(T U P'). An argument virtually identical to that used in Step 3 establishes that P" 
is the maximal set A satisfying A C X(A); however, P" = F', and F' C T U F', so there is a 
contradiction. 

PROOF OF PROPOSrTION 3.3: Take any sets BP C S'0 and Btm C S' with BR C: Bi' 9 C(Bf) Vi. 
Define B'= XfL I Bj, j =p, m. Claim: 

07Ti OAP(BP ) T, ioAm(B )m C)7, O AP(BP )] 

The first inclusion is completely trivial. As for the second, take any si E 7T, o Am (B '). Then there 
exists M' e= Mtm, with supp , ,i c B'i such that s e F,m(jim,). That is, si maximizes fB"',g(s, 
s ,) dA T, (s -). But since sj is a mixed strategy, g is linear in s1. Consequently, si maximizes 
g(s, fB'I,S d- mi). We know we can decompose t1mi as fl=1/1p,l Vi j # i, define sj'= f dlsf 
Clearly, tIj' E C(Bjm). But since B!n C (B"), ii E C(B1"). Consequently, if /J is regarded as a 
probability measure over the set of kcj pure strategy choices in Sp, then suppi C Bf. For each pure 
strategy component s; of si, si'E JF(g',t ) and supp lP i BP,, sos E 7T o A (BP). But then si E 
C[0Ti o A(BP)], establishing the claim. Since SP C Si'" = C(S" ), then by induction, Vk > 0 

0 Ap(SP) g 7T, o Am (S')C C[iT, o Ak(SP ) Since SP is finite, AP converges to R"(G) in a 
finite number of applications. Consequently, C [7T 0 Ak (SP)] converges to C [Rf(G)] in a finite 
number of applications. Thus, 

R/m(G) = l 0 Ak (SP) C C[Rf(G)I. 
k=O 

PROOF OF PROPOSITION 4.1: It is evident that the set of k-point rationalizable strategies is simply 
Ak(S). Thus we wish to prove that 

lim max min d(s, s') = 0. 
k-*oo seXk(S) s'EEP 

Assume this is false. Choose s" - X"(S) such that Vn, 

mind(s", s') > E > 0. 
s' EP 

Let s* be some limit point of s". X"(S) are compact and nested, so s* E X"(S) Vn. Thus, s* E P. 
Choosing s' = s* contradicts the supposition. 

PROOF OF PROPOSITION 5.2: 
Part (a): Assume that for some s* E N*(G), an eigenvalue of DF,s lies outside the unit circle. 

Sincef is differentiable, there is a neighborhood of s* in which a first order approximation of f will do 
quite well. In particular, it is possible to find some e > 0 such that for all -q < E there exists some s 
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with d(s*, s) < q and some integer n for which d(s*, fn(s)) > e. Consequently, we may choose a 
sequence of strategy vectors st converging to s* and a sequence of integers n, such that d(s*, fn,(st)) 
> e. Let L(st, f(st)) be the line segment connecting st and f(st), and let 

n, 

Tt= U f' [L(s, , f(st))]- 
i=l 

Since f is continuous, T, is closed and connected. Let Q be the set of infinite sequences { s } for which 
st' E Tt, and define 

T = {s E S I s is a limit point of some {S } E Q }. 

Claim 1: s* E T. Take the sequencef(st).f(st) E Tt andf(st) converges tof(s*) = s*. 
Claim 2: T 5f(T). Take some s' E T. There exists {st}, S' E T, with s,' converging to s'. By 

construction, there exists st" such that S,' = f(st), where either s'7 E L(st, f(st)), or st' E T,. Assume 
that there exists some N such that for all t > N, st' E T,. Choose any limit point s" of {st}; by 
definition, s" E T, and by continuity, s' = f(s"). Assume next that no such N exists. Then s* must be 
a limit point of st. But then by continuity s' = f(s*) = s*, and by Claim 1, s* E T. 

Claim 3: T is an infinite set. Since the original sequence st converges to s*, and since f is 
continuous, for every q < e we can find N" such that d(f(st), s*) < 'q for all t > NT. By the 
connectedness of T, for t > NT there exists st E T, such that d(s,, s) = 7. Let s' be a limit point of st. 
d(s', s*) = q, s' E T. 

Claim 4: T C P(G). Take any set B with T C B. T C T U f(B - T) 5f(T) U f(B - T) =f(B) 
5 X(B). Since T 5 S, we therefore have that T C Xk(S) for all k > 0; the claim follows immediately 
from Proposition 3.1. 

Part (b): If the N(G) is not globally set stable, then we may choose some s0 and some e > 0 such 
that fl(so) has a limit point s with B(s, e) n N(G) = 0. Let L(s*, so) be the line segment connecting 
some Nash equilibrium s* with s0. Define Tt' = ft[L(s*, so)], and let Q' and T' be defined 
analogously to Part (a). Claims 1-4 may now be reproduced for the set T' (in fact, the proofs here are 
easier). 

Part (c): Let s' and s" be two Nash equilibria, define Tt" =ft[L(s',s")], and let Q" and T" be 
defined analogously to part (a). Claims 1-4 again follow. 

PROOF OF PROPOSITION 5.4: I present a proof of part (a) only. The proof of part (b) operates along 
very similar lines, and can, for the most part, be constructed by making the appropriate simplifica- 
tions in the proof given below. 

Assume the proposition is false; that is, although a particular game satisfies the specified 
properties, there is nevertheless a set P with X(P) = P (since I = 2, this implies f(P) = P), with 
N* = {s*} c P. Since s* is strictly locally stable, we can choose e such that for s E B(s*,c), 
d(s*, f(s)) < d(s*, s). Now consider the set A = P - B(s*, e). Since P is closed and B(s*, e) is open, 
A is closed. By definition, f(P) = f(A) + f(B(s*, e)). By the preceeding analysis, this can be rewritten 
as P =f(A) + B', where B' C B(s*,,E). Thus A Cf(A). 

As the reader may verify, for any closed set T C A, T'- f -'(T) n A is nonempty and closed. 
Further, if T Cf(T), and T n f(A - T) = 0, then (i) T' C T, (ii) T' C f(T'), (iii) T' n f(A - T') 
=0. 

Part (i): Take some s' E T'. There exists s E T such that s = f(s'). We know that s' X A - T, so 
s' E T. 

Part (ii): Every s E T has a preimage in A, so T C f(T'). The desired conclusion follows from (i). 
Part (iii): By (i), T' n f(A - T) = 0; we need only show T' n f(T - T') = 0. Assume that for 

some s E T- T', there exists s' E T' such that s' Ef(s). Then s Ef-(s'), s' E T, s e A, sose T', 
which is a contradiction. 

Define A1 =f - '(A) n A, and recursively define Ak = f (Ak- 1) n A. Since A is compact, A C A, 
A C f(A), and A n f(A - A) = 0, we conclude by induction that this is a nested sequence of 
compact, nonempty sets. The infinite intersection, A*, is nonempty. Now we claim that Vs(e 
A*, f(s) n A* 0. Vk>0, since s EAk+l, there exists sk EAk such that sk Ef(s). Since the 
sequence {S k} lies in a sequence of compact nested sets, its limit points lie in the infinite intersection: 
i.e., if s' is a limit point, s' E A *. Since g is continuous, s' E f(s). 

Now choose any s0 E A*. By the above result, we can form a sequence Sk E f(Sk_- ) such that 
sk E A * Vk. But since A * 5 A, Sk X B(s*, e) so Sk does not converge to s*. This contradicts the fact 
that f() is globally stable. 
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PROOF OF PROPOSITION 5.5: Since under the specified conditionsf(-) is a contraction mapping, 
Nash equilibrium is unique. We need only show P(G) = N*(G). 

Since P(G) is the intersection of an infinite sequence of compact, nested sets, it is compact. 
Consequently, we can define 

di = max d(s,, s,). 
s,,s, E- P,(G) 

Assume without loss of generality that d, > di Vi > 1. If point rationalizable strategies are not unique, 
then di > 0. Let s' and sj' be the strategies for which d(s'1, sj') = dl. There must exist t', t' e P(G) 
such that fl(t') = sj, and fl(t") = sj', with g,(t') = v1(t") (the first component doesn't effect fl( )). 
Now 

d(t', t") < ( d2 ) < d1(I-1)1/2. 
( i=2 J 

Further, d(f(t'), f(t")) > d(s', sj') = dl. So 

d(f(t), ft"))> d(t, t"I(I 
1 ,/2 
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