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1.  Introduction 
 Strategic thinking pervades human interaction. As soon as children develop enough “theory 

of mind” to model other people as independent decision makers, they must be taught to look both 

ways before crossing one-way streets—suggesting that they instinctively assume rationality in 

predicting others’ decisions.2

 The canonical model of strategic thinking is the game-theoretic notion of Nash equilibrium, 

defined as a combination of strategies, one for each player, such that each player’s strategy 

maximizes his expected payoff, given the others’ strategies. Although equilibrium can be defined 

and applied without reference to its interpretation, it is best thought of as an “equilibrium in 

beliefs,” in which players who are rational in the decision-theoretic sense have beliefs about each 

other’s strategies that are correct, given the rational strategy choices they imply. 

 Our adult attempts to predict other people’s responses to incentives 

are shaped by similar, though usually more subtle, rationality-based inferences. 

 In games, rationality alone seldom restricts behavior enough to be useful. Equilibrium 

therefore augments rationality with the “rational-expectations” assumption that players’ beliefs 

are correct.3

 Although equilibrium is almost universally assumed in applications, it is better justified in 

some than others. When players have abundant prior experience with perfectly analogous games, 

both theory and experimental results suggest that under mild assumptions about cognition, 

learning has a strong tendency to converge to equilibrium (e.g. Drew Fudenberg and David K. 

Levine 1998; Camerer 2003, Chapter 6; Camerer and Ho 1999).

 The structure this adds often gives a precise and plausible account of strategic 

behavior; and the generality, simplicity, and tractability of equilibrium analysis have made it the 

method of choice in strategic applications (Roger B. Myerson 1999). 

4

 However, in many settings players’ interactions have only imperfect precedents, or none at 

all. If assuming equilibrium is justified in such settings, it must be via strategic thinking rather 

than learning. The literature on epistemic game theory (e.g. Adam Brandenburger 1992) gives 

conditions under which reasoning based on iterated knowledge of rationality and beliefs focuses 

 

                                                 
2 In this case their reliance on rationality is excessive, which is why adults have something to teach them. This example originally 

appeared in Camerer (2003, Chapter 1), courtesy of one of the authors. 
3 Even common knowledge of rationality implies only that players’ strategies are rationalizable (Bernheim 1984 and David 

Pearce 1984), which leaves behavior completely unrestricted in many games of interest to economists. Because many 
interesting games have multiple equilibria, equilibrium is often further augmented by refinements, as in Eric Van Damme 
(1987) or John C. Harsanyi and Reinhard Selten (1987), with the goal of deriving unique predictions. 

4 In reinforcement learning, for example, players need not even know that they are playing a game. Our statement omits some 
qualifications that are important only for extensive-form games. 
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players’ beliefs on a particular equilibrium, even in their initial responses to a game. But in many 

games such reasoning is complex, making the thinking justification for equilibrium behaviorally 

far less plausible than the learning justification is when players have abundant prior experience. 

 This makes the desirability of improving upon equilibrium models of initial responses clear 

in applications involving novel games.5

 Even those who grant the potential desirability of improving upon equilibrium models of 

initial responses may doubt its feasibility. How can any model systematically out-predict a 

rational-expectations notion such as equilibrium? And how can one identify simple models that 

allow such improvements among the huge number of logically possible nonequilibrium models? 

We suspect that when equilibrium is assumed despite weak justification, or when the scope of its 

learning justification is overestimated, it is because analysts hope equilibrium will still be correct 

on average, or fear that without equilibrium there can be no basis for analysis. 

 But better models of initial responses may help even in 

applications where it is reasonable to assume that learning has already converged to equilibrium. 

In many such applications, an equilibrium is selected from multiple possibilities via history-

dependent learning dynamics, whose limiting outcome is influenced by players’ initial responses 

(Crawford 1995; John Van Huyck, Joseph Cook, and Raymond Battalio 1997). And in other 

applications, such as the FCC spectrum auction (R. Preston McAfee and John McMillan 1996), 

initial responses are important for their own sake. In either case, better models of strategic 

thinking allow more useful predictions than those based on equilibrium analysis alone. 

 Yet there is now a large body of experimental research that studies strategic thinking by 

eliciting initial responses to games, which suggests that in many applications in which 

equilibrium is assumed, neither the hope nor the fear is justified. This paper reviews the 

theoretical and experimental/empirical research on strategic thinking and explores its 

implications for modeling strategic behavior.6

                                                 
5An analysis of strategic thinking may also eventually add to our understanding of learning from imperfect analogies as well, but 

that possibility will not be discussed here. Such analysis can also yield insights into cognition that elucidate the structure of 
learning rules, where assumptions about cognition determine which analogies between current and previous games players 
recognize and sharply distinguish reinforcement from beliefs-based and more sophisticated rules.  

 

6 See also the important contribution of Camerer, Ho, and Juin Kuan Chong (2004) and other contributions summarized in 
Camerer (2003, Chapter 5) and Crawford (1997, Sections 4 and 5). Although most empirical work in economics has relied on 
field data, laboratory experiments have played the leading role in empirical work on strategic behavior. Because behavior in 
games is notoriously sensitive to the details of the environment, strategic models carry a heavy informational burden, which is 
often compounded in the field by an inability to observe all relevant variables. Important advances in experimental methods 
over the past few decades allow a control that often gives experiments a decisive advantage in identifying the relationship 
between behavior and the environment. We discuss clear evidence from field data below whenever possible, but the bulk of 
our discussion of necessity concerns experimental data.  
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 The experimental research shows with progressively increasing clarity that people’s 

responses to novel games often deviate systematically from equilibrium. The results also show 

that the deviations have a large structural component that can be modeled in a simple way: 

Thinking systematically avoids the fixed-point or indefinitely iterated dominance reasoning that 

equilibrium sometimes requires, in favor of rules of thumb that anchor beliefs in an instinctive 

reaction to the game and then adjust them via a small number of iterated best responses.7

 These rules of thumb—called “types” in this context (no relation to players’ private-

information variables)—are cognitively simple, have strong intuitive appeal, and correspond 

closely to clear informal descriptions of strategic thinking. Although people’s thinking is 

typically heterogeneous, their types are drawn from a population distribution concentrated on 

one to three best-response iterations. The results identify a class of “level-k” or “cognitive 

hierarchy” (“CH”) models that share the generality and much of the simplicity and tractability of 

equilibrium analysis, but which can in many settings systematically out-predict equilibrium.

  

8

 Although level-k/CH models are alternatives to equilibrium analysis, they generalize 

equilibrium rather than replacing it. Level-k types are rational in the sense of best-responding to 

some beliefs; they depart from equilibrium only in that their beliefs are derived from simplified, 

nonequilibrium models of other players.

      

9

 We stress that while level-k/CH models appear to predict a sizeable fraction of the deviations 

from equilibrium in many settings, they stop well short of predicting all deviations in all settings. 

 In sufficiently simple games, the low-level types that 

describe most subjects’ behavior mimic equilibrium strategy choices, even though they deviate 

from equilibrium thinking. But in more complex games, some or all such types may deviate 

systematically from equilibrium choices. Importantly, the models not only predict that such 

deviations will sometimes occur: They also identify which settings evoke deviations; what forms 

they take; and, given the population type frequencies, with what frequencies they occur. 

                                                 
7 As Selten (1998) put it, “Basic concepts in game theory are often circular in the sense that they are based on definitions by 

implicit properties…. Boundedly rational strategic reasoning seems to avoid circular concepts. It directly results in a 
procedure by which a problem solution is found.” We stress that there is no implication that learning cannot make people 
converge to something that an analyst would need fixed-point or multiple-round reasoning to characterize; just that such 
reasoning does not directly describe most people’s thinking. Costa-Gomes, Crawford, and Bruno Broseta (2001, Table II) 
show that reliance on iterated dominance seldom goes beyond three rounds.  

8 In applications the behavioral parameters that describe this distribution are usually estimated from the data or calibrated using 
previous estimates. Although estimates vary somewhat across settings and populations, in most applications a stable 
distribution that puts significant probability only on the lowest levels captures the main deviations from equilibrium. We 
illustrate this below by using a representative constant calibration whenever possible. 

9 Type level-k (though not its CH counterpart beyond k = 1) respects k-rationalizability, the condition that corresponds in two-
person games to the result of k rounds or iterated deletion of dominated strategies (Bernheim 1984). 
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Even so, we view it as encouraging that models as simple and tractable as these are can predict 

something as elusive as deviations from equilibrium. Moreover, the experimental results also 

suggest that the strategic thinking-related deviations the models do not predict may have little 

structure that can be predicted by models of comparable generality. Thus, level-k/CH models 

generalize equilibrium analysis in a way that is likely to be useful in settings where deviations 

from equilibrium are important, while ignoring little that cannot reasonably be modeled as errors. 

We therefore believe there is a strong case for adding such models to the analyst’s toolkit.   

 Our discussion will illustrate several ways in which a level-k/CH analysis can improve upon 

an equilibrium analysis. In settings where the types that best describe most subjects’ behavior 

mimic equilibrium choices, a level-k/CH analysis can establish the robustness of equilibrium 

predictions to deviations from their strong behavioral assumptions.10

 The rest of this paper is organized as follows. To keep the discussion manageable, except as 

noted we assume that players have accurate models of the games they play and that, except for 

errors, their strategies are rational responses to some beliefs about others’ strategies.

 In settings where it is 

implausible to assume equilibrium, a level-k/CH analysis can challenge equilibrium predictions 

and resolve empirical puzzles by explaining the deviations from equilibrium some games evoke. 

Level-k/CH models also give a more plausible view of coordination than a traditional analysis of 

equilibrium selection. And finally, such models elucidate the effects of strategic communication 

in both “outguessing” games, where deception is an important factor that is ruled out by 

assuming equilibrium; and coordination games, where reassurance and symmetry-breaking are 

potentially important but have unrealistically limited scope when equilibrium is assumed.   

11

 Section 2 reviews the leading alternative models of strategic thinking, their cognitive 

requirements, and how they are implemented in applications. We start with equilibrium and 

continue with finitely iterated dominance and k-rationalizability (Bernheim 1984 and Pearce 

1984); quantal response equilibrium (“QRE”; Richard S. McKelvey and Thomas R. Palfrey 

1995); level-k (Rosemarie Nagel 1995, Dale O. Stahl and Paul Wilson 1994, 1995, Costa-

Gomes, Crawford, and Broseta 2001, Costa-Gomes and Crawford 2006) and CH (Camerer, Ho, 

 We also 

focus on normal-form games, including extensive-form games only to study communication. 

                                                 
10 The robustness then resembles that established by a rationalizability-based analysis; but as we will see, a level-k /CH analysis 

adds useful structure, and its results may well deviate from equilibrium-based conclusions.   
11 Although people do sometimes misperceive the games they are playing or deviate from decision-theoretic rationality in the 

sense of best responses to some beliefs, and such misperceptions or deviations might interact with strategic thinking, those 
factors are conceptually distinct from our focus of thinking about others’ responses to incentives. 



 6 

and Chong 2004) models; and  noisy introspection models (“NI”; Jacob K. Goeree and Charles 

A. Holt 2004). 

 The remaining sections interweave experimental evidence with strategic and economic 

applications, ordering topics by strategic rather than economic issues.12

 Throughout the paper, the experimental evidence is linked to informal evidence from “folk 

game theory”, which illustrates the need for nonequilibrium models of strategic thinking, the 

issues that a successful model must address, and the range of potential applications. 

 

 Our term is meant to suggest an analogy with folk physics, untrained people’s intuitive 

beliefs about the laws of physics. Why study folk instead of “real” game theory? Folk physics is 

an imperfect reflection of real physics, but it yields considerable insight into human cognition. 

Folk game theory is an imperfect reflection of traditional game theory, but unlike folk physics it 

is a direct reflection of its observable counterpart, namely the part of behavioral game theory that 

concerns strategic thinking. Moreover, we shall argue that folk game theory provides powerful 

additional evidence for the lessons from experimental evidence about strategic thinking.13

 Section 3 introduces the experimental evidence on strategic thinking, starting with guessing 

games in the style of Keynes’ (1936, Chapter 12) beauty-contest example and other guessing and 

normal-form games with complete information (Nagel 1995; Stahl and Wilson 1994, 1995; Ho, 

Camerer, and Keith Weigelt 1998; Costa-Gomes, Crawford, and Broseta 2001; Antoni Bosch-

Domènech et al. 2002; Costa-Gomes and Crawford 2006; and Costa-Gomes and Georg 

Weizsäcker 2008). This evidence generally favors level-k/CH models over the alternatives.  

  

 Section 4 illustrates the workings of level-k/CH and alternative models in more detail, 

considering complete-information outguessing games with unique mixed-strategy equilibria such 

as perturbed Matching Pennies, in which the key issue is how to respond to payoff asymmetries. 

In such games level-k/CH models’ predictions “quasi-purify” something roughly like a mixed-

strategy equilibrium via the predictable heterogeneity of players’ strategic thinking, while 

avoiding some implausible comparative statics implications of equilibrium. 

                                                 
12 Level-k/CH aficionados will see that the topics are grouped by the principles by which the anchoring L0 type is specified, and 

ordered to facilitate explaining to non-aficionados how the models work and their economic implications.    
13 Michael Suk-Young Chwe (2010) gives a fascinating complementary discussion of folk game theory. We note that there may 

be selection effects, in that level-k reasoning may be easier to express in aphorisms than other kinds of strategic thinking. It 
may also be that people who have studied level-k models as much as we have are more likely to notice them in other people’s 
writings. Even so, we think the extent to which folk game theory supports level-k models is surprising and informative.      
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 Although most laboratory evidence on strategic thinking comes from designs that induce 

symmetric information, most field evidence comes from settings with clear informational 

asymmetries. Section 5 extends level-k/CH models to allow asymmetric information and to use 

the models to interpret the data from experiments and field settings. It first discusses evidence 

from experiments on leading examples of games with informational asymmetries: zero-sum 

betting (Camerer, Ho, and Chong 2004 and Isabelle Brocas, Juan D. Carrillo, Camerer, and 

Stephanie W. Wang 2010) and auctions with private information (Crawford and Iriberri 2007a). 

It then discusses the use of such models to analyze field data (Robert Östling, Joseph Tao-Yi 

Wang, Eileen Chou, and Camerer Forthcoming, and Alexander Brown, Camerer, and Dan 

Lovallo 2010). Section 5 concludes by discussing the design of revenue-maximizing auctions 

with level-k bidders (Crawford, Tamar Kugler, Zvika Neeman, and Ady Pauzner 2009).    

 Section 6 uses level-k/CH models to analyze coordination via symmetry-breaking. Following 

Camerer, Ho, and Chong (2004, Section III.C), complete-information versions of the models are 

used to explain the remarkable experimental results of Amnon Rapoport et al. (1998), Daniel 

Kahneman (1998), and Rapoport and Darryl A. Seale (2002), in which subjects playing Battle-

of-the-Sexes or n–person market entry games achieve systematically better ex post coordination 

than in the symmetric mixed-strategy equilibrium benchmark. Section 6 then reviews recent 

work that uses incomplete-information CH models to analyze field evidence from market entry 

games (Avi Goldfarb and Botao Yang 2009; Goldfarb and Mo Xiao 2011).  

 Section 7 uses level-k/CH models to study coordination via assurance in Stag Hunt games 

with structures like Douglas W. Diamond and Philip H. Dybvig’s (1983) model of bank runs. 

The workhorse model of behavior in bank runs games has been “global games” (Hans Carlsson 

and Eric van Damme 1993, Carlsson and Mattias Ganslandt 1998, Stephen Morris and Hyun 

Song Shin 1998, and David M. Frankel, Morris, and Ady Pauzner 2003), which achieves unique 

equilibrium selection without refinements via noncooperative arguments, which selection in 

simple bank-runs games coincides with risk-dominance. We argue in Section 7 that the global 

games approach viewed as a model of initial responses—as it must be to describe bank runs—

has questionable behavioral foundations. 

 We then reconsider the global games approach from the viewpoint of level-k/CH models, 

with the goal of evaluating its robustness to failures of the equilibrium assumption or its model 

of equilibrium selection. The level-k/CH approach yields a quite different view of the process of 
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coordination than the global-games approach, whose conclusions are nonetheless strikingly 

similar in the simplest bank-runs games. However, in more complex games equilibrium selection 

may not follow predictions based on risk-dominance or global games; and a level-k/CH analysis 

highlights an issue that is not considered in the global-games literature, how players model the 

correlation of others’ strategy choices, on which the evidence challenges the standard view. 

 For settings involving market entry games, coordination games, or auctions in which 

equilibrium seems implausible, recent work has proposed “incomplete” models based on k-

rationalizability (Andres Aradillas-Lopez and Tamer 2008; Federico Ciliberto and Tamer 2009). 

Other work has used the flexibility of incomplete models for settings where some equilibrium 

seems likely to emerge but equilibrium selection seems difficult to predict (Timothy F. 

Bresnahan and Peter C. Reiss 1991; Steve Berry and Elie Tamer 2006; Federico Echenique and 

Ivana Komunjer 2009). Although incomplete models have been extremely useful in econometric 

analyses of individual decisions (Charles F. Manski 2007), in strategic settings their prediction 

ambiguity often “multiplies up” to the point where rationalizability or equilibrium unaugmented 

by a model of selection yields very weak identification. This problem is illustrated by Aradillas-

Lopez and Tamer’s (2008) analyses of market entry and auction games. Section 8 considers the 

benefits for identification and estimation of using level-k/CH models as structural alternatives to 

such incomplete models, as in Costa-Gomes, Crawford, and Iriberri’s (2009) analysis of 

coordination games and Gillen’s (2010) analysis of auctions. 

 Sections 9 and 10 consider the new issues raised by games played on non-neutral salience 

landscapes. Section 9 discusses complete-information hide-and-seek and outguessing games 

where the key issue is how to respond to salience (Ariel Rubinstein 1999 and Crawford and 

Iriberri 2007b). Section 10 considers complete-information coordination games à la Thomas C. 

Schelling (1960), with asymmetric tensions between Schelling salience and the inherent salience 

of higher own payoffs (Crawford, Uri Gneezy, and Yuval Rottenstreich 2008).  

 Sections 11 to 13 consider models of strategic communication. Section 11 considers 

deception via communication of intentions in outguessing games (Crawford 2003). Section 12 

studies communication of intentions in coordination games (Crawford 2007 and Tore Ellingsen 

and Robert Östling 2010). Section 13 studies communication of private information in sender-

receiver games (Crawford 2003 and Joseph T.-Y. Wang, Michael Spezio, and Camerer 2010).  

 Section 14 is the conclusion.  
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2. Alternative Models of Strategic Thinking 
 Until recently the choices for modeling nonequilibrium initial responses to games were quite 

limited, but now there are several alternatives. This section sets the stage by reviewing them, 

their cognitive requirements, and how they are implemented in applications. We start with 

equilibrium and continue with finitely iterated (strict) dominance and k-rationalizability, quantal 

response equilibrium, level-k and cognitive hierarchy, and noisy introspection models.  

2.1. Equilibrium plus Noise 

 Any notion that is to be taken to data must allow for errors in some way. The most obvious 

choice, “equilibrium plus noise”, adds errors with a specified distribution with zero mean and 

estimated precision to equilibrium predictions. The distribution is often allowed to be sensitive to 

the payoff costs of deviations, as with logit errors; but in equilibrium plus noise, unlike in the 

QRE models discussed in Section 2.3, the payoff costs of a player’s deviations from equilibrium 

are evaluated assuming that other players play their equilibrium strategies without errors. 

 In judging theories of strategic thinking, cognitive requirements are relevant because if a 

theory is not consistent with a player’s thinking, it will predict behavior accurately in general 

only by chance. In particular, no “as if” thinking justification for equilibrium is plausible because 

if a player’s thinking does not accurately model others’ strategy choices, then except in games 

where the rules he follows mimic equilibrium, he will deviate systematically. Depending on the 

game, an equilibrium player can find his equilibrium decision via one of several methods, which 

sometimes require fixed-point or indefinitely iterated dominance reasoning. The more complex 

this reasoning becomes, the less behaviorally plausible it is as a model of thinking.        

  In many applications equilibrium plus noise fits experimental results well. But even in games 

with unique equilibria, subjects’ initial responses often deviate systematically from equilibrium, 

in ways that are sensitive not only to a given subject’s out-of-equilibrium payoffs when others 

play their equilibrium strategies but also to his out-of-equilibrium payoffs when others do not 

play their equilibrium strategies. Further, in games with multiple equilibria equilibrium plus 

noise is incomplete in that it does not specify a unique prediction conditional on the values of its 

behavioral parameters (in this case, the error precision). Such multiplicity has been dealt with by 

estimating an unrestricted probability distribution over equilibria (Bresnahan and Reiss 1991), 

but such a model may overfit the data (Costa-Gomes, Crawford, and Iriberri 2009). With 

multiple equilibria, to put equilibrium plus noise on an equal footing with the other models 
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considered here, which except for k-rationalizability are complete, it is natural to add a 

coordination refinement such as Harsanyi and Selten’s (1987) risk- or payoff-dominance. 

2.2. Finitely Iterated Strict Dominance and k-Rationalizability 

 A common, plausible reaction to the behavioral implausibility of the thinking justification for 

equilibrium is to maintain some or all of equilibrium’s reliance on players’ rationality and 

iterated mutual knowledge of rationality while relaxing its strong rational-expectations 

assumption that players’ beliefs are correct. This leads to set-valued restrictions on individual 

players’ strategies derived from iterated deletion of strictly dominated strategies and the 

associated notions of rationalizability and k-rationalizability (Bernheim 1984 and Pearce 1984).14

 k-rationalizability reflects the implications of finite levels of mutual knowledge of rationality: 

A 1-rationalizable strategy is one for which there is a profile of others’ strategies that make it a 

best response; a 2-rationalizable strategy is one for which there is a profile of others’ 1-

rationalizable strategies that make it a best response; and so on. Rationalizability is equivalent to 

k-rationalizability for all k, reflecting the implications of common knowledge (indefinite levels 

of mutual knowledge) of rationality with no further restrictions on beliefs. 

 

 Equilibrium, by contrast, reflects the implications of common knowledge of rationality plus 

mutual knowledge of beliefs. Any equilibrium strategy is trivially k-rationalizable for all k, but 

not all combinations of rationalizable strategies are in equilibrium. However, in games that are 

strictly dominance-solvable in k rounds, k-rationalizability implies that players have the same 

beliefs—with an unimportant qualification for mixed-strategy equilibrium—so that any 

combination of k-rationalizable strategies is in equilibrium. 

 In other games k-rationalizability and even rationalizability allow deviations from 

equilibrium. Consider Matching Pennies, in which the Row player wins by matching (on Heads 

or Tails) and the Column player wins by mismatching. This game has a unique equilibrium, but 

for either player any strategy, pure or mixed, is rationalizable, and therefore k–rationalizable.15

                                                 
14 Equilibrium plus noise and QRE, by contrast, restrict the relationship among players’ strategies. The level-k, CH, and NI 

models discussed below normally make unique (though possibly probabilistic) predictions conditional on their behavioral 
parameters, as does equilibrium plus noise when completed by adding a refinement. Finitely iterated strict dominance and k-
rationalizability are equivalent in two-person games; their differences in n–person games are unimportant for our purposes. 

 

To see that Heads, for instance, is rationalizable for Row or Column, note that Heads is rational 

for Column on the belief that Row will play Tails, which is rational for Row on the belief that 

15 That the equilibrium is in mixed strategies may make the example seem special, but the same point could be made in a larger 
game with a unique equilibrium in pure strategies. 
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Column will play Tails, and so on. In this way one can construct a “tower”, or more precisely a 

“helix”, of beliefs that are consistent with iterated knowledge of rationality at all levels, hence 

with common knowledge of rationality, to support any outcome, equilibrium or not. Importantly, 

however, the beliefs that support many rationalizable outcomes are behaviorally implausible in 

that (as in the tower/helix) they rest on rationality-based inferences at unrealistically high levels 

and/or they cycle from level to level. A possible remedy is to combine rationality with 

empirically based restrictions on beliefs, as in the level-k and CH models discussed below.    

 Finitely iterated dominance and k-rationalizability weaken equilibrium enough to be 

consistent with most of the systematic patterns in subjects’ deviations from equilibrium. Their 

weakness in Matching Pennies, where they imply no restrictions on behavior, is not entirely 

typical; though this extreme weakness extends to many games with unique pure-strategy 

equilibria and to most coordination games. One interesting approach is to take applications such 

as first-price auctions or market-entry games where the weakness is less extreme, accept the set-

valued restrictions implied by k-rationalizability, and combine them, otherwise agnostically, 

with an econometric error structure. We discuss such approaches in Section 8. 

2.3. Quantal Response Equilibrium (“QRE”) 

 To capture the sensitivity of subjects’ deviations from equilibrium to a subject’s out-of-

equilibrium payoffs when others may deviate from their equilibrium strategies, McKelvey and 

Palfrey (1995) proposed the notion of QRE. In a QRE players’ decisions are noisy, with the 

probability density of each decision increasing in its expected payoff, evaluated taking the 

noisiness of others’ decisions into account (its key difference from equilibrium plus noise). A 

QRE is a fixed point in the space of decision distributions, with each player’s distribution a noisy 

best response to the others’. As the distributions’ precision increases, QRE converges to 

equilibrium without noise; and as the precision approaches zero, QRE converges to uniform 

randomization over players’ feasible strategies. A QRE model is closed by specifying a response 

distribution, which is logit in almost all applications. The resulting logit QRE or “LQRE” usually 

responds to out-of-equilibrium payoffs in plausible ways.16

                                                 
16 McKelvey and Palfrey (1995) suggest using LQRE for both initial responses and limiting outcomes, with increasing precision 

as a reduced-form model of learning. But although LQRE has until recently been the most popular model of initial responses, 
not all researchers consider it suitable for that purpose. Goeree and Holt (2004) suggest reserving LQRE for limiting 
outcomes, and instead propose an NI model (Section 2.6) to describe initial responses. 
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 In applications LQRE’s precision is calibrated from previous analyses or determined by 

fitting the model to the data. Like equilibrium plus noise, LQRE is a general model of strategic 

behavior with a small number of behavioral parameters. Because it responds to all out-of-

equilibrium payoffs in plausible ways, LQRE often fits subjects’ initial responses better than 

equilibrium plus noise (McKelvey and Palfrey 1995; Goeree and Holt 2001; Georg Weizsäcker 

2003; Goeree, Holt, and Palfrey 2008; Sections 4 and 5). But in some settings LQRE fits worse 

than equilibrium, even making errors that consistently deviate from equilibrium in the opposite 

direction from observed deviations (Chong, Camerer, and Ho 2005; Crawford and Iriberri 2007b, 

Online Appendix; Östling et al. Forthcoming, Section 5). 

 The probability densities of QRE decisions respond to their expected payoffs evaluated 

taking the noisiness of others’ decisions into account. This feature, which is essential to QRE’s 

ability to describe deviations from equilibrium, makes QRE’s predictions highly sensitive to the 

distributional assumptions—unlike in quantal response models of individual decisions where the 

choice probabilities can be consistently estimated with the mean error constrained to zero but in 

an otherwise distribution-free way; or in other models of strategic thinking, except for NI 

(Section 2.6). Philip Haile, Ali Hortaçsu, and Grigory Kosenok (2008) assess the strength of this 

sensitivity, showing that without further distributional assumptions, QRE can “explain” any 

given dataset with one observation per game-player pair. This result is disturbing because there 

is little theory to guide the specification of error distributions (see however Lars-Göran Mattsson 

and Jörgen Weibull 2002), and the use of the logit distribution in QRE analyses has been guided 

by fit and custom rather than independent evidence. However, Goeree, Holt, and Palfrey (2005) 

have shown that QRE with no specific distributional assumptions but a natural monotonicity 

restriction on responses to payoffs does imply some distribution-free restrictions even for data 

from a single game-player pair; and that even without such restrictions QRE does have testable 

cross-game implications. Even so, QRE’s point predictions are much more sensitive to 

distributional assumptions than level-k/CH predictions. 

 With regard to cognitive requirements, no matter how simple the structure of the game, an 

LQRE player must both respond to a complex probability distribution of other players’ responses 

and find his part of a generalized equilibrium that is a fixed point in a very large space of 

response distributions. If equilibrium reasoning is cognitively taxing enough to make it 

behaviorally implausible, LQRE reasoning is doubly taxing; and LQRE is less behaviorally 



 13 

plausible as a model of thinking than equilibrium. Further, the mathematical complexity of 

LQRE means that it must usually be solved for computationally and is not easily adapted to 

theoretical analysis (see however Simon P. Anderson, Goeree, and Holt 2001 and Kang-Oh Yi 

2003, who characterize LQRE analytically in settings like those discussed in Section 7). 

 2.4. Level-k Models  

 Motivated by these considerations and experimental evidence, a different vein of work on 

strategic thinking considers models that treat deviations from equilibrium as an integral part of 

the structure, rather than as errors or responses to errors. Although the number of logically 

possible nonequilibrium structures seems daunting, both experimental evidence and folk game 

theory support a particular class of models called level-k models (or CH models, Section 2.5). 

These models also alleviate the cognitive and computational complexity concerns noted above.  

 In a level-k model players’ types are heterogeneous, but each player’s type is drawn from a 

common distribution. Type Lk anchors its beliefs in a nonstrategic L0 type, which represents 

players’ models of others’ instinctive reactions to the game. Type Lk then adjusts its beliefs via 

thought-experiments with iterated best responses: L1 best responds to L0, L2 to L1, and so on. 

These empirically motivated assumptions about beliefs rule out the rationality-based inferences 

at unrealistically high levels and the persistent cycling from level to level that rationalizability 

allows, without relying on the behaviorally implausible cross-player interactions that drive 

epistemic justifications of equilibrium strategic thinking.  

 In applications it is usually assumed that L1 and higher types make errors, often taken to be 

logit as in equilibrium plus logit noise or LQRE. The population type frequencies are inferred 

from data-fitting exercises or calibrated from previous analyses. The estimated frequency of L0 

is usually zero or small, so that L0 “exists” mainly as L1’s model of others, L2’s model of L1’s 

model of others, and so on. The type distribution is fairly stable across settings, with most weight 

on L1, L2, and perhaps L3. 

 Even though L0 normally has a low frequency, its specification is the main issue in defining 

a level-k model and the key to its explanatory power. As illustrated below, L0 needs to be 

adapted to the setting, and there is an emerging consensus about how to do this in particular 

applications. The instinctive reactions may follow one of several principles, such as uniform 

randomness as in our first illustrations in Sections 3 through 7, or attraction to salience or 
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truthfulness as illustrated in Sections 9 through 13. By contrast, the definition of L1, L2, and L3 

via iterated best responses allows a reliable explanation of behavior across different settings. 

 Unlike equilibrium and LQRE players, level-k types have a simple recursive structure. 

Iterating best responses a small number of times is cognitively easy in most games, and avoids 

the common criticism of LQRE that finding a fixed point in the space of distributions or 

performing many rounds of iterated dominance is too taxing for a realistic model of strategic 

thinking. Moreover, a level-k player need not respond to the noisiness of others’ choices or a 

nondegenerate distribution of them, except for L1’s response to a random L0, which is easy. 

 Like equilibrium players, L1 and higher types are rational, with perfect models of the game. 

Their only departure from equilibrium is replacing its perfect model of others with a simplified 

model of others. L1 and higher types make undominated decisions, and Lk normally respects k 

rounds of iterated dominance (without performing them), so its decisions are k–rationalizable. 

 A distribution of level-k types that is concentrated on low levels of k as the evidence suggests 

mimics equilibrium in games that are dominance-solvable in a few rounds. But it deviates 

systematically in some more complex games, in ways that are sensitive to a subject’s out-of-

equilibrium payoffs when others may deviate from their equilibrium strategies. This allows the 

deterministic structures of level-k and CH models (Section 2.5) to capture the sensitivity of 

deviations from equilibrium to out-of-equilibrium payoffs, as the stochastic structure of LQRE 

does. All three models also often fit initial responses better than equilibrium plus noise.  

 Like equilibrium plus noise with a refinement that assures uniqueness, LQRE, and CH, level-

k models are general models of strategic behavior, applicable to “any” game, and have small 

numbers of behavioral parameters. Unlike QRE, level-k models make point (though usually 

probabilistic) predictions that depend only on L0 and the estimated type distribution, and not on 

the distributional assumptions or estimated precisions.17

2.5. Cognitive Hierarchy (“CH”) Models 

 Level-k models’ freedom from 

distributional assumptions is a major advantage over QRE. We return to this issue in Section 8’s 

discussion of Ben Gillen’s (2010) nonequilibrium analysis of identification in auctions.  

 In Camerer, Ho, and Chong’s (2004) closely related CH model, type Lk best responds not to 

Lk-1 alone but to an estimated mixture of lower-level types, with the type frequencies treated as 

                                                 
17 Both LQRE and CH have fewer behavioral parameters but impose more restrictions than level-k models, for CH on the 

distribution of types, which is assumed to be Poisson; and for LQRE on the error distribution. 
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a parameterized Poisson distribution. For an outside econometrician observer, this estimated- 

mixture specification seems more natural than the level-k specification. But which specification 

better describes people’s strategic thinking remains an empirical question, on which the jury is 

still out as explained below. A CH L1 is the same as a level-k L1 by definition, but a CH L2 or 

higher type may differ from its level-k counterpart. A CH L1 or higher type makes undominated 

decisions like its level-k counterpart. But unlike level-k types, a CH Lk need not always comply 

with k rounds of iterated dominance and k–rationalizability.18

 In a CH model, unlike in a level-k model, L1 and higher types are assumed not to make 

errors. Instead the uniform random L0, which the Poisson distribution constrains to have positive 

frequency, doubles as an error structure for higher types. Section 2.4’s observations about the 

cognitive ease of level-k types apply to CH types, except that CH types above L1 respond not to 

a single lower type’s response but to a distribution of types’ responses, in proportions determined 

by an estimated Poisson parameter, assumed known by the player. CH types above L1, like 

level-k types, need not respond to the noisiness of others’ decisions or find fixed points.

 As Camerer, Ho, and Chong 

(2004, Section II.A) and Chong, Camerer, and Ho (2005, Section 2.1) note, the beliefs of a CH 

Lk type converge to correct beliefs as k increases. By contrast, in some games the beliefs of a 

level-k type oscillate perpetually, and may converge only to the set of rationalizable beliefs.  

19

 Like a level-k model, given the Poisson distribution, a CH model makes point or mean 

predictions that do not depend on its estimated precision. But unlike a level-k model, and to 

some extent like QRE, the form of the distribution influences the model’s point predictions. In 

some applications the Poisson distribution is not very restrictive and a CH model fits as well as a 

level-k model and better than LQRE (Camerer, Ho, and Chong 2004, Section II.B; and Chong, 

Camerer, and Ho 2005); but in others the Poisson distribution seems overly restrictive (Chong, 

Camerer, and Ho 2005; Costa-Gomes and Crawford 2006; Crawford and Iriberri 2007ab). 

 

                                                 
18 The increasing rationality of CH Lk types is important in some settings, as illustrated in Section 6; but because types higher 

than L3 are rare, we view the k-rationalizability of level-k types as more important in practice.     
19 Although we calibrate level-k models without errors in some of the illustrations below, this is not the usual practice in 

estimating them. Brian Rogers, Palfrey, and Camerer (2009) identify a link between CH models and a generalization of LQRE 
that allows both heterogeneity of players’ precisions and truncation of their perceptions of others’ precisions as in Weizsäcker 
(2003). They also compare the models’ fits in matrix games and zero-sum betting games like those discussed in Section 5. The 
fits are very close, which the authors attribute to the fact that the heterogeneity and truncation that their generalization allow 
LQRE gives it a payoff-sensitivity that is not shared by CH in general, but happens to be shared in the games considered. 
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2.6. Noisy Introspection (“NI”) Models 

 As noted in Section 2.3, although McKelvey and Palfrey (1995) suggest using LQRE for 

both initial responses and limiting outcomes, and LQRE has been the most popular model of 

initial responses, Goeree and Holt (2004) suggest reserving LQRE for limiting outcomes, instead 

proposing a noisy introspection (“NI”) model to describe initial responses. Their NI model 

relaxes LQRE’s equilibrium assumption by assuming that players form beliefs by iterating noisy 

best responses as in a level-k model, hence maintaining LQRE’s assumption that players respond 

to a nondegenerate probability distribution of others’ responses. Although Goeree and Holt 

motivate NI as a kind of noisy rationalizability, because it builds on iterated best responses and 

makes point predictions, up to errors, it is more akin to level-k and CH models. Higher-order 

beliefs are assumed to reflect increasing amounts of noise, converging to uniform randomness. 

 In the only applications so far, Goeree and Holt assume that the noisiness of higher-order 

beliefs grows geometrically with iterations, which yields beliefs similar but by no means 

identical to Lk’s; slower noise growth results in more iterated best responses, like a higher k. The 

resulting NI model is more flexible than LQRE, and cognitively less taxing because it requires 

no fixed-point reasoning; but it is more taxing than a level-k or CH model because players’ 

choices are indefinitely iterated best responses to noisy higher-order beliefs (although for 

computational purposes Goeree and Holt usually truncate the iteration to ten rounds). 

 For given noise distributions, the NI model makes probabilistic predictions that depend on 

how fast the noise grows. In the extreme case where the noise does not grow with the number of 

iterations, NI mimics LQRE. Other extremes mimic level-k types: If the noise jumps 

immediately to infinity, NI beliefs are like L1’s; if it is zero for one iteration and then jumps to 

infinity, NI beliefs are like L2’s, and so on; but these extremes are ruled out by the assumption 

that the noisiness of higher-order beliefs grows geometrically. 
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3. Keynes’ Beauty Contest: 
Experimental Evidence from Guessing and Other Normal-Form Games  
 
“...professional investment may be likened to those newspaper competitions in which the 
competitors have to pick out the six prettiest faces from a hundred photographs, the prize 
being awarded to the competitor whose choice most nearly corresponds to the average 
preferences of the competitors as a whole; so that each competitor has to pick, not those 
faces which he himself finds prettiest, but those which he thinks likeliest to catch the 
fancy of the other competitors, all of whom are looking at the problem from the same 
point of view. It is not a case of choosing those which, to the best of one’s judgment, are 
really the prettiest, nor even those which average opinion genuinely thinks the prettiest. 
We have reached the third degree where we devote our intelligences to anticipating what 
average opinion expects the average opinion to be. And there are some, I believe, who 
practice the fourth, fifth and higher degrees.” 

 —John Maynard Keynes, The General Theory of Employment, Interest, and Money 

“…imagine you are partners in a private business with a man named Mr. Market. Each 
day, he comes to your office or home and offers to buy your interest in the company or 
sell you his [the choice is yours]. The catch is, Mr. Market is an emotional wreck. At 
times, he suffers from excessive highs and at others, suicidal lows. When he is on one of 
his manic highs, his offering price for the business is high as well…. His outlook for the 
company is wonderful, so he is only willing to sell you his stake in the company at a 
premium. At other times, his mood goes south and all he sees is a dismal future for the 
company. In fact… he is willing to sell you his part of the company for far less than it is 
worth. All the while, the underlying value of the company may not have changed - just 
Mr. Market's mood.”  

—Benjamin Graham,20

 
 The Intelligent Investor 

 The Keynes and Graham quotations evoke simultaneous-move n-person guessing or perhaps 

“outguessing” games, possibly with multiple equilibria. Like the quotations that follow, they 

concern games played without clear precedents. The key issue is anticipating others’ strategic 

responses, in Keynes’ case to a “landscape” of personal judgments about prettiness, which is 

otherwise payoff-irrelevant; and in Graham’s case to the psychology of a representative 

uninformed investor’s reaction to news. Equilibrium is not very helpful in anticipating others’ 

responses in such settings. Instead the quotations explicitly suggest thought processes in which 

players anchor beliefs in a model of others’ instinctive reactions and then iterate best responses a 

finite number of times, processes whose heterogeneity and finiteness closely resemble a level-k 

                                                 
20 Graham, who originally became famous as the co-author of Graham and David Dodd (1934), may now be even better known 

as Warren Buffett’s intellectual hero. 
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or cognitive hierarchy model. Keynes’ “fourth, fifth and higher degrees” is somewhat more than 

the evidence we shall present suggests is realistic, but may be only a coy reference to himself. 

 As we shall illustrate, the level-k/CH features of the Keynes and Graham quotations are 

representative of folk game theory: One can also find quotations reflecting one or two steps of 

iterated (strict or weak) dominance in the normal form or of iterated (weak) dominance reflecting 

forward or backward induction in the extensive form. But it is difficult to find quotations 

involving more than one or two iterations, and at least as difficult to find quotations that illustrate 

the fixed-point reasoning that underlies equilibrium in games without dominance.21

 There is now a large body of experimental research that studies strategic thinking by eliciting 

initial responses to games with a variety of structures. The most important studies whose designs  

use normal-form complete-information games with neutral framing include those of Stahl and 

Wilson (1994, 1995); Nagel (1995); Ho, Camerer, and Keith Weigelt (1998); Costa-Gomes, 

Crawford, and Broseta (2001); Antoni Bosch-Domènech et al. (2002); Camerer, Ho, and Chong 

(2004); Costa-Gomes and Crawford (2006); and Costa-Gomes and Georg Weizäsacker (2008).  

 

 In this section we first discuss Nagel’s (1995); Ho, Camerer, and Weigelt’s (1998); and 

Bosch-Domènech et al.’s (2002) analyses of n-person guessing games that were directly inspired 

by Keynes’ beauty contest analogy. We next discuss Stahl and Wilson’s (1994, 1995) and Costa-

Gomes, Crawford, and Broseta’s (2001) analyses of two-person matrix games. Finally, we 

discuss Costa-Gomes and Crawford’s (2006) analysis of two-person guessing games. In the 

process we highlight the strengths and weaknesses of each design, and the lessons from each set 

of results for modeling strategic thinking.22

                                                 
21 Tellingly, Jacob Marschak (1946), in one of the first reviews of John von Neumann and Oskar Morgenstern (1944), quotes the 

Keynes passage above and says (with reference to their theory of zero-sum two-person games) “…it seems to us that properly 
stated differences in degrees of knowledge or intelligence of individual players can also be regarded as rules of the game.”    

 We give the most emphasis to Costa-Gomes and 

Crawford’s (2006) analysis because its design is the most powerful and comes closest to letting 

the data reveal subjects’ strategic thinking directly, without an econometric “middleman”. Its 

conclusions are consistent with and representative of the conclusions of most other carefully 

done studies of initial responses to normal-form games with neutral framing, just more precise. 

22 In normal-form games with neutral framing it is natural in a level-k or cognitive hierarchy analysis to take L0 as uniform 
random over the entire strategy space, as explained below. In Sections 5 and 9-13 we discuss experiments on normal-form 
games with incomplete information or non-neutral framing and experiments and thought-experiments on extensive-form 
games with preplay communication, in which different specifications of L0 are natural as we shall explain.    
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3.1. Beauty Contest Games 

In Nagel’s (1995) and Ho, Camerer, and Weigelt’s (1998) games, n subjects (n = 15-18 in 

Nagel, n = 3 or 7 in Ho, Camerer, and Weigelt) made simultaneous guesses between lower and 

upper limits (0 and 100 in Nagel, 0 and 100 or 100 and 200 in HCW). In Bosch-Domènech et al. 

(2002) essentially the same games were played in the field, by more than 7500 volunteers 

recruited from subscribers of the newspapers Financial Times, Spektrum der Wissenchaft, or 

Expansión. In each case the subject who guessed closest to a target (p = 1/2, 2/3, or 4/3 in Nagel; 

p = 0.7, 0.9, 1.1, or 1.3 in Ho, Camerer, and Weigelt; and p = 2/3 in Bosch-Domènech et al.) 

times the group average guess won a prize. There were several treatments, each with identical 

targets and limits for all players and games. The structures were publicly announced, to justify 

comparing the results with predictions based on complete information. 

 Although Nagel’s and Ho, Camerer, and Weigelt’s subjects played a game repeatedly, their 

first-round guesses can be viewed as initial responses if they treated their own influences on 

future guesses as negligible, which is plausible for all but Ho, Camerer, and Weigelt’s three-

subject groups. Bosch-Domènech et al.’s subjects played only once. 

 With complete information, in all but one treatment the game is dominance-solvable in a 

finite (limits 100 and 200) or infinite (limits 0 and 100) number of rounds, with a unique 

equilibrium in which all players guess their lower (upper) limit when p < 1 (p > 1). The 

rationality-based argument for this “all–0” equilibrium is stronger than many equilibrium 

arguments, because it depends only on iterated (though sometimes infinitely iterated) knowledge 

of rationality, not on the assumption that players have mutual knowledge of beliefs. 

The results of these experiments vividly illustrate the failure of equilibrium as a descriptive 

model of initial responses, and the heterogeneity and discreteness of strategic thinking. Nagel’s 

subjects never made equilibrium guesses initially; Ho, Camerer, and Weigelt’s rarely did so, and 

Bosch-Domènech et al.’s (who had much more time to reflect, and who could consult with 

others) fairly rarely did so. In each case most subjects’ initial guesses respected from 0 to 3 

rounds of iterated dominance, in games where 3 to an infinite number are needed to reach 

equilibrium. Here we reproduce Bosch-Domènech et al.’s Figure 1, which illustrates these points 

most clearly; see also Nagel’s Figure 1 and Ho, Camerer, and Weigelt’s Figures 2A-H and 3A-B. 
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Figure 1. Bosch-Domènech et al.’s (2002) Figure 1 

  

These data resemble neither “equilibrium plus noise” nor “equilibrium taking noise into 

account” as in QRE. They do suggest that subjects’ deviations from equilibrium have a coherent 

structure. In each case the distributions of guesses have spikes that track 50pk for k = 1, 2, 3 

across the different targets p in the various treatments. Like the spectrograph peaks that 

foreshadow the existence of chemical elements, these spikes are evidence of a partly 

deterministic structure, one that is discrete and individually heterogeneous.23

                                                 
23 Yves Breitmoser (2010) shows that when individual players’ influences are non-negligible, the tournament incentives of 

Nagel’s design invalidate the usual characterization of Lk guesses. Behaviorally, this makes little difference because the usual 
characterization builds in heuristics most people seem to use in all but the smallest groups. In a richly parameterized 
econometric analysis, Breitmoser also obtains results that differ from the interpretation in the text for some subject groups. In 
reading the evidence, we place heavier weight on data generated by the more powerful designs discussed in Sections 3.2-4. 
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These designs are distinguished by their large strategy spaces, which greatly increase the 

informativeness of their results. But from the point of view of studying strategic thinking via 

initial responses—which was not these experimenters’ sole purpose—they have a weakness in 

that each subject played only one game, so there was in effect only one observation per subject 

(although there was some between-subjects variation across the games used in different 

treatments). Even with very large strategy spaces, one observation yields limited information, 

and so the results leave considerable ambiguity of interpretation regarding subjects’ types. 

 To take the most important example of this ambiguity, the spikes’ locations and how they 

vary across treatments in these games have two plausible interpretations, which differ in some 

important applications. In one, subjects follow “level-k” rules based on an L0 that is assumed to 

be uniformly random over the strategy space. Recalling that L0 represents players’ model of 

others’ instinctive reactions to the game before they start thinking about others’ incentives, it 

seems natural to take L0 as derived from either ignoring strategic considerations and invoking 

the principle of insufficient reason, or randomly sampling the payoffs, and this is the emerging 

consensus for normal-form games with neutral framing.24

   In many other games, with or without a uniform random L0 as long as it has full support, Dk 

and Lk+1 respond similarly to dominance, both yielding k-rationalizable strategies (the different 

indices are only a quirk of notation). But Dk and Lk+1 are separated, although weakly, in Stahl 

and Wilson’s (1995), Ho, Camerer, and Weigelt’s (1998), and Costa-Gomes, Crawford, and 

Broseta’s (2001) experiments; and they are strongly separated in Costa-Gomes and Crawford’s 

(2006) experiments. The stronger the separation, the more the results favor Lk over Dk types. 

 Lk then iterates best responses k times, 

so that in these games Lk+1 guesses [(0+100)/2]pk+1. In another interpretation, subjects follow 

rules like Dk, which does k rounds of iterated dominance for some small number, k = 1 or 2, and 

then best responds to a uniform prior over its partner’s remaining strategies (thus “completing” 

k-rationalizability via a natural specific selection), so that Dk also guesses ([0+100pk]/2)p. As a 

result, theorists often interpret the results from these experiments as showing that subjects 

explicitly performed iterated dominance, though these results don’t show that. 

                                                                                                                                                             
We believe that more powerful and more comprehensive designs are a more likely route to further progress than progressively 
more sophisticated econometric analyses of existing datasets, especially those with only one observation per subject.    

24 In this paper we focus mainly on two-person games, but in n-person games it matters whether L0 is independent across players 
or correlated, and the limited evidence (Ho, Camerer, and Weigelt 1998, Costa-Gomes, Crawford, and Iriberri 2009) suggests 
that most people have highly correlated models of others. For the moment we simply take L0 to model all others’ average 
guess, implicitly assuming perfect correlation as the evidence approximately suggests. We return to this issue in Section 6. 
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 Nagel’s (1995), Ho, Camerer, and Weigelt’s (1998), and Bosch-Domènech et al.’s (2002) 

designs have another weakness for our purposes, in that their subject groups were so large that 

subjects very likely treated their own influences, except on their own payoffs, as negligible, and 

assumed that other subjects would do so as well.25

3.2. Other Normal-Form Games  

 Although subjects’ interactions were still far 

from trivial from a game-theoretic point of view, such large-group results give limited insight 

into behavior in the many settings where players must choose their strategies while anticipating 

the responses of other players who do not think any one player’s influence is negligible. To put it 

more concretely, when we (the authors) think about the stock market, we know that “it” isn’t 

thinking about us, and this fact greatly simplifies our thinking about how the market will react to 

news. But when Warren Buffet thinks about the market, he knows that the market is also 

thinking about him, and this makes his thinking more fully strategic than ours is. In the rest of 

the experiments we discuss, individual players’ influences are non-negligible. 

 Stahl and Wilson (1994, 1995) report the results of experiments in which each subject played 

a series of 10 or 12 different but related 3×3 matrix games, an important advance on the common 

previous practice of trying to infer subjects’ strategic thinking from their responses to a single 

game. As in all the remaining experiments discussed in this section, their subjects were randomly 

and anonymously paired to play the games, with no feedback, with the goal of suppressing 

learning and repeated-game effects in order to elicit subjects’ initial responses, game by game, 

studying strategic thinking “uncontaminated” by learning. Stahl and Wilson’s designs increase 

the number of observations per subject relative to Nagel’s; Ho, Camerer, and Weigelt’s; and 

Bosch-Domènech et al.’s; but they coarsen the strategy space by allowing only three decisions. 

 Stahl and Wilson’s data analyses contained a uniform random L0, an L1 as defined in Section 

2.4, and an L2 which differs from Section 2.4’s in that it best responds to a noisy L1 (which Stahl 

and Wilson motivate as a proxy for a weighted averaged of their uniform random L0s and L1s), 

much as Section 2.3’s QRE players best respond to the predicted noise in others’ decisions. Stahl 

and Wilson (1995) considered several types in addition to the level-k hierarchy. These include 

Rational Expectations, which best responds to the predicted choice frequencies among potential 

partners, a variant of the type Costa-Gomes, Crawford, and Broseta (2001) and Costa-Gomes and 

                                                 
25 This excludes Ho, Camerer, and Weigelt’s 3-subject groups. In experimental game theory, the smallest “large” number may be 

as low as 4, and is certainly not higher than 10.  
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Crawford (2006) call Sophisticated; Worldly, which best responds to an estimated mixture of a 

noisy L1 and a noiseless Equilibrium; and Naïve Nash, which makes equilibrium decisions, 

possibly with noise. Stahl and Wilson found no evidence of Rational Expectations subjects, but 

there were 38 of 48 subjects for which one type had (in their Bayesian analysis) posterior 

probability at least 0.90: 17 Worldly, 9 L1, 6 L0, 5 Naïve Nash, and 1 L2.26 Stahl and Wilson 

(1994) conducted a similar analysis of data generated by a design closely related to that of Stahl 

and Wilson (1995), allowing types L0, L1, their variant of L2, and Naïve Nash (but not Worldly, 

Optimistic, or Pessimistic). They found 35 of 40 subjects for which one type has posterior 

probability at least 0.90: 18 L2, 9 Naïve Nash, and 8 L1.27

 Costa-Gomes, Crawford, and Broseta (2001) report experiments in which each subject 

played a series of 18 different but related 2×2, 2×3, and 2×4 matrix games, further increasing the 

number of observations per subject above Stahl and Wilson’s (1994, 1995) numbers, but 

continuing with their coarse strategy spaces. Costa-Gomes, Crawford, and Broseta’s results also 

show very clearly that subjects usually make undominated decisions. However, their subjects 

respect iterated dominance progressively less often, the more rounds of dominance are required 

to identify equilibrium decisions, to the point where beyond two or three rounds, equilibrium 

compliance is no better than random. 

 

 Costa-Gomes, Crawford, and Broseta’s data analysis allows types L1, L2, and L3 as defined 

in Section 2.4 (best responding to noiseless lower-level types); D1 and D2 as defined in Section 

3.1; an Equilibrium type like Stahl and Wilson’s Naïve Nash; and a Sophisticated type that best 

responds to the observed choice frequencies among potential partners, as a proxy for subjects 

whose understanding of strategic behavior transcends mechanical rules such as the other types. 

 Costa-Gomes, Crawford, and Broseta’s estimates of the type distribution are quite similar to 

Stahl and Wilson’s, with one exception: They exclude Stahl and Wilson’s (1995) Worldly type a 

priori—on the grounds that it depends on estimated parameters and/or others' decision noise, and 

                                                 
26 Following an early version of Costa-Gomes, Crawford, and Broseta (2001), who also looked for decision theoretic types called 

Optimistic (maximax) and Pessimistic (maximin), Ernan Haruvy, Stahl, and Wilson (1999) modified Stahl and Wilson’s 
(1995) design in an attempt to identify Optimistic and Pessimistic subjects. Like Costa-Gomes et al. they found no Pessimistic 
but some Optimistic subjects, of whom most would have been estimated as Worldly in Stahl and Wilson’s (1995) analysis. 

27 Rogers, Palfrey, and Camerer (2009) conduct a horse race between CH and LQRE in Stahl and Wilson’s (1995) games, finding 
no important differences in fit. 
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thus implicitly assumes that subjects have prior understandings of others' responses—and as a 

result they identify many subjects as L2 and some as D1.28

 Although Stahl and Wilson’s (1995) data analysis from a closely related experiment almost 

completely rejected L2 in favor of their heavily parameterized Worldly type, in an econometric 

analysis that did not include Worldly, Stahl and Wilson (1994) found large numbers of L1 and L2 

subjects, with results much closer to Costa-Gomes, Crawford, and Broseta’s than to Stahl and 

Wilson’s (1995) results, despite the similarities of the two Stahl and Wilson designs. 

 

 This instability of estimates reflects a common trade-off in the literature: To the extent that 

designs lack sufficient power to let the data speak for themselves (because of coarse strategy 

spaces or for other reasons), the data analysis rests heavily on small-sample econometrics with 

significant risk of specification bias and correspondingly fragile estimates. There is, therefore, a 

premium on designs powerful enough to let the data speak for themselves, with less reliance on 

econometrics, such as Costa-Gomes and Crawford’s (2006) design discussed next, which 

suggests that Stahl and Wilson’s rejection of L2 in favor of Worldly was incorrect. 

3.3. Two-Person Guessing Games 

Costa-Gomes and Crawford’s (2006) design combines the large strategy spaces of Nagel’s 

(1995); Ho, Camerer, and Weigelt’s (1998); and Bosch-Domènech et al.’s (2002) designs with 

the important strengthening feature of Stahl and Wilson’s (1994, 1995) and Costa-Gomes, 

Crawford, and Broseta’s  (2001) designs that each subject played a series of different but related 

games, in this case 16. Again subjects were randomly and anonymously paired to play the 

games, with no feedback, with the goal of suppressing learning and repeated-game effects. 

(“Eureka!” learning was possible, but it was tested for and found to be rare.) The combination of 

large strategy spaces with each subject playing a series of games greatly enhances the design’s 

power, and the profile of a subject’s guesses in the 16 games forms a “fingerprint” that helps to 

identify his strategic thinking more precisely than is possible by observing his responses to a 

series of games with small strategy spaces or a single game with a large strategy space.29

                                                 
28 Matthias Sutter, Simon Czermak, and Francisco Feri (2010) replicate Costa-Gomes, Crawford, and Broseta’s (2001) design 

and results for individuals and also for three-person teams, finding teams somewhat more sophisticated than individuals.    

  

29 Costa-Gomes, Crawford, and Broseta’s (2001) and Costa-Gomes and Crawford’s (2006) designs also studied subjects’ 
strategic thinking by monitoring their searches for hidden but freely accessible payoff information. Their data analyses rested 
on a simple theory of how cognition drives search as well as decisions, which implies that different types’ search implications 
are separated, including Dk and Lk+1. The analyses of search confirmed the results of their analyses of decisions, including 
that the results favor Lk over Dk types (Crawford 2008 and Costa-Gomes and Crawford 2011). See also Chun-Ting Chen, 
Chen-Ying Huang, and Wang (2009), who add an interesting spatial dimension to the analysis of search. 
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In Costa-Gomes and Crawford’s guessing games, each player has his own lower and upper 

limit, both strictly positive, which implies that the games are finitely dominance-solvable. Each 

player also has his own target, and his payoff increases with the closeness of his guess to his 

target times the other’s guess. The targets and limits vary independently across players and 

games, with targets both less than one, both greater than one, or “mixed”.30

These guessing games have essentially unique equilibria, determined (not always directly) 

by players’ lower (upper) limits when the product of targets is less (greater) than one. The 

discontinuity of the equilibrium correspondence when the product of targets equals one stress-

tests equilibrium, which responds much more strongly to the product of the targets than 

alternative decision rules do; and enhances the separation of equilibrium from alternative rules.  

  

Consider a game in which players’ targets are 0.7 and 1.5, the first player’s limits are [300, 

500], and the second’s are [100, 900]. The product of targets is 1.05 > 1, and it can be shown that 

the equilibrium is therefore determined by players’ upper limits. (When the product of targets is 

< 1, the equilibrium is similarly determined by their lower limits.) In equilibrium the first player 

guesses his upper limit 500, but the second player guesses 750 (= 500 × his target 1.5), below his 

upper limit 900. No guess is dominated for the first player, but any guess outside [450, 750] is 

dominated for the second player. Given this, any guess outside [315, 500] is iteratively 

dominated for the first player; any guess outside [472.5, 750] is then dominated for the second; 

and so on until the equilibrium at (500, 750) is reached after 22 rounds of iterated dominance. 

The main difficulty in analyzing the data from such experiments is identifying subjects' 

decision rules, or types, within the enormous set of possibilities. As in previous studies, Costa-

Gomes and Crawford assumed that each subject’s decisions follow one of a small set of a priori 

plausible types, up to logit errors, and econometrically estimate which type best fit his decisions.  

The types allowed include behaviorally plausible types whose relevance was suggested by 

previous work: L1, L2, and L3 as defined in Section 2.4; D1 and D2 as defined in Section 3.1; 

Equilibrium, which makes its equilibrium decision; and Sophisticated, which best responds to the 

distribution of other subjects’ responses, and is included to test whether any subject has a prior 

understanding of others’ decisions that transcends the other simple rules. The restriction to this 

list was tested, and found to be a reasonable approximation to the support of subjects’ types. 

                                                 
30 In Nagel’s (1995) and Ho, Camerer, and Weigelt’s (1998) guessing experiments, by contrast, the targets and limits were 

always the same for both players, and they varied at most across treatments with different subject groups. 
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Costa-Gomes and Crawford’s large strategy spaces and the independent variation of targets and 

limits across games greatly enhance the separation of types’ implications, to the point where 

many subjects’ types can be precisely identified from their guessing “fingerprints”. 

  Of the 88 subjects in Costa-Gomes and Crawford’s main treatments, 43 made guesses that 

complied exactly (within 0.5) with one type’s guesses in from 7 to 16 of the games (20 L1, 12 

L2, 3 L3, and 8 Equilibrium). Because their types specify precise, well-separated guess 

sequences in a very large space, with 200 to 800 possible exact guesses in each of 16 different 

games, these subjects’ guesses allow one intuitively to “accept” the hypothesis that they 

followed their apparent types, and so rule out alternative interpretations of their behavior.31

 In particular, because the accepted Lk and Equilibrium types build in risk-neutral, self-

interested rationality and perfect models of the game, the deviations from equilibrium of the 35 

subjects whose apparent types are Lk can be confidently attributed to nonequilibrium beliefs 

rather than irrationality, risk aversion, altruism, spite, or confusion. Thus, the level-k model is 

directly suggested by these subjects’ data, rather than simply suggested by data-fitting exercises 

that impose strong structural assumptions. By contrast, in designs with coarse strategy spaces 

even a perfect fit does not distinguish a subject’s apparent type from nearby omitted types. In 

designs in which each subject plays a single game, the ambiguity is even more severe, so that 

even in Nagel’s large strategy spaces, rules as cognitively disparate as Dk and Lk+1 yield 

identical decisions. Identification of types then necessarily rests on structural assumptions. 

 

 Costa-Gomes and Crawford’s other 45 subjects made guesses that conformed less closely to 

a type, making structural econometrics necessary. But for all but 14 subjects, violations of simple 

dominance were fairly rare (less than 20%, versus 38% for random guesses), suggesting that 

their behavior was coherent, even if less well described by a type. Econometric type estimates 

are concentrated on L1, L2, L3, and Equilibrium, in roughly the same proportions as for subjects 

with high rates of exact compliance. 

 In particular, unrestricted estimates of the frequency of L0 subjects, given the econometric 

model’s clear separation of L0 and the error structure, yield a frequency of zero, suggesting that 

L0s exist only in the minds of other subjects, as L1’s model of others, L2’s model of L1’s model 

of others, and so on. Low frequencies of L0 are an important sign of health for a level-k model, 
                                                 
31 We stress that Costa-Gomes and Crawford’s Baseline subjects were taught only how to compute their payoffs and then quizzed 

on identifying their and their partner's best-responses, but not taught any particular decision rule. Their high rates of exact 
compliance with level-k types reflect their own thinking.  
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in that high frequencies would reduce the model to a parameterized distribution of responses, 

thus describing the data rather than explaining it. Only when the strategic iteration of best 

responses plays a role can the model yield a useful explanation of the data. 

 The econometric analysis also suggests that there are few if any Sophisticated subjects. The 

strong separation of Dk from Lk+1 allows the analysis to show convincingly that there are few if 

any Dk subjects: To the extent that subjects respect finitely iterated dominance, it is not because 

they explicitly perform it but because they follow level-k rules that respect it—a distinction that 

matters in many games, if not in Nagel’s (1995) games where Dk is not separated from Lk+1.32

For those 45 subjects, there is some room for doubt about whether Costa-Gomes and 

Crawford’s specification omits relevant types and/or overfits by including irrelevant types. The 

freedom to specify the possible types also raises doubts about omitted types and overfitting via 

accidental correlations with included but irrelevant types. Might the high estimated numbers of 

L1 and L2 subjects might be no more than proxies for altruistic, spiteful, risk-averse, or confused 

Dk or Equilibrium subjects; or other, entirely different omitted types? To test for this, Costa-

Gomes and Crawford conducted a specification test, which reaffirms most of their identifications 

of L1, L2, L3, or Equilibrium subjects and supports their specification by giving no indication of 

significant numbers of Stahl and Wilson’s (1995) Worldly type or any other omitted type. 

  

3.4. Eliciting Beliefs 

 Costa-Gomes and Weizsäcker’s (2008) study asks experimental subjects to choose 

actions and state beliefs about their partners’ actions in 14 two-person 3×3 games, with beliefs 

elicited via a quadratic scoring rule, which is incentive compatible under the assumption that the 

decision-maker is a risk-neutral expected-utility maximizer. Eliciting beliefs can provide finer 

information about strategic thinking than eliciting actions, and beliefs are an informative 

supplement to actions in any case. Costa-Gomes and Weizsäcker’s design strongly separates 

both the actions and the beliefs implied by the leading strategic decision rules L1, L2, LQRE, NI, 

and Equilibrium. In their analysis of their aggregate data, they find that although subjects’ 

actions are best described by L1, their stated beliefs are closer to L2’s beliefs. The results suggest 

                                                 
32 This last conclusion is reinforced by Costa-Gomes and Crawford’s (2011) (see also Crawford 2008) analysis of subjects’ 

searches for hidden payoff information and by their data on “robot/trained subjects,” where 7 of 19 subjects, who were trained 
and rewarded to follow type D1 and passed an understanding test in which L2 answers were incorrect, then “morphed” into L2 
(D1’s closest Lk relative) in the guesses for which they were paid. Aside from the one of 19 robot/trained D2 subjects who 
morphed into L3, this was the only kind of morphing that occurred. Although by standard measures Dk’s cognitive 
requirements are close to Lk+1’s, and these treatments also show that most subjects were capable of learning to follow Dk, the 
morphing suggests that subjects find iterated dominance far less natural than the iterated best responses that underlie Lk rules. 
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that despite subjects’ incentives, they viewed choosing actions and stating separately 

incentivized beliefs as largely unrelated tasks, rather than requiring actions to be best responses 

to beliefs as decision theory suggests; on average, their actions and beliefs are consistent in this 

sense 50% to 60% of the time. This in turn suggests that decision rules may be more fundamental 

for most subjects than beliefs. Costa-Gomes and Weizsäcker close by noting that stated beliefs 

are subject to error just as actions are, suggesting caution in imposing the restriction that actions 

have to be best responses to stated beliefs.33

3.5. Level-k and CH Models versus Equilibrium plus Noise, Finitely Iterated Dominance and k-

Rationalizability, LQRE, and NI Models 

 

We now summarize how the experimental evidence relates to the models of strategic 

thinking discussed in Section 2.   

Nagel’s (1995), Ho, Camerer and Weigelt’s (1998), and Bosch-Domènech et al.’s (2002) 

results make it clear that subjects initial responses can deviate systematically from equilibrium, 

even in games where equilibrium reasoning requires “only” indefinitely iterated dominance, 

resembling neither equilibrium plus noise nor QRE for any reasonable distribution. They also 

show that strategic thinking is heterogeneous and falls into discrete classes (with errors), so that 

no model that imposes homogeneity, as equilibrium plus noise, QRE, and NI do, will do full 

justice to subjects’ behavior.34

 Costa-Gomes, Crawford, and Broseta (2001) and Costa-Gomes and Crawford’s (2006) 

results suggest that overall, a level-k model with a uniform random L0 and L1, L2, L3, and 

possibly Equilibrium subjects explains a large fraction of subjects’ deviations from equilibrium 

in normal-form games with neutral framing. Their conclusions are consistent with those of most 

other carefully done studies of initial responses to normal-form games with neutral framing, just 

more precise. Their results also suggest that the type distribution is fairly stable across settings, 

with most weight on L1, L2, and perhaps L3. Costa-Gomes and Crawford’s (2006) specification 

test suggests that these types and possibly Equilibrium are all relevant, but that at least in this 

 Finally, although strategic thinking respects iterated dominance to 

some extent, this is limited to a few rounds, so rationalizability (as opposed to k–rationalizability 

for low k) is too strong. Stahl and Wilson’s (1994, 1995), Costa-Gomes, Crawford, and Broseta’s 

(2001) and Costa-Gomes and Crawford’s (2006) results confirm these lessons. 

                                                 
33 Pedro Rey-Biel (2009) partially replicates Costa-Gomes and Weizsäcker’s (2008) results, showing that in constant-sum games, 

where equilibrium reasoning need not depend on strategic thinking, equilibrium outperforms level-k and other rules. 
34 Allowing heterogeneity is essential to explain the patterns of nonequilibrium behavior discussed in Sections 6, 9, and 11. 
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setting other deviations from equilibrium have little or no discernable structure and describe only 

about 1-2% of their subject population. Thus, although about half of subjects’ deviations from 

equilibrium remain unexplained by the proposed level-k plus Equilibrium model, it may still be 

optimal to treat the remaining unexplained deviations as errors; and the part of the structure that 

can be identified can provide a sound basis for unbiased modeling of initial responses to games. 

 Given these conclusions, might not other models, such as equilibrium plus noise, finitely 

iterated strict dominance and k-rationalizability, LQRE, CH, or NI, do as well or even better?  

 Costa-Gomes and Crawford’s (2006) econometric analysis nests equilibrium plus noise via 

their Equilibrium type with logit errors. Only 11 of the 88 subjects in their main treatments are 

estimated to be Equilibrium subjects, and there is clear evidence that even those subjects are 

following rules that only mimic Equilibrium, and that only in some games (pp. 1753-1754). For 

their remaining 77 subjects, equilibrium plus logit noise misses clear patterns in the data. 

Further, these subjects’ “errors” neither center on 0 nor usually exhibit the sensitivity to 

deviation costs assumed in a logit specification. We believe this is because the errors are 

cognitive or structural, reflecting misspecification rather than a trade-off between effort cost and 

accuracy. Instead these subjects’ errors have a clear deterministic structure, which is better 

described by the level-k model that emerges from Costa-Gomes and Crawford’s estimates. 

 Because all of the types with significant estimated frequencies respect k–rationalizability for 

at least k = 1, except for the heterogeneity noted above there is no conflict with finitely iterated 

strict dominance and k-rationalizability, only more specific predictions that imply progressively 

lower and lower compliance frequencies as k rises above 1. 

 Turning to LQRE and NI, the large strategy spaces and independent variation of targets and 

limits across games and players of Costa-Gomes and Crawford’s guessing games yields stronger 

separation of level-k types from LQRE and NI than is possible in simpler designs with unvarying 

games and smaller strategy spaces. At the same time, Costa-Gomes and Crawford’s (footnote 34, 

p. 1763) “median voter” result, which stems from the piecewise linearity and symmetry of their 

payoff function and shows that in their games, a risk-neutral player’s best response is completely 

determined by the median of the distribution of his partner’s response, would make equilibrium 

plus logit noise coincide with LQRE except for small payoff asymmetries due to automatic 
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adjustment to the limits.35

 Given that NI is a flexible parameterization that includes LQRE as a special case, it may well 

fit better than LQRE. Recall that in an NI model, players form beliefs by iterating best responses, 

with higher-order beliefs reflecting increasing amounts of noise. In Goeree and Holt’s (2004) 

favored specification, in which the noisiness of higher-order beliefs grows geometrically, the 

highest-order relevant beliefs are uniform random, which we take to mean within the limits in 

Costa-Gomes and Crawford’s games. Even assuming logit errors and geometric growth, because 

the NI decision is a continuous function of the noise level and its rate of growth, varying those 

parameters yields a wide range of possible decisions. As a result, unlike equilibrium plus logit 

noise, LQRE, level-k, or CH models, NI models seem overparameterized for applications to a 

single game, and they probably risk overfitting even in datasets that span multiple games.  

 Thus, the rejection of Equilibrium in favor of level-k types for 77 of 

the 88 subjects in Costa-Gomes and Crawford’s main treatments strongly suggests that LQRE 

would be similarly rejected. This is unsurprising, because as noted above in connection with 

Stahl and Wilson’s (1995) Worldly type, Costa-Gomes and Crawford’s (2006, Section II.D) 

results cast doubt on LQRE’s assumption that players respond to a nondegenerate probability 

distribution of others’ responses. 

 As these comparisons illustrate, that the level-k model is directly grounded in evidence, 

rather than ambiguously suggested by data-fitting exercises that impose strong structural 

assumptions, is an important advantage over alternatives like LQRE and NI. 

Turning finally to level-k versus CH models, by a quirk of Costa-Gomes and Crawford’s 

(2006, fn. 36, p. 1763) design, level-k types’ decisions are not separated from their CH 

counterparts’ decisions: Level-k and CH L1s are identical by definition, and the median voter 

result mentioned above, for empirically plausible type distributions like those Camerer, Ho, and 

Chong (2004) estimate, a CH L2 and L3 are both identical in these games to a level-k L2. 

However, to fit the data the CH model’s Poisson parameter τ (the average k) must be 

approximately 1.5, which constrains the frequency of its L0 to 0.22. Costa-Gomes and 

Crawford’s and many other unconstrained estimates almost all assign L0 a far lower frequency, 

usually zero (and this, we have argued, is a sign of health). Thus the Poisson constraint will often 

                                                 
35 To see why LQRE is nonetheless separated from equilibrium plus logit noise, consider a guessing game in which players’ 

targets are 0.7 and 1.5, the first player’s limits are [300, 500], and the second’s are [100, 900], in which the equilibrium, (500, 
750), is reached after 22 rounds of iterated dominance. Because the first player’s equilibrium guess is at her lower [upper] 
limit, the second players’ deviations below/above 750 are less/more costly, so that LQRE players will play strategies below 
750 with somewhat higher probability than strategies above 750. 
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be strongly binding, and with comparable error structures (though possibly not with the structure 

often assumed in applications of CH models, in which a uniform random L0 doubles as the error 

structure for higher types), a level-k model will have an advantage in fit over a CH model.36

3.6 Directions for Future Work 

 

The experimental work reviewed here has considered several different kinds of games, with 

an encouraging trend toward more powerful experimental designs and correspondingly less 

reliance on econometrics. It has yielded an increasingly clear message about the kinds of model 

that best describe strategic thinking, which we shall show in later sections extends to even more 

kinds of games. However, to date almost all of the evidence has been generated within classes of 

games studied in isolation; and some of the inferences have been based on econometric horse 

races rather than decisive experimental tests. For the models that emerge to be worthy 

competitors to equilibrium, they should give an account of strategic thinking as precise as 

possible, with the capability of tracking behavior across games with the variety of structures 

encountered in applications (though possibly avoiding games that are unrepresentative of 

realistic situations). It should be possible, via new designs, to combine this structural variety with 

the power of some of the designs that have focused on single classes of games. We believe that 

such experimental work will lead to improved specifications of level-k/CH and hybrid models 

that are portable enough to describe behavior accurately across a wide range of applications.    

In one example of work that begins to assess portability, Sotiris Georganas, Paul J. Healy, 

and Roberto A. Weber (2010) report experiments that rerun some of Costa-Gomes and 

Crawford’s (2006) guessing games and some new “undercutting” games (similar to Traveler’s 

Dilemma games).37

                                                 
36 Further, Costa-Gomes and Crawford’s (2006) data on subjects’ searches for hidden but freely accessible payoff information are 

much more consistent with the search implications of the level-k model than with those of a CH model, which blurs the 
implications of some important types (Crawford 2008). 

 They find further support for level-k/CH models within games, and some 

positive correlation of subjects’ types with cognitive ability measures; but only moderate 

correlation of estimated types across games within subjects, with some crossovers in the ordering 

of subjects by type across different games. We suspect the weak correlation is due in part to 

Georganas, Healy, and Weber’s simplification of Costa-Gomes and Crawford’s instructions 

regarding the structure of the games and their omission of the understanding test in which 

subjects were required to demonstrate understanding of how their payoffs would be determined 

37 See also Ayala Arad and Rubinstein (2010), who study portability in a variety of treatments with similar games. 
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to continue. We believe that such understanding is crucial for results that are representative of 

the field, where most people seem to understand very well how their payoffs are determined. 

In another such example, Konrad B. Burchardi and Stefan P. Penczynski (2010) study one of 

Nagel’s (1995) beauty contest games and Rubinstein and Tversky’s hide-and-seek game with 

non-neutral framing of locations (Rubinstein 1999), as also studied by Crawford and Iriberri 

(2007b) (Section 9) and Penczynski (2010). Burchardi and Penczynski adapt David J. Cooper 

and John H. Kagel’s (2005) method for studying cognition by having decisions made by two-

subject teams with common payoffs, whose chat deliberations were monitored along with their 

decisions. If the two could agree on a decision, it was implemented; if not each subject submitted 

a final proposed decision, which was implemented with probability one-half. The results for 

decisions and chats both yield further support for level-k/CH models. Judging from the chats, 

more than half of the subjects started their reasoning processes with an L0 anchoring type, which 

sometimes coincided with the standard uniform random specification of L0. Most subjects also 

followed iterated best response reasoning, to the exclusion of iterated dominance. But Burchardi 

and Penczynski also find that subjects’ apparent types are only weakly correlated within subjects 

across beauty contest and hide-and-seek games with non-neutral framing of locations.  

In their econometric specification, Burchardi and Penczynski postulate a heterogeneous L0 

with bounded normal errors, and in the style of CH models they allow no errors in higher types’ 

decisions beyond those implied by best responses to this L0, but without assuming that the type 

distribution is Poisson. Even so, they estimate the frequency of L0 to be 22-37%, far more than 

other estimates with an unconstrained type distribution we are aware of. This result could be due 

to the dual role of L0 in their model, as the anchor for higher types and as the error structure. 

 

4. M.M. Kaye’s Far Pavilions: 

Responding to Payoff Asymmetries in Outguessing Games 
 

“…ride hard for the north, since they will be sure you will go southward where the 
climate is kinder….” 

 
—M.M. Kaye’s The Far Pavilions (1978, p. 97) 

 

Early in M.M. Kaye’s novel The Far Pavilions, the main male character, Ash/Ashok, is 

trying to escape from his pursuers along a north-south road. Both Ash and his pursuers must 
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choose between north and south. Although Ash moves first, the pursuers must make their choice 

irrevocably before they learn Ash’s choice, so their choices are strategically simultaneous. South 

is warm, but north are the Himalayas, with winter coming. Ash’s mentor, Koda Dad, nonetheless 

advises Ash to ride north as in the quotation above. Ash overcomes his fear of freezing and 

follows Koda Dad’s advice, the pursuers unimaginatively go south, and Ash escapes. 

Examples like this are as common in experimental game theory as they are in fiction. But 

fiction sometimes more clearly reveals the thinking behind a decision. Here, Koda Dad is 

advising Ash to choose the L3 response to a uniform random L0.38

 

 To see this, imagine that if 

the pursuers catch Ash, they gain two units of payoff and Ash loses two; and that they both gain 

one extra unit for choosing south, whether or not Ash is caught. This yields the payoff matrix: 

  Pursuers 
  South (q) North 

Ash 
South (p) 3 

-1 
0 

1 

North 1 
0 

2 
-2 

  Figure 2. Far Pavilions Escape 
  

If the pursuers expect Ash to go south because it’s “kinder”, they must be modeling Ash as 

an L1 response to a uniform random L0. For, the unspecified payoff asymmetry on which this 

inference rests is necessarily decisive only if north and south do not differ in the probability of 

being caught. Thus, Koda Dad must be modeling the pursuers as L2 and advising Ash to choose 

the L3 response to a uniform random L0. 

Importantly, although the level-k model takes the inference that pursuers will expect Ash to 

go south literally as a best response to a uniform random L0, there is a behaviorally more 

plausible interpretation in which the inference is a model of pursuers’ model of Ash ignoring his 

strategic considerations, and given this, based on the principle of insufficient reason. Further, in 

a more complex game a uniform random L0 plausibly approximates random sampling of payoffs 

unstratified by the other players’ strategy choices. 

                                                 
38 In the HBO miniseries, Koda Dad was played by Omar Sharif. For all of Sharif’s success at bridge, his character’s advice may 

be his most enduring contribution to game theory. L3 ties our personal best k for a clearly explained level-k type in fiction or 
non-game-theoretic nonfiction. We suspect that even postmodern fiction may have no clear Lks higher than L3, because they 
wouldn’t be credible. We also doubt that one can find examples (clear or not) of fixed-point reasoning. 
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How does the level-k model compare in predictive success with an equilibrium model? Far 

Pavilions Escape has a unique equilibrium in mixed strategies, in which Ash’s Pr{South} p* = 

1/4, and the Pursuers’ Pr{South} q* = 3/4. Thus in equilibrium the novel’s observed outcome 

{Ash North, Pursuers South} has probability (1 – p*)q* = 9/16: much better than a random 25%. 

By contrast, the level-k model implies decisions as in Table 1. Thus the level-k model exactly 

predicts the outcome provided that Ash is either L2 or (as we know is true from the quoted 

rationale) L3, and the Pursuers are either L1 or (as Koda Dad believes) L2.  

This comparison is unfair because applications seldom come with an omniscient narrator 

telling us how players are thinking, and equilibrium does not use such information. If we deny 

such information to the level-k model as well, we can still derive the model’s implications and, 

with enough data, find the population type frequency distribution that fits best, as illustrated in 

Sections 5 and 9. Alternatively, we can calibrate the level-k model using previous estimates from 

similar settings, as illustrated in Sections 9 and 10. 

 

 Type Ash Pursuers 
L0 Uniform random Uniform random 
L1 South South 
L2 North South 
L3 North North 
L4 South North 
L5 South South 

Table 1. Lk types’ decisions in Far Pavilions Escape 
 

Suppose, for example, that we assume that each player role is filled from a 50-30-20 mixture 

of L1s, L2s, and L3s and there are no errors.39

More importantly, the level-k model explains a puzzling divergence between observed 

aggregate behavior and equilibrium predictions. In games like Far Pavilions Escape and 

perturbed Matching Pennies, the mixed-strategy equilibrium responds to the payoff asymmetry 

between south and north in a decision-theoretically intuitive way for the pursuers’ role (q* = 3/4 

 Then the predicted frequencies with which Ash 

goes north and the pursuers go south are 1/2 and 4/5 respectively. Assuming independence, this 

implies that the observed outcome {Ash North, Pursuers South} has probability 2/5: less than the 

equilibrium predicted frequency of 9/16, but noticeably better than a random 25%.  

                                                 
39 This violates the unwritten laws of fiction, where protagonists are almost always more sophisticated than their opponents, but it 

is fully consistent with data from nonfictional games of this kind. 
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> 1/2, the equilibrium probability with which pursuers go south in the analogous game with no 

north-south asymmetry); but in a counterintuitive way for Ash’s role (p* = 1/4 < 1/2).40

Yet experimental subjects’ aggregate choices in initial responses to games like this tend to 

reflect decision-theoretic intuition in both player roles.

  

41

 

 McKelvey and Palfrey (1995) and 

Goeree, Holt, and Palfrey (2005) discuss the experiments with perturbed 2×2 Matching Pennies 

games with payoff perturbations in only one player role reported by Jack Ochs (1995), 

McKelvey, Palfrey, and Weber (2000), Goeree and Holt (2001), and Goeree, Holt, and Palfrey 

(2003), which yield initial aggregate choices that reflect decision-theoretic intuition in the role 

whose payoffs are perturbed. In the other role, for which the intuition is neutral, aggregate 

choices deviate from equilibrium in the direction that increases expected payoff, given the 

intuitive response in the first role. McKelvey and Palfrey (1995, Figures 6 and 7) and Goeree, 

Holt, and Palfrey (2005) show that LQRE with fitted precisions can fit these qualitative patterns, 

although it sometimes underpredicts the magnitudes of deviations from equilibrium, especially 

for the player whose payoff is perturbed. A level-k or CH model, either calibrated as described 

above or estimated from the data on initial responses, also predicts these qualitative patterns. 

5. Groucho’s Curse: Zero-Sum Betting and Auctions with Incomplete Information 
 
“I sent the club a wire stating, ‘Please accept my resignation. I don’t want to belong to any 
club that will accept people like me as a member’.” 

 
—Groucho Marx (1959, p. 321), Telegram to the Beverly Hills Friar’s Club  

 
 
“Son,” the old guy says, “No matter how far you travel, or how smart you get, always 
remember this: Someday, somewhere,” he says, a guy is going to come to you and show you 
a nice brand-new deck of cards on which the seal is never broken, and this guy is going to 
offer to bet you that the jack of spades will jump out of this deck and squirt cider in your ear. 
But, son,” the old guy says, “do not bet him, for as sure as you do you are going to get an ear 
full of cider.”  

 

  —Obadiah (“The Sky”) Masterson, quoting his father in Damon Runyon (1932) 

 

                                                 
40 Crawford and Dennis E. Smallwood (1984) discuss the comparative statics of mixed-strategy equilibria in perturbed Matching 

Pennies games, showing that this role-asymmetric intuitiveness is general when both players’ payoffs are perturbed.   
41 Ash’s counterintuitive choice would not contradict this pattern if he were a subject because his revealed type is in the minority. 
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 Although most laboratory evidence on strategic thinking comes from symmetric-information 

designs, most field evidence and applications involve settings with informational asymmetries. It 

is therefore of great importance to extend whatever can be learned about strategic thinking in 

complete-information games to incomplete-information games. In this section we discuss 

laboratory and field evidence on games with informational asymmetries, focusing on cases 

where the games are sufficiently simple to allow clear inferences about strategic thinking.    

 We begin by discussing evidence from experiments on especially clear examples of games 

with informational asymmetries: zero-sum betting, sealed bid auctions, and the “Acquiring a 

Company” game. We next discuss analyses using field data from settings with asymmetric 

information. We close with a brief discussion of nonequilibrium auction design, based on an 

extension of level-k models suggested by the analysis of initial responses in auction experiments.  

5.1. Zero-Sum Betting  

 Experiments on zero-sum betting build on Paul R. Milgrom and Nancy Stokey’s (1982) no-

trade theorem, which shows that if traders are weakly risk-averse and have concordant beliefs, 

and the initial allocation is Pareto-efficient relative to the information available at the time, then 

even if traders receive new private information, no weakly mutually beneficial trade is possible. 

Further, if traders are strictly risk-averse, no trade at all is possible. For, any such trade would 

make it common knowledge that both traders had benefited, contradicting the hypothesis that the 

original allocation was Pareto-efficient. This result has been called the Groucho Marx theorem 

because its logic resembles that of our Marx quotation. 

 By contrast with the conclusions of the theorem, speculative zero-sum trades are common in 

real markets. This fact has a number of possible explanations, of which one is nonequilibrium 

strategic thinking. The experiments on zero-sum betting by Brocas, Carrillo, Camerer, and Wang 

(2010) we now discuss have the control required to distinguish between such explanations and 

those based on other factors such as hedging or the joy of gambling (see also Camerer, Ho, and 

Chong 2004, Section VI, and Rogers, Palfrey and Camerer 2009, who both build on Doron 

Sonsino, Ido Erev, and Sharon Gilat 2002 and Ylva Sovik 2009). Brocas et al.’s (2010) design 

can further distinguish between alternative nonequilibrium models of strategic thinking. 
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 Brocas et al.’s design used simple three-state betting games, including the one in Figure 3.42

 

 

The rules of the game and the information structure were publicly announced, with the goal of 

inducing common knowledge. Each of two players, 1 and 2, is given information about which of 

three ex ante equally likely states has occurred, A, B, or C. As indicated by the heavy borders in 

Figure 3, player 1 learns either that the state is {A or B} or that it is C; player 2 learns either that 

the state is A, or that it is {B or C}. Once informed, the players choose simultaneously between 

two decisions: Bet or Pass. A player who chooses Pass earns 10 no matter what the state. If one 

chooses Bet while the other chooses Pass, they both earn 10. If both players choose Bet, they get 

the payoffs in Figure 3, depending on which state has occurred.  

Player/state A B C 
1 25 5 20 
2 0 30 5 
Figure 3. Zero-Sum Betting Game 

 
 This game has a unique trembling-hand perfect Bayesian equilibrium.43

 Despite this clear conclusion, in Brocas et al.’s and similar experiments approximately half 

of the subjects bet. To explain this, Brocas et al. proposed a level-k model with a specification 

like those discussed in Section 3, but with L0 adapted to allow for incomplete information. 

Following Camerer, Ho, and Chong (2004, Section VI), Brocas et al. assumed that L0 bids 

uniformly randomly, independent of its private information. In judging this specification, bear in 

mind that L0 is meant to describe a player’s model of the instinctive starting point of others’ 

strategic thinking. It is easy enough to imagine L0s that take others’ private information into 

account, but for a player who does not observe such information this would require complex 

 In this equilibrium, 

player 1 told C will Bet because 20 > 10, and player 2 told A will Pass because 0 < 10. Given 

this, player 1 told {A or B} will Pass, because player 2 will Pass if told A, so betting given {A or 

B} yields player 1 at most 5 < 10. Given this, player 2 will Pass if told {B or C}, because player 

1 will Pass if told {A or B}, so betting given {B or C} yields player 2 at most 5 < 10. This covers 

all contingencies and completes the characterization of equilibrium, which shows that the game 

is weakly dominance-solvable in three rounds. No betting takes place in equilibrium in any state. 

                                                 
42 Although our discussion focuses on subjects’ decisions, Brocas et al. (2009) also monitored subjects’ searches for hidden but 

freely accessible payoff information, as in Costa-Gomes, Crawford, and Broseta (2001) and Costa-Gomes and Crawford 
(2006). Their analysis of information search reinforces and refines the conclusions of their analysis of decisions.      

43 Trivial equilibria also exist, in which players do not bet because their partners do not bet, though this is weakly dominated. 
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contingent reasoning. Such reasoning is seldom consistent with results from other settings, and it 

seems behaviorally more plausible to assume that L0 ignores others’ private information. 

 As in previous level-k analyses, Brocas et al. took L1 to best respond to L0, and L2 to best 

respond to L1. Following Crawford and Iriberri (2007a), we call an L1 that best responds to a 

random L0 a “random L1” even though it is not itself random; and we call an L2 that best 

responds to a random L1 a “random L2”. Compare Milgrom and Stokey’s (1982, p. 23) Case A 

“Naïve Behavior,” in which a player simply sticks with his prior. This refusal to draw contingent 

inferences from others’ willingness to bet is implied by random L1’s random model of others. 

Milgrom and Stokey’s Case B “First-Order Sophistication” is then equivalent to our random L2. 

 Given this specification, random L1 player 1s will Bet if told {C} because it yields 20 > 10 if 

player 2 Bets, a random L0 player 2 will bet with probability one-half in either contingency, and 

Betting is otherwise costless. Unlike in equilibrium, Random L1 player 1s will Bet if told {A or 

B} because it yields 25 in state {A} and a random L0 player 2 will bet with probability one-half 

in {A}; it yields 5 in state {B} and a random L0 player 2 will Bet with probability one-half in 

{B}; and the two states are equally likely ex ante, so Betting if told {A or B} yields expected 

payoff (25 + 5)/2 = 15 > 10. Random L1 player 2s will Pass if told {A}, because it yields 0 < 10. 

Unlike in equilibrium, random L1 player 2s will Bet if told {B or C}, because it yields 30 in state 

{B} and a random L0 player 1 will bet with probability one-half in {B}; it yields 5 in state {C} 

and a random L0 player 1 will Bet with probability one-half in {C}; and the two states are 

equally likely ex ante, so Betting if told {B or C} yields expected payoff (30 + 5)/2 = 17.5 > 10. 

Similarly, it can be shown that Random L2 or L3 player 1s will both Pass if told {A or B} but 

Bet if told {C}; that Random L2 player 2s will Pass if told {A} but Bet if told {B or C}; and that 

Random L3 player 2s will Pass without regard to the state. 

 Thus, if all subjects were random L1s, 100% of player 1s would Bet and 67% of player 2s, 

too much in each role; and betting would occur only in states B and C, which is not the case: 

Although all player 1 subjects bet in state C and no player 2 subjects bet in state A, about 62% of 

player 1s bet in {A,B}and 34% of player 2s bet in {C,B}. Alternatively, if all player 1s were 

random L2 or L3 and if all player 2s were random L3, then the level-k models’ predictions would 

coincide with equilibrium predictions and no betting would occur, which again is not the case. 

Brocas et al.’s data analysis finds clusters corresponding to random L1s, L2s, and L3s, and an 

additional cluster of apparently irrational players; and this mixture of types fits significantly 
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better than any homogeneous model, illustrating the existence of clear, nonequilibrium types and 

the importance of the heterogeneity of strategic thinking. 

 Tomasz Strzalecki (2010) conducts a level-k analysis of games like Rubinstein’s (1989) 

electronic mail game, showing that such models, with bounded depth of reasoning, make 

predictions that are realistically independent of tail assumptions on higher-order beliefs. 

 Rogers, Palfrey, and Camerer (2009) conduct a horse race between LQRE and CH for similar 

betting games, which is inconclusive; but on fit they favor their richly parameterized “truncated 

heterogeneous LQRE” model over CH or LQRE. Brocas et al.’s lookup data reinforces their 

level-k interpretation of the decision data, and argues against LQRE or even CH.44

5.2. Auction Experiments 

  

 There is a rich literature on sealed-bid incomplete information auction experiments, which 

has developed largely independently of the literature on game experiments, despite similar goals 

and methods. In these experiments, whether first-price or (to a lesser extent) second-price, 

independent-private-value or common-value, subjects’ initial responses tend to exhibit 

overbidding relative to the risk-neutral Bayesian equilibrium (e.g. Kagel and Levin 1986 and 

Goeree, Holt, and Palfrey 2002). The literature has proposed different explanations for 

overbidding: “joy of winning” and/or risk-aversion for private-value auctions, and the winner’s 

curse for common-value auctions. It is vexing that there is no overlap between the explanations 

proposed for private- and common-value auctions, and also that these explanations are only 

loosely related to explanations proposed for deviations from equilibrium in other games. 

 Kagel and Levin (1986) and Erik Eyster and Matthew Rabin (2005) sought to unify the 

explanations of nonequilibrium behavior in common-value auctions and other incomplete-

information games where (unlike in private-value auctions) informational inferences are 

relevant. Kagel and Levin formalize the intuition behind the winner’s curse in models in which 

“naïve” bidders do not adjust their value estimates for the information revealed by winning, but 

otherwise follow Bayesian equilibrium. Eyster and Rabin’s notion of “cursed equilibrium”, in 

which people do not fully take the correlation between others’ decisions and private information 

into account, but otherwise follow Bayesian equilibrium, generalizes Kagel and Levin’s model to 
                                                 
44 Carrillo and Palfrey (2009) analyze a game of two-sided private information where players have privately known “strengths” 

and can decide whether to fight or compromise. If either chooses to fight, the stronger player receives a high payoff and the 
weaker a low one. If both choose to compromise, each player receives an intermediate payoff. The only equilibrium is for 
players to always fight, because as in zero-sum betting games, agents have opposing interests for when to compromise. In 
their experiments, by contrast, compromise occurs 50-70% of the time, with less fighting the higher the compromise payoff. 
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allow intermediate levels of value adjustment ranging from standard equilibrium with full 

adjustment to “fully-cursed” equilibrium with no adjustment; and also from auctions and 

bilateral exchange to other kinds of incomplete-information games.45

 Crawford and Iriberri (2007a) propose a level-k analysis that provides a way to unify the 

explanation of deviations from equilibrium in initial responses to independent-private-value or 

common-value auctions, without invoking joy of winning, risk-aversion, or cognitive biases.

 However, Kagel and 

Levin’s and Eyster and Rabin’s models both allow players to deviate from equilibrium only to 

the extent that they do not draw correct informational inferences. Thus their predictions coincide 

with equilibrium in games where such inferences are not relevant, and their models do not 

address nonequilibrium behavior in private-value auctions or any complete-information game. 

46

 The key issue is how to specify L0. In auctions there are two natural possibilities: Random 

L0, analogous to the type of the same name in the analysis of zero-sum betting above, bids 

uniformly on the interval between the lowest and highest possible values, independent of its own 

value. Thus it sometimes bids above its own value, as is plausible given its role as people’s 

model of others’ instinctive reactions to the game, given that they do not observe others’ values. 

Alternatively, Truthful L0 bids its expected value conditional on its own signal—a notion that is 

meaningful in auctions, though not in all incomplete-information games. 

 

Their analysis establishes a connection between large bodies of experiments on auctions and 

experiments on strategic thinking in complete information settings. 

 Crawford and Iriberri build separate type hierarchies on these L0s, stopping for simplicity at 

L2: Random (Truthful) Lk is defined by iterating best responses from Random (Truthful) L0; and 

allow each subject to be one of the types, from either hierarchy. They then explore the optimal 

bidding strategies for each type, in preparation for taking the model to the data from 

representative auction experiments for the leading environments. 

 For a given Lk type, just as in an equilibrium analysis, the optimal bid must take into account 

value adjustment for the information revealed by winning in common-value auctions, and in 

first-price auctions the bidding trade-off between the higher price paid if the bidder wins and the 

probability of winning. Crawford and Iriberri show that the level-k model allows a tractable 

                                                 
45 Eyster and Rabin show that cursed equilibrium can explain zero-sum betting with a probability that is positive but less than 

one. 
46 See also Uri Gneezy’s (2005) level-k analysis of complete-information auctions, in which the level-k model’s performance is 

disappointing, perhaps because complete-information auctions have structures that stress-test the model. 
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characterization of those aspects of the bidder’s problem, which closely parallels Milgrom and 

Robert J. Weber’s (1982) equilibrium characterization.  

 With regard to value adjustment, Random L1, like Kagel and Levin’s naïve bidders and 

Eyster and Rabin’s fully cursed bidders, does not condition on winning because Random L0 

bidders bid randomly independently of their values, hence Random L1 thinks that beating them 

is uninformative. Crawford and Iriberri’s other types do condition on winning in various ways, 

but this conditioning tends to make bidders’ bids strategic substitutes, in that the higher others’ 

bids are, the greater the (negative) adjustment. Thus, to the extent that Random L1 overbids 

relative to equilibrium, Random L2 tends to underbid: If it’s bad news that you beat equilibrium 

bidders, it’s even worse news to have beaten overbidders. The bidding tradeoff, by contrast, can 

go either way, depending on the distribution of values, just as in an equilibrium analysis.  

 Overall, the analysis shows that the conclusions of equilibrium auction theory are 

surprisingly robust to the structured failures of the equilibrium assumption allowed by a level-k 

model: Essentially all of the results of equilibrium analysis survive, qualitatively, except those 

aspects that rely heavily on the ex ante symmetry across players of their model. Those last results 

are altered even when players are objectively symmetrical, because level-k players, unlike 

equilibrium players, have simpler models of other players than they do of themselves.   

 Empirically, the question is whether an estimated mixture of Random L1 overbidding and 

Random L2 underbidding fits the data better than equilibrium plus noise, cursed equilibrium, or, 

for private-value auctions like Goeree, Holt, and Palfrey’s (2002), LQRE. In three of the four 

leading cases Crawford and Iriberri study, a level-k model does better than those alternatives. For 

the remaining case, Kagel and Levin’s first-price auction, the most flexible cursed equilibrium 

specification has a small advantage over level-k; but this disappears when the cursed equilibrium 

model’s number of parameters is made more comparable to that of the level-k model.  

 Except in Kagel and Levin’s second-price auctions, where many subjects seem to have 

missed the key to optimal bidding and the results seem largely random relative to all the models 

Crawford and Iriberri considered, the estimated type frequencies are quite similar to those 

estimated for non-auction experiments: Large estimated frequencies (59-65%) of random L1, 

smaller but significant frequencies of random L2 (4-9%), truthful L1 (9-18%), Equilibrium (4-

16%), and truthful L2 (1-16%), and zero or very low frequencies of Random L0 or Truthful L0.  
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 Overall, Crawford and Irriberi’s analysis shows how to extend level-k analysis to an 

important class of incomplete-information games, establishes the robustness of most of the 

conclusions of equilibrium auction theory to level-k failures of the equilibrium assumption, and 

gives a more unified explanation for the systematic patterns of nonequilibrium behavior in 

private- and common-value auctions and other games. 

5.3. Acquiring a Company and the Winner’s Curse 

 Gary Charness and Dan Levin (2009) report experiments that stress-test existing explanations 

of experimental subjects’ failure to take adverse selection effects like those behind the winner's 

curse and related deviations from equilibrium adequately into account. Their experiments are 

based on William F. Samuelson and Max H. Bazerman’s (1985) “Acquiring a Company” game, 

a game-theoretic analog of George A. Akerlof’s (1970) “lemons” market. The game has two 

players, a bidder and a responder, both risk-neutral. The responder owns a single indivisible 

object (the company) and bidder makes a single bid for it. If the proposer accepts the bid the 

company is transferred at the bid price, and if not, there is no deal. In either case the game is 

over. The value of the company to the responder is an integer between 0 and 100 inclusive, with 

each of these values equally likely. Only the responder observes his value, before he must decide 

whether to accept; but the bidder knows that, whatever the value, it is 50% larger for him than 

for the responder; and this fact and the value distribution are common knowledge. 

 This game has an essentially unique perfect Bayesian equilibrium, in which the proposer bids 

zero and the responder rejects that bid, but would accept any offer greater than his value. The 

reasoning rests on the proposer drawing a simple contingent inference from the responder’s 

willingness to accept that is like the inference required to overcome the winner’s curse or to 

avoid losing money in zero-sum betting games. Suppose the bidder offers x > 0. The responder 

will then accept if and only if his value is less than x, so that given the uniform distribution, the 

responder’s expected value conditional on acceptance is x/2. Thus the expected value to the 

bidder conditional on acceptance is 3x/4, in which case the transaction makes him lose x/4 on 

average. The optimal bid is therefore 0, and no transfer will occur even though it is common 

knowledge that there are prices at which a transfer is mutually beneficial. 

 Equilibrium of course assumes that people get this inference right, but many people seem to 

find it difficult; and as a result, they make unprofitable positive offers in Acquiring a Company. 

It is natural to ask whether cursed equilibrium or a level-k model can explain this behavior. 
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 Charness and Levin address this issue via a clever design with “robot” treatments in which 

subjects’ decisions determine their payoffs in a way that is logically identical to the way a 

rational responder’s decisions determine the bidder’s payoffs in Acquiring a Company, but in 

which the robot responder is framed not as another player but as part of the rules of the game. 

The problem that determines the proposer’s optimal decision is then identical to the proposer’s 

problem in the original Acquiring a Company treatment when he assumes the responder will 

make a rational acceptance decision, and so involves the same probabilistic inferences. But 

because the new problem no longer involves other’s decisions, cursed equilibrium or level-k 

players, taken literally, are predicted to get it right. Thus Charness and Levin’s design sharply 

separates explanations of the winner’s curse and related phenomena based on cursed equilibrium 

or level-k thinking from explanations based on nonstrategic failures of probabilistic judgment. 

Their main finding, that their subjects are cursed as much as in a standard Acquiring a Company 

design, suggests that cursed equilibrium or level-k models miss part of what is going on. 

 Asen Ivanov, Levin, and Muriel Niederle (2010) use subjects’ initial responses to a different 

auction game to further investigate whether the winner’s curse is driven primarily by judgment 

failures or instead by deviations from equilibrium beliefs as in cursed equilibrium or a level-k 

analysis. Ivanov, Levin, and Niederle’s design is based on Jeremy Bulow and Paul Klemperer’s 

(2002) Maximum Game, a second-price common-value auction in which bidders’ common value 

equals the maximum of their independent and identically distributed value signals. The 

Maximum Game is weakly dominance-solvable in two steps, with truthful bidding as its unique 

equilibrium. Ivanov, Levin, and Niederle run three treatments, Baseline, ShowBidFn, and 

MinBid, but most importantly they focus on two different parts of each treatment. In part I 

subjects are randomly paired with other subjects to play the Maximum Game for 11 periods, 

with their value signals sampled without replacement from a set of 11 possible values (so that a 

subject’s 11 bids reveal the entire function mapping his values into bids). In part II subjects again 

play the Maximum Game, but now against a computer “robot” that draws values in random 

order, again sampled without replacement, and uses the subject’s own bidding function from part 

I to map them into bids. Thus in part II each subject effectively plays against his own past self, 

and he knows that; although he is not reminded of his bidding function from part I. ShowBidFn 

is identical to the Baseline except that in its part II subjects are explicitly reminded of their part I 
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bidding functions. Min-Bid is identical to the Baseline except that subjects are not allowed to bid 

below their own value signals; this makes truthful bidding a weakly dominant strategy. 

 Ivanov, Levin, and Niederle find that many subjects make weakly dominated bids in part I of 

the Baseline, most overbidding as in other auction experiments. Much of this overbidding 

persists in part II, where less than a quarter of the subjects even approximately best respond to 

their own part I bidding behavior. These patterns mostly persist in the ShowBidFn and MinBid 

treatments, with the frequency of overbidding substantially higher in the MinBid treatment 

(where underbidding was not allowed) than in the Baseline and ShowBidFn treatments. 

 Ivanov, Levin, and Niederle then argue that if bidding behavior is driven by non-equilibrium 

beliefs, for subjects who overbid in part I there should be less overbidding in part II of each 

treatment, where there is no strategic interaction so beliefs are known, relative to that treatment’s 

part I, where beliefs must be predicted. They also argue that there should be less overbidding in 

part I of MinBid, where truthful bidding is weakly dominant, than in parts I of the Baseline and 

ShowBidFn, where truthful bidding is the only strategy that survives two steps of iterated weak 

dominance. Because there were widespread violations of weak dominance and there was not 

significantly less overbidding in either case, they claim that their results are evidence against 

non-equilibrium beliefs-based models such as level-k or cursed equilibrium. 

 In our view Ivanov, Levin, and Niederle’s conclusion is not well supported. First, parts II of 

their three treatments are decision environments, not games; and part I of MinBid tests only 

reliance on simple weak dominance. Thus only parts I of Baseline and ShowBidFn have much to 

say about how subjects’ beliefs are formed. Parts II of all three treatments simply stress-test all 

beliefs-based optimizing models, and part I of MinBid tests only a minimal restriction on beliefs. 

Charness and Levin (2009) showed that few subjects are up to the probabilistic inferences 

needed in a game with a winner’s curse as simple as that in Acquiring a Company, yet the 

Maximum Game requires far more subtle inferences: As Bulow and Klemperer (2002) said of its 

equilibrium predictions, “…the Maximum Game, provides a good illustration of how a different 

choice of value function…can make it easy to obtain extreme ‘perverse’ results.” Ivanov, Levin, 

and Niederle’s rejection of beliefs-based models simply reconfirms Charness and Levin’s finding 

that settings where rational behavior requires complex inferences can make subjects deviate from 

equilibrium, without suggesting an alternative model of what subjects are doing. 
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 Second, Ivanov, Levin, and Niederle rest their rejection of beliefs-based models entirely on 

violations of simple dominance and indirect tests comparing game-theoretic and decision-

theoretic settings, without explicitly analyzing any specific model.47 Costa-Gomes and Makoto 

Shimoji (2010) also question the suitability of Ivanov, Levin, and Niederle’s design to test 

belief-based theories in general and level-k models in particular. They also show that a standard 

level-k model fares quite well in direct tests using their data, approximately accounting for over 

90% of subjects’ bids in the MinBid treatment—albeit with a predominance of L2 subjects rather 

than the L1 subjects whose behavior Ivanov, Levin, and Niederle focused on in their analysis.48

 To sum up, in our view neither Charness and Levin’s nor Ivanov, Levin, and Niederle’s 

results undermine the strong experimental support for level-k/CH or cursed equilibrium models. 

Those models were formulated for settings in which the main difficulty is predicting and 

responding to other players’ decisions, and Eyster and Rabin (2005) and Crawford and Iriberri 

(2007a) follow the common practice of simplifying other aspects of the problem to make their 

central points as clearly as possible. There is no reason to expect a model so specified to translate 

unmodified to settings in which the complexity has been shifted from the “other people” part of 

the problem to the “own decisions” part; although it is clear than one can falsify existing 

specifications by making the own decisions part sufficiently complex. 

 

 Instead, we read Charness and Levin’s and related results as pointing out the need for a 

model general enough to encompass both nonequilibrium strategic thinking and nonstrategic 

failures of judgment. Before specifying such a model, we need to know more about why subjects 

have so much trouble with Bayesian updating and best responding in designs like Charness and 

Levin’s and Ivanov, Levin, and Niederle’s. We suspect that people have trouble with reasoning 

that is contingent on future events, even in settings where the contingency is as simple and 

immediate as it is in their designs. Possibly people don’t update correctly because they have 

“representativeness” bias (underweighting the prior) or “conservatism” bias (overweighting the 
                                                 
47 Aside from their indirectness, such comparisons are less than usually reliable because decision environments shed no light on 

whether subjects’ bids are best-responses to the beliefs they would hold in an analogous strategic situation. As Ivanov, Levin, 
and Niederle say (p. 1436), “…it is possible that subjects employ very different cognitive mechanisms in interactions with 
other players; such interactions may trigger all sorts of thought processes about others’ reasoning, beliefs, and intentions.” 
They go on to say “In our study, subjects play against other people”; but the robots in the part II treatments are not equivalent 
to other people for this argument, because subjects’ bidding functions are predetermined and known. 

48 Even in much simpler settings, Costa-Gomes and Weizsäcker (2008) found that subjects’ actions often deviate from the best 
responses to their incentivized elicited beliefs, while also finding  that a level-k model with suitable allowance for errors fits 
the data better than the leading alternatives.  
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prior). Or possibly they update correctly but don’t always choose rationally, given their 

posteriors. More experiments are needed to discriminate sufficiently among these alternatives. 

5.4. Naive and Sophisticated Traders in Speculative Markets 

 Ricardo Serrano-Padial (2010) conducts an illuminating analysis of the interaction between 

continua of naïve and sophisticated traders in prediction and other speculative markets. Naïve 

traders include any whose trading decisions can be expressed as functions of the data of the game 

and their own private values, without solving a fixed-point problem such as that required to 

compute an equilibrium. Sophisticated traders follow equilibrium in the market, but unlike 

equilibrium traders, taking the frequency and behavior of naïve traders rationally into account.  

 Serrano-Padial’s analysis proceeds by plugging in the behavior of the naive traders to reduce 

the market to a “reduced market” whose equilibrium is a fixed point in the supply and demand 

behavior of the sophisticated traders, taking the behavior of the naïve traders as given. He then 

characterizes the equilibrium in the reduced market using fairly standard methods. 

 Depending on the frequency of sophisticated traders, the market can be in one of three 

phases. When there are enough sophisticated agents to counteract naive agents’ deviations from 

equilibrium, the usual rational-expectations equilibrium ensues, even if there is a nonnegligible 

frequency of naïve traders. With an intermediate frequency of sophisticated traders, the market 

segments into intervals of the space of possible valuations in which sophisticated traders never 

bid; and disjoint intervals in which both naïve and sophisticated traders bid. In the “naïve” 

intervals, naïve traders have the pivotal influence on pricing, which deviates systematically from 

equilibrium. In the “sophisticated” intervals, pricing is just as predicted in the standard model. 

 An arbitrage argument shows that the deviations from equilibrium in naïve intervals must 

involve a local quasi-“favorite-longshot” bias, in which in a given interval, relatively low 

valuations are overpriced but high valuations are underpriced. (This is only a “quasi-bias” 

because it follows from sophisticated trader’s equilibrium responses to the behavior of naïve 

traders, not directly from any explicit decision-theoretic bias.) Finally, with a low frequency of 

sophisticated traders, pricing is almost everywhere determined by the behavior of naïve traders. 

 Serrano-Padial’s methods can be viewed as market analogs of Crawford’s (2003) game-

theoretic analysis of the interaction between sophisticated and level-k players in a model of 

strategic communication (Section 11), and the two analyses have parallel transitions between 



 47 

phases as the frequency of sophisticated agents varies. The fact that similar methods yield similar 

results in these disparate settings suggests that the methods will be of more general usefulness. 

5.5. Field Studies: Movie Opening and Lowest Unique Positive Integer Games  

 Alexander Brown, Camerer, and Dan Lovallo (2010) use field data to study an incomplete-

information signaling game with verifiable signals. Film distributors face a choice between “cold 

opening” a movie and pre-releasing them to critics in the hope that favorable reviews will 

increase profits. In perfect Bayesian equilibrium, cold-opening should not be profitable, because 

moviegoers will infer low quality for cold-opened movies and the process will unravel. Yet 

distributors sometimes cold-open movies, and in a set of 856 widely released movies, cold 

opening increased domestic box office revenue by 15% over movies of similar quality that were 

reviewed before release (though not in foreign markets and DVD sales). This is consistent with 

the hypothesis that some moviegoers did not infer low quality from cold opening. However, 

movie distributors do not appear to take advantage of moviegoers lack of sophistication, since 

only 7% of movies were opened cold despite the expected-profit advantage.  

 After preliminary tests that rule out more conventional explanations, Brown, Camerer, and 

Lovallo seek to explain these results by comparing variants of cursed equilibrium, LQRE, and 

CH models.49

                                                 
49 In the CH model, Lk best responds to Lk-1 rather than an estimated mixture of all lower-level types as it would in a CH model; 
but Lk responds to Lk-1’s decision noise as in an LQRE model, a choice that is not standard in level-k or CH models. Further, L0 
for moviegoers assumes a uniform distribution over the whole range of possible qualities; although sample-mean quality might 
seem more natural here, the authors say that that does not work well either. 

 The best fitting cursed-equilibrium model has moviegoers almost fully cursed 

(drawing no inferences regarding cold-opened movies) but studios not cursed at all; given the 

specification, the resulting model is like a partially cursed (moviegoers but not distributors) 

version of LQRE. The best fitting CH model again has moviegoers almost fully cursed (τ, the 

average k, is 1.12 where 1 is fully cursed, which given the assumed Poisson distribution for k 

implies that the population frequency of L0s is 33%) but studios very sophisticated (τ = 8.5). The 

best fitting CH model has a significant advantage in fit over the best fitting cursed-equilibrium or 

LQRE model. Overall, neither model really explains the behavior of studios, given the mismatch 

needed between the degree of strategic thinking of moviegoers and distributors. This may be 

unsurprising, because the simple model the authors sketch and estimate at the end is static. There 

has been a huge recent trend in the percentage of cold-opened movies (Brown, Camerer, and 
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Lovallo 2010, Figure 2), complicated by changes in technology but probably still significant, 

which suggests that static models cannot span the full sample period. 

 Östling, Wang, Eileen Chou, and Camerer (Forthcoming) study a novel set of field data from 

a Swedish gambling company, which ran a competition for a short period of time involving a 

“lowest unique positive integer” or LUPI game. (They also studied experimental data from 

parallel treatments.) In the LUPI game, players strategically simultaneously pick positive 

integers and the player who chose the lowest unique (not chosen by anyone else) number wins a 

prize. Except for the uniqueness requirement, the game is like a first-price auction. 

 The game would have complete information except that participants had no way to know 

how many others would enter in a given week. The authors deal with this by adapting Myerson’s 

(2000) Poisson games model, in which fully rational players face Poisson-distributed uncertainty 

about the number of players. They characterize the LUPI game’s unique symmetric Poisson-

Nash equilibrium, and compare it to the predictions of versions of QRE and CH models, using 

both the field data and data from experiments using a scaled-down version of the LUPI game.

 Both the field and laboratory data show participants choosing very low and very high 

numbers too often, relative to the Poisson-Nash equilibrium, and avoiding round and/or salient 

numbers.50

 In comparing the data to the predictions of versions of QRE and CH, Östling et al. assume 

that both have power rather than the usual logit error distributions, and they allow the CH types 

to best respond to the noise in others’ decisions.

 However, initial responses are surprisingly close to the equilibrium, given that the 

setting makes it almost inconceivable that participants could be computing it. Learning brings 

them even closer in subsequent periods. 

51

5.6. Level-k Auction Design 

 They find that relative to the Poisson-Nash 

equilibrium, power QRE predicts too few low-number choices while CH predicts too many—the 

pattern observed in the field data. Thus QRE gets the deviations from equilibrium qualitatively 

wrong. However, the experimental data discriminate much less sharply between the theories.      

 A number of recent papers reconsider mechanism design taking a “behavioral” view of 

individual decisions or probabilistic judgment, but to date there are very few analyses of design 

                                                 
50 Salience plays a similar role in Crawford and Iriberri’s (2007b) analysis of hide-and-seek games (Section 9). 
51 A standard CH model would not fit the LUPI data at all well: L1 would choose 1, L2 2, L3 3 or less, and Lk k or less. But best 

responding to power errors allows L2’s modal choice to be as high as 5 (Östling et al. Forthcoming, Figure 3)). This is not a 
criticism of the Östling et al.’s CH analysis per se: rather, the LUPI game reveals a general limitation of the structural features 
of thinking steps models like level-k or CH. 
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outside the equilibrium paradigm. Yet design inherently involves the creation of new games, and 

it may be important for an application to work the first time. Further, assuming equilibrium can 

yield theoretically optimal designs that are too complex for confidence in equilibrium behavior. 

 Replacing equilibrium with a model that better describes people’s responses to novel games 

should allow us to design more effective mechanisms. It also suggests an evidence-based way to 

assess the robustness of mechanisms, something previously left to intuition. A mechanism that is 

robust in the sense that it implements the desired outcome in dominant strategies or after a small 

number of rounds of iterated dominance will evoke the desired response from most or all level-k 

types that are empirically likely to be observed. It may therefore perform better in practice than a 

mechanism that can theoretically implement better outcomes, but only in equilibrium. 

 Crawford, Tamar Kugler, Zvika Neeman, and Ady Pauzner (2009) explore relaxing the 

equilibrium assumption in mechanism design by conducting a level-k analysis of optimal auction 

design. They consider the leading case of an expected-revenue maximizing single-object sealed-

bid auction with two symmetric bidders who have independent private values, for which 

Myerson (1981) gives a complete equilibrium-based analysis. To focus on strategic behavior, 

they maintain standard rationality assumptions regarding decisions and probabilistic judgment. 

 They model strategic behavior via a level-k model that follows Crawford and Iriberri’s 

(2007a) analysis of data from leading auction experiments, with either a random L0 that bids 

uniformly over the natural range of bids or a truthful L0 that bids its private value. They assume 

that bidders are drawn from a given population of level-k types, known to the designer. In 

examples, they consider what reserve prices are optimal and how much revenue they yield in 

first-price auctions. They also consider the optimality of auction forms and the use of exotic 

auctions that exploit bidders’ nonequilibrium beliefs to exceed Myerson’s revenue bound.  

 Crawford et al. show, trivially and unsurprisingly, that with independent private values, 

revenue-equivalence breaks down. Because a second-price auction makes the equilibrium bid a 

dominant strategy, level-k bids coincide with equilibrium bids, hence a second-price auction 

yields only the equilibrium expected revenue. By contrast, level-k bidders in a first-price auction 

can deviate from equilibrium, and they give an example to show that such an auction with a 

suitable reserve price can yield higher expected revenue than the best second-price auction. They 

also give examples in which the optimal reserve price is large with equilibrium bidders but small 

with level-k bidders, and vice versa. Interesting open questions are when a reserve induces more 
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aggressive bidding for equilibrium than level-k bidders, and the extent to which this makes 

optimal level-k reserves higher than optimal equilibrium reserves.  

 Finally, Crawford et al. give an example to show that in theory, a designer can use exotic 

auction forms to exploit level-k bidders’ nonequilibrium beliefs to obtain very large expected 

revenues. They note, however, that their formulation of the design problem takes the level-k 

model’s specification as given, independent of the auction design, just as the standard 

formulation assumes that bidders will play an equilibrium for any design. Although the 

specification is based on substantial experimental evidence, there is reason to doubt the 

exogeneity assumption, particularly for exotic auctions that go beyond the evidence on which 

our specification is based. A general formulation of the design problem must take a position on 

how the design influences the rules that describe bidders’ behavior and develop new methods to 

deal mathematically with that influence.  

 Even without such influences, the heterogeneity of level-k beliefs and behavior greatly 

complicates the characterization of optimal auctions. In the standard analysis there is no loss of 

generality in using the revelation principle to restrict attention to direct mechanisms because, if 

equilibrium is assumed (with a selection rule in case of multiple equilibria), a bidder’s private 

value is all that is needed to predict his behavior. Given the restriction to direct mechanisms, the 

design problem is well-behaved enough that it is guaranteed to have a solution. The example 

given in the paper shows that this is no longer the case with level-k bidders, even if their level-k 

types are all the same, and even if this is known to the designer. With a heterogeneous 

population of types, the problem becomes more complex. Bidders with the same private values 

but different level-k types have different beliefs and will generally behave differently. It appears 

that Myerson’s (1981) methods can be used to characterize an optimal auction if the designer 

knows that the population is homogeneous, and knows its type; and if the class of possible 

designs is restricted to rule out those that are too exotic for an optimal auction to exist. But if the 

population is heterogeneous the problem becomes multidimensional and much more difficult; 

and the high-dimensional reporting mechanisms one would consider for this case complicate the 

specification of L0 and the influence of design on behavior. 

 Behaviorally optimal auction design poses interesting challenges, and meeting them should 

increase the practical usefulness of design. 
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6. Kahneman’s Entry Magic: Coordination via Symmetry-Breaking 
 

  “…to a psychologist, it looks like magic.” 

    —Kahneman (1988), quoted in Camerer, Ho, and Chong (2004) 

  

Kahneman’s “magic” refers to the fact that subjects in his own and others’ market-entry 

experiments (see also Amnon Rapoport et al. 1998 and Rapoport and Daryl A. Seale 2002) 

achieve systematically better coordination ex post than in the natural equilibrium benchmark.52

 In these experiments, n subjects choose simultaneously between entering (“In”) and staying 

out (“Out”) of a market with given capacity. In yields a given positive profit if no more subjects 

enter than a given market capacity; but a given negative profit if too many enter. For simplicity, 

Out yields 0 profit, no matter how many subjects enter. Because players cannot distinguish their 

roles, it is not sensible to predict systematic differences across roles in behavior. Thus, the 

natural equilibrium benchmark is the unique, symmetric mixed-strategy equilibrium, in which 

each player enters with a given probability that makes all players indifferent between In and Out. 

This mixed-strategy equilibrium yields an expected number of entrants approximately equal to 

market capacity, but there is a positive probability that either too many or too few will enter. 

Even so, subjects in market-entry experiments have systematically better coordination ex post 

(number of entrants stochastically closer to market capacity) than in the symmetric equilibrium. 

 

 In these games, efficient coordination requires breaking the symmetry of players’ roles. The 

same issues arise in field settings such as those studied using incomplete-information models by 

Goldfarb and Yang (2009) and Goldfarb and Xiao (2011) (Section 6.2); and those considered in 

our discussion of the nonequilibrium econometrics of such games (Section 8).    

6.1. A level-k Analysis of Two-Person Entry/Battle of the Sexes Games  

 Camerer, Ho, and Chong (2004, Section III.C) explain Kahneman’s magic via a CH model, 

in which the heterogeneity of strategic thinking allows some players to mentally simulate others’ 

entry decisions and accommodate them, which in entry games yields coordination benefits for 

all. Here we illustrate Camerer, Ho, and Chong’s analysis in a two-person Battle of the Sexes 

                                                 
52 Kahneman’s statement does not qualify as folk game theory because only a game theorist would be surprised by these results. 
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game, which is like a two-person market-entry game with capacity one. For simplicity, we also 

substitute a level-k model for their CH model.53

 Consider a two-person Battle of the Sexes game with a > 1, as in Figure 4. The unique 

symmetric equilibrium is in mixed strategies, with p ≡ Pr{In} = a/(1+a) for both players. The 

mixed-strategy equilibrium expected coordination rate is 2p(1 – p) = 2a/(1+a)2, and players’ 

equilibrium expected payoffs are a/(1+a). This expected coordination rate is maximized when a 

= 1, where it takes the value ½. With a > 1 the expected payoffs are a/(1+a) < 1: worse for each 

player than his worst pure-strategy equilibrium. As a → ∞, 2a/(1 + a)2 → 0 like 1/a. 

  

 In Out 

In 0 
0 

1 
A 

Out a 
1 

0 
0 

 Figure 4. Battle of the Sexes 

  Now consider a level-k model in which each player follows one of four types, L1, L2, L3, or 

L4, with each role filled by a draw from the same distribution. For simplicity assume the 

frequency of L0 is 0, and that L0 chooses uniformly randomly, with Pr{In} = Pr{Out} = 1/2. 

Type pairings L1 L2 L3 L4 
L1 In, In In, Out In, In In, Out 
L2 Out, In Out, Out Out, In Out, Out 
L3 In, In In, Out In, In In, Out 
L4 Out, In Out, Out Out,In Out, Out 

Table 2. Outcomes in Battle of the Sexes 
 
 L1s mentally simulate L0s’ random decisions and best respond, thus, with a > 1, choosing In; 

L2s choose Out; L3s choose In; and L4s choose Out. The predicted outcome distribution is 

determined by the outcomes of the possible type pairings (Table 2) and the type frequencies. If 

both roles are filled from the same distribution, players have equal ex ante payoffs, proportional 

                                                 
53 Camerer, Ho, and Chong (2004, Section III.C) and Chong, Camerer, and Ho (2005, Section 2.1) argue that in this context, CH 

models fit better than level-k models because they yield smooth monotonicity of entry rates as market capacity increases, as in 
the data, while a level-k model implies a step function; and because CH models imply that beliefs converge to correct beliefs 
in the limit as k increases, unlike level-k models which cycle perpetually in these games. However in most of the datasets 
Camerer, Ho, and Chong consider, unlike in their stylized CH model, there are congestion effects that allow payoff-sensitive 
logit errors like those in a typical level-k analysis, which smooth things as well. Further, cycling or correctness of beliefs in the 
limit have little or no relevance when k seldom exceeds 3. One question we do not consider here is whether a level-k model 
can explain the fact that entry rates are too high for low capacities and too low for high, which the CH model explains by 
estimating a high frequency of a random L0 type; logit errors for higher level-k types can probably explain this as well.  
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to the expected coordination rate. L3 behaves like L1, and L4 like L2. Lumping L1 and L3 

together and letting v denote their total probability, and lumping L2 and L4 together, the 

expected coordination rate is 2v(1 – v), maximized at v = ½ where it takes the value ½. Thus for 

v near ½, which is behaviorally plausible, the coordination rate is near ½. For more extreme 

values the rate is worse, converging to 0 as v → 0 or 1. But because the equilibrium rate of 2a/(1 

+ a)2 → 0 like 1/a, even for moderate values of a, the level-k coordination rate is higher. 

 This analysis highlights a drawback of level-k/CH models, in that in the absence of payoff-

sensitive errors, their predictions are independent of a as long as a > 1, while in experiments with 

similar games behavior is often sensitive to such parameter variations. Adding payoff-sensitive 

errors, particularly when starting with a CH model, would help to remedy this, but probably not 

enough to make the models fully descriptive of observed behavior. 

 The level-k analysis suggests a view of tacit coordination profoundly different from the 

traditional view, and illustrates the importance of the heterogeneity of strategic thinking the 

model allows. With level-k thinking, equilibrium and selection principles such as risk- or payoff-

dominance (Harsanyi and Selten 1987) play no direct role in players’ thinking. Coordination, 

when it occurs, is an almost accidental (though statistically predictable) by-product of the use of 

nonequilibrium decision rules. Even though players’ decisions are simultaneous and there is no 

communication or observation of the other’s decision, the predictable heterogeneity of strategic 

thinking allows more sophisticated players such as L2s to mentally simulate the decisions of less 

sophisticated players such as L1s and accommodate them, just as Stackelberg followers would. 

This mental simulation doesn’t work perfectly, because an L2 is as likely to be paired with 

another L2 as an L1. Neither would it work if strategic thinking were homogeneous. But it’s very 

surprising that it works at all. 

6.2. Field Studies: Cognitive Hierarchy Analyses of Entry Games  

 In this section we review two field studies of incomplete-information entry games, which 

both use CH models. These studies provide only limited comparison of alternative models of 

strategic thinking, but they are of particular interest because they are among the first studies of 

nonequilibrium models of strategic thinking using field data. 

Goldfarb and Yang (2009) apply an incomplete-information CH model to explain choices by 

managers at 2,233 Internet Service Providers (ISP) in 1997 whether or not to offer their 

customers access through 56K (versus the standard then, 33K) modems. There were two possible 
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56K technologies: Rockwell Semiconductor’s K56Flex and US Robotics’s X2. Thus an ISP 

manager could make one of four choices: (i) adopt neither technology, (ii) adopt Rockwell’s, (iii) 

adopt US Robotics’s, or (iv) adopt both. Controlling for market and ISP-specific characteristic, 

Goldfarb and Yang, adapted the CH model to describe the heterogeneity in ability or strategic 

sophistication among the SPI managers in these decisions. They assumed (departing from the 

usual L0 specification) that an L0 manager maximizes profits on the assumption that he will be a 

monopolist; an L1 manager on the assumption that his competitors will be L0s; an L2 manager 

on the assumption that his competitors will be an estimated mixture of L0s and L1s, and so on. 

Goldfarb and Yang found significant evidence of heterogeneity of sophistication among 

managers, with an estimated τ, the average k in a CH model, of 2.67—seemingly higher than 

most previous estimates, but their L0 is in some respects akin to an L1, which would bring it 

more in line with previous estimates. The CH model fits no better than a Bayesian equilibrium 

plus noise model, but the CH estimates have interesting and plausible implications. Interestingly, 

they suggest that relative to Bayesian equilibrium, heterogeneity of strategic thinking slowed the 

diffusion of the new 56K technology, with more strategic managers less likely to adopt, 

anticipating more competition. Managers behaved more strategically, in the sense of higher 

estimated ks, if they competed in larger cities, with more firms, or in markets with more educated 

populations. Finally, those managers estimated to be more strategic in 1997 were more likely to 

survive through April 2007. We note however that in a CH model, though not a level-k model, a 

higher k implies a more accurate model of others, hence higher expected profits. Thus, in a CH 

model a firm that does well in the market must have had a higher k; and the model rules out the 

possibility that a firm might err by perceiving others as being of a higher level than in reality. 

Only a model that allows the latter possibility allows independent inferences about a firm’s level 

of sophistication and its beliefs about others’ sophistication.  

Goldfarb and Xiao (2011) applied an incomplete-information CH model to explain 

managers’ choices whether or not to enter local U. S. telecommunications markets after the 

Telecommunications Act of 1996, which allowed free competition in such markets. They use 

Goldfarb and Yang’s (2009) specification of L0. They found that more experienced and/or better 

educated managers did better, in the sense of entering markets with fewer competitors, on 

average; having better survival rates; and having higher revenues, conditional on survival. 

Estimated strategic thinking goes up from 1998 to 2002. The CH model fits much better than a 
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Bayesian equilibrium plus noise model in 1998, but only slightly better in 2002, in keeping with 

the view that models like CH are well suited to initial responses to novel situations, but are less 

relevant once players have had enough experience to converge to equilibrium. 

   
7. Bank Runs: Coordination via Assurance 

 “A crude but simple game, related to Douglas Diamond and Philip Dybvig’s (1983) 
celebrated analysis of bank runs, illustrates some of the issues involved here. Imagine that 
everyone who has invested $10 with me can expect to earn $1, assuming that I stay solvent. 
Suppose that if I go bankrupt, investors who remain lose their whole $10 investment, but 
that an investor who withdraws today neither gains nor loses. What would you do? Each 
individual judgment would presumably depend on one's assessment of my prospects, but 
this in turn depends on the collective judgment of all of the investors. 
 
 Suppose, first, that my foreign reserves, ability to mobilize resources, and economic 
strength are so limited that if any investor withdraws I will go bankrupt. It would be a Nash 
equilibrium (indeed, a Pareto-dominant one) for everyone to remain, but (I expect) not an 
attainable one. Someone would reason that someone else would decide to be cautious and 
withdraw, or at least that someone would reason that someone would reason that someone 
would withdraw, and so forth. This…would likely lead to large-scale withdrawals, and I 
would go bankrupt. It would not be a close-run thing. …Keynes’s beauty contest captures a 
similar idea. 
 
 Now suppose that my fundamental situation were such that everyone would be paid off as 
long as no more than one-third of the investors chose to withdraw. What would you do 
then? Again, there are multiple equilibria: everyone should stay if everyone else does, and 
everyone should pull out if everyone else does, but the more favorable equilibria seems 
much more robust.” 
 

   —Lawrence H. Summers (2000). 
 
 Summers here views bank runs as an n-person coordination game with Pareto-ranked 

equilibria, a kind of generalized Stag Hunt game as in Diamond and Dybvig’s (1983) model. A 

simplified version of his game can be represented by a payoff table as in Figure 5. 

  

  Summary statistic 
  In Out 

Representative player In 1 -10 
Out 0 0 

Figure 5. Bank Runs 
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 The summary statistic is a measure of whether or not the required number of investors stays 

In. In Summers’s first example, all investors must stay In to prevent the bank from collapsing, so 

the summary statistic takes the value In if and only if all but the representative player stay In. In 

his second example two-thirds of the investors need to stay In, so the summary statistic takes the 

value In if and only if (adding in the representative player) this is the case. 

 These games pose the problem of coordination via assurance in a starkly simple form. In 

each example there are two pure-strategy equilibria: “all-In” and “all-Out”.54

 Summers’ discussion presumes that some equilibrium will describe people’s responses to the 

one-shot game of his model. Given that few people can have had enough experience with closely 

analogous bank runs to make a learning justification for equilibrium plausible, we judge his 

arguments from the standpoint of modeling strategic thinking rather than learning.   

 All-In is better for 

everyone, but when the summary statistic is as extreme as in Summers’s first example and n is 

large enough, all-In is also sufficiently fragile to make it risky for an individual player to play In. 

 Here as elsewhere, models that make unique predictions have important advantages and are 

accordingly favored in the literature. Refinements such as risk- or payoff-dominance (Harsanyi 

and Selten 1987) are the traditional route to unique predictions in coordination games. 

 In Summers’ examples, payoff-dominance—in this context, Pareto-efficiency within the set 

of equilibria—uniquely favors the all-In equilibrium for any population size n; but as Summers 

suggests, the coordination it requires is behaviorally implausible here, even for small n. 

 Risk-dominance is more plausible. Here it selects the equilibrium with the largest “basin of 

attraction”—the set of initial beliefs that yield convergence of best responses to that equilibrium, 

assuming independence of players’ beliefs about others’ strategies. In two-person games with the 

structure of Summers’ examples (Figure 5), risk-dominance therefore selects the equilibrium that 

results if each player best responds to a uniform prior over others’ strategies, just as random L1 

does (and thus just as random Lk does for k > 1). In n-person games like Summers’ examples, 

given independence of players’ beliefs, risk-dominance again selects the “all-L1” equilibrium. 

For Summers’ payoffs (Figure 5), whether all investors or only two-thirds must stay In to 

prevent collapse, the L1 decision is Out and risk-dominance selects the all-Out equilibrium for 

any n. Even with much less extreme payoffs, say with -1.5 replacing -10, and with only two-

                                                 
54 There is also a mixed-strategy equilibrium in which the probability that the summary statistic equals In just balances the 

benefits of In and Out; but this equilibrium is behaviorally implausible. 
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thirds In needed to prevent collapse, risk-dominance favors all-Out for all n, because no n makes 

the probability at least 0.6 that at least two-thirds of n-1 independent Bernoulli trials yield In. 

Thus, risk-dominance does not adequately reflect Summers’ intuition (or ours) in his examples. 

 Many people are skeptical of risk-dominance as a positive model of strategic thinking in 

initial responses to games. As Summers’ discussion illustrates, many of them take comfort in the 

fact that in simple bank runs games, risk-dominance can be justified via a “global games” 

analysis as in Stephen Morris and Hyun Song Shin (1998) (see also Morris and Shin 2003, 

Section 2.3.3), which has become the workhorse model of behavior in bank runs games. A global 

games model replaces the original complete-information game with an incomplete-information 

version with stochastic payoff perturbations that satisfy particular distributional assumptions. 

Those assumptions make the perturbed version, unlike the original game, dominance-solvable, 

with a unique equilibrium that in sufficiently simple games coincides with the risk-dominant 

equilibrium of the original game.55

 The experimental analyses of strategic thinking reviewed here (Section 3) suggest that the 

comfort provided by the global games/iterated dominance rationale for risk-dominance is 

illusory. First, the perturbed game is a device chosen not because it is supported by any evidence 

that it accurately models players’ initial responses to any uncertainty they perceive, but simply to 

enable the iterated dominance argument. Second, even granting the realism of the perturbed 

game, the evidence stops far short of supporting the indefinite (though usually finite) reliance on 

iterated dominance that is needed to make a global games analysis yield a precise prediction. 

 A global-games analysis then implies unique equilibrium 

selection via iterated dominance or iterated knowledge of rationality (Bernheim 1984 and Pearce 

1984), without recourse to a behaviorally questionable risk-dominance refinement. 

 That said, with a uniform random L0, a level-k/CH analysis yields predictions in Summers’ 

examples strikingly similar to those of the global games approach. As already noted, if random 

L1 responses are in equilibrium against each other, they select the risk-dominant/global games 

                                                 
55 In large-population versions of such games, Morris and Shin (2003, p. 57) advocate initiating a global games analysis via a 
common, naïve “Laplacian” prior, specified so “the prescription for each player is to hypothesize that the proportion of other 
players who will opt for a particular action is a random variable that is uniformly distributed over the unit interval and choose the 
best action under these circumstances”; note the similarity to the starting point of Harsanyi and Selten’s (1986) tracing 
procedure). In large populations a Laplacian prior is a useful shortcut to the results of a global games analysis, and often yields 
results similar to risk-dominance, but with nonlinear payoff functions in finite populations there may be substantive differences. 
For example, with two pure strategies per player, whose payoffs are determined by the aggregate strategy frequencies, Laplacian 
frequencies average 50%, while for an independent L0 the population frequencies are approximately Normal, and for a perfectly 
correlated L0 they are certain to be 50%. Frankel, Morris, and Pauzner (2003) generalize these results to large numbers of 
actions, but show that in games other than potential games, the uniqueness of the limiting equilibrium fails in general. 
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equilibrium. But then, in a CH model as well as a level-k model, the responses of higher types 

are the same as random L1’s. Thus the level-k/CH approach selects the risk-dominant/global 

games equilibrium as well (see for example Camerer, Ho, and Chong 2004, Section III.B).56

 However, unlike the mathematically motivated risk dominance/global games analyses, which 

“black-box” players’ anchoring in a way that draws attention away from market psychology and 

common causes of beliefs, a level-k/CH analysis immediately suggests ways to take such factors 

into account and gracefully accommodates them. First, unlike the risk-dominance/global games 

approach, it is easily combined with an L0 in the style of Graham’s Mr. Market, which models 

the psychology of a representative player’s (or players’) instinctive reaction to news (Section 3). 

Such judgments about market psychology are plainly of central importance in applications, but 

combining them with the purely payoff-structure-based risk-dominance/global games approach 

poses formidable challenges. And because such an L0 is a psychological rather than a strategic 

concept, it is easier to extrapolate its specification across games (as illustrated in Section 9).  

 In 

settings where it is not possible to improve upon the naïve, mathematically neutral prior that 

underlies risk-dominance, a level-k/CH analysis lends predictions based on risk dominance or 

global games some evidence-based support. 

 Second, a level-k/CH approach highlights the issue of how players model the correlation of 

others’ strategy choices in n–person games, which is of great potential importance but to our 

knowledge not considered in the traditional game theory or global-games literatures. 

 Ho, Camerer, and Weigelt (1998) found, in level-k/CH analyses of initial-response data from 

their Nagel-style guessing games, that a model in which players’ models of others are highly 

correlated fit the data better than one in which their models assume independence. Costa-Gomes, 

Crawford, and Iriberri (2009) use the initial-response data from Van Huyck, Battalio, and Beil’s 

(1990, 1991) n–person coordination experiments, with games like Stag Hunt but with seven 

efforts per player and seven Pareto-ranked pure-strategy equilibria, to conduct a horse race 

between equilibrium plus noise with risk- or payoff-dominance (in turn), LQRE, level-k, CH, 

and NI models, with or without correlation in players’ models of others’. They found that 

correlated versions of these models almost always do as well or better than independent versions. 

Among the equilibrium selection criteria, payoff-dominance fits at least as well as the 

                                                 
56 Note that the level-k/CH approach does not justify Laplacian beliefs, which in 2×2 games hypothesize that the proportion of 

others who choose a decision is uniformly distributed over the unit interval.   
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alternatives, and often better. Among the individualistic models, level-k and CH perform 

comparably well; level-k usually does better than NI or LQRE; CH does slightly better than NI 

or LQRE; and NI does slightly better than LQRE. Overall, payoff-dominant equilibrium fits best, 

noticeably better than level-k and CH. These conclusions are based on limited evidence; but the 

idea that people rely on representative-agent models of others even when it’s inappropriate is 

behaviorally plausible when one considers the subtlety of the probabilistic judgments needed to 

do otherwise and the cognitive difficulty of having diverse models. The conclusion that players’ 

models of others are correlated is also suggested, less directly, by subjects’ notorious inability to 

anticipate group-size effects in settings where they are relevant. 

 A level-k/CH model is easily modified to allow correlation of players’ models of others via 

the specification of L0.57

 A level-k/CH approach to bank runs games has further advantages. In a level-k/CH model 

players use the same rules to choose their strategies with or without multiple equilibria. As in 

Section 6’s market-entry games, neither equilibrium nor refinements play any role in players’ 

thinking; and coordination when it occurs is an accidental but statistically predictable by-product 

of how players’ nonequilibrium decision rules interact with the game—though this time 

symmetry-breaking is not required, and there is no “magic”. In these symmetric coordination 

games the higher payoffs of equilibria attract level-k/CH as well as equilibrium players, so the 

likely outcome is some equilibrium, which as we have seen is the risk-dominant equilibrium in 

simple games. Importantly, however, a level-k/CH model also predicts the likelihood of 

coordination failure and the forms it may take. Further, in more complex games level-k/CH 

predictions may deviate from those of global games or risk-dominant equilibrium selection 

(Crawford 1995; Costa-Gomes, Crawford, and Iriberri 2009). In our opinion this is a richer and 

more plausible view of strategic thinking than the one that underlies the global-games approach.  

 Perfect correlation makes players perceive examples like Summers’ as 

quasi-two-person games. Depending on the payoffs and the fragility of the all-In equilibrium, 

this can make all-In more or less likely than when players’ models of others are independent.  

 

                                                 
57 The correlation of players’ models of others is irrelevant in defining payoff-dominance. Risk-dominance is traditionally 

defined assuming independence, but its definition could easily be modified to allow such correlation. 
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8. Nonequilibrium Econometrics: Structural Alternatives to Incomplete Models 
 
 How might the availability of structural nonequilibrium models that reliably describe initial 

responses to games change the way we think about data? In recent econometric work on 

auctions, market entry games, and other kinds of coordination games, attention centers on 

identification and estimation of the parameters that represent individual players’ payoff 

idiosyncrasies, which are normally unobservable in the field.58

 Building on the equilibrium-based work, recent work has considered auction, market entry, 

and coordination settings where equilibrium is implausible, and other settings where some 

equilibrium is plausible but it is hard to specify the selection mechanism with confidence. In the 

former settings, the leading approach has been to accept set-valued restrictions such as those 

implied by k-rationalizability (Section 2) as the model’s only implications and use them to 

identify and estimate the resulting incomplete model (Andres Aradillas-Lopez and Elie Tamer 

2008, who call k-rationalizability “level-k rationality”).

 If equilibrium can reasonably be 

assumed, and if a precise mechanism for selection among any multiple equilibria can be 

specified, then it is often possible to identify and estimate the distributions of the payoff 

idiosyncrasies, even without imposing parametric restrictions. 

59

 In the latter settings, a common approach has been to estimate a model that imposes 

equilibrium but is incomplete model in that it does not restrict equilibrium selection (Bresnahan 

and Reiss 1991, Federico Ciliberto and Tamer 2009, and Federico Echenique and Ivana 

Komunjer 2009). This is natural for settings where it is plausible that players have learned to 

play an equilibrium, but the learning process cannot be specified with confidence.   

 This is natural for settings involving 

initial responses, because just as the experimental evidence suggests that equilibrium and even 

rationalizability are not reliable models of initial responses (Section 3), it also suggests that 

initial responses often respect k–rationalizability for sufficiently low values of k.  

 In the absence of evidence to guide reliable precise specifications of nonequilibrium behavior 

or equilibrium selection, incomplete models may be the only way to avoid misspecification. 

However, although Charles F. Manski (2007) and others have shown that incompleteness need 

not seriously reduce the econometric usefulness of decision-theoretic models, incompleteness 
                                                 
58 In some applications it is reasonable to assume that these idiosyncrasies are commonly known among the players, though not 

to the analyst; in others they are taken to be privately observed. 
59 Recall that in games that are not sufficiently dominance-solvable, k-rationalizability is incomplete in that it does not specify a 

unique (though probabilistic) prediction conditional on the value of the behavioral parameters; and that in games with multiple 
equilibria, equilibrium plus noise but without refinements is incomplete in the same general sense (Section 2). 
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can have severe identification and estimation costs in game-theoretic models, where individual 

ambiguity can “multiply up” across players to yield much greater ambiguity. 

 Aradillas-Lopez and Tamer (2008) show, for example, that in two-person entry games, 

weakening equilibrium to k-rationalizability for low k implies much weaker identification of the 

distributions of players’ payoff perturbations, with individuals’ k’s often unidentified. In an 

extreme case, in complete-information entry games 1-rationalizability implies that even 

unlimited data can rule out only a tiny fraction of possible parameter values (their Figure 3).60

 Aradillas-Lopez and Tamer (2008) also compare the identifying powers of equilibrium and 

k-rationalizability in first-price private-value auctions. Following Pierpaolo Battigalli and 

Marciano Siniscalchi (2003), they note that k-rationalizability implies only a weak upper bound 

on bids, which shrinks with k but allows bids both above and below equilibrium for any k. This 

ambiguity leads to weak bounds on bidders’ value distributions and limits their identifiability. 

 

 These analyses suggest that it may be helpful to complete k-rationalizability, and/or to model 

equilibrium selection, by postulating a structural level-k model with enough behavioral 

parameters to limit the risk of misspecification. k-rationalizability allows some beliefs that, 

though consistent with finitely iterated knowledge of rationality, are behaviorally outlandish 

(Section 2.2). Further, there is now a large body of experimental evidence that, to the extent that 

initial responses respect k-rationalizability, they do so because people follow level-k decision 

rules that respect it, not because they explicitly perform finitely iterated dominance (Section 3). 

Thus, the cost in descriptive accuracy of adding a level-k structure may be quite small. 

 The benefits of completing k-rationalizability or modeling equilibrium selection via a 

structural level-k model can be considerable. Benjamin Gillen (2010) studies a level-k model of 

private-value first-price auctions based on Crawford and Iriberri (2007a) (Section 5). He shows 

that under a reasonable but not unrestrictive assumption on the separation of level-k types’ 

bidding functions, and with enough variation in the number of bidders, both bidders’ value 

distributions and their types are identified, parametrically or nonparametrically. Thus Gillen’s 

                                                 
60 Costa-Gomes and Crawford’s (2006, footnote 42, p. 1766) makes a similar point, noting that in their maximum likelihood 

estimation of a model of subjects’ guesses and searches for hidden payoff information, the guess part of the log-likelihood is 
nearly six times larger than the search part. As they explain, this is because their theory makes precise predictions of a 
subject’s decisions, given his type; but their theory of cognition and search imposes only weak, set-valued restrictions on a 
subject’s searches, given his type. Because their theory of decisions is complete while their theory of search is incomplete, the 
search restrictions are much more likely to be satisfied by chance, which causes the disparity in likelihood weights. 
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level-k model makes identification just as strong as it is assuming equilibrium, with the bonus 

that one can identify bidders’ level-k types as well.61

 Another potential application revisits Ciliberto and Tamer’s (2009) analysis of airline entry 

decisions into U.S. markets. Following Bresnahan and Reiss (1991), Ciliberto and Tamer assume 

equilibrium but use an incomplete model that is agnostic about equilibrium selection. Even 

allowing for prediction ambiguity, their estimated model correctly predicts the entrants in a given 

market less than 35% of the time, with participants often coordinating better ex post than in any 

equilibrium. This feature of their analysis is strongly reminiscent of Kahneman’s “entry magic” 

(Section 6), which suggests that replacing their agnostic model of equilibrium selection with a 

level-k structure might complete the model in a way that yields more accurate predictions. 

  

 
9. Yushchenko and Lake Wobegon: 

Non-neutral Framing in Outguessing Games 
 
“Any government wanting to kill an opponent…would not try it at a meeting with 
government officials.” 
 

—comment, quoted in Chivers (2004), on the poisoning of Ukrainian presidential 
candidate—now ex-president—Viktor Yushchenko 

   
    
   “…in Lake Wobegon, the correct answer is usually ‘c’.” 
 

—Garrison Keillor (1997) on multiple-choice tests (quoted in Attali and Bar-Hillel 
(2003)  

 
 The Yushchenko and Lake Wobegon quotations refer to simultaneous-move zero-sum two-

person games with unique mixed-strategy equilibria. In the first, the players are an assassin 

choosing one of several dinners at which to try to poison Yuschenko, only one of which is with 

officials of the government suspected of wanting to poison him; and an investigator who has the 

resources to check only one of the dinners. In the second, the players are a test designer deciding 

where to hide the correct answer and a clueless test-taker trying to guess its hiding place.  

                                                 
61 This completion would not work in the same way with a CH model, because CH types do not always choose k-rationalizable 

strategies. Brendan Kline (2010) also studies the problems that arise in identifying and estimating econometric level-k/CH 
models. He gives conditions for large-sample identification and robustness of estimators to sampling variation when types' 
predicted behaviors are known and each agent makes only one choice, and parallel conditions for identification when types' 
predicted behaviors are unknown but each agent makes many choices. 
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 In each case the key issue is how players react to framing of decisions that is psychologically 

non-neutral but does not directly affect payoffs. Equilibrium in zero-sum two-person games 

leaves no room for such framing to affect outcomes, but people often react to it anyway. The 

thinking reflected by the quotations is plainly strategic, but nonequilibrium: To the first, for 

example, any game theorist worth his salt would respond, “If that’s what people think, a meeting 

with government officials is exactly where I would try to poison Yushchenko.” 

9.1. Hide and Seek Experiments 

 Rubinstein and Tversky (“RT”; e.g. Rubinstein 1999) conducted experiments with zero-sum, 

two-person “hide-and-seek” games with non-neutral framing of locations. A typical seeker’s 

instructions were: “Your opponent has hidden a prize in one of four boxes arranged in a row. 

The boxes are marked as shown below: A, B, A, A. Your goal is, of course, to find the prize. His 

goal is that you will not find it. You are allowed to open only one box. Which box are you going 

to open?” A hider’s instructions were analogous.  

 RT’s design is important as a tractable abstract model of a non-neutral cultural or geographic 

frame, or “landscape.” The frame has no direct payoff consequences; all that matters is whether 

or not the hider finds the seeker, not where. But the frame is non-neutral in two ways: The “B” 

location is distinguished by its label, and the two “end A” locations may be inherently focal. This 

gives the “central A” location its own brand of uniqueness as the “least salient” location.62

 Traditional game theory rules out any influence of the landscape by fiat, and RT’s hide-and-

seek game has a clear equilibrium prediction, which leaves no room for framing to influence the 

outcome. Moreover, the rationale for playing one’s equilibrium strategy is immune to most of 

the usual counterarguments in a zero-sum two-person game. Even so, framing had a strong and 

systematic effect in RT’s experiments, qualitatively the same in six experiments around the 

world, with Central A or its analogs in other treatments most prevalent for hiders (37% in the 

 In our 

quotations, Yuschenko’s meeting with government officials is analogous to RT’s B location, and 

the physiology of poison may have created something like RT’s end locations. Although there is 

nothing as uniquely salient in Lake Wobegon as the dinner with government officials, 

psychologists think that with four possible answers, both the a and d end locations and location c 

are inherently salient (with the jury still out on which is more salient; see Christenfeld, 1995). 

                                                 
62 Mathematically this “negative” uniqueness is analogous to the “positive” uniqueness of “B”, but Crawford and Iriberri’s 

(2007b) analysis shows that its psychological effects are quite different. 
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aggregate) and Central A even more prevalent for seekers (46%).63

 RT took the nonequilibrium patterns in their data as evidence that their subjects did not think 

strategically (see the quotations in Crawford and Iriberri 2007b, p. 1733, footnote 3). But as 

Crawford and Iriberri argued, responses to such simple games are unlikely to be completely non-

strategic and the fact that subjects’ patterns of behavior were qualitatively the same in six 

experiments suggests that they have a common structure, even if it is a nonequilibrium one.  

 These results pose two 

puzzles. On average hiders are as smart as seekers, so hiders tempted to hide in central A should 

realize that seekers will be just as tempted to look there. Why do hiders allow seekers to find 

them 32% of the time when they could hold it down to 25% via the equilibrium mixed strategy? 

And why do seekers choose central A (or its analogs) even more often (46%) than hiders (37%)?  

 What kind of model can explain the main patterns in the data? First, although the payoff 

structure of RT’s game is asymmetric, all models that focus on payoffs to the exclusion of 

labeling—equilibrium, QRE, and level-k with a uniform random L0—imply role-symmetric 

responses (QRE here coincides with equilibrium, for any distribution and precision) and so miss 

the strong role-asymmetric patterns in the results. 

 Crawford and Iriberri (2007b) accordingly compared versions of equilibrium, QRE, and 

level-k/CH models that all incorporate the effects of labeling— for equilibrium or QRE, by 

adding payoff perturbations that plausibly describe hiders’ and seekers’ instinctive reactions to 

salience (seekers get extra payoff credit for salient locations, hiders lose credit); and for level-k, 

by making L0 role-independent but probabilistically favoring salient locations. 

 In particular, Crawford and Iriberri (2007b, online appendix) found that LQRE and 

equilibrium with payoff perturbations both miss the strong role-asymmetric patterns in the 

results; and that LQRE with estimated perturbations either gets the main patterns qualitatively 

wrong or estimates an infinite precision and thereby turns itself back into an equilibrium with 

payoff perturbations model, which itself fits significantly less well than a level-k model. 

 By contrast, a level-k/CH model responds to the role-asymmetric payoff structure in a role-

asymmetric way, and a level-k model with a role-independent L0 that probabilistically favors 

                                                 
63 This statement depends on identifying analogies among RT’s treatments as explained in Crawford and Iriberri (2007b, Section 

1). One might argue that because any strategy, pure or mixed, is a best response to equilibrium beliefs, deviations do not 
violate the theory. But systematic deviations from equilibrium choice frequencies must (with high probability) have a cause 
that is partly common across players. They are therefore symptomatic of systematic deviations from equilibrium probabilities. 
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salient locations can gracefully explain RT’s results.64 Assume that L0 hiders and seekers both 

choose A, B, A, A with probabilities p/2, q, 1– p – q, p/2 respectively, with p > ½ and q > ¼, so 

that L0 favors both the end locations and the B location equally for hiders and seekers. Then for 

behaviorally plausible type distributions (estimated 0% L0, 19% L1, 32% L2, 24% L3, 25% L4—

almost hump-shaped), a level-k model explains the prevalence of central A for hiders and its 

even greater prevalence for seekers. Given L0’s attraction to salient locations, L1 hiders choose 

central A to avoid L0 seekers and L1 seekers avoid central A searching for L0 hiders (the data 

suggest that end locations are more salient than B). For similar reasons, L2 hiders choose central 

A with probability between 0 and 1 (breaking payoff ties randomly) and L2 seekers choose it 

with probability 1. L3 hiders avoid central A and L3 seekers choose it with probability between 

zero and one (breaking payoff ties randomly). L4 hiders and seekers both avoid central A.65

 Note that only a heterogeneous population with substantial frequencies of L2 and L3 as well 

as L1 (estimated 0% L0, 19% L1, 32% L2, 24% L3, 25% L4) can reproduce the aggregate 

patterns in the data. Crawford and Iriberri estimate that the salience of an end location is greater 

than that of the B location (p > 2q). Given this, a 50-50 mix of L1s and L2s in both player roles 

would imply (their Table 2) 75% of hiders but only 50% of seekers choosing central A, in 

contrast to the 37% of hiders and 46% of seekers who did choose central A. 

 The 

role asymmetry in aggregate behavior follows naturally from the asymmetry of the game’s 

payoff structure, via hiders’ and seekers’ asymmetric responses to L0’s role-symmetric choices. 

 Crawford and Iriberri’s analysis suggests that RT’s subjects were quite strategic and in fact 

more than usually sophisticated (with many L3s and even some L4s, even though in most 

settings L1s and L2s are more common)—they just didn’t follow equilibrium logic. Their 

analysis suggests that the Yushchenko quotation is not unusually sophisticated: it reflects the 

reasoning of an L1 poisoner, or equivalently an L2 investigator reasoning about an L1 poisoner.66

9.2. Portability 

 

 Although prior intuitions about the likely hump shape and location of the type distribution 

impose some discipline in specifying a level-k model, the freedom to specify L0 leaves room for 

                                                 
64 Defining L0 as uniform random would be unnatural, given that L0 describes others’ instinctive responses to the non-neutral 

framing of decisions. It would also make Lk coincide with Equilibrium for all k > 0. 
65 Even though there is a nonnegligible estimated frequency of L4s, they don’t really matter here because they never choose 

central A (Table 2 above), hence they are not implicated in the major aggregate patterns. For the same reason, their frequency 
is not well identified in the estimation. 

66 In a more detailed analysis of Burchardi and Penczynski’s (2010) data on these games, including their chat deliberations, 
Penczynski (2010) finds support for a level-k model, but one with role-asymmetric L0 and type distribution.   
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doubts about overfitting and portability, the extent to which a model estimated from responses to 

one game can be extended to predict or explain responses to different games. Crawford and 

Iriberri (2007b) tested for overfitting, and found that the test also favored their level-k model. 

But here we focus on their test for portability, which has instructive general implications. 

 Crawford and Iriberri compared the ability of the leading alternative models, when estimated 

from RT’s data, to “predict” subjects’ initial responses to the two closest relatives of RT’s games 

in the literature, Barry O’Neill’s (1987) famous card-matching game, and Amnon Rapoport and 

Richard B. Boebel’s (1992) closely related game. These games both raise the same strategic 

issues as RT’s games, but with more complex patterns of wins and losses, different framing, and 

in the latter case five locations. Here we discuss only O’Neill’s game, in which players 

simultaneously choose one of four cards: A, 2, 3, J. One player wins if there is a match on J or a 

mismatch on A, 2, or 3; otherwise the other wins. The game is thus like hide-and-seek, but with 

each player a hider for some locations and a seeker for others.  

 There is a uniquely natural way to adapt Crawford and Iriberri’s L0 specification from RT’s 

hide-and-seek games to O’Neill’s game: A and J, “face” cards and end locations, are more 

salient than 2 and 3, but either A or J could be more salient. Although this specification appears 

to add two degrees of freedom, because all that matters about L0 is what it makes L1s do in each 

player role, effectively it adds only a single discrete choice between two alternative models. 

 This specification also illustrates an important point: Because L0 is “only” a psychological 

issue, it is easy to gather evidence on it from different settings, and such evidence is more likely 

to yield consensus on a general definition of L0 than if it were combined with strategic issues. 

 It may appear that the flexibility of the type frequencies gives level-k models considerable 

freedom to overfit the data, but empirically plausible frequencies often imply severe limits on 

what decision patterns a level-k model can generate. Discussions of O’Neill’s data, for example 

by McKelvey and Palfrey (1995), have been dominated by an “Ace effect”: Aggregated over all 

105 rounds, row and column players played A with frequencies 22.0% and 22.6%, slightly but 

significantly above the equilibrium 20%. Yet no plausible level-k model can make a row player 

play A more than the equilibrium 20%.67

                                                 
67 Crawford and Iriberri’s (2007b, online appendix) Tables A3 and A4 show that, excluding L0s (which normally have 0 

estimated frequencies) and restricting attention to row players (Player 1s), when A is more salient (3j – a < 1) only L4 chooses 
A, and that with probability at most 1/3 (Table A3); and that when A is less salient (3j – a > 1) only L3 chooses A, and that 

 Thus, despite the apparent flexibility, the level-k 

model’s structure and the principles that guide the specification of L0 imply a strong restriction. 



 67 

 Crawford and Iriberri did not have O’Neill’s data before they carried out their portability 

test; but based on the success of the level-k model in explaining RT’s results, they speculated 

that O’Neill’s subjects’ initial responses must not have had an Ace effect. In fact for initial 

responses there was no Ace effect: only a Joker effect, a full order of magnitude stronger, in 

which rows played J 56% of the time and columns played it 64% of the time. 

 Unlike the putative Ace effect, this Joker effect and the other observed frequencies can be 

gracefully explained by a level-k model with an L0 that probabilistically favors the salient A and 

J cards, in the spirit of Crawford and Iriberri’s analysis of RT’s data.68

 Importantly, the analysis traces the superior portability of the level-k model to the fact that 

L0 is psychological rather than strategic, and that it is based on simple and universal intuition 

and evidence. If L0 were strategic, it would interact with the strategic structure in new ways in 

each new game, and it would be a rare event when one could extrapolate a specification from 

one game to another. Thus, the definition of L0 as an instinctive, nonstrategic response is more 

that a convenient cognitive categorization: it is important for portability. 

 By contrast, equilibrium 

or LQRE with payoff perturbations are well-defined for O’Neill’s game, but they both fit 

significantly worse than Crawford and Iriberri’s favored level-k model. 

 

10. Mr. Schelling Goes to Chicago: 

Coordination via Payoff Asymmetries and Non-neutral Framing 
 Perhaps the most famous examples of framing effects in economics are Schelling’s (1960) 

classic “meeting in New York City” experiments. Crawford, Gneezy, and Yuval Rottenstreich 

(2008) randomly paired subjects to play games with commonly observed, non-neutral decision 

labels like Schelling’s, but except for a game with the payoff symmetry of Schelling’s games, 

they used payoff-asymmetric games like Battle of the Sexes. 

 In unpaid pilots run in Chicago, Crawford, Gneezy, and Rottenstreich used naturally 

occurring labels, pitting the world-famous Sears Tower versus the little-known AT&T Building 

across the street. The salience of Sears Tower makes it easy and, in principle, obvious for 

subjects to coordinate on the “both-Sears” equilibrium; and they almost all do this in the 

                                                                                                                                                             
with probability at most 1/3 (Table A4). This is logically possible, but in the first case it would require a population of 60% or 
more L4s, and in the second case it would require 60% or more L3s: in each case behaviorally extremely unlikely. 

68 Thus, although O’Neill speculated that the Ace effect in the time-aggregated data occurred because “…players were attracted 
by the powerful connotations of an Ace” the analysis suggests that it was an accidental by-product of how subjects learned. 
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symmetric version of the game. Since Schelling’s experiments with symmetric games, people 

have assumed that slight payoff asymmetry would not interfere with this. However, even with 

slight payoff asymmetry, the game poses a new strategic problem because both-Sears is one 

player’s favorite way to coordinate but not the other player’s. Just as in a society of men and 

women playing Battle of the Sexes, in which Ballet is more salient than Fights, there is a tension 

between the “label salience” of Sears and the “payoff-salience” of a player’s favorite way to 

coordinate: Payoff salience reinforces label salience in one player role (P2s) but opposes it for 

players in the other (P1s). This tension may lead players to respond asymmetrically, which in 

this game is bad for coordination. 

 As Crawford, Gneezy, and Rottenstreich suspected, although the Chicago Skyscrapers results 

replicated Schelling’s results in the symmetric version of the game, there was a substantial 

decline in coordination with even slight payoff asymmetry (Figure 6). To investigate the reasons 

for the decline, they conducted more formal, paid treatments using abstract decision labels, 

pitting X against Y, with X presumed (and shown) to be more salient than Y. Like the salience of 

Sears Tower, the salience of the X label makes coordinating on the “both-X” equilibrium the 

obvious thing to do; and subjects do coordinate on “both-X” in the symmetric version of the 

game. But payoff asymmetry again introduces a tension between the “label salience” of X and 

the “payoff-salience” of a player’s favorite way to coordinate, which reinforces label salience for 

P2s but opposes it for P1s. This tension again had a large and surprising effect (Figure 7). 

 Even tiny payoff asymmetries caused a large drop in the expected coordination rate, from 

64% (0.64 = 0.76×0.76 + 0.24×0.24) in the symmetric game to 38%, 46%, and 47% in the 

asymmetric games. Perhaps more surprisingly (and unlike in the unpaid Chicago Skyscrapers 

treatment), the pattern of miscoordination reversed as asymmetric games progressed from small 

to large payoff differences: With slightly asymmetric payoffs, most subjects in both roles 

favored their partners’ payoff-salient decisions. But with moderate or large asymmetries, most 

subjects in both roles switched to favoring their own payoff-salient decisions.  

 There are two things to explain here: Why didn’t subjects in the asymmetric games ignore 

the payoff asymmetry, which cannot be used to break the symmetry as required for coordination, 

and use the salience of Sears Tower to coordinate? Why did the pattern of miscoordination 

reverse as the asymmetric games progressed from small to large payoff differences? Standard 

notions such as equilibrium plus noise and QRE ignore labeling, and so cannot help. 
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  P2 (90% Sears) 
  Sears AT&T 

P1 (90% Sears) Sears 100,100 0,0 
AT&T 0,0 100,100 

Symmetric 
   P2 (58% Sears) 

  Sears AT&T 

P1 (61% Sears) Sears 100,101 0,0 
AT&T 0,0 101,100 
Slight Asymmetry 

   P2 (47% Sears) 
  Sears AT&T 

P1 (50% Sears) Sears 100,110 0,0 
AT&T 0,0 110,100 

Moderate Asymmetry 
Figure 6. Chicago Skyscrapers 

 

  P2 (76% X) 
  X Y 

P1 (76% X) X 5,5 0,0 
Y 0,0 5,5 

Symmetric 
   P2 (28% X) 

  X Y 

P1 (78% X) X 5,5.1 0,0 
Y 0,0 5.1,5 

Slight Asymmetry 
   P2 (61% X) 

  X Y 

P1 (33% X) X 5,6 0,0 
Y 0,0 6,5 

Moderate Asymmetry 
   P2 (60% X) 

  X Y 

P1 (36% X) X 5,10 0,0 
Y 0,0 10,5 

Large Asymmetry 
Figure 7. X-Y Treatments 
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 A level-k model can gracefully explain the patterns in the data, but again it’s important to 

have an L0 that realistically describes people’s beliefs about others’ instinctive reactions to the 

tension between label- and payoff-salience that seems to drive the results. Assume that L0 is the 

same in both player roles, and that it responds instinctively to both label and payoff salience; but 

with a “payoffs bias” that favors payoff over label salience, other things equal: In symmetric 

games L0 chooses X with some probability greater than ½. And in any asymmetric game, (for 

simplicity only) whether or not label-salience opposes payoff-salience, L0 chooses its payoff-

salient decision with probability p > ½.69

 Under these assumptions, L1’s and L2’s choices in roles P1 and P2 are determined by p, the 

extent of L0’s payoff bias. Except in symmetric games, even though L0’s choice probabilities are 

the same for P1s and P2s, they imply L1 and L2 choice probabilities that differ across player 

roles due to the asymmetric relationships between label and payoff salience for P1s and P2s. 

 

 Simple calculations show that a level-k model can track the reversal of the pattern of 

miscoordination between the slightly asymmetric game and those with moderate or large payoff 

asymmetries if (and only if) 0.505 (= 5.1/[5.1+5]) < p < 0.545 (= 6/[6+5]), so that L0 has only a 

modest payoff bias. If p falls into this range and the population frequency of L1 is 0.7 and that of 

L2 is 0.3, close to most previous estimates, the model’s predicted choice frequencies differ from 

the observed frequencies by more than 10% only in the symmetric game, where the model 

somewhat overstates the homogeneity of CGR’s subject pool because it predicts 100% play of X. 

 More work is needed in this area, particularly with regard to the precise specification of L0 

and the interaction between level-k/CH thinking and “team reasoning”, in which players do what 

would be best for both or all, if both or all did it (Nicholas Bardsley, Judith Mehta, Chris Starmer 

and Robert Sugden 2010). The full explanation will plainly have a level-k/CH component, but 

more work is needed to see how it interacts with team reasoning.       

  

                                                 
69 These assumptions are consistent with Crawford and Iriberri’s (2007b) assumptions, because their games had no payoff-

salience. However, there remain some unresolved issues about how to generalize these assumptions.  



 71 

11. Huarangdao and D-Day:  
Communication of Intentions in Outguessing Games 

“Have you forgotten the tactic of ‘letting weak points look weak and strong points look 
strong’?” 

  
   — General Kongming, in Luo Guanzhong’s historical novel, Three Kingdoms.  
 

 
“Don’t you know what the military texts say? ‘A show of force is best where you are 
weak. Where strong, feign weakness.’” 

 
   — General Cao Cao, in Three Kingdoms.70

 
  

  

 "Lord, what fools these mortals be!" 

  —Puck, in A Midsummer Night’s Dream, Act 3 

 

  In the Huarongdao story, set around 200 A.D., fleeing General Cao Cao, trying to avoid 

capture by pursuing General Kongming, chose between two escape routes, the easier Main Road 

and the awful Huarong Road (http://en.wikipedia.org/wiki/Battle_of_Red_Cliffs). Thus the game 

closely resembles Far Pavilions Escape (Section 4). But there is an added wrinkle: Before Cao 

Cao’s choice Kongming had an opportunity to send a message by lighting campfires along one 

of the roads. This message had an obvious literal meaning, but it was scarcely more costly to 

send a false message than a true one: The message was approximately cheap talk. Kongming, 

having sent his message before Cao Cao’s choice, then chose which road to wait in ambush on. 

 In the event Kongming lit his campfires along the Huarong Road and waited in ambush 

there, sending a deceptively truthful message. Cao Cao, misjudging the extent of Kongming’s 

deviousness, inverted the message, took the Huarong Road, and was caught. 

 Huarongdao closely resembles the organizing example in Crawford’s (2003) level-k analysis 

of deceptive preplay communication, Operation Fortitude South, the Allies’ attempt to deceive 

the Germans regarding where they planned to invade Europe on D-Day (6 June 1944; 

http://en.wikipedia.org/wiki/Operation_Fortitude; see also Ken Hendricks and R. Preston 

McAfee, 2006). As in Huarongdao, the Allies’ message was approximately cheap talk and the 

                                                 
70 Evidently Cao Cao had bought a used, out-of-date edition! Thanks to Duozhe Li for the reference.  

http://en.wikipedia.org/wiki/Battle_of_Red_Cliffs�
http://en.wikipedia.org/wiki/Operation_Fortitude�
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underlying game was an outguessing game with conflicting interests; but in this case made zero-

sum to sharpen the point.71

 In the event the Allies faked preparations for invasion at Calais, sending a deceptively 

deceptive message. The Germans, misjudging the extent of the Allies’ deviousness, defended 

Calais and left Normandy lightly defended; and the Allies then invaded Normandy. 

 There were two possible attack or defense locations, Calais and 

Normandy. The greater ease of crossing to Calais is reflected in the payoff assumptions, which 

imply that attacking an undefended Calais is better for the Allies than attacking an undefended 

Normandy, hence better for the Allies if the Germans are equally likely to defend each place; and 

that defending an unattacked Normandy is worse for the Germans than defending an unattacked 

Calais, hence worse for the Germans if the Allies are equally likely to attack each place. 

 In each case the key strategic issue is how the sender—Kongming or the Allies—should 

choose his message and how the receiver—Cao Cao or the Germans—should interpret it, 

knowing that the sender is thinking about the message from the same point of view.  

 Moreover, in each case essentially the same thing happened: In D-Day the message was 

literally deceptive but the Germans were fooled because they “believed” it—either because they 

were credulous or because they inverted the message one too many times. Kongming’s message 

was literally truthful but Cao Cao was fooled because he inverted it. Although the sender’s and 

receiver’s message strategies and beliefs were different, the outcome in the underlying game was 

the same: The sender won, but in the less beneficial of the two possible ways. Why did the 

receiver allow himself to be fooled by a costless (hence easily faked) message from an enemy? 

And if the sender expected his message to fool the receiver, why didn’t he reverse it and fool the 

receiver in the way that would allow him to win in the more beneficial way? 

 Equilibrium analysis does not help to explain these puzzles. In real interactions with preplay 

communication, a receiver’s thinking often assigns a prominent role to the literal meanings of 

messages, without necessarily taking them at face value. Yet equilibrium analysis precludes a 

role for the literal meanings of cheap-talk messages.72

                                                 
71 The game differs from Huarongdao in the relation between payoffs and labeling, in that both Cao Cao and Kongming prefer 

the Main Road, holding the probability of being outguessed equal; while the Allies and the German have opposing preferences 
about where the invasion takes place, holding the probability of being outguessed equal. But the analysis will show that in a 
level-k analysis, as in a traditional analysis, this difference is inessential. In a traditional analysis any effect of labeling is ruled 
out by fiat. We have seen in Section 9 that labels may matter in a level-k analysis, but here their effect is overridden by the fact 
that in communication games, L0 is anchored in truthfulness, and communication overrides the effects of labeling. 

 Further, in real interactions the sender’s 

message and action are part of a single, integrated strategy: He tries to anticipate which message 

72 But see Joseph Farrell (1993), whose notion of neologism-proofness sometimes allows literal meanings influence, but not here. 



 73 

will fool the receiver, and his action may differ from the one he would have chosen with no 

opportunity to send a deceptive message. Yet with conflicting interests there is no equilibrium 

(refined or not) in which cheap talk conveys information or the receiver responds to the message. 

In such an equilibrium, if the receiver found it optimal to respond to the message, the response 

would help the receiver and therefore hurt the sender, who would then prefer to make his 

message uninformative (Crawford and Sobel, 1982). Thus communication can have no effect, 

and the underlying game must be played according to its unique mixed-strategy equilibrium. 

 As the quotations from Kongming and Cao Cao suggest, these puzzles can be resolved via a 

level-k analysis, as in Crawford (2003). In specifying L0 for games with communication, a 

uniform random L0 seems quite unnatural. For sender or receiver, the instinctive reaction to a 

message in a language one understands is surely to focus on its literal meaning, even if one ends 

up lying or not taking the message at face value. Accordingly, Crawford (2003, Table 1, but with 

the types renamed and renumbered here to conform more closely to later usage) assumed that 

players anchor their beliefs in truthful literal meanings, with an L0 sender telling the truth and an 

L0 receiver credulously believing whatever he is told.73 Given this, iterating best responses as in 

other level-k models: an L1 receiver believes what he is told; an L1 sender lies; an L2 receiver 

inverts what he is told; an L2 sender lies; an L3 receiver inverts; an L3 sender tells the truth 

(anticipating an L2 receiver’s inversion); and so on. Thus it appears that Cao Cao was L2, while 

Kongming was L3. Similarly, it appears that the Allies were L2, while the Germans were L1, or 

perhaps (inverting one too many times) L4.74

 If there is no omniscient narrator telling us how the players are thinking, we can create an 

outcome table as in our analyses of Far Pavilions Escape (Section 4) or Entry Magic (Section 6), 

and combine it with an estimate of the type distribution to generate a statistical prediction of the 

outcome. The model’s implications then follow mechanically from estimates of the frequencies 

of sender types who tell the truth, or lie; and of receiver types who believe, or invert messages. 

In such settings, trivially, receivers sometimes misread senders’ messages and are deceived. 

    

                                                 
73 The literature has not converged on how types should be numbered, or on whether L0 receivers should be defined as credulous 

or as uniform random—compare Ellingsen and Östling (2010)—but the issue is partly semantic because truthful L0 senders 
imply credulous L1 receivers. Here we take L0 receivers to be credulous; and given this, we define Lk in either player role as 
the type that iterates best responses k times. Note that unlike in equilibrium cheap-talk analyses where the meaning of 
messages is determined endogeneously (Crawford and Sobel 1982), the definition of L0 resolves that indeterminacy. 

74 As this last possibility illustrates, in a level-k model, unlike a CH model, it can be just as costly to be too clever as to be not 
clever enough, which we view as a realistic feature of level-k models.   
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 It is more interesting and potentially more useful to ask what happens if some participants 

follow level-k decision rules, but others (like Costa-Gomes et al.’s 2001 and Costa-Gomes and 

Crawford’s 2006 Sophisticated type) understand both game theory and how real people think 

about strategy better than any mechanical rule. Although Sophisticated subjects are rare in 

experiments, we presume they are more common in field settings. And despite the occurrence of 

deception in the analysis with only level-k types, it is far from clear that a Sophisticated sender 

can deceive a Sophisticated receiver in the presence of level-k types. Aside from shedding 

additional light on strategic communication, such an analysis might yield a deeper understanding 

of settings such as financial markets with some experienced participants, where the standard 

distinction between rational and “noise” traders seems oversimplified as a model of people’s 

reactions to news (compare Section 3’s Graham quotation). 

 We discuss this extension in the context of Crawford’s (2003) analysis of strategic 

communication, but see also Ricardo Serrano-Padial’s (2010) innovative analysis of the 

interaction between naïve and sophisticated traders in prediction and other speculative markets. 

We also continue to restrict attention to novel situations, so that experience can teach people to 

predict other people’s general behavior patterns, but not their specific strategies. 

 Crawford (2003) assumed that with positive probabilities, each player role is filled either by 

one of the various possible kinds of level-k types, for which his generic term was Mortal types 

(following Puck); or by a Sophisticated type. As suggested by experimental evidence from other 

kinds of games, he assumed the frequencies of L0 senders and receivers are zero. As also 

suggested by the evidence, higher-level Mortal types avoid fixed-point reasoning (recall footnote 

7’s quotation), and instead use step-by-step procedures, which normally determine unique pure 

strategies. Sophisticated types, by contrast, know everything about the game, including the 

distribution of Mortal types; and are capable of fixed-point reasoning.  

 The perfect Bayesian equilibria of the game between possibly Mortal or Sophisticated 

senders and receivers can be characterized as follows. Given L0, Mortal players’ strategies are 

determined mechanically and independently of each other’s and Sophisticated players’ strategies. 

They can therefore be treated as exogenous, even though they affect others’ payoffs. We can 

then plug in the distributions of Mortal senders’ and receivers’ strategies to obtain a “reduced 

game” between possible Sophisticated senders and receivers, taking Mortals’ strategies as given.  
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 Because Sophisticated players’ payoffs are influenced by Mortal players’ decisions, the 

reduced game is no longer zero-sum, its messages are no longer cheap talk, and it no longer has 

complete information. The sender’s message, ostensibly about his intentions, is in fact read by a 

Sophisticated receiver as a signal of the sender’s type. Thus, the possibility of Mortal players 

completely changes the character of the game between Sophisticated players, which is what 

gives the model the ability to explain the effectiveness of communication in a zero-sum game 

and the possibility of deception between Sophisticated players.  

 In the equilibrium, Mortal (non-L0) senders’ simplified models of others always make them 

expect to fool receivers, which depending on the sender’s type (via whether he believes his 

message will be believed or inverted) he thinks he can do either by lying (as the Allies did) or by 

telling the truth (as Kongming did). Accordingly, each Mortal sender type sends the message 

that it expects to maximize the gain from fooling receivers, and then chooses the corresponding 

strategy in the underlying game. For example, a Mortal Allied type sends the message it expects 

to make the Germans think it will attack Normandy, and then attacks Calais. 

 Given this, the equilibria of the reduced game are determined by the population frequencies 

of Mortal and Sophisticated senders and receivers. When Sophisticated senders and receivers are 

common—not the most plausible case—the reduced game has a mixed-strategy equilibrium 

whose outcome duplicates that of the game without communication. In this equilibrium, 

Sophisticated senders’ and receivers’ mixed strategies offset Mortal senders’ and receivers’ 

deviations from equilibrium, and so eliminate Sophisticated senders’ gains from fooling Mortal 

receivers, so that Sophisticated and Mortal players in each role have equal expected payoffs.  

 By contrast, when Sophisticated senders and receivers are rare—the plausible case, judging 

by experimental evidence—the game has an essentially unique pure-strategy equilibrium. In this 

equilibrium, Sophisticated senders can predict Sophisticated receivers’ strategies perfectly, and 

vice versa. Speaking for concreteness of D-Day, Sophisticated Germans always defend Calais 

because they know that Mortal Allied types, who predominate when Sophisticated Allies are 

rare, will all attack Calais. Sophisticated Allies, knowing that they cannot affect the behavior of 

Sophisticated Germans, send the message that fools the most frequent type of Mortal German 

(feinting at Calais or Normandy depending on whether more Mortal Germans believe than invert 

messages) and then attack Normandy. Thus the model explains why Sophisticated Germans 
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might allow themselves to be “fooled” by a costless message from Sophisticated Allies: It is an 

unavoidable cost of exploiting the mistakes of Mortal Allies, who are more common. 

 Surprisingly, there never exists a pure-strategy equilibrium in which Sophisticated Allies 

feint at Normandy and then attack Calais. In such an equilibrium, any deviation from 

Sophisticated Allies’ equilibrium message would lead Sophisticated Germans to infer that the 

Allies were Mortal, making it optimal for Sophisticated Germans to defend Calais and 

suboptimal for Sophisticated Allies to attack there. If, in the equilibrium, Sophisticated Allies 

feinted at Normandy and attacked Calais, then their message would fool only the most likely 

kind of Mortal German— in a pure-strategy equilibrium Sophisticated Germans can never be 

fooled, and a given message cannot fool both Mortal German believers and inverters—with 

expected payoff gain equal to the frequency of the most frequent Mortal German type times the 

payoff of attacking an undefended Normandy. But such Sophisticated Allies could reverse both 

their message and attack location, again fooling the most frequent Mortal German type, but now 

with expected payoff gain equal to the frequency of that type times the payoff of attacking an 

undefended Calais, which is higher than the payoff of attacking an undefended Normandy. This 

contradiction shows that in any pure-strategy equilibrium, Sophisticated Allies must feint at 

Calais and then attack Normandy. 

 Thus, in the pure-strategy equilibrium that exists when Sophisticated players are rare, the 

model explains why, in both of our examples, the sender won but in the less beneficial of the two 

possible ways. The sender’s message and decision are part of a single, integrated strategy; and 

the decision to seek a win in the less beneficial way has much higher probability than if no 

communication was possible.  

 Nonetheless, Sophisticated players in either role do strictly better than their Mortal 

counterparts. Their payoff advantage comes from the ability to avoid being fooled and/or to 

choose which Mortal type(s) to fool. This suggests that in an adaptive analysis of the dynamics 

of the type distribution, the frequencies of Sophisticated types will grow until the population is in 

or near the region of mixed-strategy equilibria in which types’ expected payoffs are equal. Thus, 

somewhat surprisingly, Sophisticated and Mortal players can coexist in long-run equilibrium. 
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12. Alphonse and Gaston:  
Communication of Intentions in Coordination Games 

 

 
 

Figure 8. Alphonse and Gaston 
   

—Frederick B. Opper’s comic strip, Alphonse and Gaston 
(http://en.wikipedia.org/wiki/Alphonse_and_Gaston) 

  

 If level-k models allow preplay communication of intentions to affect the outcomes of zero-

sum two-person games, it is no surprise that they also allow effective communication in 

coordination games. Here the stylized experimental facts (Crawford 1998) are that when 

coordination requires symmetry-breaking (Section 6), one-sided communication is more 

effective; that when coordination requires assurance (Section 7), two-sided communication is 

more effective; and that when coordination requires symmetry-breaking and communication is 

two-sided, more communication is better than less. In this section we consider level-k/CH 

explanations that have been proposed for these facts. In each case the power of the analysis 

stems from the use of a model that does not assume equilibrium, but which imposes a realistic 

structure less agnostic than rationalizability or k-rationalizability. 

12.A. Coordination via One Round of Communication 

 Tore Ellingsen and Robert Östling (2010) adapt Crawford’s (2003) level-k analysis to study 

the effectiveness of a single round of one- or two-sided preplay communication in games where 

communication of intentions plays various roles.  

Here the central puzzle turns on Joseph Farrell and Matthew Rabin’s (1996) distinction 

between messages that are self-committing in the sense that if the message convinces the 

receiver, it’s a best response for the sender to do as he said he would do, and those that are self-

http://en.wikipedia.org/wiki/Alphonse_and_Gaston�
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signaling, in that they are sent when, and only when, the sender intends to behave accordingly. 

For example, in a two-person Stag Hunt game each player, without regard to his own intentions, 

does (weakly) better if his partner chooses high effort, so the message “I intend to play High 

Effort” is self-committing but not self-signaling. Robert J. Aumann (1990) argued on this basis 

that such messages are not credible. But Gary Charness (2000) and others have shown 

experimentally that messages that are self-committing but not self-signaling are quite effective in 

practice (but see Kenneth Clark, Stephen Kay, and Martin Sefton 2001). Theoretical 

explanations for this effectiveness have been elusive.   

Ellingsen and Östling’s (2010) analysis makes significant progress explaining this and other 

puzzles. Importantly, they depart from Crawford’s (2003) analysis by assuming that L0 receivers 

are uniform random rather than credulous and that all types have a preference for honesty when 

they are otherwise indifferent about which message to send. They show that in their model, one-

sided communication solves the coordination problem in games like Battle of the Sexes where it 

requires symmetry-breaking, and is therefore more effective than two-sided communication, as is 

usually found in experiments. They also show that their model can explain why two-sided 

communication is more effective than one-sided communication in games where coordination 

requires assurance as it does in Stag Hunt, as is also found in experiments. More generally, they 

show that in common interest games when both players are L2 or higher, either one- or two-way 

communication assures efficient coordination. But this tendency is far from universal: In some 

games players have incentives to misrepresent that erode coordination.  

12.B. Coordination via Multiple Rounds of Communication 

 Crawford (2007) reconsiders Farrell’s (1987) and Rabin’s (1994) analyses of the 

effectiveness of one or more rounds of simultaneous, two-sided cheap-talk messages about 

players’ intentions. Farrell’s and Rabin’s analyses assume equilibrium, sometimes weakened to 

rationalizability; and they further restrict attention to outcomes that satisfy plausible behavioral 

restrictions defining which combinations of messages create agreements, and whether and how 

agreements can be changed. Within this framework they address two conjectures regarding 

complete-information games: that preplay communication will yield an effective agreement to 

play an equilibrium in the underlying game; and that the agreed-upon equilibrium will be Pareto-

efficient within that game’s set of equilibria (henceforth “efficient”). They show that 

rationalizable preplay communication need not assure equilibrium; and that, although 
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communication enhances coordination, even equilibrium with “abundant” (Rabin’s term for 

“unlimited”) communication does not assure that the outcome will be Pareto-efficient. 

 More specifically, Farrell (1987) uses Battle of the Sexes to study symmetry-breaking via 

one or more rounds of two-sided preplay communication with conflicting preferences about how 

to coordinate. He focuses on the symmetric mixed-strategy equilibrium in the entire game, 

including the communication phase, in which the first pair of messages in the same 

communication round that identify a pure-strategy equilibrium in Battle of the Sexes are treated 

as an agreement to play that equilibrium, ignoring all previous messages. He calculates the 

equilibrium rate of efficient coordination with one or more rounds of communication, showing 

that the rate increases steadily with the number of rounds but converges to a limit less than one 

even with abundant communication. Rabin (1994) extends Farrell’s analysis to a wide class of 

underlying games while dropping Farrell’s symmetry restriction; augmenting Farrell’s 

restrictions on how players use language to allow them to make interim agreements, which can 

be improved upon in subsequent agreements; and considering the implications of 

rationalizability as well as equilibrium. Rabin defines notions called negotiated equilibrium and 

negotiated rationalizability that combine the standard notions with his restrictions on how 

players use language. He shows that with abundant communication, each player’s negotiated 

equilibrium expected payoff is at least as high as in his worst efficient equilibrium in the 

underlying game. He then shows, replacing negotiated equilibrium by negotiated 

rationalizability, that even without equilibrium, each player expects (perhaps incorrectly) a 

payoff at least as high as in his worst efficient equilibrium. 

 Despite Farrell’s and Rabin’s partly negative conclusions, the conjectures that preplay 

communication will yield an agreement to play an equilibrium in the underlying game, and that 

the agreed-upon equilibrium will be efficient within the set of equilibrium are still widely held. 

Further, although equilibrium and rationalizability are natural places to start in analyses like 

theirs, it is also natural to test their robustness by replacing equilibrium and rationalizability with 

a structural nonequilibrium model based on level-k thinking—thus making the analysis less 

agnostic than rationalizability, while relaxing equilibrium in a way that has empirical support.  

 Crawford (2007) adapts his 2003 level-k analysis of strategic communication of private 

information to study the effectiveness of multiple rounds of simultaneous, two-sided cheap-talk 

messages about intentions, focusing on Farrell’s analysis of Battle of the Sexes. His analysis 
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partly supports Farrell’s and Rabin’s assumptions about how players use language, but suggests 

that their “agreements” do not reflect a full meeting of the minds. Instead they reflect either one 

player’s perceived credibility as a sender or the other’s perceived credulity as a receiver, never 

both at the same time. As a result, a level-k analysis may not fully support the assumptions about 

agreements in Rabin’s analysis of negotiated rationalizability. 

 A level-k analysis also yields very different conclusions about the effectiveness of one- or 

multi-round two-sided communication. A level-k analysis suggests that coordination rates in 

Battle of the Sexes will be largely independent of the difference in players’ preferences, while in 

Farrell’s equilibrium analysis coordination rates are highly sensitive to this difference. Further, 

with one round of communication, the level-k rate is well above the rate without communication, 

and is likely to be higher than the equilibrium rate with one round of communication unless 

preferences are very close. Finally, with abundant communication, the level-k coordination rate 

is likely to be higher than the equilibrium rate unless preferences are moderately close. The 

model’s predictions with abundant communication are consistent with Rabin’s bounds based on 

negotiated rationalizability, but their precision yields additional insight into the causes and 

consequences of breakdowns in negotiations. 

 
13. October Surprise: 

Communication of Private Information in Outguessing Games 
 

“…The news that day was the so-called ‘October Surprise’ broadcast by bin Laden. He 
hadn’t shown himself in nearly a year, but now, four days before the [2004 presidential] 
election, his spectral presence echoed into every American home. It was a surprisingly 
complete statement by the al Qaeda leader about his motivations, his actions, and his view of 
the current American landscape. He praised Allah and, through most of the eighteen minutes, 
attacked Bush,… At the end, he managed to be dismissive of Kerry, but it was an 
afterthought in his ‘anyone but Bush’ treatise…. 

Inside the CIA…the analysis moved on a different [than the presidential candidates’ public] 
track. They had spent years, as had a similar bin Laden unit at FBI, parsing each expressed 
word of the al Qaeda leader…. What they’d learned over nearly a decade is that bin Laden 
speaks only for strategic reasons…. Today’s conclusion: bin Laden’s message was clearly 
designed to help the President’s reelection.” 

 
  —Ron Suskind, The One Percent Doctrine, 2006, pp. 335-6 (quoted in Jazayerli 2008 
  http://www.fivethirtyeight.com/2008/10/guest-column-will-bin-laden-strike.html).  
 

http://www.fivethirtyeight.com/2008/10/guest-column-will-bin-laden-strike.html�
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13.1. October Surprise 

 The situation described in the quotation can plausibly be modeled as a zero-sum two-person 

game of incomplete information between bin Laden and a representative American voter. The 

American knows that he wants whichever candidate bin Laden doesn’t want, but only bin Laden 

knows which candidate he wants. Bin Laden has a one-sided opportunity to send a cheap talk 

message about what he wants and, talk being cheap, he will say whatever he believes is most 

likely to bring about his desired outcome. The key strategic issues are how bin Laden should 

relate his statement to what he really wants and how the American voter should interpret bin 

Laden’s statement, knowing that bin Laden is choosing his message strategically. 

 Once again, the literal meanings of messages are likely to play a prominent role in 

applications, but equilibrium analysis precludes such a role. By the argument given in Section 

11, there is again no equilibrium in which cheap talk conveys information, or in which the 

receiver responds to the sender’s message. 

 However, Crawford’s (2003) analysis is easily adapted to model the CIA’s conclusion that 

bin Laden’s verbal attack on George W. Bush was intended to aid Bush’s reelection. Consider a 

level-k model in which L0 is again anchored on truthfulness for the sender (bin Laden) and 

credulity for the receiver (American). An L0 or L1 American believes bin Laden’s message, and 

therefore votes for whichever candidate bin Laden attacks. An L0 bin Laden who wants Bush to 

win attacks Kerry, but an L1 (L2) bin Laden who wants Bush to win believes that “reverse 

psychology” will be effective, and so attacks Bush to induce L0 (L1) Americans to vote for him. 

Given bin Laden’s attack on Bush, an L0 or L1 American ends up voting for Bush, and an L2 

American ends up voting for Kerry. A Sophisticated bin Laden, recognizing that he cannot fool 

Sophisticated Americans, would choose his message to fool the most prevalent kind of Mortal 

American—believer or inverter—as in Crawford (2003). 

13.2. Experiments 

 Wang, Spezio, and Camerer (2010), building on the experiments of Hongbin Cai and Wang 

(2006), studied communication of private information via cheap talk in discretized versions of 

Crawford and Sobel’s (1982) sender-receiver games (see also Toshiji Kawagoe and Hirokazu 

Takizawa 2009). In Wang, Spezio, and Camerer’s design, the sender observes a state, S = 1, 2, 3, 

4, or 5; and sends a message, M = 1, 2, 3, 4, or 5. The receiver then observes the message and 

chooses an action, A = 1, 2, 3, 4, or 5. The receiver’s choice of A determines the welfare of both: 
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The receiver’s ideal outcome is A = S and his von Neumann-Morgenstern utility function is 110 

– 20|S–A|1.4; and the sender’s ideal outcome is A = S + b and his von Neumann-Morgenstern 

utility function is 110 – 20|S+b–A|1.4. They varied the parameter representing the difference in 

preferences across treatments: b = 0, 1, or 2. 

 The key issue is how much information can be transmitted in a Bayesian equilibrium, and 

how the amount is influenced by the difference between the sender’s and the receiver’s 

preferences. Crawford and Sobel characterized the possible equilibrium relationships between 

sender’s observed S and receiver’s choice of A, which determines the informativeness of 

communication. They showed, for a class of models with continuous state and action spaces that 

generalizes Wang, Spezio, and Camerer’s examples (except for their discreteness), that all 

equilibria are “partition equilibria”, in which the sender partitions the set of states into 

contiguous groups and tells the receiver, in effect, only which group his observation lies in. 

Importantly, the receiver’s beliefs on hearing the sender’s message M are an unbiased—though 

noisy—estimate of S: In equilibrium there is no lying or deception, only intentional vagueness. 

 For any given difference in sender’s and receiver’s preferences (b), there is a range of 

equilibria, from a “babbling” equilibrium with one partition element to more informative 

equilibria that exist when b is small enough. Under reasonable assumptions there is a “most 

informative” equilibrium, which has the most partition elements and gives the receiver the 

highest ex ante (before the sender observes the state) expected payoff. As the preference 

difference decreases, the amount of information transmitted in the most informative equilibrium 

increases (measured by the correlation between S and A, or by the receiver’s expected payoff).  

 Previous experiments, summarized by Crawford (1998), have confirmed the key comparative 

statics result that closer preferences allow more informative information transmission, while at 

the same time revealing systematic deviations from equilibrium. The puzzle is then, why does 

the comparative statics result hold even though equilibrium fails? A natural conjecture is that the 

comparative statics result holds for a wider class of nonequilibrium models, hence is robust to 

deviations from equilibrium; this is strongly confirmed by Wang, Spezio, and Camerer’s results.        

 The unambiguous part of Crawford and Sobel’s characterization of equilibrium concerns the 

possible relationships between S and A. Because messages are “cheap talk”, with no direct effect 

on payoffs, there is nothing to tie down their meanings in equilibrium. As a result, any 
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equilibrium relationship between S and A can be supported by any sufficiently rich language, 

with the meanings of messages determined by players’ equilibrium beliefs. 

 Behaviorally, however, in experiments with a clear correspondence between state and 

message, as here, or where communication is in a common natural language, the interpretations 

of messages are dictated by their literal meanings. Thus messages are always understood—even 

if not always believed. Wang, Spezio, and Camerer’s data analysis therefore fixes the meanings 

of senders’ messages at their literal values. Even with this restriction, when the sender’s and 

receiver’s preferences are close enough (b = 0 or 1), there are multiple equilibria. Wang Spezio, 

and Camerer’s analysis then focuses on the “most informative” equilibrium. 

 When b = 0, the most informative equilibrium has M = S and A = S: perfect truth-telling, 

credulity, and information transmission, as is intuitively plausible when the sender and receiver 

have identical preferences. When b = 2, the most informative equilibrium has senders sending a 

completely uninformative message M = {1, 2, 3, 4, 5} for any value of S; and receivers ignoring 

it, hence choosing A = 3, which is optimal given their prior beliefs, for any value of M. (A 

babbling equilibrium also exists when b = 0 or 1, but then it is not the most informative 

equilibrium.) When b = 1, the most informative equilibrium has senders sending M = 1 when S = 

1 but M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and receivers choosing A = 1 when M = 1 and A = 3 

or 4 when M = {2, 3, 4, 5}.75

 When b = 0 sender subjects almost always set M = S and receivers almost always set A = M: 

The result is near the perfect information transmission predicted by the most informative 

equilibrium. As Wang , Spezio, and Camerer’s Figures 1-3 show, as b increases to 1 or 2, the 

amount of information transmitted decreases as predicted by Crawford and Sobel’s equilibrium 

comparative statics, but there are also systematic deviations from the most informative (or any) 

equilibrium, and lying and successful deception occur. Most senders exaggerate the truth, 

apparently trying to move receivers from receivers’ ideal action toward senders’ ideal action (or 

5, whichever is smaller). Even so, there is some information in senders’ messages, which are 

positively correlated with the state. Receivers are usually deceived to some extent.  

 In this case, the difference in preferences causes noisy information 

transmission even in the most informative equilibrium. 

                                                 
75 The sender’s message M = {2, 3, 4, 5} is the simplest way to implement the intentional vagueness of this partition equilibrium. 

Another way would be for the sender to randomize M uniformly on {2, 3, 4, 5} when S = 1.When b = 1, there’s another, more 
informative equilibrium, found by David Eil, in which Senders send M = {1, 2} when S = 1 or 2 but M = {3, 4, 5} when S = 3, 
4, or 5; and Receivers choose A = 2 when M = {1, 2} and A = 4 when M = {3, 4, 5}. But this equilibrium is not “robust”, in 
that Senders who observe S = 2 are indifferent between M = {1, 2} and M = {3, 4, 5}. 
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Wang, Spezio, and Camerer propose a level-k explanation of these results, based on 

Crawford’s (2003) analysis (see also Navin Kartik, Marco Ottaviani, and Francesco Squintani 

2007). They anchor beliefs in a truthful sender L0, which sets M = S; and a credulous receiver L0 

(which also best responds to an L0 sender), setting A = M. L1 senders best respond to L0 

receivers by inflating their messages by b: M = S + b (up to M = 5), so that L0 receivers will 

choose S + b, yielding the sender’s ideal action given S. L1 receivers (as they define them; the 

numbering is only a convention) best respond to L1 senders (and not to L0 senders as in 

Crawford 2003) by discounting the message, normally setting A = M – b, yielding receivers’ 

ideal action given M = S + b of S. L2 senders best respond to L1 receivers by inflating their 

messages by 2b: M = S + 2b (up to M = 5), so that L1 receivers will set A = M – b = S + b, 

yielding senders’ ideal action given S. L2 receivers best respond to L2 senders by discounting the 

message, normally setting A = M – 2b, yielding receivers’ ideal action given M = S + 2b of S. 

Econometric estimation classifies 18% of 16 Sender subjects as L0, 25% as L1, 25% as L2, 14% 

as Sophisticated, and 18% as Equilibrium, broadly consistent with earlier results.76

13.3 Field Studies 

  

Ulrike Malmendier and Devin Shanthikumar (2007, 2009) discuss the interaction between 

stock analysts and traders. Analysts issue recommendations on individual stocks that range from 

“strong sell” and “sell” to “hold”, “buy”, and “strong buy”; and they also issue earnings forecast. 

In managing their portfolios, traders are presumed to use all the information available on the 

market, of which analysts’ recommendations are a major source. 

An analyst’s recommendation or forecast is like a message in a sender-receiver game 

(Section 13.2). Particularly when an analyst is affiliated with the underwriter of a particular 

stock, he has an incentive to distort such messages. Malmendier and Shanthikumar (2007) find 

that analysts tend to bias their stock recommendations upward, the more so when they are 

affiliated with the underwriter of the stock. They also find two main patterns of responses to 

recommendations among receivers: Large investors tend to buy following “strong buy” 

recommendations, but not to sell following “hold” recommendations, thus discounting 

recommendations somewhat. Small traders, by contrast, are credulous enough to follow 

                                                 
76 Wang, Spezio, and Camerer focus on sender subjects because they, but not receiver subjects, were eye-tracked. For 

comparison, Cai and Wang (2006) in a closely related design classified 6% of senders and 9% of receivers as L0, 25% of 
senders and 9% of receivers as L1, 31% of senders and 34% of receivers as L2 or Equilibrium, and 13% of senders and 28% of 
receivers as Sophisticated. They also state that a logit agent QRE model fits their data well. 
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recommendations almost literally. Malmendier and Shanthikumar (2009) find somewhat 

different patterns of responses to earnings forecasts. Large investors tend to react strongly and in 

the direction suggested by forecast updates, without regard to whether the forecast came from an 

affiliated analyst. Small investors, by contrast, react insignificantly to the forecasts of 

unaffiliated analysts and significantly negatively to the forecasts of affiliated analysts. 

Malmendier and Shanthikumar (2007, 2009) use these and other patterns in the data to 

distinguish between explanations of the bias in recommendations based on optimism-driven 

selection effects and those based on strategic distortion. They conclude that strategic distortion is 

the more important factor. Their analyses, which rest mainly on qualitatively patterns in the data, 

might be sharpened and refined by an explicit model of strategic distortion and its effects along 

the lines of a multidimensional generalization of the level-k/CH analyses in Sections 13.1-2.    

 

14. Conclusion 
 This paper has reviewed recent theoretical, experimental, and empirical work on models of 

strategic thinking and surveyed their applications in economics. Better models of strategic 

thinking are important because they can improve predictions of people’s responses to games 

played only once. And when a game is played repeatedly, in a setting where learning will 

plausibly converge to equilibrium, better models of initial responses can yield better predictions 

of the limiting outcomes of history-dependent learning.  

 Although Nash equilibrium can be, and often has been, viewed as a model of strategic 

thinking, experimental research shows with progressively increasing clarity that subjects’ 

responses to novel games often deviate systematically from equilibrium, and that the deviations 

have a large structural component that can be modeled in a simple way. Subjects’ thinking tends 

to avoid the fixed-point reasoning or indefinitely iterated dominance reasoning that equilibrium 

sometimes requires, in favor of rules of thumb that anchor beliefs in an instinctive reaction to the 

game and then adjust them via a small number of iterated best responses. The resulting level-k or 

cognitive hierarchy models share the generality and much of the tractability of equilibrium 

analysis, but can in many settings systematically out-predict equilibrium.  

 Although level-k or cognitive hierarchy models are alternatives to equilibrium analysis, they 

generalize equilibrium rather than replacing it. In sufficiently simple games the low-level types 

that describe most subjects’ behavior mimic equilibrium strategy choices, even as they deviate 
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from equilibrium thinking. But in more complex games some or all such types may deviate 

systematically from equilibrium choices, in which case the models identify which settings are 

likely to evoke deviations; what forms they are likely to take; and with what frequencies. These 

conclusions are based mainly on experimental analyses, but a growing number of empirical 

studies using field data from settings where the game can be identified find similar patterns.  

 The paper has also illustrated several ways in which a level-k/cognitive hierarchy analysis 

can help in applications. In settings where the types that best describe most people’s behavior 

mimic equilibrium choices, such an analysis can establish the robustness of equilibrium 

predictions. In settings where it is implausible to assume equilibrium, a level-k/CH analysis can 

challenge equilibrium predictions and resolve empirical puzzles by explaining the deviations 

from equilibrium some games evoke. The paper illustrates these possibilities in applications 

ranging from zero-sum betting and auctions with private information, where a level-k/CH 

analysis explains systematic deviations from equilibrium predictions; to coordination via 

symmetry-breaking, where such an analysis can explain the results of experiments in which 

subjects do systematically better than in the best symmetric equilibrium; coordination via 

assurance, where such an analysis helps to resolve some more subtle puzzles; hide-and-seek, 

outguessing, and coordination games played on non-neutral salience landscapes, where the 

analysis explains systematic patterns in subjects’ strategic uses of salience; and strategic 

communication in “outguessing” and coordination games, where equilibrium gives an inadequate 

account of communication but a level-k/CH analysis some commonly observed patterns. 

 We hope that this survey has shown that structural nonequilibrium models of strategic 

thinking deserve a place in the analyst’s toolkit. 
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