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Abstract. Every finite noncooperative game can be presented as a weighted network 

congestion game, and also as a network congestion game with player-specific costs. In the 

first presentation, different players may contribute differently to congestion, and in the 

second, they are differently (negatively) affected by it. This paper shows that the topology of 

the underlying (undirected two-terminal) network provides information about the existence 

of pure-strategy Nash equilibrium in the game. For some networks, but not for others, every 

corresponding game has at least one such equilibrium. For the weighted presentation, a 

complete characterization of the networks with this property is given. The necessary and 

sufficient condition is that the network has at most three routes that do traverse any edge in 

opposite directions, or it consists of several such networks connected in series. The 

corresponding problem for player-specific costs remains open. Keywords: Congestion games, 

network topology, existence of equilibrium. 

1 Introduction 
An exact potential for a noncooperative game is a function 𝑃 on strategy profiles that exactly 

reflects the players’ incentives to change their strategies. Whenever a single player moves to 

a different strategy, his gain or loss is equal to the corresponding change in 𝑃. In a game with 

a finite number of players and strategies, the existence of an exact potential implies that any 

improvement path, or chain of beneficial moves, must be finite: at some point, a (pure-

strategy Nash) equilibrium is reached. Monderer and Shapley [32] showed that a finite game 

admits an exact potential if and only if it can be presented as a congestion game [37]. In this 

presentation, the players share a finite set 𝐸 of resources, but may differ in which resources 

they are allowed to use. Specifically, each strategy of each player corresponds to a particular 

nonempty subset of 𝐸. The player’s payoff from using the strategy is equal to the negative of 

the total cost of using the corresponding resources. The cost of each resource depends only 

on its identity and the number of users. It does not necessarily increase with congestion, and 

it may be negative (and equal to the negative of the gain from using the resource). 

Restricting or expanding the meaning of ‘congestion game’ has a similar effect on the class 

of presentable finite games. A particularly natural restriction is increasing or (at least) 

nondecreasing cost functions: congestion never makes users better off. Two other possible 

restrictions are: singleton congestion games, where each strategy includes a single resource, 

and network congestion games, where resources are represented by edges in an undirected1 

graph and strategies correspond to routes, which are paths in the graph that connect the 

                                                            
1 Directionality is viewed here as a limitation on the allowed usage of the network, rather than as an intrinsic 

property. See [27, 28].   
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player’s origin and destination vertices. (The former restriction is a special case of the latter. 

It corresponds to a parallel network, which is one with only two vertices.) Examples of 

extensions are congestion games with player-specific costs (or payoffs [25]), in which players 

are differently affected by congestion, and weighted congestion games, in which their 

contributions to it (the players’ “congestion impacts”) differ. Different subsets of these 

alterations correspond to games with qualitatively different properties. A singleton 

congestion game with player-specific costs does not necessarily have a (pure-strategy) 

equilibrium if congestion makes players better, rather than worse off [21, 26]. By contrast, in 

the diametrically opposite case of nondecreasing cost function (i.e., a crowding game), at 

least one equilibrium always exists, although infinite improvement paths are possible 

[25, 26]. The existence of equilibrium in a singleton congestion game with nondecreasing 

cost functions is guaranteed also if the players differ in their weights rather than cost 

functions, but not if they differ in both respects [25]. This is not the case for network 

congestion games (on non-parallel networks), which may have no equilibrium even if the 

players differ only in their weights [14, 23] or only in their cost functions [20] and have 

identical allowable routes.  

Libman and Orda [23] raised as an interesting subject for further research the problem of 

identifying all non-parallel networks for which the existence of equilibrium is guaranteed in 

all corresponding weighted congestion games. They added that series-parallel networks, 

which are built from single edges using only the operations of connecting networks in series 

or in parallel, may be especially interesting. For network congestion games with player-

specific costs, Konishi [20] noted the similarity between the topological conditions for the 

existence of equilibrium and those for the uniqueness of the equilibrium in similar 

nonatomic games with a continuum of non-identical players, each with an infinitesimal 

congestion impact. (The existence of equilibrium in such games is not an issue since it is 

guaranteed by weak assumptions on the cost functions [39].) Specifically, a parallel network 

is a sufficient condition in both cases. The problem that these authors point to is thus the 

identification of all networks with the topological (equilibrium) existence property for a 

particular variety of network congestion games, which means that every game of that kind 

on the network has at least one equilibrium.  

The topological existence property is particularly interesting for varieties of network 

congestion games which are capable of representing all finite games. As pointed out by 

Monderer [31], this is the case for network congestion games with player-specific costs. It is 

also the case for weighted network congestion games that are expanded to allow cost 

functions without self effect. In such games, the cost of a resource for a player may be a 

function of the total weight of the other users (see Section 2.3). For both kinds of network 

congestion games, it suffices to consider two-terminal (or single-commodity) networks, 

which have a single pair of origin and destination vertices where all players’ routes start and 

terminate, respectively. Since these two kinds of network congestion games can be used to 

present any finite game, they cannot possibly have any special properties. Their significance 

lies in the information the presentation provides about the presented game. In particular, an 

equilibrium exists in every finite game that can be presented as a network congestion game 

on a (two-terminal) network with the topological existence property. This paper presents the 

solution to the problem of identifying all two-terminal networks with the topological 



3 

existence property for weighted network congestion games (expanded as indicated above). 

It also summarizes the known facts about the corresponding problem for network 

congestion games with player-specific costs and some additional related models.  

1.1 Other properties of games related to the network topology 
The topological equilibrium existence problem is substantially different from that of 

identifying classes of cost functions for which an equilibrium is guaranteed to exist. An 

example of such a class is linear (or affine) functions, that is, cost functions of the form 

𝑎𝑥 + 𝑏, with 𝑎, 𝑏 ≥ 0. An equilibrium exists in every weighted network congestion game 

with linear cost functions, regardless of the network topology [14]. Linearity of the cost 

functions moreover implies that the game has a weighted potential (which changes 

proportionally to each player’s gain or loss whenever only that player changes his strategy 

[32]), and this is the case also if the constant terms (the 𝑏’s) are player-specific (as well as 

resource-specific) [24]. Similarly, for network congestion games with player-specific costs 

but identical weights, a sufficient condition for the existence of equilibrium is that the 

players’ (possibly, nonlinear) cost functions are identical up to additive (player- as well as 

resource-specific) constants [12, 21]. Indeed, such identity implies that the game has an 

exact potential. An immediate corollary of the last result is that every singleton congestion 

game with player-specific cost functions that are identical up to multiplicative constants (for 

example, linear cost functions without constant terms [16, 17]) has an equilibrium, and 

moreover has an ordinal potential (which changes in the same direction as the cost for of 

any single player who unilaterally changes his strategy [32]). Identity up to constants of the 

cost functions does not guarantee existence of equilibrium in singleton congestion games 

where the players differ also in their weights [30].  

A similar distinction between the influences of the network topology and of the functional 

form of the cost functions also applies to the questions of the price of anarchy, the Pareto 

efficiency of the equilibria and the uniqueness of the equilibrium costs. Some of the known 

results concerning these properties of the equilibria are described below. In this account, 

‘network congestion game’ without qualifiers refers to the lowest common denominator of 

identical players (that is, identical cost functions, weights and allowable routes, and in 

particular origin and destination vertices) and cost functions that are positive and increasing.  

The (pure) price of anarchy [22, 35] in a game refers to some measure of social cost such as 

the maximum over all used strategies or the total (i.e., aggregate) cost. It is defined as the 

ratio between the social cost at the worst (pure-strategy) equilibrium in the game and the 

cost at the social optimum. The price of anarchy for a class of games is defined as the 

supremum over all games in the class. For any two-terminal network, the price of anarchy 

with respect to the maximum cost for network congestion games with (identical players and) 

linear cost functions on the network does not exceed 5/2 [5]. For some networks, the price 

is lower. In particular [9], it is equal to 1 if and only if the network is an extension-parallel 

one [18], or a network with linearly independent routes [28], meaning that each 

(undirected) route has an edge that is not in any other route. The price of anarchy with 

respect to the total cost also depends on the network topology. It is 4/3 for the class of 

network congestion games with linear cost functions on networks with linearly independent 

routes, but higher even for series-parallel networks [13]. Interestingly, the network topology 
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becomes essentially irrelevant for the price of anarchy with respect to the total cost (but not 

with respect to the maximum cost [9]) when the players’ allowable routes may differ. For 

network congestion games with linear cost functions and player-specific allowable routes, 

the price is 5/2 both for general networks and in the special case of parallel networks 

[3, 4, 5]. If the players may differ also in their weights, the price of anarchy with respect to 

the total cost rises to (3 +  5)/2 (≈ 2.618), but this again applies to both general and 

parallel networks [3, 4]. The irrelevance of the network topology also extends to nonatomic 

network congestion games, where, with linear cost functions and player-specific allowable 

routes, the price of anarchy with respect to the total cost is 4/3 [38]. This maximum is 

already achieved in a game on a parallel network with only two edges. Whether or not the 

network topology is relevant for the intermediate model of splittable flow, in which the 

number of players is finite but they can split their flow arbitrarily among multiple routes, 

seems to be unknown [6].  

An extension-parallel network is a necessary and sufficient condition also for weak Pareto 

efficiency of all equilibria in all (finite) network congestion games on the network, meaning 

that it is never possible to alter the players’ equilibrium route choices in a way that benefits 

them all [18].2 This result extends to games in which players may differ in their allowable 

routes, but have identical origin and destination vertices. It does not extent to games with 

player-specific costs, where inefficient equilibria may exist even with two-edge parallel 

networks. For nonatomic network congestion games, the network topology is relevant to 

efficiency both with identical and with player-specific costs. In both cases, a necessary and 

sufficient condition for weak Pareto efficiency of all equilibria in all such games on a two-

terminal network is that the routes in the network are linearly independent, which is 

essentially the same condition as in the finite, identical-costs case (except that linear 

independence refers to undirected routes) [28]. In a sense, inefficient equilibria only occur in 

three particular two-terminal networks, which are the minimal such networks without the 

property of linearly independent routes. Linear independence of the routes is also a 

necessary and sufficient condition for the non-occurrence of Braess’s paradox in all 

nonatomic network congestion games with player-specific costs on the network. For 

identical-costs games, this topological condition is replaced by the weaker condition of a 

series-parallel network [28].  

The problem of the topological uniqueness of the equilibrium costs is relevant only for 

nonatomic network congestion games with player-specific costs. (In a game with identical 

cost functions, the equilibrium costs are always unique, and with a finite number of players, 

it is virtually impossible to guarantee uniqueness.) The class of two-terminal networks with 

guaranteed uniqueness of the players’ equilibrium costs is characterized by five simple kinds 

of networks called the nearly parallel networks [27]. The complementary class of all two-

terminal networks for which multiple equilibrium costs are possible consists of all the 

networks in which one of four particular “forbidden” networks is embedded. Similar results 

hold for network congestion games with finitely many players in which flow is splittable [36].  

                                                            
2 An extension-parallel network moreover guarantees that all equilibria are strong [18]. This is because an 

equilibrium is strong if and only if the strategy choices of every subset of players constitute a weak Pareto 

efficient equilibrium in the subgame defined by fixing the strategies of the remaining players.  
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Two additional issues related to the equilibrium existence problem in (finite) network 

congestion games are the efficient computation of equilibrium and the convergence to 

equilibrium of certain simple algorithms in which players sequentially choose best (or better) 

response strategies (see, e.g., [10, 11, 13, 19, 23, 25]). An example of such an algorithm is 

greedy best response: the players enter the game one after the other, and each new entrant 

chooses a best response to the strategies of the present players. This algorithm always 

reaches an equilibrium in an (unweighted) network congestion game on a two-terminal 

series-parallel network, but may fail for networks that are not series-parallel even though an 

equilibrium always exists [15]. For some additional results concerning complexity and 

convergence, see Section 4.  

2 Preliminaries 

2.1 Game theory 
A finite noncooperative game Γ has a finite number 𝑛 of players whose strategy sets are 

finite. A strategy profile 𝑠 = (𝑠1 , 𝑠2 ,… , 𝑠𝑛) in Γ, which specifies a strategy 𝑠𝑖  to each player 

𝑖, is a pure-strategy Nash equilibrium, or simply equilibrium, if none of the players can 

increase his payoff by unilaterally switching to another strategy.  

Two games Γ and Γ′  with identical sets of players are isomorphic [32] if for each player 𝑖 

there is a one-to-one correspondence between 𝑖’s strategy sets in Γ and Γ′ , such that each 

strategy profile 𝑠 in Γ yields the same payoffs to the players as the corresponding strategy 

profile 𝑠′  in Γ′ . Essentially, isomorphic games are just alternative presentations of a single 

game.  

Two games Γ and Γ′  with identical sets of players and respective strategy sets are similar if 

for each player the difference between the payoffs in Γ and Γ′  can be expressed as a 

function of the other players’ strategies. Equivalently, the gain or loss for a player from 

unilaterally switching from one strategy to another is always the same in both games. 

Similarity implies, in particular, that the two games are best-response equivalent [32, 33], 

that is, a player’s strategy is a best response to the other players’ strategies in one game if 

and only if this is so in the other game. It follows that similar games have identical sets of 

equilibria.  

A game Γ is an exact potential game [32] if it is similar to some game Γ′  in which all players 

have the same payoff function. The players’ common payoff function in Γ′  is said to be an 

exact potential for Γ. Note that this concept is a cardinal one: an increasing transformation 

of payoffs does not generally transform an exact potential game into another such game. An 

ordinal generalization of exact potential is generalized ordinal potential [32], or simply 

potential, which is defined as a real-valued function over strategy profiles that strictly 

increases whenever a single player changes his strategy and increases his payoff as a result. 

Clearly, if a potential exists, then its (even “local”) maximum points are equilibria. However, 

the existence of a potential in a finite game implies more than the existence of equilibrium. 

It is equivalent to the finite improvement property: every improvement path (which is a finite 

sequence of strategy profiles where each profile differs from the preceding one only in the 
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strategy of a single player, whose payoff increases as a result of the change) is finite. In other 

words, the game has no improvement cycles (which are finite improvement paths that start 

and terminate with the same profile). A potential does not necessarily exist in finite games 

that only posses the weaker finite best-(reply) improvement property. This property differs 

from the finite improvement property in only requiring finiteness of best-(reply) 

improvement paths (where each new strategy is a best response for the moving player, who 

could not gain more by choosing some other strategy instead) or equivalently nonexistence 

of best-improvement cycles.   

The superposition of a finite number 𝑚 of games with identical sets of players is the game 

with the same set of players in which each player has to choose one of his strategies in each 

of the 𝑚 games and the payoff is the sum of the resulting 𝑚 payoffs [34]. Thus, the 𝑚 games 

are played simultaneously but independently. Clearly, a strategy profile in the superposition 

of 𝑚 games is an equilibrium if and only if it induces (by projection) an equilibrium in each of 

the constituent 𝑚 games.  

2.2 Graph theory 
An undirected multigraph consists of a finite set of vertices and a finite set of edges. Each 

edge 𝑒 joins two distinct vertices, 𝑢 and 𝑣, which are referred to as the end vertices of 𝑒. 

Thus, loops are not allowed, but more than one edge can join two vertices. An edge 𝑒 and a 

vertex 𝑣 are incident with each other if 𝑣 is an end vertex of 𝑒. A (simple) path of length 𝑚 is 

an alternating sequence of vertices and edges 𝑣0𝑒1𝑣1 ⋯𝑣𝑚−1𝑒𝑚𝑣𝑚 , beginning and ending 

with vertices, in which each edge is incident with the two vertices immediately preceding 

and following it and all the vertices (and necessarily all the edges) are distinct. If the first and 

last vertices are clear from the context, the path may be written more simply as 𝑒1𝑒2 ⋯𝑒𝑚 . 

Every path traverses each of its edges 𝑒 in a particular direction: from the end vertex that 

precedes 𝑒 in the path to the vertex that follows it.   

A two-terminal network, or simply network, 𝐺 is an undirected multigraph together with a 

distinguished ordered pair of (distinct) terminal vertices, the origin 𝑜 and the destination 𝑑, 

such that each vertex and each edge belongs to at least one path in which the first vertex is 

𝑜 and the last vertex is 𝑑. Any path with these first and last vertices will be called a route in 

𝐺. A route can itself be viewed as a network. Specifically, it is an example of a sub-network of 

𝐺, that is, a network that can be obtained from 𝐺 by deleting some of its edges and non-

terminal vertices.  

The sub-network relation is a special case of the following one. A network 𝐺 is embedded in 

the wide sense3 in a network 𝐺 ′  if the latter can be obtained from the former by applying the 

following operations any number of times in any order (see Figure 1):  

(a) The subdivision of an edge: its replacement by two edges with a single common end 

vertex.  

(b) The addition of a new edge joining two existing vertices. 

                                                            
3 This notion of embedding, which was introduced in [27], is more inclusive than that used in [28]. The latter only 

allows one kind of terminal division (see below), namely terminal extension. The difference between the two 

notions of embedding is roughly similar to that between a minor of a graph and a topological minor (see [7]).  
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(c) The subdivision of a terminal vertex: addition of a new edge 𝑒 that joins 𝑜 or 𝑑 with a 

new vertex 𝑣, followed by the replacement of the former by the latter as the end 

vertex in two or more edges originally incident with the terminal vertex.  

Two networks are homeomorphic if they can be obtained from the same network by 

successive subdivision of edges. This relation represents a high degree of similarly between 

the networks: each can be obtained from the other by the insertion and removal of non-

terminal vertices of degree two (which are incident with only two edges). Two networks will 

be identified if (they are isomorphic in the sense that) there is a one-to-one correspondence 

between the two sets of vertices, and another such correspondence between the sets of 

edges, such that (i) the incidence relation is preserved and (ii) the origin and destination in 

one network are paired with the origin and destination, respectively, in the other network. 

Two networks 𝐺 and 𝐺 ′  may be connected in parallel if they have the same origin and the 

same destination but no other common vertices or edges, and in series if they have only one 

common vertex which is the destination in 𝐺 and the origin in 𝐺 ′ . In both cases, the set of 

vertices and the set of edges in the resulting network are the unions of the corresponding 

sets in 𝐺 and 𝐺 ′ , and the origin and destination are those in 𝐺 and 𝐺 ′ , respectively (as well 

as in 𝐺 ′  and 𝐺, respectively, in the case of connection in parallel). The connection of an 

arbitrary number of networks in parallel or in series is defined recursively. Each of the 

connected networks is embedded in the wide sense in the network resulting from their 

connection.  

A parallel network is a network that only has one edge or is made of several single-edge 

networks connected in parallel. A network is nearly parallel [27] if (i) it has only one 

route or (ii) it is made of two single-route networks connected in parallel to which any 

number of edges with identical end vertices were added, and each edge subdivided any 

number of times. Thus, depending on whether at most one or more than one edge was 

added, a nearly parallel network is homeomorphic to one of those in Figure 3 or Figure 

5, respectively. 

 
Figure 1. Embedding. The left network is embedded in the wide sense in each of the other three, which are 
obtained from it by (a) subdividing an edge, (b) adding a new edge, and, finally, (c) subdividing the destination. 

(a) (b) (c) 

𝑑 

𝑜 

𝑑 𝑑 

𝑜 𝑜 

𝑑 

𝑜 
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Figure 2. Two-player weighted network congestion games (top) and their strategic (or normal) form (bottom). 
Dotted, dashed and solid edges are allowable to player 1, player 2 and both players, respectively. The 

allowable directions are indicated where needed. The players’ weights are 𝒘𝟏 = 𝟐 and 𝒘𝟐 = 𝟏. All relevant 
costs other than those shown are zero.  

2.3 Network congestion games 
A weighted network congestion game on a (two-terminal4) network 𝐺 is a finite, 𝑛-player 

game that is defined as follows. First, allowable direction and (possibly, empty) set of users 

are specified for each edge in 𝐺, such that (i) each edge is traversed in the allowed direction 

by at least one route and (ii) each player 𝑖 has at least one allowable route, that is, a route 𝑟 

in 𝐺 that includes only edges that 𝑖 is allowed to use and traverses them in the allowed 

direction. The strategy set of each player 𝑖 is the collection ℛ𝑖  of his allowable routes. 

Second, a weight 𝑤𝑖 > 0 is specified for each player 𝑖, which represents the player’s 

congestion impact and is also assumed to be (weakly) connected with the cardinality of his 

strategy set: For all 𝑖 and 𝑗 with 𝑤𝑖 > 𝑤𝑗 ,  ℛ𝑖  ≤  ℛ𝑗  .5 The total weight of the players whose 

chosen route includes an edge 𝑒, which is denoted by 𝑓𝑒 , is the flow (or load) on 𝑒. The cost 

of using 𝑒 for each player 𝑖, which may be positive or negative, is affected by the flow. The 

effect may take several forms, as detailed below. For each player 𝑖, the cost of an (allowable) 

route 𝑟 is the sum of the costs of its edges. The player’s payoff is the negative of the cost of 

his chosen route. 

In this paper, the cost of an edge 𝑒 for a player 𝑖 may or may not involve self effect.6 That is, 

it may be a function of the total weight of all the users of 𝑒, which is the flow 𝑓𝑒 , or only of 

                                                            
4 The assumption of a single origin–destination pair may be viewed as a normalization. Any network congestion 

game on a multi-commodity network, which has multiple origin–destination pairs, may also be viewed as a game 

with a single such pair. In that game, each terminal vertex is incident with a single allowable edge for each player, 

which joins it with the player’s corresponding terminal vertex in the original game. 

5 The cardinality assumption is used only in the proof of Proposition 2. Whether or not it can be dispensed with I 

do not know. Doing so might strengthen some of the results presented below but weaken a little bit some of the 

others.  

6 The special, and more familiar, case of mandatory self effect it considered in Section 4.3.  
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the total weight of the other users, 𝑓𝑒 − 𝑤𝑖 . Specifically, each edge 𝑒 is associated with a pair 

of nondecreasing cost functions 𝑐𝑒 : (0,∞) → (−∞,∞) and 𝑑𝑒 : [0,∞) → (−∞,∞), such that 

its cost for each player 𝑖 is given by  

𝑐𝑒(𝑓𝑒) + 𝑑𝑒(𝑓𝑒 − 𝑤𝑖). 

Lack of self effect is inconsequential in the special case of an unweighted network 

congestion game, where all weights are 1. In such a game, 𝑑𝑒 = 0 can be assumed without 

loss of generality. However, if players do differ in their weights, then a non-zero 𝑑𝑒  may 

mean that the cost of 𝑒 is not the same for all players. An (unweighted) network congestion 

game with player-specific costs is a variant of the above model which extends this possibility 

by allowing the cost functions of different players to take arbitrarily different functional 

forms, but on the other hand, assumes that all weights are 1. In such a game, the cost of an 

edge 𝑒 for a player 𝑖 is 𝑐𝑒
𝑖  𝑓𝑒 , where 𝑐𝑒

𝑖 : (0,∞) → (−∞,∞) is the corresponding 

nondecreasing cost function and (the flow) 𝑓𝑒  is the total number of players using 𝑒.  

2.4 Presentation theorem 
The definitions of network congestion games involve rather specific structures. However, it 

turns out that the games themselves have no special properties. In fact, as the following 

theorem shows, every finite game can be presented as a weighted network congestion game 

and as a network congestion game with player-specific costs. Thus, the presentation only 

has to involve players that differ in their weights or players that differ in their cost functions. 

The existence of a presentation of the latter kind for every finite game was first pointed out 

by Monderer [31].  

Theorem 1. Every finite game Γ is isomorphic both to a weighted network congestion game 

Γ′  and to a network congestion game with player-specific costs Γ″ .   

Proof. Suppose that the number 𝑛 of players in Γ and the cardinality 𝑚 of the largest 

strategy set are both at least two (otherwise the assertion is trivial), and that, for 1 ≤ 𝑖 <

𝑗 ≤ 𝑛, player 𝑖’s number of strategies 𝑚(𝑖) is not greater than that of 𝑗 (otherwise take 

‘player 1’, ‘player 2’, … below to mean the player with the smallest number of strategies, the 

second-smallest number, and so on). Index the strategies of each player 𝑖 from 1 to 𝑚(𝑖). 

The indexing identifies each strategy profile with an element of 𝑀𝑛 , where 𝑀 = {1,2,… ,𝑚}. 

Order all elements of 𝑀𝑛  in the following way:  

 1,1,… ,1 ,  2,2,… ,2 ,… ,  𝑚,𝑚,… ,𝑚 ,… ,  1,2,… ,2 ,  2,3,… ,3 ,… ,  𝑚, 1,… ,1 , 

where the order of the 𝑚𝑛 − 2𝑚 elements represented by in the middle ellipsis mark is 

arbitrary. With each element 𝑠 =  𝑠1 , 𝑠2 ,… , 𝑠𝑛  of 𝑀𝑛  (which may or may not represent an 

actual strategy profile – the latter holds if 𝑠𝑖 > 𝑚(𝑖) for some player 𝑖) associate two 

vertices 𝑢𝑠  and 𝑣𝑠  and an edge 𝑒𝑠  joining them. The edge will be directed from 𝑢𝑠  to 𝑣𝑠  and 

be allowable to all players. Next, for each player 𝑖 and integer 1 ≤ 𝑘 ≤ 𝑚(𝑖), consider all 

𝑠 ∈ 𝑀𝑛  with 𝑠𝑖 = 𝑘 and list them according to their order in (1). For each pair 𝑠 and 𝑡 of 

successive entries in this list, add an edge that joins 𝑣𝑠  and 𝑢𝑡 , is directed from 𝑣𝑠  to 𝑢𝑡  and 

is allowable to player 𝑖 only. Finally, identify all vertices of the form 𝑢𝑠, where 𝑠 is one of the 

first 𝑚 elements in (1), and denote this single vertex by 𝑜. Do the same for all vertices of the 

(1) 
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form 𝑣𝑠 , where 𝑠 is one of the last 𝑚 elements in (1), and denote the result by 𝑑. These 

terminal vertices, together with the other vertices and edges specified above, constitute a 

network 𝐺 (see the example in Figure 2(b)), in which each allowable route 𝑟 for each player 𝑖 

corresponds to some strategy 𝑠𝑖  of 𝑖. Specifically, 𝑟 includes all 𝑚𝑛−1 edges 𝑒𝑡  with 𝑡𝑖 = 𝑠𝑖 , 

alternating with 𝑚𝑛−1 − 1 edges that are allowable to player 𝑖 only. Different allowable 

routes to a player have no shared edges, and their only shared vertices are the terminal 

ones. 

To complete the definitions of the weighted network congestion game Γ′  and the network 

congestion game with player-specific costs Γ″, which are both defined on 𝐺, it remains to 

specify the weights in the former and the cost functions in both games. The weight of player 

𝑖 (= 1,2,… ,𝑛) is 𝑤𝑖 = 2𝑛 − 𝑖 − 1. These weights guarantee that every set of 𝑛 − 1 players 

has a greater total weight than every set of 𝑛 − 2 or fewer players. The former is equal to 

 3𝑛 − 1 (0.5𝑛 − 1) + 𝑖, where 𝑖 is the unique player not in the set, and the latter is at most 

 3𝑛 − 1 (0.5𝑛 − 1). The cost functions in Γ′  will be defined as follows. For each edge in 𝐺 of 

the form 𝑒𝑠, with 𝑠 ∈ 𝑀𝑛  that is an actual strategy profile in Γ, 𝑐𝑒𝑠  is identically zero and 𝑑𝑒𝑠  

is any nondencreasing function with 

𝑑𝑒𝑠
 𝑥 = 0,                                                                   𝑥 ≤  3𝑛 − 1 (0.5𝑛 − 1) 

𝑑𝑒𝑠
  3𝑛 − 1 (0.5𝑛 − 1) + 𝑖 = 𝑖𝐾 − ℎ𝑖 𝑠 , 𝑖 = 1,2,… ,𝑛, 

where 𝐾 is some number that is large enough to make 𝑑𝑒𝑠  monotonic and ℎ𝑖  is player 𝑖’s 

payoff function in Γ. For 𝑠 ∈ 𝑀𝑛  that is not an actual strategy profile, both 𝑐𝑒𝑠  and 𝑑𝑒𝑠  are 

identically zero. To offset the term 𝑖𝐾 in (2), all edges 𝑒 that are allowable only to player 𝑖 

will have the same, constant cost functions 𝑐𝑒 = 0 and 𝑑𝑒 = −𝑖𝐾/( 𝑚𝑛−1 − 1 ). As 

explained above, strategy profiles in Γ are in a one-to-one correspondence with allowable 

route choices in 𝐺. The routes that correspond to a strategy profile 𝑠 are such that exactly 

one edge, namely 𝑒𝑠, is used by all 𝑛 players. Therefore, for each player 𝑖, only 𝑒𝑠  and edges 

that are allowable only to 𝑖 make a nonzero contribution to the player’s cost, which by (2) is 

equal to −ℎ𝑖 𝑠 . The player’s payoff, which is ℎ𝑖 𝑠 , is therefore the same as that in Γ. 

The definition of Γ″  is similar, but simpler. For each strategy profile 𝑠,  

𝑐𝑒𝑠
𝑖  𝑥 = 0,                        𝑥 ≤ 𝑛 − 1 

𝑐𝑒𝑠
𝑖  𝑛 = 𝐾 − ℎ𝑖 𝑠 , 𝑖 = 1,2,… ,𝑛, 

where 𝐾 is some sufficiently large number and ℎ𝑖  is player 𝑖’s payoff function in Γ. For each 

edge 𝑒 allowable only to one player 𝑖, 𝑐𝑒
𝑖 = −𝐾/( 𝑚𝑛−1 − 1 ). ∎  

A finite game Γ obviously has as more than a single pair of presentations as in Theorem 1. 

The “canonical” games Γ′  and Γ″  constructed in the proof, which share the same network 𝐺, 

are just one such pair. Other presentations may be preferable in that certain properties of Γ 

are more easily inferable from them. An example of such an alternative presentation is 

shown in Figure 2(a). The 2 × 2 game in that example is presented as a weighted network 

congestion game on a particular five-edge network, the Wheatstone network. This is not the 

network 𝐺 constructed in the proof of Theorem 1, which, for all 2 × 2 games, is the network 

in Figure 2(b). It can be immediately seen that the 2 × 2 game in (a) has two equilibria. 

(2) 
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However, the existence of equilibrium in that game could be inferred without knowing the 

payoff matrices, the fact that the game is (essentially) symmetric, or even the number of 

players. As the next section shows, an equilibrium exists in any finite game that can be 

presented as a weighted network congestion game on the Wheatstone network. This is not 

the case for the network in Figure 2(b) (on which all 2 × 2 games are representable). 

3 The Topological Existence Property 
A network 𝐺 has the topological (equilibrium) existence property for weighted network 

congestion games or for network congestion games with player-specific costs if every game 

of the specified kind on 𝐺 has at least one (pure-strategy Nash) equilibrium. In view of 

Theorem 1, this means that every finite game that can be presented as such a network 

congestion game is guaranteed to have an equilibrium.  

A sufficient condition for a network 𝐺 to have the topological existence property for a 

particular kind of network congestion games is that 𝐺 is embedded in the wide sense in a 

network that has that property. This is because any game on 𝐺 that does not have an 

equilibrium can be “extended” to a game without an equilibrium on any network that is 

obtained from 𝐺 by applying any of the three operations that define embedding in the wide 

sense (Figure 1). For example, the operation of adding a new edge can be made 

inconsequential by not allowing any player to use the edge, and the edge 𝑒 that is created by 

terminal subdivision should be allowable with zero cost to all players.  

Another sufficient condition for the topological existence property is that the network 𝐺 is 

made of several networks with that property that are connected in series. The reason these 

networks bestow the topological existence property on 𝐺 is that, as the proof of the 

following proposition shows, any network congestion game on 𝐺 is the superposition (see 

Section 2.1) of such games on them.  

Proposition 1. A two-terminal network made of two or more networks connected in series 

has the topological existence property if and only if each of the constituent networks has 

that property. 

Proof. Let 𝐺 be a network made of 𝑚 (≥ 2) networks, 𝐺1 ,𝐺2 ,… ,𝐺𝑚 , connected in series. For 

each player, choosing an allowable route 𝑟 in 𝐺 is equivalent to choosing 𝑚 allowable routes 

𝑟1 , 𝑟2 ,… , 𝑟𝑚  in 𝐺1 ,𝐺2 ,… ,𝐺𝑚 , respectively, and connecting them is series. Therefore, every 

weighted network congestion game Γ on 𝐺 can be presented as the superposition of 𝑚 such 

games – one on each constituent network – and the same is true for a network congestion 

game with player-specific costs. In each of the 𝑚 games, the players and their weights, as 

well as the cost functions and the allowable direction and players for each edge, are as in Γ. 

This proves that if for 𝑘 = 1,2,… ,𝑚 every weighted network congestion game on 𝐺𝑘  has an 

equilibrium, or this is so for every network congestion game with player-specific costs, then 

𝐺 also has the same property.  

Conversely, if there is a weighted network congestion game without an equilibrium on 𝐺𝑘 , 

for some 1 ≤ 𝑘 ≤ 𝑚, or there is some such network congestion game with player-specific 

costs, then a game with similar properties exists on 𝐺. For example, the superposition of the 
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game on 𝐺𝑘  and games with zero costs on the other 𝑚 − 1 networks is (isomorphic to) a 

game on 𝐺 that does not have an equilibrium. ∎ 

The rest of this section is concerned with weighted network congestion games, for which a 

complete characterization of the networks with the topological existence property is given. 

3.1 Networks with the topological existence property 
The simplest kind of network with the topological existence property for weighted network 

congestion games is a parallel network with no more than three edges (Figure 3(a)).  

Proposition 2. Every weighted network congestion game Γ on a parallel network 𝐺 with 

three or fewer edges has an equilibrium. 

Proof. Assume, without loss of generality, that 𝐺 has precisely three edges (some of which 

may not be allowable to any player), and hence three routes. Identify the edges with three 

points on an imaginary cycle, and say that edge 𝑒 follows (precedes) edge 𝑒′  if the latter is 

the first edge encountered with when moving along the cycle from 𝑒 in the clockwise 

(respectively, counterclockwise) direction. The first part of the proof establishes the 

existence of an equilibrium under the additional assumption that no player has more than 

two allowable edges. The second part covers the general case. Both parts use the following 

simple result. 

Claim 1. Let 𝑒 and 𝑒′  be two edges in 𝐺 that are allowable to two players 𝑖 and 𝑗. If both 

players use 𝑒, but only 𝑗 would benefit from unilaterally moving to 𝑒′ , then 𝑤𝑗 < 𝑤𝑖 . 

The premise in Claim 1 means that the flows on 𝑒 and 𝑒′  are such that  

 𝑐𝑒 ′  𝑓𝑒 ′ + 𝑤𝑗  + 𝑑𝑒 ′  𝑓𝑒 ′   −  𝑐𝑒 𝑓𝑒 + 𝑑𝑒 𝑓𝑒 −𝑤𝑗   < 0

≤  𝑐𝑒 ′  𝑓𝑒 ′ + 𝑤𝑖 + 𝑑𝑒 ′  𝑓𝑒 ′   −  𝑐𝑒 𝑓𝑒 + 𝑑𝑒 𝑓𝑒 −𝑤𝑖  . 

The conclusion follows from the monotonicity of the cost functions 𝑐𝑒 ′  and 𝑑𝑒 .  

First part of the proof. Suppose that no player is allowed to use all edges. Associate with 

each strategy profile (which assigns an edge in 𝐺 to each player) the total weight 𝑤  of the 

players whose edge follows another allowable edge. There is obviously a unique strategy 

with 𝑤 = 0, which trivially satisfies the following: 

Each of the players is either not allowed to or would not benefit from moving from 

his edge to the preceding edge.  

Since 𝑤  cannot be greater than the total weight of the players, to prove that an equilibrium 

exists it suffices to establish the following.  

Claim 2. For every strategy profile satisfying 𝑄 that is not an equilibrium, there is another 

strategy profile satisfying 𝑄 with a higher 𝑤 .  

To prove Claim 2, consider a strategy profile satisfying 𝑄 such that the cost to some player 𝑖 

can be reduced by moving 𝑖 to some (allowable) edge 𝑒, which is necessarily the one 

following 𝑖’s edge 𝑒′ . Such a move creates a strategy profile with a lower flow on 𝑒′  and a 

(𝑄) 
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higher flow on 𝑒. That strategy profile may or may not have property 𝑄. However, due to the 

monotonicity of the costs, 𝑄 does not hold only if for one or more of the players using 𝑒 

moving to (the preceding) edge 𝑒′  is both allowed and beneficial. In that case, move the 

highest-weight such player from 𝑒 to 𝑒′ , and repeat doing that until no more players can 

benefit from that move. Necessarily, player 𝑖 is not one of the movers. Indeed, 𝑖’s incentive 

to return to 𝑒′  can only get lower with each move, and therefore Claim 1 implies that 

𝑤𝑗 < 𝑤𝑖  for each of the movers 𝑗. Thus, the strategy profile reached after the last move 

differs from the original one in that player 𝑖 uses 𝑒 rather than 𝑒′ , and the opposite is true 

for some (possibly, empty) set of other players. The total weight 𝑤 ′  of the players in that set 

must satisfy 𝑤 ′ < 𝑤𝑖 . Otherwise, for each of these players 𝑗, the monotonicity of the cost 

functions and the fact that 𝑤𝑗 < 𝑤𝑖  would imply the following inequality: 

 𝑐𝑒 ′  𝑓𝑒 ′  + 𝑑𝑒 ′  𝑓𝑒 ′ − 𝑤𝑗   −  𝑐𝑒 𝑓𝑒 + 𝑤𝑗  + 𝑑𝑒 𝑓𝑒  

≥  𝑐𝑒 ′  𝑓𝑒 ′ − 𝑤 ′ + 𝑤𝑖 + 𝑑𝑒 ′  𝑓𝑒 ′ − 𝑤 ′  

−  𝑐𝑒 𝑓𝑒 + 𝑤 ′ + 𝑑𝑒 𝑓𝑒 + 𝑤 ′ −𝑤𝑖  . 

However, the left-hand side is (strictly) negative at least for the player 𝑗 who was the last to 

move from 𝑒 to 𝑒′  (otherwise the move would not have benefited him), while the right-hand 

side is (strictly) positive since it gives the reduction in the cost to 𝑖 when he moved from 𝑒′  

to 𝑒. This shows that the above inequality, and hence also 𝑤 ′ ≥ 𝑤𝑖 , actually cannot hold.  

The result that 𝑤𝑖 − 𝑤 ′  is positive means that 𝑓𝑒  is higher, and 𝑓𝑒 ′  is lower, than the 

respective flows in the original strategy profile. Therefore, there are still no players who 

would gain from moving to 𝑒 from the third edge in 𝐺 or from moving to that edge from 𝑒′ . 

Hence, 𝑄 holds for both the original and the new strategy profiles. In the latter, the total 

weight 𝑤  of the players whose edge follows another allowable edge is higher by 𝑤𝑖 −𝑤 ′  

than in the former. This completes the proof of Claim 2. 

Second part of the proof. Suppose that Γ has some players 𝑖 with three allowable edges, 

possibly in addition to players 𝑗 with only one or two. Re-index the players in the game in 

such a way that, for some 𝑘 ≥ 1, the inequalities 𝑗 < 𝑘 ≤ 𝑖 hold for all players 𝑖 and 𝑗 as 

above, who differ in their number of strategies, and 𝑤𝑗 ≥ 𝑤𝑖  holds for all 𝑖 and 𝑗 with 𝑗 < 𝑖. 

(The cardinality assumption in the definition of network congestion game implies that such 

re-indexing is possible.) For each player 𝑖, define Γ𝑖  as the game obtained from Γ by “taking 

out” 𝑖 and all the higher-index players, so that these players do not choose routes and do 

not contribute to the flows. For example, Γ𝑘  is the game in which only the players in Γ with 

one or two allowable edges participate. This game may actually have no players. 

It follows from the first part of the proof that Γ𝑘  has an equilibrium. To prove that an 

equilibrium exists also in every Γ𝑖  with 𝑖 > 𝑘 (and hence in Γ), it suffices to show that, for 

every such 𝑖, the existence of an equilibrium in Γ𝑖−1 implies the same for Γ𝑖 . In fact, for any 

equilibrium in Γ𝑖−1, simply choosing a best response strategy for player 𝑖 gives an 

equilibrium in Γ𝑖 . Clearly, any player 𝑗 whose edge is different from the edge 𝑒 chosen by 𝑖 

still cannot gain from changing his strategy. (His incentive to do so is, if anything, even lower 

than before.) The same is true if 𝑗’s strategy is 𝑒. Since 𝑤𝑗 ≥ 𝑤𝑖 , and since moving from 𝑒 to 

another edge 𝑒′  is not beneficial to 𝑖, it follows from Claim 1 that the same applies to 𝑗. ∎ 
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Figure 3. Two-terminal networks with the topological existence property. Every weighted network congestion 
game on any of these networks has a (pure-strategy Nash) equilibrium. The two gray curves in the parallel 
network (a) are optional edges.  

By Propositions 1 and 2, any network that can be constructed by connecting in series two or 

more parallel networks as in Figure 3(a) (for example, the figure-eight network) has the 

topological existence property. The next proposition shows that the property also holds for 

the networks in Figure 3(b)–(e), which cannot be constructed in this way. Indeed, the 

Wheatstone network (Figure 3(e)) is not even series-parallel, meaning that it cannot be 

constructed from networks with single edges by any sequence of operations of connecting 

networks in series or in parallel.  

Proposition 3. Every weighted network congestion game Γ on any of the networks in Figure 

3 has an equilibrium. 

This result is an immediate corollary of Proposition 2 and the following lemma. The lemma 

shows that every network congestion game Γ as in Proposition 3 is similar (see Section 2.1) 

to a game on a particular parallel network. That game is obtained from Γ by a procedure 

(“parallelization”) that involves transformation of some cost functions with self effect (𝑐𝑒 ’s) 

into cost functions without self effect (𝑑𝑒 ’s) and vice versa. This suggests that the two forms 

are intimately connected. 

Lemma 1. Every weighted network congestion game Γ on any of the networks 𝐺 in Figure 3 

is similar to such a game Γ  on a parallel network with three edges. 

Proof. Suppose that 𝐺 is one of the networks in Figure 3(b)–(e). (For (a), the assertion is 

trivial.) Let 𝐺  be the parallel network obtained from 𝐺 by contracting [7] edges 𝑒′  and 𝑒″  (or 

only the former, if 𝐺 has only four edges), that is, performing the (one-sided) inverse of 

terminal subdivision (Figure 1(c)), which eliminates the edge and its non-terminal vertex. 

Each of the three routes in 𝐺  corresponds to a route in 𝐺, in that the former’s single edge is 

the unique edge in the latter that did not undergo contraction. This correspondence 

between routes is one-to-one and onto, with one exception. The single exception is route 

𝑒4𝑒1𝑒3 in the Wheatstone network (e), which does not have a corresponding route in the 

parallel network. The omission of that route is inconsequential since, by symmetry, it 

suffices to consider network congestion games on the Wheatstone network in which the 

allowable direction of 𝑒1 is from 𝑢 to 𝑣. Thus, it suffices to consider weighted network 

(a) (b) (c) (d) (e) 
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congestion games Γ on 𝐺 in which every route 𝑟 that is allowable for some player includes a 

unique edge that also belongs to the corresponding parallel network 𝐺 . The next step is to 

describe the corresponding weighted network congestion game Γ  on 𝐺 . 

The following description concerns the case in which 𝐺 is the Wheatstone network (e), so 

that 𝐺  is the parallel network with edges 𝑒1, 𝑒3 and 𝑒4. The other three cases ((b)–(d)) are 

similar (actually, simpler). The game Γ  on 𝐺  inherits its set of players, their weights and the 

strategy sets from the game Γ on 𝐺 (with the identification of routes in 𝐺 and 𝐺  described 

above). The cost functions in Γ  (which are marked by a tilde) are derived from those in Γ 

(without a tilde) as follows. For 0 ≤ 𝑦 < 𝑥 ≤ 𝑤, where 𝑤 =  𝑤𝑖
𝑖  is the players’ total 

weight,  

𝑐 𝑒1
 𝑥 = 𝑐𝑒1

 𝑥 ,                                    𝑑 𝑒1
 𝑦 = 𝑑𝑒1

 𝑦 , 

𝑐 𝑒3
 𝑥 = 𝑐𝑒3

 𝑥 − 𝑑𝑒 ″  𝑤 − 𝑥 , 𝑑 𝑒3
 𝑦 = 𝑑𝑒3

 𝑦 − 𝑐𝑒 ″  𝑤 − 𝑦 , 

𝑐 𝑒4
 𝑥 = 𝑐𝑒4

 𝑥 − 𝑑𝑒 ′  𝑤 − 𝑥 , 𝑑 𝑒4
 𝑦 = 𝑑𝑒4

 𝑦 − 𝑐𝑒 ′  𝑤 − 𝑦 . 

It remains to show that the games Γ and Γ  are similar. That is, for every player 𝑖, the 

difference between the costs to 𝑖 in Γ and Γ  can be expressed as a function of the route 

choices of the other players. If 𝑖’s route includes 𝑒1 (and, thus, does not include 𝑒3 or 𝑒4), the 

difference can be written as  

𝑐𝑒 ′ (𝑤4
−𝑖 + 𝑤𝑖) + 𝑑𝑒 ′ (𝑤4

−𝑖) + 𝑐𝑒 ″ (𝑤3
−𝑖 + 𝑤𝑖) + 𝑑𝑒 ″ (𝑤3

−𝑖), 

where 𝑤𝑗
−𝑖  is the total weight of the players other than 𝑖 whose route does not include 𝑒𝑗 . 

The same expression gives the difference between the costs in Γ and Γ  also if 𝑖’s route 𝑟 

does include either 𝑒3 or 𝑒4. For example, if 𝑟 includes (only) the former, the difference is  

 𝑐𝑒 ′  𝑤 − 𝑓𝑒4
 + 𝑑𝑒 ′  𝑤 − 𝑓𝑒4

− 𝑤𝑖 + 𝑐𝑒3
(𝑓𝑒3

) + 𝑑𝑒3
(𝑓𝑒3

− 𝑤𝑖) 

−  𝑐 𝑒3
(𝑓𝑒3

) + 𝑑 𝑒3
(𝑓𝑒3

− 𝑤𝑖) , 

which equals (3). Thus, the difference is independent of 𝑖’s route, as had to be shown. ∎ 

Parenthetically, the assertion of Lemma 1 cannot be strengthened to isomorphism between 

Γ and Γ . In other words, the class of weighted network congestion games on the networks in 

Figure 3 and the subclass obtained by only considering the parallel networks shown in (a) are 

not equal. For example, it is not difficult to see that the 2 × 2 game in Figure 2(a) cannot be 

presented as a weighted network congestion game on any parallel network. 

3.2 Networks without the topological existence property 
A network without the topological existence property can be obtained from a network 

homeomorphic to one of those in Figure 3 (with that proviso that the two optional edges in 

(a) actually exist) simply by the addition of a single edge (with existing end vertices). Any 

such addition will have that effect. This is because the resulting network necessarily has one 

or more of those in Figure 4 embedded in it in the wide sense. As the proof of the following 

proposition shows, there are three-player games on the networks in Figure 4(b)–(e) and a 

four-player game on the four-edge parallel network (a) which do not have an equilibrium. It 

can be shown that these numbers of players are minimal for non-existence of equilibrium. In 

(3) 
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particular, every weighted network congestion game with three or fewer players on any 

parallel network has an equilibrium.  

Proposition 4. A weighted network congestion game without an equilibrium exists on each 

of the networks in Figure 4. 

Proof. The proof comprises the following four examples.  

Example 1. Four players, with weights 𝑤1 = 1, 𝑤2 = 2 and 𝑤3 = 𝑤4 = 3, choose routes in 

the network in Figure 4(a). Each player has two allowable routes: “left”, which for player 1, 

2, 3 and 4 means 𝑒2, 𝑒2, 𝑒1 and 𝑒3, respectively, and “right”, which means 𝑒3, 𝑒4, 𝑒2 and 𝑒4, 

respectively. Edge 𝑒1 has the constant cost 𝑐𝑒1
= 16. The other edges have variable costs, 

with 𝑐𝑒2
 1 = 2, 𝑐𝑒2

 3 = 3, 𝑐𝑒2
 4 = 15, 𝑐𝑒2

 5 = 17; 𝑐𝑒3
 1 = 4, 𝑐𝑒3

 3 = 10, 𝑐𝑒3
 4 = 14 

and 𝑐𝑒4
 2 = 2, 𝑐𝑒4

 3 = 11, 𝑐𝑒4
 5 = 12. In addition, 𝑑𝑒 = 0 for all edges 𝑒 except 𝑒4, for 

which 𝑑𝑒4
 0 = 0,𝑑𝑒4

 2 = 1 and 𝑑𝑒4
 3 = 6. It can be verified that “left” is the better 

choice for player 3, player 1 or player 4 if and only if the strategy of player 2, player 3 or 

player 1, respectively, is also “left”. Therefore, in any equilibrium where player 2 plays “left” 

or “right”, the other players necessarily do the same. However, this means that in the former 

case player 2 can decrease his cost from 3 to 2 by (unilaterally) changing his choice to 

“right”, and in the latter case, he can decrease it from 18 to 17 by changing to “left”. This 

proves that an equilibrium does not exist. 

Example 2. Three players, with weights 𝑤1 = 3 and 𝑤2 = 𝑤3 = 4, choose routes in the 

network in Figure 4(b) or in that in (c). The only restrictions on route choices are that edge 

𝑒2 is only allowable to player 2, who is not allowed to use 𝑒1, and 𝑒3 is only allowable to 

player 3, who is not allowed to use 𝑒4. Thus, there are two allowable routes for each player: 

“left”, which includes 𝑒5, and “right”, which does not. The two “private” edges have constant 

costs: 𝑐𝑒2
= 7 and 𝑐𝑒3

= 13. The other edges have variable costs: 𝑐𝑒1
 𝑥 = 𝑥, 𝑐𝑒4

 𝑥 =

0.75 0.25𝑥 − 2 9 + 15 and 𝑐𝑒5
 𝑥 = 𝑥. For all edges 𝑒, 𝑑𝑒 = 0. It can be verified that “left” 

is the better choice for player 1, player 2 or player 3 if and only if the strategy of player 2, 

player 3 or player 1, respectively, is “right”. It follows that an equilibrium does not exist. 

 

Figure 4. Networks without the topological existence property. On each of these networks there is a weighted 
network congestion game that does not have a (pure-strategy Nash) equilibrium.  
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Example 3. Three players, with weights 𝑤1 = 1 and 𝑤2 = 𝑤3 = 2, choose routes in the 

network in Figure 4(d). The only restrictions are that edge 𝑒2 is only allowable to player 2, 

who is not allowed to use 𝑒1, and 𝑒3 is only allowable to player 3, who is not allowed to use 

𝑒4. Thus, there are two allowable routes to each player: “left”, which does not include 𝑒5, 

and “left”, which does. The two “private” edges have constant costs: 𝑐𝑒2
= 3 and 𝑐𝑒3

= 9. 

The other edges have variable costs, with 𝑐𝑒1
 1 = 1, 𝑐𝑒1

 2 = 2, 𝑐𝑒1
 3 = 8; 𝑐𝑒4

 1 =

2, 𝑐𝑒4
 2 = 10, 𝑐𝑒4

 3 = 12 and 𝑐𝑒5
 𝑥 = 4𝑥. For all edges 𝑒, 𝑑𝑒 = 0. It can be verified that 

“left” is the better choice for player 1, player 2 or player 3 if and only if the strategy of player 

2, player 3 or player 1, respectively, is “right”. It follows that an equilibrium does not exist. 

Example 4. Three players, with weights 𝑤1 = 1, 𝑤2 = 5 and 𝑤3 = 10, choose routes in the 

network in Figure 4(e). The only restrictions are that edge 𝑒2 is only allowable to player 2, 

who is not allowed to use 𝑒1, and 𝑒3 is only allowable to player 3, who is not allowed to use 

𝑒4. Thus, there are two allowable routes to each player: “left”, which does not include 𝑒5, 

and “left”, which does. Three of the edges have constant costs, 𝑐𝑒2
= 1.3, 𝑐𝑒3

= 6.25 and 

𝑐𝑒5
= 40, and three have variable costs, 𝑐𝑒1

 𝑥 = 2𝑥, 𝑐𝑒4
 𝑥 = 5𝑥 and 𝑐𝑒6

 𝑥 = 3.55 𝑥. For 

all edges 𝑒, 𝑑𝑒 = 0. It can be verified that “left” is the better choice for player 1, player 2 or 

player 3 if and only if the strategy of player 2, player 3 or player 1, respectively, is “right”. It 

follows that an equilibrium does not exist. 

Another example of a game without an equilibrium on the network in Figure 4(e) can be 

obtained from Example 3 by simply setting 𝑐𝑒6
= 0. ∎ 

3.3 Characterization 
The main result in this section is that, for weighted network congestion games, the networks 

in Figure 3 and Figure 4 are in a sense the only networks with and without the topological 

existence property, respectively. It is based on a graph theoretic result [27, Proposition 2.1], 

which identifies one or more of the networks in these figures in every two-terminal network.  

Lemma 2. For a two-terminal network 𝐺, the following conditions are equivalent: 

(i) 𝐺 is homeomorphic to one of the networks in Figure 3, or to a network made of several 

such networks connected in series. 

(ii) None of the networks in Figure 4 is embedded in the wide sense in 𝐺. 

(iii) 𝐺 has the topological existence property. 

Proof. Networks homeomorphic to one of those presented in Figure 3 are a special case of 

nearly parallel networks (see Section 2.2). They differ from the other nearly parallel 

networks, which are homeomorphic to one of those shown in Figure 5, in that the four-edge 

parallel network (Figure 4(a)) is not embedded in them in the wide sense. The networks in 

Figure 4(b)–(e) are not nearly parallel. They are called the forbidden networks in [27], where 

it is proved that one, and only one, of the following two conditions holds for every two-

terminal network 𝐺: 

(i') 𝐺 is nearly parallel, or it consists of two or more nearly parallel networks connected 

in series. 

(ii') One or more of the forbidden networks is embedded in the wide sense in 𝐺. 
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If a network 𝐺 satisfies (ii') but not (i'), then it does not satisfy (i) or (ii). It hence follows from 

Proposition 4 that 𝐺 also does not satisfy (iii). If 𝐺 satisfies (i') but not (ii'), there are two 

cases to consider. If (i) does not hold, then (since (i') does hold) the network in Figure 4(a) is 

embedded in the wide sense in 𝐺. Hence, (ii) does not hold and, by Example 1, the same is 

true for (iii). If (i) does hold, then it follows from Propositions 1 and 3 that (iii) also holds, 

which by Proposition 4 implies the same for (ii). This completes the proof of the equivalence 

of conditions (i), (ii) and (iii): either all of them hold, or none of them holds. ∎ 

An additional, strikingly simple characterization of networks with the topological existence 

property follows as an immediate corollary from the following observation. The four or five 

routes in each of the networks in Figure 4 have the property that no two routes pass through 

any edge in opposite directions. Each of the operations that define embedding in the wide 

sense can obviously only increase the number of routes with that property or leave it 

unchanged. By contrast, the maximum number of such routes in each of the networks in 

Figure 3 is three. In view of Lemma 2, this implies that, to tell whether a given network 𝐺 has 

the topological existence property, is suffices to record the maximum number of routes as 

above in the networks 𝐺 is made of, in the sense of connection of networks in series. This 

proves the following. 

Theorem 2. For a two-terminal network 𝐺 that is not made of two or more such networks 

connected in series, a weighted network congestion game without an equilibrium exists on 

𝐺 if and only if there are four routes in the network such that no two routes pass through 

any edge in opposite directions. 

It follows from Theorem 2 that there is, for example, a weighted network congestion game 

on the (underlying undirected) network in Figure 2(b) that does not have an equilibrium. This 

is of course also an immediate corollary of the result that every 2 × 2 game can be 

presented as such a weighted network congestion game (see the proof of Theorem 1).  

One may wonder whether the non-existence in of four routes as in Theorem 2 in a network 

actually guarantees more than just the existence of equilibrium, that is, whether there are 

any stronger properties that are common to all weighted network congestion games on such 

networks. One such property might be the existence of a (generalized ordinal) potential (see 

Section 2.1). However, as the following example shows, this property is in fact not 

guaranteed. Even in a three-player game on a three-edge parallel network, improvement 

(and even best-improvement) cycles may exist. Although such a game always has an 

equilibrium, a specific order of moves may be required to get there.  

Example 5. Three players, with weights 𝑤1 = 𝑤2 = 1 and 𝑤3 = 2, choose routes in the 

parallel network with edges 𝑒1 , 𝑒2 , 𝑒3. Each player 𝑖 can use all edges except 𝑒𝑖 . The cost 

functions are: 𝑐𝑒1
 𝑥 = 16.75 − 9/𝑥, 𝑐𝑒2

 𝑥 = 3𝑥 + 6, 𝑐𝑒3
 𝑥 = 8𝑥,𝑑𝑒1

 𝑥 = 𝑥2 ,𝑑𝑒2
 𝑥 =

𝑑𝑒3
 𝑥 = 0. It can be verified that, starting with the strategy profile in which players 1 and 2 

use 𝑒3 and player 3 uses 𝑒2, the following is a (best-) improvement cycle: player 1 moves to 

𝑒2, player 2 moves to 𝑒1, player 3 moves to 𝑒1, player 1 moves to 𝑒3, player 2 moves to 𝑒3, 

and player 3 moves to 𝑒2, thus completing the cycle. Note that an equilibrium would be 

(immediately) reached if player 2 (rather than 1) moved first (to 𝑒1), and a different 

equilibrium would be reached if player 3 (rather than 2) moved second (to 𝑒1).  
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Figure 5. The parallel network (a) has the topological existence property for weighted network congestion 
games with mandatory self effect. The networks (b)–(e) do not have that property. Gray ellipsis mark and 
curve represent (any number of) optional edges. 

4 Related Models and Open Problems  

4.1 Player-specific costs 
The topological existence property for network congestion games with player-specific costs 

is not equivalent to the corresponding property for weighted network congestion games 

(Section 3). Specifically, the former is less demanding: it holds not only for the networks 𝐺 

that satisfy condition (i) (or (ii)) in lemma 2 but also for certain other networks. In particular, 

an equilibrium exists in every network congestion games with player-specific costs on any 

parallel network, regardless of the number of edges [25]. By a parallelization argument 

similar to that in Lemma 1 it follows that the topological existence property actually holds 

for all nearly parallel networks that are homeomorphic to one of those in Figure 5 (a)–(d) 

[29].7  

The main open problem regarding the topological existence property for network congestion 

games with player-specific costs is whether, and to what extent, the property holds for 

networks that are not nearly parallel or made of several nearly parallel networks connected 

in series. In particular, it is not known whether the forbidden networks (Figure 4(b)–(e)) have 

this property. A partial result is that each of the following single-edge additions gives a 

network without the topological existence property [29]: an edge with end vertices 𝑜 and 𝑢 

in Figure 4(b) (equivalently, 𝑣 and 𝑑 in (c) or 𝑜 and 𝑑 in (d)), end vertices 𝑢 and 𝑣 in Figure 

4(e), or end vertices 𝑜 and 𝑑 in the Wheatstone network (Figure 3(e)).  

From a computational complexity point of view, finding an equilibrium in a network 

congestion game with player-specific costs on a parallel network (that is, a singleton 

congestion game), and hence also in such a game on each of the nearly parallel networks 

mentioned above, is not difficult. Starting with any strategy profile, there is a best-

                                                            
7 The parallelization argument partially applies also to the remaining nearly parallel networks, which are those 

homeomorphic to a network as in Figure 5(e) [29]. The limitation is that the argument only applies to games in 

which all the allowable routes that include both 𝑢 and 𝑣 pass these vertices in the same order: either 𝑢 first or 𝑣 

first. 
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improvement path that ends at an equilibrium, with a length that is polynomial in the 

number of players and strategies [25]. For a network congestion game with player-specific 

costs on a general network, it may be computationally difficult to determine whether an 

equilibrium exists. Ackermann and Skopalik [1] showed that this problem is in fact NP-

complete even with only two players. 

4.2 Resource-symmetric games 
In a resource-symmetric (often referred to simply as “symmetric”) weighted network 

congestion game, all players share the same set of allowable edges, which without loss of 

generality may be assumed to include all edges. The topological existence property for such 

games is less demanding than in the general case considered in Section 3. In particular, it 

holds for all parallel networks. This can easily be proved constructively by employing the 

greedy best response algorithm [15] used in the second part of the proof of Proposition 2, 

that is, by letting the players enter the game one by one with heavier players entering first. 

As is the case for network congestion games with player-specific costs (Section 4.1), a 

parallelization argument extends this result to the nearly parallel networks in Figure 5(b)–(d) 

(and partially to (e); see footnote 7) [29]. However, whether every network that has the 

topological existence property for network congestion games with player-specific costs also 

has that property for resource-symmetric weighted network congestion games, or vice 

versa, is an open problem. For some of the examples (in Section 4.1) of networks without 

the first property, it is not known whether or not the second property holds, and for other 

networks, the reverse is true. An example of the latter is the network with linearly 

independent routes that is obtained from that in Figure 4(c) by subdividing 𝑒1 and joining 

the resulting new vertex with 𝑜 by a new edge. A resource-symmetric weighted network 

congestion games on this network that does not have an equilibrium is presented in [29]. 

4.3 Mandatory self effect 
Another natural subclass of weighted network congestion games is obtained by mandating 

self effect: 𝑑𝑒  must be identically zero for all edges 𝑒. Like resource symmetry, mandatory 

self effect adds to the set of networks with the topological existence property all parallel 

networks with more than three edges (Figure 5(a)). However, unlike resource symmetry, it 

adds essentially only these networks.  

The reason why restriction to cost functions with self effect guarantees the existence of 

equilibrium in every weighted network congestion game on a parallel network is that it 

entails that the cost of an edge is the same for every player who is allowed to use it. This 

equality implies that the game has a (generalized ordinal) potential [10, 11]. The reason why 

that restriction does not extend the topological existence property to other nearly parallel 

networks with more than three routes is that games that satisfy the restriction but do not 

have an equilibrium exist on each of the networks in Figure 5(b)–(e). The game presented in 

the following example is very similar to that in Example 1. In fact, the latter can be obtained 

from the former by parallelization (see the proof of Lemma 1).  

Example 6. Four players, with weights 𝑤1 = 1, 𝑤2 = 2 and 𝑤3 = 𝑤4 = 3, choose routes in 

one of the networks in Figure 5(b)–(e). Each player has two allowable routes, each of which 

includes exactly one of the edges 𝑒1, 𝑒2, 𝑒3 and 𝑒4. The “left” route for player 1, 2, 3 and 4 
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includes 𝑒2, 𝑒2, 𝑒1 and 𝑒3, respectively, and the “right” route includes 𝑒3, 𝑒4, 𝑒2 and 𝑒4, 

respectively. Edge 𝑒1 has the constant cost 𝑐𝑒1
= 16. Edges 𝑒2, 𝑒3, 𝑒4 and 𝑒′  have variable 

costs, with 𝑐𝑒2
 1 = 2, 𝑐𝑒2

 3 = 3, 𝑐𝑒2
 4 = 15, 𝑐𝑒2

 5 = 17; 𝑐𝑒3
 1 = 4, 𝑐𝑒3

 3 =

10, 𝑐𝑒3
 4 = 14; 𝑐𝑒4

 2 = 9, 𝑐𝑒4
 3 = 18, 𝑐𝑒4

 5 = 19 and 𝑐𝑒 ′  6 = 1, 𝑐𝑒 ′  7 = 6, 𝑐𝑒 ′  9 =

7. For all other edges 𝑒 (if the network has them), 𝑐𝑒 = 0. In addition, 𝑑𝑒 = 0 for all 𝑒. It can 

be verified that “left” is the better choice for player 3, player 1 or player 4 if and only if the 

strategy of player 2, player 3 or player 1, respectively, is also “left”. Therefore, in any 

equilibrium where player 2 plays “left” or “right”, the other players necessarily do the same. 

However, this means that in the former case player 2 can decrease his cost from 10 to 9 by 

(unilaterally) changing his choice to “right”, and in the latter case, he can decrease it from 19 

to 18 by changing to “left”. This proves that an equilibrium does not exist. 

Using arguments similar to those in the proof of Lemma 2, it is now not difficult to prove the 

following. 

Theorem 3. For a two-terminal network 𝐺 that is not made of two or more such networks 

connected in series, the following conditions are equivalent: 

(i) 𝐺 is homeomorphic to a parallel network, or it has at most three routes that do not pass 

through any edge in opposite directions. 

(ii) An equilibrium exists in very weighted network congestion game on 𝐺 in which all cost 

functions have self effect. 

For networks that do not satisfy condition (i) in Theorem 3, it may be computationally 

difficult to decide whether an equilibrium exists in a given weighted network congestion 

game where all cost functions exhibit self effect. Dunkel and Schulz [8] showed, in fact, that 

without any assumptions on the network topology this decision problem is NP-complete 

even in the special cases of resource symmetry or only four players.  

The equilibrium existence decision problem is NP-complete even in the case of parallel 

networks if the players also have different cost functions [8]. Thus, with player-specific 

weights and costs, the network topology is essentially irrelevant to the complexity of 

deciding whether an equilibrium exists. A game of this kind may have no equilibrium even on 

a three-edge parallel network with only three players [25]. 

4.4 Matroid congestion games 
Every network topology entails a particular set of combinatorial restrictions on the players’ 

strategy sets in all corresponding network congestion games. For example, in every such 

game, different strategies are incomparable in that the set of edges in one strategy is not a 

subset of that in another. The restrictions take an extreme form in the case of parallel 

networks, which correspond to singleton congestion games. This observation leads to the 

question of whether the existence of equilibrium in this and similar classes of network 

congestion games can be linked directly to the combinatorial structure of a player’s strategy 

space, rather than to the network topology that gives rise to that structure. Specifically, 

Ackermann et al. [2] presented the following combinatorial version of the equilibrium 

existence problem: What is the most general combinatorial structure for which an 
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equilibrium is guaranteed to exist in every corresponding weighted congestion game with 

mandatory self effect, and what is that structure for player-specific costs?  

As Ackermann et al. [2] showed, the most general games of both kinds are matroid 

congestion games, in which the strategy space of each player consists of the bases of a 

matroid on the set of resources. These games and singleton congestion games share the 

property (which reflects the corresponding property of bases of a matroid) that all strategies 

of a player include the same number of resources. However, they allow for much more 

varied and elaborate combinatorial structures, for example, strategy sets that consist of all 

pairs of resources. A noteworthy aspect of the results of Ackermann et al. is that they do not 

take into account how the strategy spaces of different players interweave. This means that 

the existence of equilibrium in weighted congestion games with mandatory self effect and in 

games with player-specific costs may be guaranteed even if some (or all) of the players have 

strategy spaces that do not consist of the bases of a matroid (for example, if some strategies 

of a player include fewer edges than others). The results only entails that, with such strategy 

sets, it is possible to systematically substitute a different edge for each allowable edge for 

each player, such that with the modified strategy sets the existence of equilibrium is not 

guaranteed.  

The positive part of the solution to the combinatorial equilibrium existence problem does 

apply to network congestion games [2]. However, its usefulness for the graph-theoretic 

version studied in this paper is limited. This assertion is based on the following fact.  

Proposition 5. In a network congestion game on a two-terminal network 𝐺, the strategy set 

of a player 𝑖 consists of the bases of a matroid on the set of edges if and only if the sub-

network of 𝐺 that includes only 𝑖’s allowable edges is parallel or is made of several parallel 

networks connected in series. 

Proof. It suffices to show that the first condition (the matroid property) is equivalent to the 

following graph theoretic one: all allowable routes for 𝑖 have the exact same vertices and 

pass them in the same order. Since different routes have incomparable sets of edges, these 

sets of edges are the bases of a matroid if and only if they satisfy the bijective exchange 

axiom [40]: there is a one-to-one correspondence between the sets of edges in any pair of 

allowable routes, such that replacing any edge 𝑒 in one route with the corresponding edge 

𝑒′  in the other route gives a third (or the same) route. Clearly, the corresponding edges 𝑒 

and 𝑒′  must have the same end vertices. Therefore, the bijective exchange axiom is 

equivalent to the above graph theoretic condition. ∎  
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