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Abstract

Following Kreps (1979), I consider a decision maker who is uncertain about her
future taste. This uncertainty leaves the decision maker with a preference for �exibil-
ity: When choosing among menus containing alternatives for future choice, she weakly
prefers menus with additional alternatives. Standard representations accommodating
this choice pattern cannot distinguish tastes (indexed by a subjective state space) and
beliefs (a probability measure over the subjective states) as di¤erent concepts. I allow
choice between menus to depend on objective states. My axioms provide a representa-
tion that uniquely identi�es beliefs, provided objective states are su¢ ciently relevant
for choice. I suggest this result as a choice theoretic foundation for the assumption,
commonly made in the (incomplete) contracting literature, that contracting parties
who know each others�ranking of contracts, also share beliefs about each others�fu-
ture tastes in the face of unforeseen contingencies.

Keywords: Preference for Flexibility, Unique Beliefs, Unforeseen Contingencies,
Incomplete Contracts

1. Introduction

The expected utility model of von Neumann and Morgenstern (1944, henceforth vNM) ex-

plains choice under risk by considering probabilities and tastes separately. In the context

of choice under subjective uncertainty, the corresponding separation of beliefs and tastes is

a central concern. For the extreme case where all subjective uncertainty can be captured

by objective states of the world, the works of Savage (1954) and Anscombe and Aumann

(1963, henceforth AA) achieve this separation. In the opposing extreme, where none of the

subjective uncertainty can be captured by objective states, uncertainty can be modeled with

�I thank Roland Benabou and Wolfgang Pesendorfer for their invaluable advice. I am also grateful to
David Dillenberger, Faruk Gul, R. Vijay Krishna, Mark Machina, Eric Maskin, Tymon Tatur, and Justin
Valasek for helpful lessons and discussions.

yDepartment of Economics, Duke University, p.sadowski@duke.edu
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a subjective state space. Kreps (1979, henceforth Kreps) and Dekel, Lipman and Rustichini

(2001, henceforth DLR; a relevant corrigendum is Dekel et al. [2007, henceforth DLRS])1

�nd that the separation is not possible in this case.

In the general case, some, but potentially not all, subjective uncertainty can be captured

by objective states. This paper analyzes a model of choice under such general subjective

uncertainty, which features the AA and DLR models as special cases.2 The model separately

identi�es tastes and beliefs over those tastes, provided that objective states are �relevant

enough.�A tight behavioral characterization of relevant enough is given.

The timing of choice is as follows: In period 1, the decision maker (DM) chooses an

opportunity act. An opportunity act speci�es a menu of alternatives for future choice con-

tingent on the objective state. Between periods 1 and 2 an objective state realizes. In period

2 the act is evaluated and DM gets to choose from the resulting menu. Only period 1 choice

is observed. If objective states do not account for all subjective uncertainty that resolves

between periods 1 and 2, then DM has contingent uncertainty about her future taste. In that

case, commitment to a contingent plan of period 2 choice is costly and one should observe

contingent preference for retaining �exibility: All else being equal, DM prefers an act that

assigns a menu with additional alternatives to any particular state.

This paper provides a representation of such preferences, labeled a representation of

Contingent Preference for Flexibility (CPF). As in DLR, subjective uncertainty is modeled

via a subjective state space, which collects all possible tastes that might govern DM�s choice

in period 2. I call it the taste space. DM conditions her beliefs about her future tastes

on objective states. For any particular state, choice over menus has a subjective expected

utility representation, as in DLR. I show that the central new axiom, Relevant Objective

States, is equivalent to the unique identi�cation of utilities and conditional beliefs in this

representation.

To be more speci�c, let I be the objective state space. An opportunity act, g; assigns a

contingent menu of lotteries over prizes, g (i), to every objective state, i, in I. Accordingly,

the taste space, S, collects all possible vNM rankings of lotteries over prizes. In the case of

�nite I, choice over acts has a CPF representation, if it can be represented by

V (g) =
X
i2I
� (i)

24Z
S

�
max
�2g(i)

Us (�)

�
d� (s ji)

35 ;
where � is a probability measure on I, the realized vNM utility function Us represents taste

1Throughout the paper I refer to the version of their model that represents preference for �exibility.
2In the Savage and Kreps models there is no objective uncertainty (or risk), while AA, DLR, and the

present paper consider a combination of subjective and objective uncertainty.
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s, and � (s ji) is a probability measure on S. The representation suggests that, while the
menu of alternatives DM expects to choose from in stage 2 depends on i and not s; she

anticipates a utility function that depends on s and not i: She also expects to learn s and

i prior to choosing an alternative. The measure � is interpreted as DM�s prior over I and

� (s ji) is interpreted as the belief that taste s occurs, contingent on i.
Theorem 1 takes the CPF representation and the distribution � as given.3 It establishes

that conditional beliefs � (s ji) are unique and utilities Us are unique in an appropriate sense,
if and only if choice between opportunity acts satis�es the Relevant Objective States axiom.

The axiom is formulated in terms of DM�s induced state contingent ranking of menus, which

is derived from her choice over acts. Say that two menus are the same for DM, if for every

contingent ranking the union of those menus is as good as either of the menus individually.

Objective states are relevant, if for any two menus that are not the same for DM, there is a

contingent ranking under which one is preferred over the other.

Theorem 2 states that choice over opportunity acts has a CPF representation if and

only if it satis�es the immediate extensions of the AA and DLR axioms. These axioms

are necessary for a more general representation, where both beliefs and utilities depend on

objective states: For the separation of beliefs and tastes, however, it is important that only

beliefs condition on objective states. Theorem 2 implies that this interpretation is always

possible, as it does not constrain period 1 choice.

The CPF representation is a description of period 1 choice, where DM behaves as if

she held beliefs about possible tastes that might govern period 2 choice. Theorem 1 relates

beliefs, which are parameters of the representation, to period 1 choice behavior. The natural

inductive step is to also employ her beliefs about future tastes to forecast period 2 choice

behavior. On the one hand this requires evaluating the appropriateness of the representation

for a particular application, on the other hand the model can be refuted if its forecasts do

not agree with observation.

Being able to forecast behavior can be important in strategic situations, for example

when one party�s valuation of a contract depends on future actions taken by the other party.

Contracting models usually have to assume that, �rst, parties know each others� ranking

of contracts and that, second, they share common beliefs about future utility-payo¤s when

writing the contract. The �rst assumption raises the complex game theoretic question of

how parties learn each others� ranking of contracts; this question is usually not formally

addressed in applied models and is not my focus here. Instead, I am concerned with the

second assumption. If two parties write a contract in the face of indescribable or unforeseen

3� could be objective. If � is subjective as suggested above, it must also be elicited from choice. I address
this case in Theorem 3.
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contingencies,4 it seems natural that there might be asymmetric information about those

contingencies. In a survey on incomplete contracts, Tirole (1999) speculates that "... there

may be interesting interaction between "unforeseen contingencies" and asymmetric informa-

tion. There is a serious issue as to how parties [...] end up having common beliefs ex ante."

Beliefs that are elicited from a party�s ranking of contracts give choice theoretic substance

to the assumption of common beliefs.5

As an illustrative example of a CPF representation, consider a retailer, who writes a

contract with her supplier today about tomorrow�s order. The demand, s; facing the retailer

tomorrow will be either high (h) or low (l). Today s is unknown to both parties, tomorrow it

will become the private knowledge of the retailer. The only relevant public information that

becomes available tomorrow is consumer con�dence, i; a general market indicator, which

will also be either high (H) or low (L) : Thus, a contract, g; can only condition on consumer

con�dence, not on demand. The most e¢ cient contract might give the retailer some choice

of supply quantities, q, contingent on consumer con�dence; consider this type of contract.

From the retailer�s perspective, the contract is an act in the terminology of this paper.

Routinely one might write down the following objective function for the retailer�s choice

between contracts:

V (g) =
X

i2fH;Lg

� (i)

24 X
s2fh;lg

� (s ji) max
q2g(i)

(Us (q))

35 :
First, take consumer con�dence, i 2 fH;Lg, as given. The retailer can then order any
quantity in g (i). If tomorrow she faces demand s 2 fh; lg, she will choose the quantity q
that maximizes her pro�ts, Us (q) :6 Today she does not know tomorrow�s demand, but she

can assign probabilities conditional on consumer con�dence, � (s ji). She values the menu
g (i) at its expected value,

P
s2fh;lg

� (s ji) max
q2g(i)

(Us (q)). Second, she takes an expectation over

di¤erent levels of consumer con�dence according to a probability distribution �: This is an

example of a CPF representation.7

4Kreps (1992) points out that a subjective taste space naturally accounts for contingencies that are not
just unobservable or indescribable, but unforeseen, at least by the observer.

5Dekel, Lipman and Rustichini (1998-a) note that "... there are very signi�cant problems to be solved
before we can generate interesting conclusions for contracting [...] while the Kreps model (and its modi�ca-
tions) seems appropriate for unforeseen contingencies, [...] there are no meaningful subjective probabilities.
A re�nement of the model that pins down probabilities would be useful."

6While �demand�is actually observable in many situations, unobservable demand levels here simply serve
as convenient labels for the di¤erent unobservable pro�t functions the retailer can conceive of.

7The CPF representation also evaluates more general contracts, where, contingent on consumer con�-
dence, the retailer is given some choice between non-degenerate lotteries, �; over di¤erent quantities. For
example, the contract might specify an action which has probabilistic consequences.
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The example also speaks to the possible strategic value of uniquely ideti�ed beliefs. Sup-

pose the retailer has private knowledge about tomorrow�s demand, contingent on consumer

con�dence. Demand may a¤ect the supplier�s pro�t indirectly, through tomorrow�s choice

of quantity by the retailer. Therefore, when evaluating contracts, the supplier would like

to forecast demand based on the retailer�s beliefs. I show that if the supplier knows the

retailer�s ranking of contracts, then he is able to identify the retailer�s beliefs, � (s ji) ; if and
only if consumer con�dence is relevant.

Section 2 demonstrates that beliefs might be identi�ed in the example above. Section

3 lays out the model and establishes Theorems 1 and 2, �rst for a �nite and then for a

general topological objective state space. Section 4.1 contains Theorem 3, which combines

the two results and elicits � from choice. For the case where � corresponds to objective

probabilities, section 4.2 establishes robustness of elicited beliefs to misspeci�cations of �:

Section 4.3 points out a unique representation without aggregation of contingent preferences

over I: Section 5 characterizes two simple examples of behavioral comparisons in terms of

the unique beliefs. Section 6 discusses related literature. Section 7 comments in more detail

on possible implications for contracting. Section 8 concludes.

2. Illustration of Identi�cation of Beliefs

In this section, I consider three cases of a CPF representation: when none of the subjective

uncertainty can be captured by objective states (irrelevant objective states); when all of the

subjective uncertainty can be captured by objective states (no preference for �exibility); and

the general case, where some, but not all, of the subjective uncertainty can be captured by

objective states (preference for �exibility and relevant objective states). To illustrate these

cases, I use the setup of the above example, but where �nal outcomes are lotteries, �; over

quantities.

� Irrelevant objective states: Suppose that the retailer�s beliefs are independent of con-
sumer con�dence; that is � (h jH ) = � (h jL) = � (h). In this case, her induced ranking of
menus is independent of consumer con�dence and it is without loss of generality to consider

only contracts with g (H) = g (L) : If g is such a non-contingent contract, then

V (g) =
X
s2fh;lg

� (s) max
�2g(H)

(Us (�)) :

5



This is an example of DLR�s representation. To see that beliefs are not identi�ed, consider

a di¤erent probability distribution b� (s) on S = fh; lg and rescaled utilities
bUs (x) = Us (x) � (s)b� (s) :

Then X
s2fh;lg

� (s)

�
max
�2g(H)

Us (�)

�
�
X
s2fh;lg

b� (s)� max
�2g(H)

bUs (�)� .
This is the fundamental indeterminacy in the Kreps and DLR models and variations of those

models.

� No preference for �exibility: Suppose that � (h jH ) = 1 and � (h jL) = 0. Now sub-

jective uncertainty is perfectly captured by the objective states, and it is without loss of

generality to identify h with H and l with L. This implies that none of the contingent rank-

ings exhibit preference for �exibility. One can con�ne attention to contracts with lotteries,

instead of menus, as outcomes: If g (i) = �i is such a fully speci�ed contract, then

V (g) =
X

i2fH;Lg

� (i)Ui (�i) .

This is an example of AA�s state dependent representation.

� Preference for �exibility and relevant objective states: Lastly, suppose the retailer be-
lieves that the probability of high demand is increasing with consumer con�dence; that is

1 > � (h jH ) > � (h jL) > 0. Further suppose that there is another representation of the

same ranking of contracts based on the same prior over objective states, �; but with beliefsb� (s ji) and tastes bUs:
bV (g) = X

i2fH;Lg

� (i)

24 X
s2fh;lg

b� (s ji) max
�2g(i)

�bUs (�)�
35 .

V and bV have to generate the same ranking of contracts.
Consider two quantities (or degenerate lotteries) qh and ql such that the retailer prefers

to receive qh if demand is high and ql if demand is low, that is, Uh (qh) � Uh (ql) > 0 and

Ul (qh)�Ul (ql) < 0: Slightly abusing notation, I denote a lottery that gives qh with probability
� and ql with probability 1� � by �: I denote the menu that contains lotteries � and � by
f�; �g :
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Suppose for some � < � and �; " 2 (0; 1� �) the retailer is indi¤erent between the two
contracts

g =

�
f�+ �; �g if i = H
f�; �g if i = L

�
g0 =

�
f�; �g if i = H
f�+ "; �g if i = L

�
:

� < � implies that � is relevant for the value of these contracts only under taste h. Hence,

g � g0 implies that

� (H)� (h jH ) � (Uh (qh)� Uh (ql)) = � (L)� (h jL) " (Uh (qh)� Uh (ql)) :

An analogous equality must hold for the parameters of bU: Therefore,
� (h jH )
� (h jL) =

"� (L)

�� (H)
=
b� (h jH )b� (h jL) :

Similarly,
� (l jH )
� (l jL) =

b� (l jH )b� (l jL) :
Since � and b� are both probability measures, it follows immediately that � � b�. Standard
arguments, applied to the comparison of contracts which disagree only under state i; imply

that the scaling of the expected utility functions Uh and Ul is unique up to a common linear

transformation. This argument illustrates how identi�cation relies crucially on the fact that

beliefs � over objective states are held �xed.

The above reasoning can be generalized to any �nite state space, I. If a CPF repre-

sentation has the feature that there are at least as many linearly independent probability

measures over the taste space, indexed by i 2 I, as there are relevant tastes, then beliefs are
uniquely identi�ed and the scaling of utilities is uniquely identi�ed up to a common linear

transformation. For the proof of Theorem 1, however, no particular representation is given.

The theorem implies that the CPF representation of any ranking that satis�es Relevance of

Objective States must have this feature.

3. A Model with Unique Beliefs

Consider a two-stage choice problem, where an objective state realizes between the two

stages. In period 2 DM chooses a lottery over prizes. This choice is not modelled explicitly.
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In period 1 DM chooses an opportunity act. Such an act is a state contingent speci�cation

of a set of lotteries (a menu) that contains the feasible alternatives for period 2 choice.

Let Z be a �nite prize space with cardinality k and typical elements x; y; z. �(Z) is the

space of all lotteries over Z with typical elements �; �; 
. When there is no risk of confusion,

x also denotes the degenerate lottery that assigns unit weight to x. Let A be the collection of
all compact subsets of �(Z) with menus A;B;C as elements.8 Endow A with the topology
generated by the Hausdor¤ metric

dh (A;B) = max
n
max
A
min
B
dp (�; �) ;max

B
min
A
dp (�; �)

o

where dp is the Prohov metric, which generates the weak topology, when restricted to lot-

teries.

Further, let I be an objective state space with elements i; j. Let F be a �-algebra on I.

Two cases have to be distinguished: If I is �nite, F is assumed to be the �-algebra generated
by the power set of I. If I is a general topological space, then F is the Borel �-algebra.

Let G be the set of all opportunity acts with typical elements g; h. An opportunity act is

a measurable function g : I ! A. If state i realizes, DM gets to choose an alternative from

the menu g (i) 2 A. This choice is not explicitly modeled. � is a binary relation on G�G;
< and � are de�ned the usual way. G can be viewed as a product space generated by the

index set I, G =
Q
i2I
A. Thus, it can be endowed with the product topology, based on the

topology de�ned on A.
The following concepts are important throughout the paper.

De�nition 1: The convex combination of menus is de�ned as

pA+ (1� p)B := fp� + (1� p) � j� 2 A; � 2 B g :

The convex combination of opportunity acts is de�ned, such that

(pg + (1� p)h) (i) := pg (i) + (1� p)h (i) :

To de�ne DM�s induced ranking of menus A and B contingent on event D 2 F , consider
acts gAD and g

B
D that give menu A or B, respectively, in event D and some arbitrary but �xed

default menu, A�; in the event not D. Comparing gAD and g
B
D induces a ranking �D over

8Compactness is not essential. If menus were not compact, maximum and minimum would have to be
replaced by supremum and in�mum, respectively, in all that follows.
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menus. In the context of the model, �D turns out to be independent of A�.

De�nition 2: Fix an arbitrary menu A�2 A. For D 2 F and A 2 A, de�ne gAD by

gAD (i) :=

�
A for i 2 D
A� otherwise

:

Let the contingent ranking �D be the induced binary relation on A�A, A �D B if and

only if gAD � gBD. <D and �D are de�ned the usual way. An event D 2 F is nonnull, if there

are A;B 2 A with A �D B.

In period 2, objects of choice are lotteries over the prize space. The taste space (the

collection of all conceivable period 2 tastes) is the collection of all vNM rankings of lotteries.

The following de�nition is due to DLRS.

De�nition 3:

S =

(
s 2 Rk

�����X
t

st = 0 and
X
t

s2t = 1

)
is the taste space.9

S collects all possible realized vNM utilities, twice normalized. Every taste in S is a vec-

tor with k components where each entry can be thought of as specifying the relative utility

associated with the corresponding prize.10

De�nition 4: Call (�; �; U) a Contingent Preference for Flexibility (CPF) representation
of the preference relation �, if � is a probability measure on I; � = f� (: ji)gi2I is a family
of probability measures on S, and U = fUs (:)gs2S is a family of vNM utilities where Us
represents taste s and the objective function

V (g) = E�

24Z
S

�
max
�2g(i)

Us (�)

�
d� (s ji)

35
is well de�ned and represents � :

9DLRS refer to S as the universal state space.
10In the context of the representation theorem in DLRS, as in the theorems that follow, there is clearly

always a larger taste space, also allowing a representation of �D, in which multiple tastes represent the same
ranking of lotteries.
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E� denotes an appropriately de�ned expectation. The following two subsections consider

I to be a �nite and a general topological space, respectively.

3.1. Finite Objective State Space

Assume that I is �nite and let i; j 2 I also denote the elementary events of the ��algebra
F . Then the CPF representation (�; �; U) corresponds to the objective function

V (g) =
X
i2I
� (i)

24Z
S

�
max
�2g(i)

Us (�)

�
d� (s ji)

35 :
If Us is a vNM representation of taste s, then it must have the form

Us (�) = l(s)(s � �) + c(s); where s � � is the dot product of state s and lottery �, l (s)
is the �intensity� of taste s and c (s) is some constant. The relative intensity of utilities

together with beliefs determines how DM trades o¤ gains across tastes. The constants c (s)

have no behavioral content. In addition, any changes on measure zero subsets of S have no

behavioral content. This motivates the next de�nition.

De�nition 5: For the CPF representation (�; �; U)
i) The space of relevant objective states, I� � I; is the minimal set with � (I�) = 1:
� = f� (: ji)gi2I is unique, if the measure � (s ji) is unique for all i 2 I�.
ii) The space of relevant tastes, S� � S; is the minimal set with � (S� ji) = 1 for all i 2 I�:
U = fUs (:)gs2S is essentially unique, if Us are unique up to a common linear transformation,
up to the addition of constants c (s) and up to changes on SnS�:

S� can be thought of as the set of tastes DM considers possible.

An axiomatization of the CPF representation is given in Theorem 2. The distribution � is

identi�ed from behavior in Theorem 3. The main concern, however, is to separately identify

beliefs � and tastes U , provided that DM�s choice over acts has a CPF representation for a

given distribution �.

Axiom 1 (Relevant Objective States): If A [ B �i B for some i 2 I, then there is

j 2 I with A �j B.

To paraphrase Axiom 1: whenever two menus are not the same for DM, then there is

some state contingent ranking under which they are not equally good. If A and B were the

same for DM, then she should be willing to choose from A [ B by simply ignoring A: This

10



can not be the case if A [ B �i B for some i 2 I: Implicit in the interpretation is that,
ultimately, only the chosen item matters for the value of a menu. If A �i B, then Axiom 1

is empty. If A �i B, then A [ B �i B implies that, contingent on i, the item chosen from

A [ B must sometimes be in A and sometimes in B. Axiom 1 requires that there exists a

contingent ranking for which either one or the other case becomes more relevant, namely

that there is j 2 I with A �j B: Axiom 1 is not a strong assumption in the sense that it is

local; it only requires breaking indi¤erences. For comparison, suppose instead that the state

i 2 I was required to provide a complete description of all relevant aspects of the world, as
in AA. Then the stronger assumption of state contingent strategic rationality would have

to hold: If A [ B �i B, then A �i A [ B.11 Intuitively, the experimenter might suspect
that the weather (the objective state) is relevant for DM�s beliefs about her ranking of, say,

getting an umbrella versus getting a frisbee, but he can conceive of DM preferring a frisbee

even when it rains and vice versa. This notion is weaker than the assumption of �state con-

tingent strategic rationality�, according to which the experimenter knows that DM prefers

the umbrella when it rains and the frisbee if the sun shines.

Theorem 1: If, given a probability distribution � on I, � has the CPF representation

(�; �; U), then statements i and ii below are equivalent and imply iii:

i) � satis�es Axiom 1,

ii) � is unique and U is essentially unique,

iii) the cardinality of S� is bounded above by the cardinality of I�:

Proof: See Appendix.
If a decision maker behaves as if she has preference for �exibility, updates her beliefs

over tastes when learning the objective state, and maximizes her expected utility according

to objective probabilities over those states, then her preferences satisfy Axiom 1, if and only

if her beliefs over future tastes are determined uniquely. This identi�cation gives meaning

to the description of beliefs and tastes as distinct concepts. Lack of this distinction is the

central drawback of previous work on preference for �exibility, starting with Kreps.

Another di¢ culty in the application and interpretation of models of preference for �ex-

ibility is the generically in�nite subjective state space. Theorem 1 conveniently constrains

the space of relevant tastes, S�; to be �nite. Axiom 1 implies this �niteness, because I must

be rich enough to distinguish between any two menus for which DM might have preference

for �exibility. This implies that only �nitely many lotteries can be appreciated in any menu.

Section 3.2 generalizes my results to consider I to be a general topological space, lifting the

11Axiom 1 is immediately satis�ed: A [B �i B implies A �i B:
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constraint on the cardinality of S�.

Remark 1: A remark on the interpretation of tastes, or subjective states, is in order.

Suppose for a moment that there is an underlying state space 
, which provides a complete

description of all relevant aspects of the world. That is, ! 2 
 even determines DM�s taste,
s 2 S. In that case, S generates a sub���algebra on 
. The question is to what extent 

is observable. Let I be the collection of observable events i � 
, where I generates another
sub���algebra on 
. Now consider a probability measure � on 
 representing DM�s beliefs.
If there is no correlation between events in I and events in S; then the induced marginal

distribution � (s ji) is independent of i, and the objective state space 
 can be dropped from
the description of the model, as in DLR. For example, 
 could be the product space I � S
and � a product measure. If, in the other extreme, there is perfect correlation between events

in I and events in S; then I itself can play the role of the complete objective state space in

(the state dependent version of) the AA model. Theorem 1 is concerned with the general

case of some, but not perfect correlation. While I is naturally interpreted as the collection

of all observable contingencies, I will call events that are not in I �unobservable contingencies.�

To see how Relevant Objective States imply unique beliefs and utilities, suppose there

were two CPF representations of the same preference relation, (�; �; U) and
�
�; b�; bU�. Sup-

pose further that for the contingent ranking �i one could construct menus K �i bK , such

that K generates constant utility payo¤ across tastes according to (�; �; U) and bK according

to
�
�; b�; bU�. Changing the objective state from i to j only changes DM�s beliefs about her

future tastes. If a menu generates the same utility payo¤ for every taste, then the condi-

tional value of the menu is independent of the objective state. Hence, K �j bK for all j 2 I
would have to hold. At the same time, if (�; �; U) and

�
�; b�; bU� were distinct, bK would not

generate constant utility payo¤s across tastes according to (�; �; U) ; because utility payo¤s

depend on the intensities of U and bU; respectively. Therefore K [ bK �j0 K for some j0 2 I.
Relevant Objective States would then imply that there is j 2 I with K �j bK, a contra-
diction. This rough intuition does not quite work, because the construction of menus that

generate the same utility payo¤ for every taste is not always possible. Because S� � S is

�nite, however, one can construct pairs of menus (A;B for (�; �; U) and bA; bB for ��; b�; bU�)
for which the di¤erence in utility payo¤s is constant across tastes. Let K be the convex

combination of menus 1
2
A+ 1

2
bB and let bK = 1

2
bA+ 1

2
B. Then K �i bK implies that K �j bK

for all j 2 I. By the type of argument laid out above, K [ bK �j0 K for some j0 2 I: This
contradicts the Relevant Objective States axiom.

If Axiom 1 fails completely, in the sense that objective states are irrelevant to the decision
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maker, then only the support of the probability measures � (s ji) which allow a representation
can be identi�ed. This is the same indeterminacy encountered by DLR. Partial failures of

the axiom are considered in the appendix.

Both types of exogenous uncertainty in my domain are essential for the uniqueness result:

On the one hand, DLR �nd that preferences over menus of lotteries alone do not allow

the separate identi�cation of tastes and beliefs � (s). There has to be some possibility of

varying one, but not the other. In the CPF representation, only beliefs, � (s ji) ; condition
on objective states. On the other hand, Nehring (1999) �nds that acts with menus of prizes

as outcomes do not allow the separate identi�cation of tastes and beliefs in the axiomatic

setup developed by Savage (1954). To establish the uniqueness result, the payo¤ generated

by a menu must be varied independently for di¤erent tastes. This is possible only because

DM can be o¤ered lotteries over prizes.

I now establish existence of a CPF representation. As mentioned above, the axioms are

direct extensions of familiar assumptions. I use the general notationD 2 F (instead of i 2 I)
to denote events, because the axioms and some results also apply to the case of a general

topological objective state space and the induced ��algebra, which I discuss in Section 3.2.

Axiom 2 (Preference): � is asymmetric and negatively transitive.

Axiom 3 (Continuity): The sets fg jg � hg and fg jg � hg are open in the topology de�ned
on G for all h 2 G.

Axiom 4 (Independence): If for g; g0 2 G, g � g0 and if p 2 (0; 1), then

pg + (1� p)h � pg0 + (1� p)h

for all h 2 G.

If a convex combination of menus were de�ned as a lottery over menus, then the motiva-

tion of Independence in my setup would be the same as in more familiar contexts. Uncertainty

would resolve before DM consumes an item from one of the menus. However, following DLR

and Gul and Pesendorfer (2001), I de�ne the convex combination of menus as the menu

containing all the convex combinations of their elements. The uncertainty generated by the

convex combination is only resolved after DM chooses an item from this new menu. Gul and

Pesendorfer term the additional assumption needed to motivate Independence in this setup

�indi¤erence as to when uncertainty is resolved.�

13



Axiom 5 (Nontriviality): There are g,h 2 G, such that g � h.

The next axiom considers DM�s contingent ranking of menus, �D. As long as some
subjective uncertainty is not captured by objective states, �D should exhibit preference for
�exibility. This is captured by the central axiom in Kreps, which states that larger menus

are weakly better than smaller menus:

Axiom 6 (Monotonicity): A [B <D A for all A;B 2 A and all D 2 F .

Corollary 1: If � satis�es Axioms 2-6, then �D is a preference relation and satis�es

the appropriate variants of Continuity, Independence and Monotonicity for all D 2 F . Fur-
ther, there is a nonnull event D 2 F .

The proof is immediate.

Theorem DLRS (Theorem 2 in DLRS): For D 2 F nonnull, �D is a preference that

satis�es Continuity, Independence and Monotonicity if and only if there is a subjective state

space SD, a positive countably12 additive measure �D (s) on SD, and a set of non-constant,

continuous expected utility functions Us;D : � (Z)! R, such that

VD (A) =

Z
SD

max
�2A

Us;D (�) d�D (s)

represents �D and every vNM ranking of lotteries � 2 �(Z) corresponds to at most one
state in SD.

Because Us;D (�) are realized vNM utility functions, the subjective state space SD can

be replaced by the taste space S for all D 2 F . Note that the taste space does not include
the taste where DM is indi¤erent between all prizes, implicitly assuming nontriviality of the

ex-post preferences over prizes.

Theorem 2: � satis�es Axioms 2-6 if and only if it has a CPF representation.

Proof: See Appendix.
12See footnote 3 in DLRS.
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The proof �rst establishes an additively separable representation of �; con�ned to acts
with support in the convex subsets of �(Z) ; via the Mixture Space Theorem. Because

those acts are order dense in G, this representation pins down an additively separable rep-

resentation of � on G; that is, V (g) =
P
i2I
vi (g (i)) represents � for some family of utility

functions, fvigi2I ; on �(Z) : Now suppose Vi is a linear representation of �i : Because of
the uniqueness implied by the Mixture Space Theorem, Vi must agree with vi up to scaling.

The scaling is absorbed by � (i), which is then normalized to be a probability distribution.

Thus, an act is evaluated by

V (g) =
X
i2I
� (i)Vi (g (i)) .

Note that this is AA�s representation, with the exception that opportunity acts have menus

as outcomes, while AA acts have lotteries as outcomes. Indeed, Axioms 2-4 imply AA�s

axioms. Furthermore, Axioms 2-6 imply DLRS�axioms, as shown in Corollary 1. According

to Theorem DLRS, �i can then be represented by

bVi (A) = Z
S

max
�2A

(Us;i (�)) d�i (s) ;

where Us;i is a vNM utility function that represents taste s, that is, Us;i and Us;j are identical

up to a positive a¢ ne transformation. Pick any j 2 I and de�ne Us := Us;j. Rescaling �i (s)
allows �i to be represented by

Vi (A) =

Z
S

max
�2A

Us (�) d�i (s)

for all i 2 I: Since Vi is linear, there is a CPF representation (�; �; U); that is,

V (g) =
X
i2I
� (i)

24Z
S

max
�2g(i)

Us (�) d� (s ji)

35
represents � : The intensity of each taste is endogenous, but it is �xed across objective

states.

Clearly Axioms 2-6 are also necessary for the generic combination of the AA and DLRS
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representations,

bV (g) =X
i2I
� (i) bVi (g (i)) =X

i2I
� (i)

24Z
S

max
�2g(i)

(Us;i (�)) d�i (s)

35
where objective states impact not only probabilities, �i (s), but also the intensities of tastes.

Theorem 2 implies that there is a CPF representation of � whenever the more general repre-
sentation bV exists. Therefore, the assumption that only beliefs condition on objective states
does not constrain period 1 choice.

Remark 2: So far I have argued for the intuitive appeal of the CPF representation. This
remark argues that the CPF representation is also �minimal,�generalizing the formal argu-

ment for using the state independent representation in AA. Let the subjective state spaceeS = S � R+ collect all pairs of vNM rankings and intensities. Suppose

eV (g) =X
i2I
� (i)

264Z
eS
max
�2g(i)

(Ues (�)) de� (es ji)
375

represents � : This representation is even more general than the representation bV above.

Theorem 2 implies that there is a family of probability measures e� = fe� (es ji)gi2I on eS
that allows a representation of � and for which every taste, s 2 S, corresponds to at

most one subjective state in its support. It is straightforward to verify that this e� has
the smallest possible support eS� � eS among all measures that allow a representation of

� : Thus, restricting attention to CPF representations is equivalent to considering those

representations based on the subjective state space eS which utilize only a minimal amount
of subjective states in the sense of DLR. According to Theorem 1, e� is unique.
3.2. Topological Objective State Space

If the objective state space I is �nite, then Axiom 1 limits the cardinality of the space of

relevant tastes, S�. This is no longer the case when I is in�nite. This sub-section generalizes

the previous one by considering I to be a general topological space. The reader may choose to

proceed directly to Section 4 without a loss in the continuity of ideas. Here and in the proofs,

de�nitions and results that generalize those in the previous sub-section are distinguished by

a prime on their label.

Recall that F is the Borel �-algebra on I. The expectation under probability measures
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on F can only be calculated directly for simple functions.13 For general functions it is de�ned
as an appropriate limit:

De�nition 6 (Based on De�nition 10.12 in Fishburn (1970)): For a countably additive

probability measure � on F and a bounded measurable function ' : I ! R, let h'ni be a
sequence of simple functions, 'n : I ! R, that converge from below to '. Then de�ne

E� ['] := sup fE� ['n] jn = 1; 2; :::g

to be the expectation of ' under �.

Fishburn establishes that this expectation is well de�ned.

De�nition 5�: For the CPF representation (�; �; U)
i) � = f� (: ji)gi2I is unique if the measure � (s jD ) := E� [� (s ji) jD ] is unique up to �-
measure zero changes for all D 2 F .
ii) U = fUs (:)gs2S is essentially unique, if Us are unique up to a common linear transfor-
mation, up to the addition of constants c (s) ; and up to changes on a set S 0 � S with

E�

�R
S0
d� (s ji)

�
= 0.

The next de�nition provides a measure of how much set A is preferred over set B in

terms of how much the menu corresponding to the entire prize space, Z, is preferred over

the worst prize.

De�nition 7: Given D 2 F , let z be the worst prize: A <D fzg for all A 2 A. For
A;B 2 A, de�ne pA;B (D) 2 (�1; 1), such that
i) for A <D B, p = pA;B (D) solves

1

1 + p
A+

p

1 + p
fzg �D

1

1 + p
B +

p

1 + p
Z;

ii) for B �D A, pA;B (D) = �pB;A (D).
Call pA;B (D) the cost of getting to choose from B instead of A under event D.

If � can be represented by a CPF representation, then the prize z must exist because

13The value of a simple function 'n depends only on some �nite and measurable partition

fDt jt 2 f1; ::; Tgg of I . E� ['n] :=
TP
t=1
� (Dt)'n (Dt).
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Z is �nite and because �D must obviously satisfy Monotonicity. Note that pA;B (D) 6= 0

implies that D is nonnull.

If two sequences of menus, hAni and hBni, approach each other, then the cost of getting
to choose from Bn instead of An vanishes under every event. However, the ratio of such costs

may have a well de�ned limit.

Axiom 1�(Relevance and Tightness of Objective States): If hAni ; hBni ; hCni � A converge
in the Hausdor¤ topology, then

pCn;An[Bn (D)

pCn;Bn (D)
9 1

for some D 2 F implies that there is D0 2 F , such that

pCn;An (D
0)

pCn;Bn (D
0)
9 1:

Axiom 1�implies Axiom 1, where i is substituted by D. To see this, note that Axiom

1 holds trivially unless there is D 2 F , such that A [ B �D B and A �D B. This implies
pC;B (D) = pC;A (D) and pC;A[B (D) 6= pC;B (D) : De�ne the constant sequences An := A and
Bn := B and let Cn := C �D A. Then pCn;An[Bn (D)

pCn;Bn (D)
9 1: Thus, according to Axiom 1�, there

is D0 2 F with pCn;An (D
0)

pCn;Bn (D
0) 9 1: Hence A �D0 B, and Axiom 1 is satis�ed. If pCn;Bn (D)9 0,

then Axiom 1 also trivially implies Axiom 1�. Thus, Axiom 1�is only stronger than Axiom

1 for pCn;Bn (D)! 0.

Theorem 1�: If, given � : I ! R+, � has the CPF representation (�; �; U), then �
satis�es Axiom 1�if and only if � is unique and U is essentially unique.

Proof: See Appendix.
The discussion of Theorem 1 applies here. The intuition for the proof of Theorem 1

involves identifying taste s 2 S� via two menus, where one is preferred over the other under
taste s, but they generate the same payo¤under every other relevant taste. If S is continuous,

however, then there is the complication that making a menu less preferred by a �nite amount

under one taste will invariably make it worse under similar tastes (where tastes are viewed

as vectors in Rk+,) too. Therefore, individual tastes can only be identi�ed in the limit where
the less preferred and the more preferred menu approach each other. In this limit, the cost of

getting to choose from the less preferred menu instead of the more preferred menu tends to

zero. Axiom 1�allows statements about the limit of the ratio of these costs for two di¤erent

pairs of menus. The main idea of the proof of Theorem 1�is the same as for Theorem 1.
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To construct a similar argument here, menus are best described in terms of their support

functions.14

In addition to Axioms 2-6, an axiomatization of the CPF representation requires that

�D does not change too much for small changes in D.

Axiom 7 (Event-Continuity): For any B 2 A, the set fA jA �D B g is continuous in
D.

Theorem 2�: � satis�es Axioms 2-7 if and only if it has a CPF representation.

Proof: See Appendix.
Straightforward changes to the proof of Theorem 2 establish the result for � constrained

to all simple acts.15 The simple acts are shown to be dense in G under the topology de�ned

on G. Ensuring that De�nition 6 applies here completes the proof.

4. Probabilities over Objective States

Theorems 1 and 1�take the distribution � on I and a CPF representation (�; �; U) as given

and establish that � and U are unique in the appropriate sense if and only if objective states

are relevant. � might be objective in the sense that it corresponds to observed frequen-

cies of objective states, or it might be subjective. Alternatively, one can also consider a

representation that does not aggregate preferences over I at all.

4.1. Subjective Probabilities over Objective States

Consider �rst the case where � is subjective and must also be elicited from behavior. De-

termining � uniquely is analogous to the classical problem addressed by AA. Their unique

identi�cation of probabilities of observable states is based on the assumption of state inde-

pendence of the ranking of outcomes. The di¤erence is that they consider acts with lotteries

(instead of menus of lotteries) as outcomes, so there is no room for preference for �exibility

in their setup. In my setup, the combination of objective state independence and Axiom 1

would rule out any preference for �exibility. Thus, the independence assumption has to be

con�ned to a proper subset 	 � A to be useful here. Having assumed state independent

rankings, AA move on to consider only cardinally state independent rankings (or state inde-

14The introduction of support functions to the analysis of choice over menus is a major contributuion of
DLR.
15The outcome of a simple act depends only on the event D in some �nite partition fDt jt 2 f1; ::; Tgg.
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pendent utilities). This cannot be assumed in terms of an axiom. Instead it is a constraint

on the class of representations for which they establish their uniqueness result. For the

CPF representation it would amount to requiring that
R
S

max
�2A

Us (�) d� (s ji) is independent

of i 2 I for all A 2 	. But if 	 � A is a generic collection of menus, then this might not be
consistent with �, which applies to all of G.16 Thus, the requirement must be con�ned to a
particular collection of menus.

De�nition 8: Let X � Z denote a non-degenerate set of prizes and �(X) the set of

all lotteries with supports in X. Let 	(� (X)) � A be the set of all menus of lotteries that

have supports in X.

Axiom 8 (Partial Objective State Independence): There is X � Z, such that for A;B 2
	(� (X)), A �D B for some event D 2 F implies A �D0 B for all nonnull D0 2 F . If �
satis�es the same condition for Y � Z, then it also satis�es the condition for X [ Y .

To illustrate Axiom 8, consider X = f$1; $0g to consist of the prizes �1 Dollar�and �nothing.�
The �rst part of Axiom 8 then requires that the ranking of menus that consist only of lotteries

that pay out either $1 or nothing must not be state-contingent. To motivate the requirement,

it is su¢ cient to assume that the value of $1 (versus nothing) is not state-contingent.

Once AA restrict attention to representations with state independent utilities, there is

no arbitrariness in their model. In contrast, preference for �exibility implies that X is a

proper subset of Z: Hence, � could satisfy the �rst part of Axiom 8 for some X and Y with

X 6= Y , but not for X [ Y . Either those menus with support in X or those with support

in Y could then be assigned a cardinal ranking, which is not state-contingent. While there

is no inherent argument to favor one over the other, the two assumptions clearly lead to

di¤erent representations. This arbitrariness would render the uniqueness result meaningless.

The second part of Axiom 8 rules out this scenario, suggesting the following de�nition:

De�nition 9: Let X� � Z be the largest set for which � satis�es the condition in Axiom 8.

Theorem 3: If I is �nite, then � satis�es Axioms 1-6 and Axiom 8 if and only if it

has a CPF representation, (�; �; U), where the contingent value of menus A 2 	(� (X�)) is

independent of i 2 I. For this representation � is unique, � is unique and U is essentially

16For a simple example of such inconsistency consider 	 = ff�g ; f�g ; f
gg but, for some p 2 (0; 1) and
D;D0 2 F , fp�+ (1� p) 
g �D f�g �D0 fp�+ (1� p) 
g. Since

R
S

max
�2A

Us (�) d� (s ji ) is linear, it can not

be independent of i 2 I.
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unique with Us (x) constant across S for all x 2 X�.

If I is a general topological space, � must also satisfy Axiom 1�and Axiom 7.

Proof: For CPF representations, where
R
S

max
�2A

Us (�) d� (s ji) does not depend on i 2 I

for all A 2 	(� (X�)), the uniqueness of � follows in complete analogy to the corresponding

result in AA. Given this unique �, Theorems 1 and 1�imply uniqueness of � and essential

uniqueness of U . Because a representation where Us (x) is constant across S for all x 2 X�

clearly exists, the unique representation must have this feature. �

4.2. Objective Probabilities over Objective States

Now consider the alternative case, where frequencies of objective states are observable, and

suppose I is �nite for simplicity. An observer who observes frequencies � might be willing

to assume that DM bases her evaluation of acts on �, as long as a CPF representation based

on � exists:17 ;18

Proposition 1: Suppose � satis�es Axiom 1 and can be represented by (�; �; U), where �

has minimal support in the sense that I� has the same cardinality, T < 1; as S�:19 Then
there is a neighborhood of � in [0; 1]T , such that for any probability measure � on I� in

this neighborhood there is a representation
�
�; b�; bU� ; where bU and b� are locally Lipschitz

continuous in � around �.

Proof: See Appendix.
This result, which shows robustness to small misspeci�cations of �; can be relevant in

applications where beliefs are used to forecast period 2 choice: if the observer and the decision

maker disagree slightly in their perception of the �objective�probabilities, then the observer

17This is not always the case. For example, if (�; �; U) represents � and there is an event D 2 F that is
trivial according to � but not according to �, then there is no CPF representation based on �.
18It is possible to strengthen Axiom 8, such that the unique CPF representation in Theorem 3 is based

on those frequencies:
Axiom (Objective Probabilities): There is 
 � Z, such that for A;B 2 	(� (
)) and nontrivial D and
D0 2 F :

� (D0)

� (D) + � (D0)
hAD +

� (D)

� (D) + � (D0)
hBD0 �

� (D)

� (D) + � (D0)
hAD0 +

� (D0)

� (D) + � (D0)
hBD:

If � satis�es the same condition for 
0 � Z, then it alo satis�es the condition for 
 [ 
0.
This implies Axiom 8. It also implies that V

�
gAD
�
� V

�
gBD
�
=
�
V
�
gAD0

�
� V

�
gBD0

�� �(D)
�(D0) for A;B 2

	(� (
)).
19If axiom 1 holds, such a representation can always be found by considering a ��algebra F on I that is

just �ne enough to identify beliefs.
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can apply Theorem 1 (there is a representation based on the observer�s perception �, even

if DM truly bases her decisions on �.) Further, the unique subjective probabilities of future

tastes provided by Theorem 1 are at least a good approximation of DM�s true beliefs.

4.3. No Aggregation over Objective States

As a third alternative, one could consider a representation that does not aggregate contin-

gent rankings as in the CPF representation. This lack of aggregation would simplify the

uniqueness statement and Theorem 3 would become irrelevant.

Let f�igi2I be a subset of A�A�I: Each binary relation �i is a subset of A�A and

captures choice between menus in A under objective state i 2 I. The adaptation of my
axioms to this new domain is straightforward. A representation of Preference for Flexibility

without Aggregation is a pair (�; U) where � and U are speci�ed as in De�nition 4 and

Vi (A) =

Z
S

max
�2A

Us (�) d� (s ji)

represents �i. If preferences satisfy Axiom 1, then the representation (�; U) is unique.20

5. Behavioral Comparisons in Terms of Beliefs - Examples

I consider two comparisons of �rst stage behavior.

De�nition 10: �i values x 2 Z unambiguously higher than �j; if and only if fxg �i f�g
implies fxg �j f�g for all � 2 �(Z) :

The next comparison also appears in the context of dynamic models of preference for

�exibility in Higashi, Hyogo and Takeoka (2009), and in Krishna and Sadowski (2010). Intu-

itively, one preference values �exibility more than another if it ranks menus over singletons

more often.

De�nition 11: �i has greater preference for �exibility than �j if and only if

A �i f�g =) A �j f�g

for all � 2 �(Z) and A 2 A.
20This suggests that one could also consider alternatives to the CPF representation that are based on a

non-additive aggregator of contingent rankings: for example, an ambiguity averse aggregator as in Ozdenoren
(2002). I thank an anonymous referee for pointing out this possiblity.
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Note that the comparison in De�nition 11 requires that �i and �j rank singleton menus
the same:

f�g �i f�g , f�g �j f�g

for all �; � 2 �(Z).
It would be nice to characterize the two comparisons in terms of beliefs. The comparison

of probability distributions is most intuitive when they have one-dimensional support. To

give a simple example in the context of Theorem 3, consider Z = f$1; $0; xg and preferences
with X� = f$1; $0g : Subjective uncertainty then concerns the value of prize x relative to $1
and $0; and the taste space is isomorphic to R. Let �R (: ji) denote the measure on R that
corresponds to the contingent ranking �i, and let �R (i) denote its mean.

Corollary 2: �i values x unambiguously higher than �j if and only if �R (i) � �R (j) :

The proof is immediate.

Proposition 2: (Proposition 6.5 in Krishna and Sadowski (2010)): �i has greater pref-
erence for �exibility than �j if and only if �R (: jj ) second order stochastically dominates
�R (: ji).21

This characterization of �greater preference for �exibility�depends on the spread of DM�s

beliefs. DLR suggest an alternative notion which, limited by the lack of identi�cation in

their model, must be characterizable in terms of only the support of those beliefs.

For ease of notation, both comparisons above concern contingent rankings �i and �j
for the same DM. In the context of Theorem 3, the same comparison is possible across

individuals.

6. Related Literature

Ozdenoren (2002) also considers Preference for Flexibility in the presence of objective states

of the world. Instead of Relevant Objective States (Axiom 1), which ensures that contingent

21Krishna and Sadowski (2010) provide a more general characterization result for higher dimensional taste
spaces in terms of dominance in the increasing convex order (their Proposition 6.4). This more general result
also applies to the present model.
Subjective uncertainty in the dynamic model of Higashi et al (2009) only concerns the intertemporal

discount factor. In that sense their model corresponds to a static model with a one dimensional taste space
and Proposition 2 is analogous to their Theorem 4.2.
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rankings are su¢ ciently di¤erent, he assumes that all contingent rankings are the same.

Consequently, beliefs are not identi�ed in his model.

I know of two other identi�cation results that deliver unique beliefs over future tastes for

consumption in models of preference for �exibility. First, note that AA�s identi�cation of

unique beliefs over objective states does not require full state independence of preferences.22

In analogy to AA�s argument, beliefs over tastes in the DLR model can be identi�ed uniquely,

as long as DM has no preference for �exibility with respect to part of the prize space. As

an example, DLR suggest the consideration of DM without preference for �exibility on one

dimension of a product prize space (Shenone (2010) provides details.) Second, in a dynamic

model of preference for �exibility, Krishna and Sadowski (2010) show that intertemporal

tradeo¤ can also uniquely identify beliefs.

The domain of opportunity acts was �rst analyzed by Nehring (1999), and the notion of

contingent menus appears in Epstein (2006). Following Nehring (1996), a companion paper

to Nehring (1999), Epstein and Seo (2009) consider a domain of random menus, which are

lotteries with menus as outcomes. On this domain they establish unique induced probability

distributions over ex post upper contour sets as the strongest possible uniqueness statement.

Theorem 1 does not only provide unique beliefs, but also establishes the �niteness of the

collection of relevant tastes, S�. Dekel, Lipman and Rustichini (2009) and Kopylov (2009)

generate �niteness of S� in the absence of objective states by basically assuming that the

number of lotteries DM can appreciate in any given menu is limited.

Finally, note that the state independent version of AA�s representation can be viewed as

a special case of a unique CPF representation, where there is only one taste and the intensity

of this one taste is independent of the objective state. Karni and coauthors, for example

Grant and Karni (2005), Karni (2008), and Karni (2009a and 2009b), elaborate the point

that interpreting AA�s or Savage�s (1954) unique subjective probabilities of observable states

as DM�s true beliefs may be misleading, in case the true intensity of her only taste is actually

not state independent. The CPF model is not immune to this concern: Even if choice has a

CPF representation, DM�s true intensities of tastes might not actually be state independent.

Similarly, DM might not actually use the expected utility criterion to evaluate uncertain

prospects and alternatives other than the one that is ultimately chosen might also generate

utility. None of those modeling assumptions remain innocuous, once the natural inductive

step of forecasting period 2 choice is taken.23 The usefulness of the CPF model for forecasts

can only be tested by comparing its predictions to observed period 2 choice frequencies.

22This insight also underlies the elicitation of beliefs, �; over objective states in Section 4.1 of this paper.
23The assumption that beliefs are meaningful beyond their role in the representation of individual choice

also underlies the notion of �objective probabilities� on which all agents can agree, even if they behave
di¤erently.
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The ability to forecast period 2 choice frequencies is relevant in strategic situations, for

example in the context of contracts.

7. Asymmetric Information and Contracts

As illustrated by the example in the introduction, my domain has a natural interpretation in

terms of contracts. At the time two parties write a contract, the space of observable contin-

gencies, I; is describable. In addition there are unobservable or indescribable contingencies

that are more relevant for one party than for the other. It seems natural that information

about those contingencies is asymmetric. In order to focus on this asymmetry, I assume

that each party foresees those and only those contingencies that are directly relevant to its

own payo¤s, and that contingencies that are foreseen by both parties are observable, and

are therefore in I.

Consider a principal and an agent who want to write a contract. Actions are observable,

so there is no risk of moral hazard. An action pair speci�es actions to be taken by the

principal and the agent, respectively. Each action pair induces a probability distribution over

outcomes.24 Only the principal�s valuations depend on unobservable contingencies, which

are unforeseen only by the agent. Let S denote the principal�s taste space. The contract

can fully address uncertainty about the agent�s payo¤, but not about the principal�s payo¤.

Therefore, an e¢ cient contract generically assigns some control rights to the principal: it

speci�es a collection of action pairs for every observable contingency i 2 I, from which the

principal can choose at a later time. Whether such a contract is considered incomplete is a

de�nitional question.25 The reduced form of the contract, g : I ! A, speci�es a menu of
lotteries over outcomes for every contingency i 2 I. The principal chooses from g (i), after i

arises and after uncertainty about any unobservable contingencies that are relevant for her

taste over outcomes, s 2 S, is resolved. To agree on an e¢ cient contract, both parties must
be able to rank all contracts.

From the principal�s point of view, the contract is an act in the terminology of the

previous sections. The principal�s ranking of contracts satis�es Axiom 1 and has a CPF

representation based on the objective probabilities of events, �. Her choice of an alternative,

�, depends only on her taste, s, not on the intensity of the utility, Us, that represents it:

��s (A) := argmax
�2A

(� � s) is the choice under taste s:26 The CPF representation can be written

24Contingencies that impact the e¤ect of actions on the probabilities of outcomes are considered directly
relevant for both parties and are, therefore, in I:
25See Section 5 in Hart and Moore (1999) for a discussion.
26As before, � � s denotes the dot product between lottery � and taste s: The argmax exists, because

menus are compact. If it is not unique, ties can be broken in favor of the agent.
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as

V (g) = E�

24Z
S

Us (�
�
s (g (i))) d� (s ji)

35 ;
where � is unique.

The agent assigns a contingent cost, c (x; i), to every prize x 2 Z. Let c (i) 2 Rk be
the vector of these costs. Further, he also assesses probabilities of observable contingencies

according to the probability distribution � : I ! [0; 1]. While the agent can not foresee all the

contingencies underlying the formation of the principal�s taste, he does know the principal�s

ranking of contracts, and therefore �: Hence, the agent can rank contracts according to

W (g) = E�

24Z
S

(��s (g (i)) � c (i)) d� (s ji)

35 :
Note that W (g) depends on the conditional subjective probabilities, �, as perceived by the

principal but not on the intensities of her tastes, U . In my axiomatic setup these two are

distinct concepts.

The assumption that each party�s ranking of contracts is known by the other party is

usually required in contract theory and justi�ed by some informal story of learning from

past observations. This assumption is not my focus, and I make it without doing the game

theoretic complexity of the contracting problem justice. Instead I address the additional

assumption required in the (incomplete) contracting literature: In order to allow both par-

ties to rank all contracts, it has to be assumed that they believe in the same probability

distribution over utility-payo¤s, ex ante.27 This ad hoc assumption is made for lack of a

useful choice theoretic model of the bounded rationality involved. It is troubling in the con-

text of unforeseen contingencies, where it seems natural that information is asymmetric. My

domain is not only well suited to describe the type of (incomplete) contracts laid out above,

but, for those contracts, my axioms also give choice theoretic substance to the assumption

of common beliefs.

8. Conclusion

In the context of preference for �exibility, the notion of a taste space is attractive, because

in principle it allows the distinction of tastes and beliefs. Identifying the two conceptually

distinct components through preferences, however, has proved di¢ cult. This paper proposes

considering objective states, which are relevant enough to allow the unique identi�cation.

27Section 3 in Maskin and Tirole (1999) elaborates this point.
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The interpretation that I have o¤ered so far is that objective states are chosen by Nature. I

conclude by suggesting another interpretation.

The choice between logically equivalent frames is made by the experimenter (or the

�sender�) instead of Nature, and often in�uences DM�s contingent ranking. One possible

interpretation of frames is suggested by Sher and McKenzie (2006). They propose that

logically equivalent frames may not be informationally equivalent, rather they convey infor-

mation about the sender�s knowledge about relevant, but not explicitly speci�ed, aspects of

the choice situation. Consider the representation suggested in Section 4.3, where there is no

aggregation over objective states, and call objective states f 2 I frames. To paraphrase the
identifying assumption, �Relevant Frames,�in this context: if there is preference for �exibil-

ity with respect to two menus that are indi¤erent under one frame, then the choice can be

reframed so as to break the indi¤erence. Frames are relevant if and only if the parameters

of the representation are unique in the sense of Theorems 1 and 1�. The representation

suggests interpreting DM�s susceptibility to frames as Bayesian decision making. The un-

derlying model is not speci�ed, but the uniqueness result allows classifying the information

content of changing frame f to frame f 0 by comparing the probability distributions � (s jf )
and � (s jf 0 ) they induce. If DM truly was a Bayesian decision maker (in the sense speci�ed

by the model), then � (s jf ) should predict how often taste s governs her future choice under
frame f . Whether and when it does is an empirical question.

9. Appendix

Subsection 1 of the Appendix collects some relevant facts about support functions. Sub-

section 2 speci�es the indeterminacy implied by partial failures of Axiom 1. The following

Subsections prove the results in the text in the order they appear.

9.1. Support Functions

De�nition 12: Call �A : S ! R with �A (s) := max
�2A

(� � s) the support function of A.

Support functions have the following properties:28

(i) A � B if and only if �A 6 �B
(ii) ��A+(1��)B = ��A + (1� �)�B whenever 0 � � � 1
(iii) �A\B = �A ^ �B and �(A[B) = �A _ �B.
Denote by A� the maximal menu supported by �; A� =

T
s2S
f� 2 �(Z) j� � s � � (s)g. Let

28For a comprehensive treatment of support functions in the context of choice over menus, see Chatterjee
and Krishna (2009).
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A be the collection of all convex subsets of �(Z) : Note that A 2 A if and only ifA is

maximal with respect to some support function. Let �i simultaneously denote the induced
ranking of support functions, � �i � if and only if A� �i A�.

Lemma 1: For " small enough, �" := " is a support function.

Proof: The k�1 dimensional hyperplane in Rk that contains S isHS =
�
x 2 Rk jx � 1 = 0

	
.

The hyperplane that contains the k � 1 dimensional simplex of lotteries, �(Z) ; is H�(Z) =�
x 2 Rk jx � 1 = 1

	
: These two hyperplanes are parallel. Choose " small enough such that

the k � 1 dimensional ball B" � H�(Z) with radius " around the center of the simplex is

itself inside the simplex, B" � �(Z). Then �B" � ". �

9.2. Partial Failures of Axiom 1

Suppose there is a CPF representation of �. Further suppose there is a pair of menus,
A;B 2 A, such that A[B �i B for some i 2 I, but A �j B for all j 2 I. This means there
is some preference for �exibility in having both A and B available, but their comparison is

non-contingent. To say this more precisely:

De�nition 13:
cA;B (s) := max

�2A
Us (�)�max

�2B
Us (�)

is the cost of getting to choose from B 2 A instead of A 2 A under taste s 2 S.

A [ B �i B implies that cA;B (s) cannot be zero for all s and A �i B implies that it

cannot be any other constant. Still, A �j B for all j 2 I meansX
S�

cA;B (s)� (s jj ) = 0

for all j 2 I. This suggests the following Proposition.

Proposition 3: Suppose (�; �; U) is a CPF representation of �. Then the following two
conditions are equivalent:

i) there is a pair of menus A;B 2 A, such that A[B �i B for some i 2 I, but A �j B for

all j 2 I,
ii) there is a family of representations

n�
�; b�; bU�o

�
based on b� (s ji) = (1+�cA;B(s))�(sji )P

S�
(1+�cA;B(s))�(sji )
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and bUs = Us
1+�cA;B(s)

, indexed by � > � 1
cA;B(s)

.

Another pair of menus A0; B0 2 A satisfying i) adds additional indeterminacy, if and only
if

cA0;B0 (s)

cA0;B0 (s0)
6= cA;B (s)

cA;B (s0)

for some s; s0 2 S.

Proof: That i) implies ii) is demonstrated in the proof of Theorem 1. The reverse fol-

lows from Theorem 1.

It remains to be shown that if there is another pair of menus, A0; B0 2 A, such that
A0 �j B0 for all j 2 I and A0 [ B0 �i B0 for some i 2 I�, then another parameter is

required to index the set of possible representations if and only if
cA0;B0 (s)

cA0;B0 (s
0) 6=

cA;B(s)

cA;B(s0)
for some

s; s0 2 S. That this condition is su¢ cient for the existence of additional representations
is obvious. To see that it is necessary, suppose there was a representation

�
�; b�; bU� with

b� (s ji) 6= (1+�cA;B(s))�(sji )P
S�
(1+�cA;B(s))�(sji )

for all �. There must be some non-constant function c : S ! R,

such that b� (s ji) � (1+�c(s))�(sji )P
S�
(1+�c(s))�(sji ) for some � > 0 and c (s) 6= cA;B (s). �i mandates that

bl (s) / l(s)
1+�c(s)

. Because
�
�; b�; bU� represents the same preference as (�; �; U),P

S�
c (s)� (s ji)

must be constant across I. Hence, there is some non-constant function ec : S ! R, withP
S�
ec (s)� (s ji) = 0 for all i 2 I. Let ec+ (s) and ec� (s) be the positive and negative part of ec (s),

respectively. Following the proof of Claim 1 above, choose �+ such that �+ � �
��
S�
= �ec+

and �� such that �� � �
��
S�
= �ec�. Then A�+ �i A�� for all i 2 I; but A�+ [A�� �j A�� for

some j 2 I; because cA0;B0 (s) is not constant. Thus A0 := A�+ and B0 := A�� violate Axiom
1. They satisfy

cA0;B0 (s)

cA0;B0 (s
0) 6=

cA;B(s)

cA;B(s0)
by construction. �

9.3. Proof of Theorem 1

Proof of Theorem 1, i))iii): Suppose to the contrary that S� is in�nite or �nite with
cardinality #S� > #I: The de�nition of S� implies that one can �nd #I + 1 Borel Sets

with non-empty interior, fStg#I+1t=1 ; such that for all t � #I + 1 there exists i 2 I with
� (int (St) ji) > 0. Since � can have at most countably many atoms, one can further guar-
antee � (Cl (St) \ Cl (St0) ji) = 0 for all t; t0 � #I + 1 and all i 2 I:

Claim 1: Given St, there is " small enough and a support function �t, such that �t = " on
SnSt; �t � " on St and xt (i) :=

R
S

[�t (s)� "] d� (s ji) > 0 for some i 2 I�.
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Proof of Claim 1: Remember that �" supports a ball, B"; with radius " around the
center of the simplex. The maximal menu B with �B � �" on SnSt includes all lotteries
with p � s � " for all s 2 SnSt: This implies max

p2B
(p � s) > " for all s in the non-empty interior

of St: Hence, �B > �" must hold on int(St). Let �t := �B: k

We can solve the following system of #I +1 independent linear equations with variables

f�tgt2f1;#I+1g for any n > 0 and some given t0 :

#I+1X
t=1

xt (i)�t = 0 for all i 2 I and �t0 = #;

where xt is as de�ned in Claim 1. Choose # such that
P
j�tj = 1: The convex combination

of �nitely many menus is well de�ned, and by property (ii) above, the convex combination

of �nitely many support functions is, too. Thus one can de�ne two support functions as

� : =

#I+1X
t=1

j�tj (1�t>0�t + 1�t<0")

� : =

#I+1X
t=1

j�tj (1�t>0"+ 1�t<0�t)

Then
#I+1P
t=1

xt (i)�t = 0 for all i 2 I immediately implies that A� �i A�: At the same
time, �t0 6= 0 implies that A� [ A� �i A� for some i 2 I�, which contradicts Axiom 1.

Proof of Theorem 1, i))ii):

Claim 2: For any positive function f on S� there is � > 0 small enough, such that for

any 0 < � < � there are support functions � and � with � � �jS� = �f .

Proof of Claim 2: List the elements of S� = fs1; s2; :::g : Consider fStg#S
�

t=1 with St � S,
st 2 St and st0 =2 St for t0 6= t. Construct �t (s) as in Claim 1. Let xt := �t (st) � ": Choose
f�tg#S

�

t=1 such that �txt / f (st) and
P
�t = 1. De�ne � :=

P
�t�t and � := ". Then

� � �
��
S�
� �f for some � > 0: For � < � let � := �� + (1� �) ". Then � � �jS� � �f: k

Suppose (�; �; U) and
�
�; b�; bU� are two distinct CPF representations of� with S� andcS�

as the corresponding relevant taste spaces. Up to a constant, the vNM expected utility Us (p)

can be written as l (s) (s � p) : Then max
�2A

Us (�) = l (s)�A (s) : As in the text, l (s) captures
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the �intensity�of taste s: Let f (s) / 1
l(s)

on S�. Analogously let bf (s) / 1bl(s) on cS�. Find �
and b� small enough, such that there are � and b� with � � �jS� = �f and b� � ����cS� = b� bf andb� �i �. Because f (s) / 1

l(s)
it must be true that (� (s)� � (s)) l (s) is constant across S�:

Consequently,
P
S�
(� (s)� � (s)) l (s)� (s jj ) must be independent of j: This independence is

meaningful in terms of �. It is easy to verify that it holds if and only if

� (i)

� (i) + � (j)
g
A�
i +

� (j)

� (i) + � (j)
gA�j � � (i)

� (i) + � (j)
gA�i +

� (j)

� (i) + � (j)
g
A�
j

for all i; j 2 I�: The same argument, based on the representation
�
�; b�; bU�, implies thatP

cS�
�b� (s)� � (s)�bl (s) b� (s jj ) is independent of j: (�; �; U) and ��; b�; bU� both represent �;

and therefore
P
S�

�b� (s)� � (s)� l (s)� (s jj ) must also be independent of j: Hence, b� �j �
for all j 2 I. At the same time,

�b� (s)� � (s)� l (s) is not constant across S�; because
(�; �; U) and

�
�; b�; bU� are distinct, which implies b� bf (s) is not identical to �f (s) on S� or

on cS�. Without loss of generality suppose they disagree on S�: Because b� �j �, there must
be s0; s00 2 S� with b� bf (s0) > �f (s0) and b� bf (s00) < �f (s00). Hence, Ab� [ A� �j A� for all
j 2 I with � (s0 jj ) > 0. This contradicts Axiom 1. Therefore, S� = cS� and l(s) / bl (s) on
S�. This establishes the essential uniqueness of U:

That the measure � (: ji) is unique for all i 2 I with � (i) > 0 then follows immediately
from the result in DLR (their Theorem 1), that b� (s ji)bl (s) / � (s ji) l (s) for the case of a
�nite taste space.

Proof of Theorem 1, ii))i): It remains to be established that Axiom 1 is also necessary.
Suppose to the contrary that the representation exists with the stated uniqueness, but Ax-

iom 1 is violated. Then, there are two menus A;B 2 A, such that A �j B for all j 2 I and
A [ B �i B for some i 2 I. A �j B for all j 2 I implies

P
S�
cA;B (s)� (s jj ) = 0 for all j 2 I

and for cA;B (s) as de�ned in De�nition 13. A[B �i B implies that cA;B (s) cannot be zero
under all tastes, so it must be positive under some tastes and negative under others. For the

proof it is important that it is not constant across tastes. De�ne b� (s ji) := (1+�cA;B(s))�(sji )P
S�
(1+�cA;B(s))�(sji )

,

where � 6= 0 is small enough, such that 1 + �cA;B (s) > 0 for all s 2 S�. Accordingly de�nebl (s) := l(s)
1+�cA;B(s)

. Clearly
�
�; b�; bU� is a representation of �i, when evaluated in acts gAi .

As such, it is unique up to positive a¢ ne transformations. To verify that it represents � it
is, therefore, su¢ cient to �nd two menus, A and B, such that (i) A �i B for all i 2 I and
(ii) the relative cost of getting gBi instead of g

A
i versus the cost of getting g

B
j instead of g

A
j
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is the same according to
�
�; b�; bU� as according to (�; �; U) for all i; j 2 I. Let bV and V

denote the respective objective functions. Consider again A� and A� from the proof of claim

2. Their construction immediately implies that V
�
g
A�
i

�
� V

�
gA�i
�
/ � (i) and

bV �gA�i �� bV �gA�i � / � (i)

1 + �
P
S�
cA;B (s)� (s ji)

= � (i) :

This contradicts the uniqueness statement in Theorem 1 i). Thus, Axiom 1 is necessary for

this uniqueness statement. �

9.4. Proof of Theorem 2

De�nition 14: As in the proof of Theorem 1, let A be the collection of all convex subsets

of �(Z). Let G be the collection of all acts: g : I ! A. Call g 2 G a convex act.

Lemma 2: � constrained to G satis�es Axioms 2-4 if and only if there is a family of con-

tinuous linear functions fvigi2I , vi : A ! R; such that v : G! R with v (g) =
P
i2I
vi (g (i)) ;

represents � on G.

Moreover, if there is a family of continuous linear functions fv0igi2I , v0i : A ! R, such
that v0 (g) =

P
i2I
v0i (g (i)) represents � on G, then there are constants a > 0 and fbi ji 2 I g,

such that v0i = bi + avi for each i 2 I.

Proof: The collection of convex acts G together with the convex combination of acts as

a mixture operation is a mixture space. Lemma 2 is an application of the Mixture Space

Theorem (Theorem 5.11 in Kreps (1988)), where additive separability across I follows from

the usual induction argument and the continuity of vi is a consequence of Axiom 2.29 �

Corollary 3: If i 2 I is nonnull, then Vi (A) and vi (A) agree on A up to positive a¢ ne

transformations.

Proof: Evaluating v
�
gAi
�
implies that vi represents �i on A. vi is linear. The Mixture

Space Theorem states that any other linear representation of �i agrees with vi, up to a
positive a¢ ne transformation. According to Theorem DLRS, Vi (A) is linear and represents

�i on A. �
29Axiom 2 (Continuity) is stronger than von Neumann-Morgenstern Continuity on G, which requires that

for all g � g0 � g00 there are p; q 2 (0; 1), such that pg + (1� p) g00 � g0 � qg + (1� q) g00.
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Let Vi (A) be a representation of �i as provided by Theorem DLRS. For any nonnull

event i 2 I (which exists according to Corollary 1), Vi (A) and vi (A) agree on A up to a

positive a¢ ne transformation, as established by Corollary 3. There is an event dependent,

positive scaling factor � (i), such that, up to a constant, vi (A) = � (i)Vi (A) for all A 2A,
where � (i) = 0 if and only if i is trivial. The act that always yields the entire prize

space as a menu is convex and is one of the best acts. Because of Monotonicity, there is

a worst act that assigns a singleton for every contingency. This act is also convex. By

Continuity there is a convex act g 2 G for every g 2 G, such that g (i) �i g (i), which
implies Vi (g (i)) = Vi (g (i)) : Let V 0 represent � on G and V 0 � v on G. Then, V 0 (g) =

V 0 (g) =
P
i2I
vi (g (i)) =

P
i2I
� (i)Vi (g (i)) =

P
i2I
� (i)Vi (g (i)). Hence, g � h if and only ifP

i2I
� (i)Vi (g (i)) >

P
i2I
� (i)Vi (h (i)). Therefore

V 0 (g) =
X
i2I
� (i)

24Z
S

�g(i) (s) l (s) d�i (s)

35
represents �. Since v is unique only up to positive a¢ ne transformations, � (i) can be
normalized to be a probability measure, � (i). Interpreting � (s ji) := �i (s) as a conditional
probability measure over the taste space S, de�ne

V (g) :=
X
i2I
� (i)

24Z
S

�g(i) (s) l (s) d� (s ji)

35
to establish the su¢ ciency statement in Theorem 2. That Axioms 2-6 are necessary for the

existence of the representation is straightforward to verify. �

9.5. Proof of Theorem 1�

The proof idea is the same as for Theorem 1. To show that Axiom 1 is su¢ cient for the

uniqueness statement, I �rst establish the analogous claim to Claim 2. The de�nition of

support functions (De�nition 12) and all related notations remain relevant here.

Intensity of tastes l : S ! R+ is a strictly positive function.30 Consider the uninformative
event I 2 F : Note that

R
S0 ld� (s jI ) exists for any measurable S

0 � S, because the value of
the menu supported by �" in Lemma 1 is

R
S
�"ld� (s jI ) = "

R
S
ld� (s jI ).

30 l (s) = 0 corresonds to the trivial state, which is not part of the CPF representation.
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Lemma 3: There are support functions � and � and a number � > 0, such that � (S 0 jI )�R
S0 � (� � �) ld� (s jI ) < ": For �

0 > � there are also support functions �0 and �0, such that

� (S 0 jI )�
R
S0 �

0 (�0 � �0) ld� (s) < ".

Proof of Lemma 3:

Claim 3: If f is positive and integrable, then for any " > 0, there is a continuous, positive
function g : S ! R with bounded support, such that

R
S0 jf � gj d� (s) < " for every measur-

able set S 0 � S:

Proof: As f and � are both weakly positive,
R
S
jf� (s)j ds exists. Thus, for every " > 0;

there exists a continuous function g : S ! R such that
R
S0 jg � f j d� (s) < ": See, for ex-

ample, Billingsley (1995), Theorem 17.10. Since f is positive, g can be chosen to be positive.k

Given " > 0; Claim 3 establishes that there is a continuous, positive function g , such

that
R
S0 jl � gj d� (s) < " for every measurable set S

0 � S. The function 1
g
: S ! R+ is then

positive, bounded and continuous. Thus, for any " > 0; g can be chosen such thatZ
S0
jg � lj 1

g
d� (s) �





1g





1

Z
S0
jg � lj d� (s) < "

2
:

Claim 4 (Lemma 11 in DLR): The functions that are the di¤erence of two support
functions span a cone that is dense in C (S) ; the space of continuous functions on S; the

unit sphere in Rk:

As l is positive, � (S 0) :=
R
S0 ld� (s jI ) is itself a positive measure.

31 Claim 4 then implies

that for every " > 0 there are two support functions � and � and a number � > 0, such thatZ
S0

����1g � � (� � �)
���� ld� (s) < "

2

for every measurable set S 0 � S:
31If information is ignored, in the sense that DM only gets to choose between acts that do not condition

on information, then preferences can be represented as in DLRS. The measure � corresponds to the measure
featured in this representation. It is dominated by the measure � (s jI ) and the Radon-Nikodym derivative
of � with respect to � (: jI ) evaluated in s is l (s) ; the intensity of taste s:
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Hence,

� (S 0 jI )�
Z
S0
� (� � �) ld� (s jI ) �

Z
S0
j1� � (� � �) lj d� (s jI )

�
Z
S0
jg � lj 1

g
d� (s jI ) +

Z
S0

����1g � � (� � �)
���� ld� (s jI ) < ":

This establishes the �rst part of the lemma. To show the second part, consider �0 = c�

with c > 1; then let �0 = � and �0 = 1
c
� +

�
1� 1

c

�
�. �0 is a convex combination of support

functions and therefore a support function, and �0 (�0 � �0) � � (� � �). This concludes the
proof of Lemma 3. �

Suppose (�; �; U) and
�
�; b�; bU� are two CPF representations of �. Following Lemma

3, one can de�ne a sequence of support functions h�ni and h�ni and a sequence of numbers
h�ni such that

� (S 0 jI )�
Z
S0
�n (�n � �n) ld� (s jI ) <

1

n

for every measurable set S 0 � S and for all n > 0: Analogously de�ne
Db�nE and hb�ni and a

sequence of numbers hb�ni based on ��; b�; bU� : According to the second part of Lemma 3 it
is possible to choose h�ni and hb�ni such thatZ

S

(�n � �n) ld� (s jI ) =
Z
S

�b�n � b�n� ld� (s jI )
and hence 1

2
�n +

1
2
b�n �I 1

2
b�n + 1

2
�n according to (�; �; U) for all n > 0.

Rewriting pA;B (D) as de�ned in De�nition 7 in terms of support functions yields pA;B (D) =R
S
(�A � �B) ld� (s jD ) : For the remainder of the proof, let An; Bn and Cn be de�ned such

that �An =
1
2
�n +

1
2
b�n; �Bn = 1

2
b�n + 1

2
�n and �Cn =

1
2
�n +

1
2
b�n.

Claim 5: pCn;An (D)

pCn;Bn (D)
! 1 for all D 2 F .

Proof: First note that

pCn;An (D)

pCn;Bn (D)
=

R
S
1
2
(�n + b�n � �n � b�n) ld� (s jD )R

S
1
2

�
�n + b�n � b�n � �n� ld� (s jD )

=

R
S
(�n � �n) ld� (s jD )R

S

�b�n � b�n� ld� (s jD )
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By de�nition, � (S 0 jI )� �n
R
S0 (�n � �n) ld� (s jI ) <

1
n
for every measurable set S 0 � S and

for all n > 0 implies that (i) lim
n!1

�
�n
R
S
(�n � �n) ld� (s jI )

�
= 1, because � is a probability

measure and (ii) �n (�n � �n) l ! 1 almost everywhere according to � (s jI ) : The same
observations can be made for

Db�nE, hb�ni, hb�ni and ��; b�; bU� :
For every D 2 F the measure � (: jD ) is dominated by � (: jI ) and S 0 � S is � (: jD ) mea-

surable if and only if it is � (s jI ) measurable. Hence,

lim
n!1

�
�n
R
S
(�n � �n) ld� (s jD )

�
= 1 for all D 2 F . Analogously

lim
n!1

hb�n RS �b�n � b�n�bldb� (s jD )i = 1 for all D 2 F . As in the case of �nite I; it is easy to
verify that this independence is meaningful in terms of �. Hence, there is also a sequence
of numbers h�ni, such that lim

n!1

h
�n
R
S

�b�n � b�n� ld� (s jD )i = 1 for all D 2 F . Since
1
2
�n +

1
2
b�n �I 1

2
b�n + 1

2
�n for all n > 0, it must be that �n

�n
! 1. Together with observation

(ii) above this implies that
R
S(�n��n)ld�(sjD )R
S(b�n�b�n)ld�(sjD ) ! 1 for all D 2 F . k

Claim 6: If (�; �; U) and
�
�; b�; bU� are two CPF representations of � that are distinct be-

yond the changes permitted in the uniqueness statement of Theorem 1�, then
pCn;An[Bn (D)
pCn;Bn (D)

9 1:

Proof: First note that

pCn;An[Bn (I)

pCn;Bn (I)
=

R
S
1
2

�
�n + b�n �maxn�n + b�n;b�n + �no� ld� (s jI )R

S
1
2

�
�n + b�n � b�n � �n� ld� (s jI )

=

R
S
max

n
�n � �n;b�n � b�no ld� (s jI )R
S

�b�n � b�n� ld� (s jI )
It follows immediately from the uniqueness statements in Theorems 3 and 4 in DLR, that

� (s jD ) and b� (s jD ) share the same support32 and that l (s)� (s jD ) is unique up to rescaling
for anyD 2 F . Thus, if (�; �; U) and

�
�; b�; bU� are distinct in the sense of the claim, then the

corresponding functions l and bl have to be distinct. Consequently, there is S 0 � S, such thatR
S0

lbld� (s jI ) 6= � (S 0 jI ). Thus, d := lim
n!1

h
�n
R
S0

�b�n � b�n� ld� (s jD )i 6= � (S 0 jI ) :Without
loss of generality suppose that d > 1: Then lim

n!1

h
�n
R
S
max

n
�n � �n;b�n � b�no ld� (s jD )i >

32They induce the same space of relevant tastes, S�: In analogy to the �nite case, S� is the minimal set of
tastes with � (S� jD ) = 1 for all non-trivial D 2 F .
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1, which implies R
S
max

n
�n � �n;b�n � b�no ld� (s jD )R
S

�b�n � b�n� ld� (s jD ) 9 1: k

The combination of Claims 5 and 6 provides a direct violation of Axiom 1�. Hence, Axiom

1�implies that (�; �; U) is unique in the sense of Theorem 1�.

It remains to show that Axiom 1�is also necessary. The argument requires only slight

changes compared to the �nite case: suppose to the contrary that the representation holds

with the stated uniqueness, but Axiom 1� is violated. Then, there are sequences

hAni ; hBni ; hCni � A, which converge in the Hausdor¤ topology, with pCn;An[Bn (D)
pCn;Bn (D)

9 1

for some D 2 F and pCn;An (D
0)

pCn;Bn (D
0) ! 1 for all D0 2 F . pCn;An (D

0)
pCn;Bn (D

0) ! 1 for all D0 2 F implies that

R
S

cAn;Bn (s) d� (s jD0 )R
S

cCn;Bn (s) d� (s jD0 )
! 0

for all D0 2 F . pCn;An[Bn (D)
pCn;Bn (D)

9 1 implies that there is a set S 0 � S with � (S 0 jD ) > 0 and

R
S0
cAn;Bn (s) d� (s jD )R

S

cCn;Bn (s) d� (s jD )
9 0:

In complete analogy to the �nite case, de�ne

b� (s jD ) :=
0@1 + � cAn;Bn (s)R

S

cCn;Bn (s)� (s jD )

1A� (s jD ) ;
where � is small enough such that 1 + � cAn;Bn (s)R

S

cCn;Bn (s)�(sjD )
> 0 for all s 2 S. As in the �nite

case, there is then a CPF representation
�
�; b�; bU� for an appropriate bU: Thus, Axiom 1�

must hold. �

9.6. Proof of Theorem 2�:

De�nition 15: Let fDt jt 2 f1; ::; Tgg be a �nite partition of I with Dt 2 F . fDtg denotes
a generic partition of this type. Further let GfDtg be the collection of acts where the outcome

depends only on the event D 2 fDtg. Let G� :=
S
fDtg

GfDtg be the set of simple acts. G\G�
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is the collection of all simple convex acts.

The support of g 2 GfDtg is a �nite subset of A.

Lemma 2�: � constrained to G \ G� satis�es Axioms 2-4 if and only if there are con-

tinuous linear functions vD : A ! R, such that v : G \G� ! R with v (g) =
TP
t=1

vDt (g (Dt))

for g 2 G \GfDtg, represents �.
Moreover, if there is another collection of continuous linear functions, v0D : A ! R, such

that v0 (g) =
TP
t=1

v0Dt (g (Dt)) represents � on G \ G�, then there are constants a > 0 and

fbD jD 2 F g, such that v0D = bD + avD for each D 2 F .

Proof: That v (g) =
TP
t=1

vDt (g (Dt)) for g 2 G \ GfDtg represents � con�ned to G \ GfDtg,

is implied by Lemma 2. If the simple act g is constant on each element of fDtgTt=1, then it
is also constant on each element of a �ner partition fD0

tg
T 0

t=1. For � � f1; :::; T 0g, such that
Dt =

S
t2�
D0
t, the usual induction argument yields

1

]�
(g� (D1) ; :::; g

� (Dt�1) ; A; g
� (Dt+1) ; :::; g

� (DT )) +
]� � 1
]�

g�

=
X
t2�

1

]�

�
g� (D0

1) ; :::; g
� �D0

t�1
�
; A; g�

�
D0
t+1

�
; :::; g� (D0

T 0)
�
;

and thus vDt (A) =
P
t2�
vD0

t
(A). Therefore, v (g) =

TP
t=1

vDt (g (Dt)) for g 2G\GfDtg represents

� constrained to all simple acts, g 2 G \G�.
The uniqueness statement follows immediately from the uniqueness in Lemma 2. That

the representation implies continuity and linearity of v and, thus, the axioms is obvious. �

As suggested in the text, I �rst establish the result of Theorem 2 for simple acts and

then show that those are dense in the space of all acts. Once this is established, I verify that

De�nition 6 can be applied. Corollary 3 still holds, where i is replaced with D.

Claim 7: If � satis�es Axioms 2-6, then there are a set of bounded positive numbers

fl (s)gs2S, a collection of probability measures f�D (s)gD2F , and a countably additive prob-
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ability measure � on F , such that, for g 2 GfDtg,

V (g) =

TX
t=1

� (Dt)

Z
S

�g(Dt) (s) l (s) d�Dt (s)

represents � on G�. Furthermore, there is a function v : G! R as in Lemma 2�that agrees
with V on G�.

Proof: In complete analogy to the proof of Theorem 2, it can be established that there

is an event dependent, positive scaling factor � (D) such that

v (g) =
TX
t=1

� (Dt)

Z
S

�g(Dt) (s) l (s) d�Dt (s)

for g 2 GfDtg, where v represents �. � (D) = 0 if and only if D is trivial. This implies

that �D can be represented by
R
S

�A (s) l (s) d�D (s). Holding intensities, l; �xed, it is an

immediate implication of Theorem 1 in DLR, that �D identi�es �D (s) uniquely. Now

consider a partition fDtgTt=1 with D [ D0 2 fDtgTt=1 and a �ner partition fD0
tg
T 0

t=1 with

D;D0 2 fD0
tg
T 0

t=1. According to the proof of Lemma 2�, vD[D0 (A) = vD (A) + vD0 (A). As

l (s) does not depend on D, the representation for the �ner partition must then assign the

same relative weight to any taste s, as the representation for the coarser partition:

� (D [D0)�D[D0 (s) / � (D)�D (s) + � (D0)�D0 (s)

for all s 2 S and D;D0 2 F . Since �D[D0 ; �D and �D0 are probability measures on S;

integration over S yields � (D [D0) = � (D) + � (D0). It follows inductively that

�
�[

Dt

�
=
X

� (Dt)

for
S
Dt 2 F . Since F is a �-algebra, it includes all countable unions of its elements. Since

v is unique only up to positive a¢ ne transformations, � (D) can be normalized to be a

countably additive probability measure, � (D). For g 2 G�, de�ne

V (g) :=
TX
t=1

� (Dt)

Z
S

�g(Dt) (s) l (s) d�Dt (s)

which establishes Claim 7. k
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Claim 8: The simple acts G� are dense in G in the topology de�ned on G.

Proof: I will argue that every neighborhood of an act g 2 G in the product topology

contains a simple act. Let pi : G! Gi be the natural projection from G to Gi = A and let

B" (A) � A be an open ball of radius " > 0 around A 2 A,

B" (A) := fB 2 A jdh (A;B) < "g :

It su¢ ces to show that, for every act g 2 G, there is a simple act in every �nite intersection
of sets of the form p�1i (B" (g (i))) � G.33 Let a �nite set I 0 � I index the relevant dimensions
for this intersection. I will establish that there is always a simple act h with

max
i2I0

dh (g (i) ; h (i)) < ":

Given "; let L � �(Z) be a �nite set of lotteries over Z, such that for all � 2 �(Z) there
is �0 2 L with dp (�; �0) < ". This set exists, because �(Z) is compact. Let A0 be the set
of all subsets of L. Then A0 � A, and for all A 2 A there is A0 2 A0 with dh (A;A0) < " by
the de�nition of dh (A;B). Thus, there is an act in

T
I0
p�1i (B" (g (i))) with support only in

A0. Because I 0 is �nite and F the Borel �-algebra, there is �nite partition fDtg of I, such
that i; j 2 I 0 and i 2 Dt imply j =2 Dt. Thus, for every g 2 G and for all " > 0, there is a

simple act in
T
I0
p�1i (B" (g (i))). k

Claim 7 establishes that on G� it is possible to choose

v (g) �
TX
t=1

� (Dt)

Z
S

�g(Dt) (s) l (s) d�Dt (s)

Claim 8 then implies that the continuous function v (g) is uniquely determined on G.

To apply De�nition 6, hold l (s) �xed. It is bounded by construction. For a sequence

of simple acts, hgni in G� with gn 2 GfDtg, consider the sequence of functions h'ni ; where
'n : I ! R is de�ned as

'n (i) :=

Z
S

�gn(D) (s) l (s) d�D (s)

for i 2 D 2 fDtg. Then, the task is to �nd a sequence hgni in G�, such that 'n converges
33Open sets in the product topology are the product of open sets in the topology dh generates on A, which

coincide with A for co�nitely many i 2 I.
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from below to the bounded function

' (i) :=

Z
S

�g(i) (s) l (s) d�i (s)

for a given act g 2 G and some measure �i (s). First, for gn 2 GfDtg, let Dn (i) be such that

i 2 Dn (i) 2 fDtg. Because gn 2 GfDtg can always be expressed by using a �ner partition
and because F is the Borel �-algebra, it is without loss of generality to assume lim

n!1
Dn (i) =

fig. Given l (s) ; �D (s) is unique. Axiom 7 then implies that �i (s) := lim
gn!g

�Dn(i) (s) is

well de�ned. (� � s) is continuous; thus, 'n (i) ! ' (i) for gn ! g holds by construction.

Second, compactness of �(Z) and Continuity (Axiom 3) imply that the set of acts with

only singletons in their support has a (weakly) worst element, g. Axiom 6 then implies that

g < g for all g 2 G. For a singleton f�g,

Z
S

�f�g (s) l (s) d�i (s) =
X
x2Z

0@� (x)Z
S

sxl (s) d�i (s)

1A :
For z 2 argmin

x2Z

�R
S

sxl (s) d�i (s)

�
, this expression is minimized in � = z. Thus, there is a

(weakly) worst element g with support in the degenerate lotteries on Z, which is a �nite set.

Hence g is simple.

With a simple act as a worst act, there must then be a sequence of simple acts, such that

'n (i)! ' (i) from below. Continuity of v and De�nition 6 give

E�

24Z
S

�g(i) (s) l (s) d�i (s)

35 = v (g) :
Interpreting � (s ji) := �i (s) as a probability measure over the taste space S, conditional

on the contingency i 2 I, yields the representation in Theorem 2�:

V (g) = E�

24Z
S

�
max
�2g(i)

Us (�)

�
d� (s ji)

35 :
This completes the proof of the su¢ ciency statement in Theorem 2�. That the axioms are

also necessary for the existence of the representation is straightforward to verify. �
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9.7. Proof of Proposition 1

Lemma 4: If I is �nite and (�; �; U) and
�
�; b�; bU� both represent �, then

� (i)

� (j)
=
� (i)

� (j)

R
S

l(s)bl(s)d� (s ji)R
S

l(s)bl(s)d� (s jj )
has to hold for all nonnull i; j 2 I.

Proof : For any given i 2 I, (�; �; U) and
�
�; b�; bU� imply the same preference, �i. As

noted before, b� (s ji) must be a probability measure with b� (s ji) / l(s)bl(s)� (s ji) and conse-
quently bl (s) b� (s ji) = l (s)� (s ji)R

S

l(s)bl(s)d� (s ji)
:

At the same time (�; �; U) and
�
�; b�; bU� represent the same tradeo¤s across I. It is easy

to verify that this implies � (i)
R
S

�g(i) (s)bl (s) db� (s ji) / � (i)
R
S

�g(i) (s) l (s) d� (s ji) for all

g 2 G and hence � (i) = � (i)
R
S

l(s)bl(s)d� (s ji), which establishes Lemma 4. �
I� and S� are assumed to have �nite cardinality T . According to Lemma 4, bl (s) has to

solve the system of equations � (i) / � (i)
P
S�

l(s)bl(s)� (s ji) for all i 2 I�: We want to establish
that there is a neighborhood of �, such that all � in this neighborhood allow an alternative

representation,
�
�; b�; bU�. Interpret � and � as vectors in RT+. Denote by � (s) 2 RT+ the

vector with i-th component � (s ji) and by � � � (s) 2 RT+ the component wise product of
those vectors. The system of equations has a solution with bl (s) > 0 if and only if � is in the
interior of the positive linear span of f� � � (s)gs2S�.

Lemma 5: Under the conditions of Proposition 1, f� (s)gs2S� are linearly independent.

Proof : Suppose not. Let n 2 f1; :::; Tg index the tastes in S�. There must be para-

meters cn for n 2 f1; :::; T � 1g, such that � (sT ) =
P

n2f1;:::;T�1g
cn� (sn). Then, for some

� 2 (0;1) n f1g, one can de�ne �0 (s ji) to be probability measures, such that

�0 (sT ) / �� (sT ) and
�0 (sn ji)
�0 (sm ji)

=
� (sn ji)
� (sm ji)
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for all n;m 2 f1; :::; T � 1g and all i 2 I. Then l0 (sn) := l (sn)
�(snji )
�0(snji ) is well de�ned for

all n 2 f1; Tg, and for U 0s (�) = l0 (s) s � � the CPF representation (�; �0; U 0) is numerically
identical to the representation (�; �; U) : At the same time, � 6= 1 implies that l0 is not a

linear transformation of l: This contradicts Theorem 1. �

� 2 RT+. Thus, f� � � (s)gs2S� must also be linearly independent. Therefore,

f� � � (s)gs2S� spans RT , and the positive linear span of f� � � (s)gs2S� is open in RT+.
� can be expressed as a linear combination, which assigns unit weight to each of those T

linearly independent vectors: � =
P
S�
� � � (s). Hence, � is in the interior of the positive

linear span of f� � � (s)gs2S�. This establishes the �rst part of Proposition 1: under the
conditions of the proposition, there is a neighborhood of � in RT , such that all � in this
neighborhood allow an alternative representation,

�
�; b�; bU�. The solution of a �nite system

of linear equations is locally Lipschitz continuous in perturbations of the parameters. This

establishes the second part of Proposition 1. �
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