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1 Introduction

This paper studies the auctioneer’s incentives to provide information to bidders in

private value settings and, more importantly, the relationship between the provision

of information and the level of competition in the market measured by the number of

bidders participating in the auction. We show that it is not optimal for the auctioneer

to provide the efficient level of information, that both the optimal and the efficient

level of information precision increase with the number of participants in the auction,

and both converge when the number of bidders goes to infinity.

There are many situations in which the auctioneer can to some extent affect bidders’

information. Take Internet auctions for example. In most of these auctions sellers have

most of the information about the goods on sale and they decide how much information

to reveal to bidders by posting electronic images, providing text descriptions, etc.

Similarly, governments soliciting bids to execute a public project or a company selling

a subsidiary have a lot of information on the goods at auction and control how and

how much will reach bidders.

The question of whether an auctioneer with information that is useful to bidders

should keep it hidden or disclose it has a very powerful answer, the so called “linkage

principle” derived by Milgrom and Weber (1982) in an affiliated values environment.

According to the linkage principle the expected-revenue-maximizing policy for the

auctioneer is to commit to fully and publicly announce all information he has. Thus,

the level of information provided to the market is the efficient one and is independent

of competition.

As we will demonstrate below, this result does not hold in private value auctions.

The reason is that the effect of disclosing information to bidders prior to the auction

is fundamentally different in common value versus private value settings. In common
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value environments, bidders’ preferences are aligned and bidders react symmetrically

to the information revealed by the auctioneer and the revelation of information does

not generate bidder rents. In private value environments bidders have heterogenous

preferences, and their valuations depend on the match between their preferences and

the characteristics of the object. This means that any information revealed by the

auctioneer will be perceived differently by different bidders, raising the valuation of

some bidders while reducing that of others. This asymmetric reaction to information

may result in bidders’ informational rents1.

We show that, when facing the decision of how much information to reveal in a

private value setting, the auctioneer faces two opposing forces: more information im-

proves the efficiency of the match while it also increases informational rents. As the

auctioneer balances improved efficiency (which raises revenues) with increased infor-

mational rents (which reduce them), the auctioneer will reveal an inefficient amount

of information.

Further, we are interested in the relationship between the level of information

in the market and competition. We prove that total surplus and the auctioneer’s ex-

pected revenue are supermodular in the number of bidders and the level of information

precision. This implies that the efficient and the auctioneer’s optimal amount of infor-

mation provision are increasing in the level of competition measured in terms of the

number of bidders in the auction. In our setting, total surplus depends on the match

between the object and the winning bidder’s preferences, and the cost of information.

If you add an extra bidder, this increases the opportunity of a better match and the

marginal value of information, since this bidder reaps some efficiency gains from more

1As mentioned earlier, when talking about information we have in mind that the auctioneer
provides information on the features of the object for sale. Other types of information could have
different implications. For example, if the auctioneer were to reveal his valuation of the object
in a private value setting (and his valuation was independent of the bidders’ valuations) then this
information would have no effect.
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information without reducing the gains of existing bidders. Hence information and

competition are complements when maximizing total surplus.

The effect on expected revenue is related. Auctioneer expected revenue is total

surplus minus bidders’ informational rents. Increasing competition naturally reduces

bidder rents and thereby reduces the cost of providing information for the auctioneer.

The compounded effect of competition on total surplus and informational rents is

to increase the incentives of the auctioneer to provide more information. As the

number of participants goes to infinity informational rents disappear, consequently

total surplus and expected revenues converge and so do the optimal and the efficient

levels of information.

Our results are demonstrated in the context of a standard private value auction.

Prior to the auction we allow the auctioneer to provide bidders with information in

the form of private signals correlated with their private valuations. The auctioneer

controls the informativeness of the signals and chooses it so as to maximize his expected

revenue from the auction. We use a general notion of informativeness which we refer to

as signal accuracy. Once the auctioneer chooses the accuracy of the signals it becomes

common knowledge, but the actual realizations of the private signals are known only by

bidders. Each bidder uses this information (the level of accuracy and the realization

of his private signal) to update his expected valuation of the object and then the

auction takes place. We study both the socially efficient and the optimal (revenue

maximizing) choice of information, and conclude by analyzing what happens as the

number of bidders goes to infinity.

Note that we are modeling the match between the information revealed by the auc-

tioneer and private preferences implicitly, via private signals which are correlated with

agent’s true and unknown valuations. An alternative approach is to model this match
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explicitly, i.e. have the auctioneer provide a public signal related to the characteristics

of the object. Then, agents who have private information about their preferences inter-

pret the signal and revise their expected valuations. Ganuza (2004) follows the direct

approach in a Hotelling setting where an auctioneer sells a good to bidders who are

located on a circle according to a uniform distribution. In this alternative symmetric

setting, he finds the same tradeoff between efficiency and informational rents.

Another paper that is related to ours is Bergemann and Pesendorfer (2003). Their

objective is to study the design of the optimal auction and the optimal information

structure in private value settings. They do this by allowing the auctioneer to provide

information to bidders asymmetrically. We take a different approach centered on the

case where the auctioneer is constrained to provide information symmetrically. Such

a constraint arises naturally in many real problems: in Internet and other auctions it

can be very hard to identify active bidders until they actually make a bid, which con-

siderably complicates the process of providing information in a personalized manner;

also, in government-related auctions legal restrictions often require the auctioneer to

publicly release information and explicitly forbid asymmetric information provision in

order to avoid favoritism or corruption; furthermore, in some settings the information

given to one bidder could be shared with other bidders or it could leak in some way,

undermining the desired effects of information discrimination.

Moreover, the methodology of Bergemann and Pesendorfer (2003) is not well suited

to the types of questions we pose here. We are interested in the interaction between

information and competition. In their work, the information the auctioneer gives to

bidders takes the form of partitions which are difficult to rank in terms of informational

content or precision as the number of bidders changes. Our approach is closer to the

work of Bergemann and Välimäki (2002), Persico (2000), and Athey and Levin (2001).
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As in those papers we work with information structures that can be ordered in terms

of their accuracy.

In private value auctions, Eső and Szentes (2003) assume that the auctioneer can

fully commit to providing any given level of information precision prior to charging

bidders for it. Thus, the auctioneer can extract all the informational rents ex-ante and

the optimal amount of information released will be the efficient one. We study the

case where the precision of information is known only when that information is made

public (and then it is too late for the auctioneer to try to get bidders to pay him for

it).

There are also a number of papers that focus on the incentives of bidders to acquire

information rather than those of the auctioneer to reveal it: Tan (1992) compares

sealed bid first and second price auction formats under different information acquisition

technologies in private value settings; Stegeman (1996) shows that in private value

auctions the sealed bid second price auction induces efficient information acquisition;

Matthews (1984) and Persico (2001) study bidder information acquisition in the pure

common value auction and affiliated values respectively. Compte and Jehiel(2004)

compare bidder incentives to acquire information and their effect on revenues in static

and dynamic auctions with private values and asymmetrically informed bidders.

A very interesting related empirical paper is that by Kavajecz and Keim (2004).

It documents how some institutional investors use auctions to buy and sell a large

number of shares as one package. It is related to this paper because in this setting

brokers’ (bidders’) valuation of the package has a substantial private value component

(it strongly depends on how the package of shares matches the demand from his other

clients and which varies substantially from broker to broker). These auctions are called

blind auctions because the auctioneer consciously provides relatively little detail on
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the shares in the package at auction.

The remainder of the paper is organized as follows. In Section 2 we introduce

the model and describe how bidders’ valuations depend on the information the auc-

tioneer releases concerning the object. Section 3 studies the auctioneer’s information

release, characterizes the efficient solution and the auctioneer’s optimal strategy. Sec-

tion 4, concludes by discussing the scope and implications of the model. All proofs

are relegated to a technical appendix.

2 The Model

An auctioneer wants to sell an object he values at zero to one of n (ex-ante) identical

risk-neutral bidders (indexed by i = 1, . . . , n). Bidders’ valuations of the object are

private and unknown. Bidder i’s realized valuation after the auction is described by

a random variable, Vi. We assume all agents are ex-ante identical so that for all

i = 1, . . . , n, Vi is independently distributed on V = [0, 1] according to a common

distribution H with mean µ, where for all v ∈ [0, 1], H describes the cumulative

distribution of V , H(v) = Pr(Vi ≤ v).

The utility obtained by bidder i from winning the auction is quasilinear. If the

realized valuation is vi and he makes a monetary payment of ti, the utility obtained

is given by

ui(vi, ti) = vi − ti.

All bidders start with identical priors, described by H, and no other information

on the object2. Hence, their expected valuations of the object will be the same and

2The model could start with each bidder having a private estimate of the value of the good (in
addition to the common prior). This would add a great deal of technical complexity that would
complicate the demonstration of our results. Nevertheless, as long as these estimates do not alter the
ex-ante symmetry from the point of view of the auctioneer, we do not see any reason why our results
should change in any qualitatively significant way.
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equal to µ.

The auctioneer can reveal information on the object prior to the auction. The

production of information is costly. By paying an amount δ ∈ [0,∞) the auctioneer

will generate information in the form of private signals (Xi)
n
i=1. Bidder i receives the

private signal Xi and no other. The signals are independent and identically distributed

random variables. We assume that these signals are drawn from the space of signals,

X ⊆ R, and for each i = 1, . . . , n, each Xi is informative only about bidder i’s own

true and unknown valuation of the object, vi.

When the auctioneer decides how much to invest in providing information, δ,

he determines the informational content of the private signals, (Xi)
n
i=1. Formally,

by choosing δ, the auctioneer determines the information structure, where an in-

formation structure is a joint distribution, Fδ over signals, (Xi)
n
i=1 and valuations

(Vi)
n
i=1 indexed by δ. As the signals are independent, there exists a distribution

Fδ(v, x) = Pr(V ≤ v,X ≤ x), such that

Fδ (V1 ≤ v1, . . . , Vn ≤ vn, X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

Fδ(vi, xi)

We leave out the i subscripts on signals and valuations whenever they are clear from

the context. With minor abuse of notation let Fδ(x) and Fδ(v) denote the marginal

distributions of X and V respectively, and Fδ(x|v) and Fδ(v|x) the conditional dis-

tributions, where Fδ(x|v) = Pr(X ≤ x|V = v). As priors have to be consistent with

the joint distribution, Fδ(v, x), then Fδ(v) = H(v). It will be convenient to assume

that Fδ(x) is strictly increasing. From now on, we apply the following convention:

the terms ‘increasing’ and ‘greater than’ mean ‘non-decreasing’ and ‘no less than’, and

when it is important to distinguish between them we use mathematical notation which

is unambiguous.

We will not yet formalize exactly how a higher δ generates better information, we
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discuss that in the next section, section 2.1. At this stage, it suffices to realize that

the information structures are indexed by δ, that this δ serves to rank the information

structures, and finally, that δ, the overall level of signal accuracy, is public information

to all bidders. We will use the terms ‘more information’, ‘better information’, ‘more

precise information’ and ‘more accurate information’ interchangeably.

After the auctioneer has released the information, the awarding process takes place.

To participate in this process, each bidder combines his knowledge of δ and the real-

ization of the private signal, xi, to update his expected valuation of the object, also

referred to as the interim valuation and denoted wi(xi, δ), using Bayes’ rule. The

auctioneer sells the object using a second-price sealed-bid auction.3 For simplicity we

abstract from reserve prices and assume that the object is always sold. Summarizing,

the model is structured as follows:

1. Bidders start with common priors over their unknown valuations for the object.

2. Prior to the auction, the auctioneer, knowing the number of bidders, n, decides

how much to spend on information, δ (the more he spends the more precise will

the information be). This decision becomes public information.

3. Given δ, each bidder receives a private signal xi over his valuation.

4. According to δ and the private signals, (xi)
n
i=1, bidders update their valuations

of the object.

3We have chosen the second-price sealed-bid auction for the sake of simplicity. As will be clear
in the following, at the awarding stage bidders are symmetric in expected terms, risk neutral and
their expected valuations of the object are independently distributed. Then, applying the revenue
equivalence theorem, any auction mechanism in which the object is always awarded to the buyer with
the highest valuation and where any bidder with the lowest valuation obtains zero surplus, yields
the same expected revenue to the auctioneer. Thus, all “standard” auctions (second-price sealed-bid,
first-price sealed-bid, oral ascending (English) or oral descending (Dutch)) and many non-standard
auctions such as an “all-pay” auction would yield the same expected revenue to the auctioneer, bidders
would make the same expected payments as a function of their valuations and, as a consequence, the
same results would be obtained.
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5. The second-price sealed-bid auction takes place.

We will now give more details on how a higher δ generates more informative signals

and also look at how interim valuations, wi(Xi, δ), are distributed. Then the analy-

sis will proceed in the usual way: we characterize the Perfect Bayesian Equilibrium

starting from the auction and move backwards. We focus on the auctioneer’s decision

about how much information to provide to the bidders. First, we characterize the ef-

ficient solution of this problem and then the auctioneer’s optimal information release.

Finally, we compare both solutions.

2.1 Information Structures

The auctioneer chooses how much to spend on information, δ, and determines the

information structure faced by bidders, Fδ, which bidders use to evaluate the informa-

tional content of the signals they receive, Xi. We assume that for each δ, Fδ(x) has

support on a subinterval of X and is strictly increasing on that subinterval.

Given any δ > 0, the signals will be informative in the sense that given two signals

x′ and x, such that x > x′, receiving the larger signal, x, is good news in the sense

of Milgrom (1981); i.e. the posterior distribution of true valuations conditional on

x, Fδ(v|x), dominates the posterior distribution of true valuations conditional on x′,

Fδ(v|x′), in terms of First Order Stochastic Dominance (FOSD) denoted Fδ(·|x) ≥st

Fδ(·|x′), (that is Fδ(v|x) ≤ Fδ(v|x′) for all v ∈ [0, 1]). This implies that for any

increasing function of the realized valuation, ψ(v), E[ψ(v)|x] ≥ E[ψ(v)|x′].

We want to formalize how a higher δ leads to better information. For this we will

transform the realized signal Xi into a new random variable Πi which has exactly

the same informational content as Xi. This new Πi is obtained using the probability

integral transformation: Πi = Fδ(Xi) so that F−1
δ (Πi) = Xi, where F−1

δ is the right-

continuous inverse of the marginal distribution Fδ(x). We use Πi instead of Xi because
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it is informationally equivalent and yet has a marginal distribution with a very useful

property: the marginal distribution of Πi is the uniform on [0, 1] and hence independent

of δ.

We can now define exactly how a higher δ leads to higher informational content

of the signal Xi. Let δ > δ′ and define Π = Fδ(X) = Fδ′(X). Then Fδ is more

informative than Fδ′ in the following sense:

Definition 1 Let Fδ and Fδ′ be two information structures with δ > δ′ and associated

posterior distribution functions Fδ(v|x) and, Fδ′(v|x). The information structure Fδ

is more accurate than Fδ′ iff ∀π, π′ ∈ [0, 1], π > π′, ∀v ∈ V ,

Fδ

(
v|F−1

δ (π′)
)
− Fδ

(
v|F−1

δ (π)
)
≥ Fδ′

(
v|F−1

δ′ (π′)
)
− Fδ′

(
v|F−1

δ′ (π)
)

Thus, a higher δ leads to conditional distributions over true valuations that are

more sensitive to signal realizations.

This intuitive notion of accuracy is related to notions of informativeness proposed

in the previous literature. In particular, it can be shown that our notion of accuracy

is equivalent to the notion of stochastic supermodularity4. In order to put our notion

in context we refer the interested reader to Athey and Levin (2001) where several

different notions of informativeness of information structures are discussed.

2.2 Endogenous Bidder Valuations

In this section we want to study the effects of different information structures on

the distribution of interim bidder valuations. Recall bidders start with only a prior

over their valuation of the object, H. Then, the auctioneer spends δ and each bidder

receives a private signal xi. For fixed δ and signal xi, the updated distribution of

4See remark 1 in the appendix and Topkis (1998) for additional details over stochastic supermod-
ularity.
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valuations for bidder i is Fδ(v|xi), so that their expected valuations change from µ

to wi(xi, δ). The expected value can be computed via a standard Riemann-Stieltjes

integral

w(x, δ) =
∫ 1

0
v dFδ(v|x).

We have seen that for given δ, a higher signal implies better news and hence for all

δ > 0, w(x, δ) is an increasing function of the realization of the signal, x.

How about if we change δ? Recall we are using the transformed signal Π = Fδ(X)

to make signals comparable across information structures. We will need the interim

valuation (the updated expected valuation) of a bidder who receives the transformed

signal Π: let W (π, δ) = w(F−1
δ (π), δ). Notice that, as we have assumed that Fδ is

strictly increasing, then F−1
δ (·) is also strictly increasing, π is a monotone increasing

transformation of x and for all δ, W (π, δ) is increasing in π.

Then, a more accurate signal implies greater differences between expected valua-

tions:

Lemma 1 Let Fδ and Fδ′ be two information structures such that δ > δ′ (Fδ is more

accurate than Fδ′) then for all π > π′

W (π, δ)−W (π′, δ) ≥ W (π, δ′)−W (π′, δ′),

i.e. W (π, δ)−W (π′, δ) is increasing in δ.

We provide a direct proof of this in the Appendix. Also, this result follows directly

from the equivalence between our notion of accuracy and stochastic supermodularity

we have mentioned above.

Before we conclude this section we want to be very specific about what Lemma

1 means in terms of the distribution of interim valuations. Lemma 1 basically states

that, a higher δ implies a more ‘spread out’ distribution of interim valuations. In the
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statistics literature there are several ways to formalize the notion of what it means for

a distribution to be ‘spread out’.

One notion is the following: a random variable X with cumulative distribution

function F is said to be more disperse than another random variable Y with cumulative

distribution function G, and denoted X ≥disp Y if for all q, p ∈ [0, 1], q > p

F−1(q)− F−1(p) ≥ G−1(q)−G−1(p).

Using this definition, we can read Lemma 1 as follows, if Fδ is more accurate than Fδ′

then the distribution of interim valuations generated by Fδ is more disperse than the

distribution of interim valuations generated by Fδ′ .

Economists are more familiar with a different and yet related notion of ‘spread

out’ distributions: a random variable X with cumulative distribution function F ,

finite mean and support on A ⊆ R is dominated in terms of second order stochastic

dominance (SOSD) by a random variable Y with cumulative distribution function G,

finite mean and support on B ⊆ R, denoted X ≤SSD Y , if the expected value of X is

the same as that of Y and for all z ∈ R

∫ z

−∞
F (x)dx ≥

∫ z

−∞
G(x)dx.

In our setup, we can order the distribution of interim expected valuations according

to second order stochastic dominance:

Corollary 1 Let Fδ and Fδ′ be two information structures such that δ > δ′ (Fδ is more

accurate than Fδ′), then W (Π, δ) is dominated by W (Π′, δ′) in the sense of SOSD

Summarizing, the auctioneer can control how spread out is the distribution of

expected valuations, in the sense that the difference between the expected valuation

of a bidder with a signal in the q-th percentile and a bidder with a signal in the p-th
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percentile is greater if the signals come from a more accurate information system. But

why should more information lead to a more spread out distribution of valuations?

Intuitively, as bidders react asymmetrically to information, some increasing and some

reducing their expected valuations, more information is more likely to lead to greater

differences in updated bidders’ valuations.

More formally, if the signals are more accurate, bidders give more weight to the

realization of the signal in the calculation of their updated expected valuations. The

increased importance of the realization of the signal comes with a reduction in the

importance of the (common) prior. Thus the updated expected valuation is more sen-

sitive to differences in realizations of the signals and the effect of receiving one signal

rather than another implies a bigger effect, a bigger difference, in the interim expected

valuations. Then, more information naturally leads to a distribution of expected val-

uations that is more ‘spread out’.

3 Information Release

In this section, we study the accuracy of information the auctioneer provides. We want

to contrast the optimal and the efficient level of accuracy and we start by characterizing

the efficient level of accuracy: how much accuracy should the auctioneer provide?

3.1 The Efficient Level of Accuracy

The efficient level of accuracy is that which maximizes the total surplus at the time

of the information release. In our setup, total surplus is defined as the sum of the

auctioneer’s revenue and the interim utility of the bidder with the highest expected

valuation at the time of the auction.

Recall that the awarding mechanism is a second price auction. Given that for every

information structure expected valuations are increasing in the signal, the highest
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bid will come from the bidder with the highest expected valuation and this bidder

will be the one with the highest realization of the signal. We denote the highest

realization of the signal by x1. In terms of the transformed signal, Π, the winner will

be the one who receives π1 ≡ Fδ(x1). If we take expectations prior to the information

release, then the expected valuation of the winning bidder will depend on n and δ:

V1(n, δ) = E[W (Π1, δ)]. The notation makes explicit the number of bidders as we

shall be studying the effect of changing n. Let U1:n(p) be the cumulative distribution

function of the first order statistic of n independent uniform random variables on [0, 1].

As the transformed signals Π1 are independent and uniformly distributed on [0, 1],

V1(n, δ) =
∫ 1

0
W (p, δ)dU1:n(p)

The next result characterizes the relationship between the expected valuation of

the winning bidder and the amount of information provided by the auctioneer.

Proposition 1 The expected valuation of the winning bidder V1(n, δ) is increasing in

the accuracy of the information, δ.

Proposition 1 rests on the fact that the winning bidder will be the bidder with the

highest realization of the signal. The expected highest realization is greater than the

mean, which is also the prior expectation. As more accurate signals lead to putting

greater weight of the realization of the signal relative to the prior, then the greater

the accuracy the greater the expected valuation of the winner, V1(n, δ). As we said

in the introduction, our model could be interpreted as a situation in which the auc-

tioneer provides information about the features of the object and bidders have private

information over their preferences. Under this interpretation Proposition 1 can be in-

terpreted as: the larger the information provided to bidders, the better the matching

between the features of the object and the preferences of the winning bidder.
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Thus, the trade-off faced when deciding the efficient amount to spend on infor-

mation, δE, is between increasing the expected valuation of the winning bidder and

increasing the cost of providing that information to the market:

δE ∈ argmax
δ

V1(n, δ)− δ (1)

The next proposition states the relationship between the efficient level of accuracy

and the level of competition.

Proposition 2 The total surplus is supermodular on δ and n.

Proposition 2 states that the difference in terms of expected surplus between two

levels of signal accuracy is larger the larger the number of bidders. Mechanically, more

bidders imply that the highest realization of the signal will be higher. Thus, more

competition increases the return from giving more weight to the highest realization

of the signal and hence the incentive to increase signal accuracy. From an economic

point of view, the larger the number of bidders, the larger the value of information.

The intuition is that the larger the pool of bidder preferences, the larger the incentives

to improve the matching by increasing the accuracy of information on the object.

Corollary 2 The efficient amount of information, δE, is increasing in the number of

bidders, n ≥ 1.

As the number of bidders in the auction increases the marginal effect of adding

information is greater so that with more bidders it is efficient to spend more on infor-

mation.

3.2 The Auctioneer’s Optimal Information Release

Having characterized the efficient amount of information, let us now turn to the auc-

tioneer’s problem: how much information to release if one wants to maximize expected

revenue from the auction.
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We first characterize the bidder’s optimal strategy given a fixed amount of expen-

diture on information, δ, and the realization of his private signal xi. The nature of

the second-price auction ensures that it is optimal for the bidder to bid his expected

valuation: let bi(xi, δ) be the bid made by agent i on knowing δ and receiving signal xi,

then bi(xi, δ) = w(xi, δ) = W (F−1
δ (xi), δ). The winner of the auction will be the one

with the highest signal, x1. As bidders bid their valuations and we are in a second-price

auction, the payment to the auctioneer will be equal to the expected valuation of the

bidder with the second-highest signal, x2. Using the transformed variables, the highest

signal is π1. Denote the second highest signal as π2 ≡ F−1
δ (x2). As the transformed

signals are independent and uniformly distributed on [0, 1], U2:n(p), the cumulative

distribution of the second order statistic in a sample of n iid uniform random variables

on [0, 1], is the cumulative distribution function of Π2. Then:

V2(n, δ) =
∫ 1

0
W (p, δ)dU2:n(p)

Where V2(n, δ) is the expected price in the auction and the expected valuation of

the bidder with the second highest signal realization. The next proposition states the

relationship between expected price and the amount of information.

Proposition 3 The expected price (the valuation of the second highest bidder), V2(n, δ),

is increasing in the amount of information, δ, if the number of bidders is larger than

3. The value of information to the auctioneer is in fact negative for n = 2.

The intuition behind Proposition 3 is the same as behind Proposition 1 replacing

the bidder with the highest realization of the signal with the one with the second

highest realization. But, if there are only two bidders then in expected terms, the

signal of the loser in the auction (and hence his expected valuation and the price) will
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be below the prior. Thus, improving information has a negative value as it lowers the

expected price (and revenue).

The next proposition addresses the question of how the rents generated by higher

information are distributed between the auctioneer and the winner in the auction.

The expected informational rents of the winning bidder is the difference between his

valuation and the valuation of the second closest bidder (which is the price paid for

the object)

Rw(n, δ) = V1(n, δ)− V2(n, δ)

Proposition 4 The expected informational rents of the winning bidder are increasing

in δ.

Proposition 4 is linked with the fact that more information implies a more ‘spread

out’ distribution of interim valuations. Hence Proposition 4 shows us the drawback of

providing information to the market: it increases bidders’ rents.

To establish the auctioneer’s optimal strategy, we have to characterize the level

of information, δA, that maximizes the difference between the expected price and the

cost of providing more information:

δA ∈ argmax
δ

V2(n, δ)− δ (2)

By comparing (1) and (2) it is easy to see that the structure of the auctioneer’s problem

is identical to that of total surplus maximization with V1(n, δ) substituted by V2(n, δ),

so that the intuition behind the results presented in the following Proposition and its

Corollary is the same as those for Proposition 2 and Corollary 2.

Proposition 5 The auctioneer’s expected profits are supermodular on δ and n.

Hence the larger the number of bidders, the larger the incentives of the auctioneer

to provide information.
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Corollary 3 The optimal amount of information, δA, is increasing in the number of

bidders, n.

Finally, the following proposition presents the main result of the paper.

Proposition 6 The auctioneer provides less information to bidders than would be

efficient, δA ≤ δE. The difference between the efficient information release and the

equilibrium information release converges to 0 as the number of bidders goes to infinity.

To better understand the result one can rewrite the auctioneer’s problem as:

δA ∈ argmax
δ

V1(n, δ)− δ −Rw(n, δ)

This formulation clarifies the trade-off faced by the auctioneer when providing

information to the market. On the one hand, when the auctioneer provides more

information, the efficiency of the auction process goes up (V1(n, δ) is increasing in δ –

Lemma 1). On the other hand, the increase in information also raises the informational

rents of the winning bidder (Rw(δ) is increasing in δ – Proposition 4). The optimal

balance of these two opposing effects leads the auctioneer to provide less information

than would be efficient. In other words, the auctioneer will restrict the information

released to the market in order to make the potential bidders more homogeneous, with

the underlying goal of intensifying competition and increasing his expected revenue. As

the number of bidders increases, the informational rents are reduced and the trade-off

is weakened. In the limit, as the number of bidders goes to infinity, the informational

rents disappear and with it the difference between efficient and optimal information

release.
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4 Conclusions

We were interested in what happens when the auctioneer can release information to

bidders and how the amount of information released relates to the level of competi-

tion in private value auctions. We have set up a standard auction model and used

a general notion of informativeness to study this question. We have shown that the

optimal level of information released by the auctioneer is not the same as the effi-

cient level, which contrasts with the “linkage principle”. This is because in private

value settings, there are two factors that determine the optimal provision of informa-

tion: (i) improved information increases the efficiency of the auction; (ii) improved

information also increases the informational rents of the winning bidder. These two

effects represent opposing forces for the auctioneer: improved efficiency raises revenues

while increased informational rents reduce revenues. Hence, the optimal amount of

information released is below the efficient one.

Our second main result relates competition and the information provided to the

market. We show that there is a complementarity between competition and informa-

tion when maximizing total welfare and also, when maximizing auctioneer revenues.

Then, both the efficient and the optimal level increase with the number of bidders.

We conclude by showing that as the number of bidders goes to infinity, the difference

between the efficient and optimal solutions vanishes.

The complementary between information and competition opens up a number of

interesting avenues for future research. For example, this could be an ingredient in

explaining the prevalence of incomplete contracting in many real life situations. In

procurement, one can consider the possibility of reducing the degree of specificity

in a contract in order to homogenize the market and inject an additional degree of

competition into the procurement process.
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Another possible extension is to consider endogenizing the degree of competition

in the auction by adding an initial stage whereby firms decide whether to enter into

the auction or not. The complementarity between the level of information provision

and competition should intuitively lead to multiplicity of equilibria in the entry game.

There will be equilibria with low competition and a low level of information and others

with lots of competition and a high level of information.
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A Appendix

A.1 Preliminary Result and Notation

Using the notation developed in the text, we will make repeated use of the following

very well-known result, which we state as a lemma: if X ≥st Y then for all increasing

functions ψ, E[ψ(X)] ≥ E[ψ(Y )].

Lemma 2 Let X and Y be real-valued random variables with cumulative distribution

functions F and G respectively, such that F (z) ≤ G(z) for all z ∈ R. For all bounded

real-valued increasing functions ψ : R → R,

∫
R
ψ(z)dF (z) ≥

∫
R
ψ(z)dG(z)

We also use the following notation: Ui:j(x) is the cumulative distribution function

(cdf) of a random variable Y such that Ui:j(x) = Pr(Y ≤ x). This random variable

is the ith order statistic from a sample of j independently and identically uniform

distributed random variables over [0, 1], where U1:j refers to the cdf of the maximum

of the sample, U2:j to the cdf of the second highest realization in the sample and so

on until Uj:j which is the cdf of the minimum realization in the sample. We will also

make use of the functional form of U1:n which is, for π ∈ [0, 1], U1:n(π) = πn.

A.2 Proofs

Proof of lemma 1: For π > π′, and using the properties of Riemann-Stieltjes

integrals

W (π, δ)−W (π′, δ) =
∫

V
v dFδ(v|F−1

δ (π))−
∫

V
v dFδ(v|F−1

δ (π′))

=
∫

V
v d

[
Fδ(v|F−1

δ (π))− Fδ(v|F−1
δ (π′))

]
≥ 0
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The last inequality arises from the assumption that π′ > π implies good news. Inte-

grating by parts

W (π, δ)−W (π′, δ) = −
∫

V
(Fδ(v|F−1

δ (π))− Fδ(v|F−1
δ (π′)))dv (3)

Similarly

W (π, δ′)−W (π′, δ′) = −
∫

V
(Fδ′(v|F−1

δ′ (π))− Fδ′(v|F−1
δ′ (π′)))dv (4)

As I(δ) is more accurate than I(δ′) and π > π′, then

Fδ

(
v|F−1

δ (π′)
)
− Fδ

(
v|F−1

δ (π)
)
≥ Fδ′

(
v|F−1

δ′ (π′)
)
− Fδ′

(
v|F−1

δ′ (π)
)

(5)

Integrating over v on both sides of condition (5) and combining the outcome with

equations (3) and (4) we get

W (π, δ)−W (π′, δ) ≥ W (π, δ′)−W (π′, δ′)

Corollary 4 W (π, δ)−W (π, δ′) is increasing in π for δ > δ′.

Proof of Corollary 4: This follows immediately from Lemma 1: for π > π′

W (π, δ)−W (π′, δ) ≥ W (π, δ′)−W (π′, δ′)

⇒ W (π, δ)−W (π, δ′) ≥ W (π′, δ)−W (π′, δ′)

Proof of Corollary 1: Applying the law of iterated expectations: µ = E[E[v|X]] =

E[W (Π, δ)] and µ = E[E[v|X ′]] = E[W (Π′, δ′)]. If X and Y , two random variables,

have the same mean and X is more disperse than Y , i.e. X ≥disp Y , then X ≤SSD Y

(Shaked and Shantikumar(1994), Theorem 2.B.10).
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Proof of Proposition 1: We want to show that if δ > δ′ then V1(n, δ) ≥ V1(n, δ
′).

This is equivalent to showing

∫ 1

0
(W (p, δ)−W (p, δ′)) dU1:n(p) ≥ 0

By the law of iterated expectations, the expected valuation of the distribution of

expected valuations, E[W (π, δ)], must not depend on the information structure. Let

U1:1(π) = π denote the cumulative distribution function of the uniform. We can now

write ∫ 1

0
(W (π, δ)−W (π, δ′))dπ =

∫ 1

0
(W (π, δ)−W (π, δ′))dU1:1(π) = 0

By Corollary 4, the function ψ(π) ≡ (W (π, δ) − W (π, δ′)) is increasing in π. As

U1:n(p) = pn ≤ U1:1(p) for all n ≥ 1 and p ∈ [0, 1] and ψ(π) is increasing, we can apply

Lemma 2 and the result follows.

Proof of Proposition 2: It suffices to show that V1(n+ 1, δ)− V1(n, δ) ≥ V1(n+

1, δ′)− V1(n, δ
′).

This is equivalent to showing

V1(n+ 1, δ)− V1(n+ 1, δ′) ≥ V1(n, δ)− V1(n, δ
′)

⇔
∫ 1

0
(W (π1, δ)−W (π1, δ

′))dU1:n+1(π1) ≥
∫ 1

0
(W (π1, δ)−W (π1, δ

′))dU1:n(π1)

From Corollary 4, the function ψ(π) ≡ (W (π, δ) −W (π, δ′)) is increasing in π. As

U1:n+1(p) = pn+1 ≤ U1:n(p) = pn for all p ∈ [0, 1], we can apply Lemma 2.

Proof of Corollary 2: Immediate from the results of Milgrom and Shanon (1994)

and Proposition 2.

23



Proof of Proposition 3: This follows by the same logic as the proof of Proposition

1 and the well-known result that U2:n(p) ≤ U1:1(p) for all p ∈ [0, 1] and n ≥ 3.

Proof of Proposition 4:

We want to show that for δ > δ′, Rw(n, δ) ≥ Rw(n, δ′), i.e.

V1(n, δ)− V2(n, δ) ≥ V1(n, δ
′)− V2(n, δ

′)

This is equivalent to

V1(n, δ)− V1(n, δ
′) ≥ V2(n, δ)− V2(n, δ

′)

i.e.,

∫ 1

0
(W (π1, δ)−W (π1, δ

′))dU1:n(π1) ≥
∫ 1

0
(W (π2, δ)−W (π2, δ

′))dU2:n(π2)

Again, using Corollary 4 and the stochastic dominace of the first order statistic

over the second, U1:n(p) ≤ U2:n(p) for all p ∈ [0, 1]. Applying Lemma 2 concludes the

proof.

Proof of Proposition 5: This follows by the same logic as the proof of Proposi-

tion 2 and the property that increasing the sample by one increases the second order

statistic (in the stochastic sense), i.e. U2:n+1(p) ≤ U2:n(p) for all p ∈ [0, 1].

Proof of Corollary 3: Immediate from the results of Milgrom and Shannon (1994)

and Proposition 5.

Proof of Proposition 6: The auctioneer’s problem is

δA ∈ argmax
δA

{V2(n, δ)− δ}
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This problem is equivalent to

δA ∈ argmax
δA

{V1(n, δ)− δ −Rw(n, δ)}

where Rw(δ) is as defined in the text.

Compare the formulation of the auctioneer’s problem to the formulation of the

social welfare maximization problem (equation 1 ). As δA solves the auctioneer’s

optimization problem

E[W (Π1, δ
A)− δA −Rw(δA)] ≥ E[W (Π1, δ

E)− δE −Rw(δE)]

Rw(δ) is increasing (Proposition 4) so that if δA > δE, then this last equation would

imply

E[W (Π1, δ
A)− δA] ≥ E[W (Π1, δ

E)− δE]

but this contradicts the fact that δE maximizes social surplus, so that δA ≤ δE.

To establish the second part of the Proposition, consider the informational rents,

Rw(n, δ).

Rw(n, δ) = V1(n, δ)− V2(n, δ)

=
∫ 1

0
W (π, δ)dU1:n(π)−

∫ 1

0
W (π, δ)dU2:n(π)

=
∫ 1

0
W (π, δ)d(U1:n(π)− U2:n(π))

We know U1:n(π) = πn and U2:n(π) = nπn−1 − (n− 1)πn.

U1:n(π)− U2:n(π) = n(πn − πn−1)

⇒ lim
n→∞

U1:n(π)− U2:n(π) = 0

As W (π, δ) is bounded and monotone in π, and (U1:n(π)− U2:n(π)) converges to zero

then Rw(n, δ) also converges to zero

lim
n→∞

Rw(n, δ) = lim
n→∞

∫ 1

0
W (π, δ)d(n(πn − πn−1)) = 0
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Hence, the objective function of the auctioneer approaches total surplus as n goes to

infinity.
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