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TWO-STAGE LO1TERIES WITHOUT THE REDUCTION AXIOM1 

BY Uzi SEGAL 

This paper analyzes preference relations over two-stage lotteries, i.e., lotteries having as 
outcomes tickets for other, simple, lotteries. Empirical evidence indicates that decision 
makers do not always behave in accordance with the reduction of compound lotteries 
axiom, but it seems that they satisfy a compound independence axiom (also known as the 
certainty equivalent mechanism). It turns out that although the reduction and the com- 
pound independence axioms together with continuity imply expected utility theory, each of 
them by itself is compatible with all possible preference relations over simple lotteries. By 
using these axioms I analyze three different versions of expected utility for two-stage 
lotteries. 

The second part of the paper is devoted to possible replacements of the reduction 
axiom. For this I suggest several different compound dominance axioms. These axioms 
compare two-stage lotteries by the probability they assign to the upper and lower sets of all 
simple lotteries X. (For a simple lottery X, its upper (lower) set is the set of lotteries that 
dominate (are dominated by) X by first order stochastic dominance.) It turns out that 
these axioms are all strictly weaker than the reduction of compound lotteries axiom. The 
main theoretical results of this part are: (1) an axiomatic basis for expected utility theory 
that does not require the reduction axiom and (2) a new axiomatization of the anticipated 
utility model (also known as expected utility with rank-dependent probabilities). These 
representation theorems indicate that to a certain extent the rank dependent probabilities 
model is a natural extension of expected utility theory. Finally, I show that some paradoxes 
in expected utility theory can be explained, provided one is willing to use the compound 
independence rather than the reduction axiom. 

KEYwoRDs: Two-stage lotteries, compound independence, reduction of compound 
lotteries axiom, compound dominance, expected utility, anticipated utility. 

1. INTRODUCTION 

ONE OF THE COMMON vindications of expected utility theory, besides its useful- 
ness, is that it is based upon normatively appealing assumptions. Special atten- 
tion was given to the independence axiom, which became almost synonymous 
with the theory itself. This axiom states that a lottery X= (xl, p1; ... ; X,,, P) is 
preferred to a lottery Y = (yl ql; ... ;y q,) if and only if for every lottery 
Z = (zl, rl; ... ;z,, r,) and a E (0, 1], the mixture a(X + (1 - a)Z = 

(X1, apl; ... ;x, app; zl,(1 - a)rl; ... ;z,,(1 - a)r,) is preferred to the mixture 
aY + (1 - a)Z = (yl, aql; ... ; ym aqm; z1,(I - a)rl; ... ;z1,(1-a)r1). Essentially, 
this is the key axiom in Marschak (1950) and Herstein and Milnor (1953). Almost 
all writers in recent years have criticized and rejected this axiom. Some tried to 
weaken it (Quiggin (1982), Chew (1983), Dekel (1986), Chew, Epstein, and Segal 

1 This research was partially supported by the Social Sciences and Humanities Research Council of 
Canada (Grant # 410-87-1375). Parts of it were written while visiting the Economics Department at 
the University of California, Los Angeles. I am grateful to Larry Epstein, Giora Hanoch, Edi Karni, 
Isaak Levy, Mark Machina, Joseph Ostroy, Zvi Safra, Joel Sobel, Shlomo Weber, Bill Zame, and 
especially two anonymous referees and the co-editor for their helpful comments. 
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(1988)), to replace it with other axioms (Yaari (1987), R6ell (1987)), or to 
abandon it completely (Machina (1982)). 

In this paper I try to consider nonexpected utility theory while keeping the 
spirit of the independence axiom. For this I use the richer setting of two-stage 
lotteries, their outcomes being tickets for other, simple, lotteries. When adapted 
to two-stage lotteries, the independence axiom states that the two-stage lottery A, 
yielding with probability a a ticket for lottery X and with probability 1 - a a 
ticket for lottery Z, is preferred to the two-stage lottery B, which is the same as A 
with Y instead of X, if and only if the one-stage lottery X is preferred to the 
one-stage lottery Y. Call this axiom compound independence, and call the 
independence axiom for simple lotteries mixture independence. 

The compound independence axiom by itself does not imply expected utility 
theory, as it does not compare two-stage lotteries to one-stage lotteries. For this, 
one has to add the reduction of compound lotteries axiom, stating that a 
two-stage lottery is equally as attractive as the one-stage lottery yielding the same 
prizes with the corresponding multiplied probabilities (see Samuelson (1952)). 
The compound independence axiom and the reduction of compound lotteries 
axiom together imply the mixture independence axiom. However, these two 
axioms are mutually independent, and each one of them by itself is compatible 
with all possible preference relations over simple lotteries. 

The key question is therefore this: Suppose that in a richer setting one can 
distinguish between one- and two-stage lotteries, thus making it possible to 
assume compound independence in a form that is distinct from mixture indepen- 
dence. Will this richer setting and distinction imply a better understanding of 
decision making under uncertainty? I believe that the answer to this question is 
yes. This distinction can obtain more normatively acceptable axiomatizations of 
expected utility theory (see Section 3 below). It may also supply us with 
axiomatizations of alternative theories (Section 4). On the other hand, the 
compound independence axiom is sufficiently weak so that by itself it does not 
impose any restrictions on preference relations over simple lotteries (Section 2). 

The distinction between one- and two-stage lotteries has some theoretical 
advantages. By assuming compound independence one can prove that Nash 
equilibrium always exists (Dekel, Safra, and Segal (1989)) even in a nonexpected 
utility framework. However, if one assumes the reduction but not the compound 
independence axiom, Nash equilibrium exists only if preferences are quasi-con- 
cave (Crawford (1987)). Also, Green's (1987) claim that whenever his preferences 
fail to be quasi-convex, an individual can be manipulated to replace a lottery X 
with a lottery Y which is stochastically dominated by X, depends on the 
reduction axiom. So does Border's (1987) defense of expected utility theory. 

The compound independence axiom has a strong normative appeal. Wakker 
(1988) proved that violations of this axiom imply that decision makers may be 
better off rejecting information. Finally, assuming the compound independence 
but not the reduction axiom can explain some nonexpected utility behavioral 
patterns, as demonstrated in Section 5 below. (See also Segal (1987b).) Consider, 
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for example, the following decision problem from Kahneman and Tversky 
(1979): 

PROBLEM 1: Choose between X1 = (3000, 1) and Y1 = (0, 0.2; 4000,0.8). 

PROBLEM 2: Choose between X2 = (0, 0.75; 3000, 0.25) and Y2 = (0, 0.8; 
4000,0.2). 

PROBLEM 3: Choose between A = (0,0.75; X1, 0.25) and B = (0,0.75; Y1, 0.25). 

The lotteries in Problems 1 and 2 are simple lotteries. The lotteries in Problem 
3 are compound lotteries, depicted in Figure 1. 

Kahneman and Tversky found that most subjects prefer X1 to Y1 but Y2 to X2 
(a clear violation of expected utility theory and of the mixture independence 
axiom). Note that by the reduction axiom, A - X2 and B Y2, hence Y2 >- X2 
implies B >- A. By the compound independence axiom, on the other hand, A >- B 
if and only if X1 : Y1; hence X1 >- Y1 implies A >- B. Kahneman and Tversky 
found that most subjects prefer A to B, in agreement with the compound 
independence axiom, but in disagreement with the reduction axiom. 

In the next section I formally define one- and two-stage lotteries and show the 
connection between the reduction of compound lotteries axiom, compound 
independence, and mixture independence, as well as the connection between 
these axioms and different forms of expected utility for two-stage lotteries. As an 
alternative to the reduction axiom I suggest in Section 3 a compound dominance 
axiom that is a stronger version of the stochastic dominance axiom for two-stage 
lotteries but still weaker than the reduction axiom. It turns out that this axiom, 
together with the axioms of compound independence and strict first-order 
stochastic dominance for one-stage lotteries, implies the expected utility represen- 
tation. In Section 4, I discuss the connection between the concept of compound 
dominance and Quiggin's (1982) anticipated utility theory (also known as ex- 
pected utility with rank-dependent probabilities) and prove a representation 
theorem for this theory. 
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Section 5 discusses some empirical evidence and shows that a rejection of the 
reduction axiom while accepting the compound independence axiom may solve 
some nonexpected utility paradoxes, as well as some phenomena that do not 
contradict the expected utility hypothesis but seem to imply risk loving. Section 6 
concludes with some remarks on the literature and some final comments. 

2. DEFINITIONS 

Let L1= {(xl, P1;... ; Xnp) xPOXll ... [ Xn[ E l], xM l <1 Xn Pl, Pn >p 

0, Epi = 1}. Elements of L1, denoted by X, Y, etc., represent simple lotteries, 
yielding xi dollars with probability pi, i = 1,..., n. For X = (xl, Pl; ... ; Xn, Pn) E 

L1, define the cumulative distribution function FX by Fx(x) = Pr (X < x). 
On L1 there exists a complete and transitive preference relation s1 . X 1 Y if 

and only if X 1 Y and Y 1 X, and X >-1 Y if and only if X :1 Y but not Y 1 X. 
Assume that the relation s satisfies the following continuity axiom: 

CONTINUITY: :1 is continuous in the topology of weak convergence. That is, 
if X, Y, Y1, Y2,... EL1 such that at each continuity point x of Fy, Fy(x) 
Fy(x), and if for all i, X,Yi, then X 21Y. Similarly, if for all i, Yi 1 X, then 
Y 1 X. 

V: L1 - IR represents the preference relation :1 if for every X, Y EL, 
X 1 Y if and only if V(X)> V(Y). The most celebrated representation is the 
expected utility functional 

(1) V(X) = Epiu(xi). 

Preference relations represented by this functional satisfy the continuity axiom 
whenever u is continuous (and hence bounded). Of course, this axiom does not 
imply the expected utility functional. Further assumptions are required, either on 
s1 itself or on its extension to two-stage lotteries. 

The outline of the space L1 assumes that all the events in all the lotteries are 
ethically neutral in the sense that the decision maker cares about an event's 
probability, but not about the event itself (see Ramsey (1931)). This assumption 
is plausible when the prizes are measured in terms of money and the probabilities 
are determined by an objective mechanism such as roulette, coins, or dice. In 
particular, it implies that the decision maker does not care whether the winning 
event at the lottery (0,0.75; 100,0.25) is two heads on two coins or two heads 
from the same coin being tossed twice with no time passing between the two 
tosses. On the other hand, it is not necessarily true that the decision maker is 
indifferent between the lotteries Z* = "flip two coins at time tl, win $100 if both 
fall heads up, $0 otherwise" and W*, which is the same as Z* but with the second 
coin to be tossed at time t2 > tl, especially when a sufficiently long time passes 
between t1 and t2, or when for other reasons, the two stages are clearly distinct. 
This discussion leads to the construction of two-stage lotteries. 
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Let L2 ={(X, ql; .. ; Xm, qm): X1,* , Xm E Ll, ql* qm > ? Eqi = 1 }. Ele- 
ments of L2, called two-stage lotteries, are denoted by A, B, etc. A lottery A E L2 
yields a ticket to lottery Xi with probability qi, i = 1,..., m. More specifically, at 
time t1 the decision maker faces the lottery (1, ql; ... ; m, qm). Upon winning the 
number i, he participates at time t2 > tl in the lottery Xi E L1. Assume through- 
out this paper that all prizes are delivered at time t > t2, and all decisions are 
made at time to < tl. 

Natural isomorphisms exist between L1 and two subsets of L2. The first 
subset, A, consists of degenerate lotteries in L2. The second subset, r, consists of 
lotteries in L2, outcomes of which are degenerate in L1. Formally, A = {(X, 1): 
X e L1}, and F = {(xl, 1), pl; ... ;(x, 1), p): X = (x1, P1; ... ;x, pX ) E L1 }. For 
X e L1, the elements of A and F that correspond to X are denoted by Ax and Yx, 
respectively. 

On L2 there exists at time to a complete and transitive preference relation >-2 
Throughout this paper, U: L2 -> R denotes a representation function of >:2. 
This preference relation induces by restriction preference relations a and r 
on A and F, respectively. These two are al-type preferences in the sense that 
their domain is isomorphic to L1. 

The construction of the space L2 and the definition of two-stage lotteries 
assumed that decision makers do not find themselves obliged to multiply the 
probabilities of the two stages. If the above-mentioned two lotteries Z* and W*, 
which differ at the time at which the second coin is tossed, ought to be considered 
equivalent by all decision makers regardless of their preferences, then both 
should be written as (0,0.75; 100,0.25). In other words, our setting assumes that 
decision makers do not find it necessary to follow the reduction of compound 
lotteries axiom, given below. 

REDUCTION OF COMPOUND LOTTERIES AXIOM: Let Xi = (xl, pi; ... ;x', p ), 
i = 1, . ,m, let A = (X1, ql; . ..; Xm, qm), and define 

R(A) = (xl, qlpl; ... ;xl ,q, pnl; ... ;xm, qmpm; ... ; xm, qmPnm.) 

The decision maker is indifferent between the two-stage lottery A and the one-stage 
lottery R(A). That is, A -2YR(A). 

As mentioned in the Introduction, empirical experiments indicate that decision 
makers do not always obey this axiom. Recently, Schoemaker (1987) found new 
such evidence. Consider the lottery (0,1 - p; x, p). The decision maker has to 
choose between the following two options: In A, p = 0.5, and x has a uniform 
distribution over [0,1], while in B, x = 0.5, and p has a uniform distribution over 
[0, 1]. Certainly, one can interpret these two options as two-stage lotteries 
(although this is not the only possible interpretation-see Schoemaker (1987)). 
Using the reduction of compound lotteries axiom, A and B reduce to the 
lotteries X and Y in Figure 2. The lottery X is obtained from Y by a mean 
preserving increase in risk (note that a and /B are congruent triangles), hence a 
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risk averse decision maker should prefer Y to X and B to A. As discovered by 
Schoemaker, most subjects prefer A to B. Other violations of the reduction axiom 
were found by Ronen (1971) and Snowball and Brown (1979), although, as 
reported by Keller (1985), these violations may depend on the way the problems 
are formed. 

There may be several reasons why some decision makers do not use the 
reduction of compound lotteries axiom as a guideline for evaluating two-stage 
lotteries, even if one assumes that people accept the basic laws of probability 
theory. (For example, at t, and t2 decision makers may use the rule that for 
independent events S1 and S2, P(S1 n S2) = P(S1)P(S2).2) In this model, the 
reason is that some events are realized at time t, while others are realized at time 
t2. This may affect the desirability of a two-stage lottery (as compared to a 
similar one-stage lottery) in at least two ways. Firstly, the decision maker may 
have preferences for the number of lotteries in which he participates. This 
argument holds whenever the two stages are clearly distinct, even without the 
time element. Secondly, he may have preferences for early or later resolutions of 
uncertainty. That is, he is not indifferent between the lotteries Yx and Ax, which 
are the same except for their timing; the uncertainty of Yx is resolved at time tl, 
while the uncertainty of Ax is resolved at time t2.3 This latter reasoning is 
especially plausible if preferences are induced from more primitive decision 
problems such as consumption-saving problems. (See Mossin (1969), Spence and 
Zeckhauser (1972), Dreze and Modigliani (1972), Kreps and Porteus (1978, 1979), 
Epstein (1980), Machina (1984), and Chew and Epstein (1989a).) 

Of course, if the decision maker does not care when the uncertainty is resolved, 
that is, if for every X e L1, he is indifferent between Yx and Ax, then he will have 
the same preference relation over r and A. Let X, Y eL1. If 3X 2Yx and 
SY2 yY, then it follows from the transitivity assumption that xA8 >, y if and 

2 De Finetti (1937, 1977) proved that violations of this rule expose the decision maker to Dutch 
books. These arguments are relevant only when no real time is involved. See also Marschak (1975). 

3 This nonindifference may persist even, as assumed above, when the prizes of all lotteries are 
delivered at time t > t2. 
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only if Yx r yy. Less evident is that the opposite holds true as well. That is, if 
the decision maker has the same preference relation over A and F, then he is 
indifferent to the timing of the resolution of the uncertainty. Let X e L1. By 
continuity, there exists a number x such that S -A (X 1). Because the decision 
maker's preferences over A and r are the same, it is also true that Yx r Y(x, 1) 
The lotteries (x, 1) e A and y(x 1) e r represent the same lottery ((x, 1), 1), which 
is a sure gain of x dollars, paid at time t (recall that all preferences are expressed 
at time to < tl). It thus follows that 3X 2 YX. This discussion is summarized in 
the following axiom and lemma: 

TIME NEUTRALITY AXIOM: For every lottery X E L1, Ax 2 YX. 

LEMMA 1: The preference relations ar and >A are the same >--type relation 
(i.e., Sx>, y yx yy) if and only if the decision maker satisfies the time 
neutrality axiom. 

The implication of the timing of the resolution of the uncertainty on decision 
makers' behavior is especially important when it may affect current decisions 
such as consumption-saving problems (see references above). It is usually be- 
lieved that this is the reason that decision makers are not indifferent between 
one- and two-stage lotteries. Although I believe that in general people care for 
the resolution timing of the uncertainty, I want to emphasize here the other 
factor, which is too often neglected. Consider again the lotteries Z* and W* of 
the above example. (These two lotteries differ in the time at which the second 
coin is flipped, t, or t2.) Lottery Z* involves just one lottery at time tl, but W* 
involves two lotteries, one at tl, the other at t2. It may well happen that, even 
with the same compound probabilities, the decision maker has preferences for 
more or less lotteries. I adopt this aspect of two-stage lotteries and will assume 
later on that the decision maker satisfies the time neutrality axiom, hence his 
preference relations on F and A are the same. 

Let X, Y e L1 be such that Ax >- By. Originally, both Ax and Sy are available, 
and,once the decision maker announces his preferences, he participates in his 
preferred lottery. As mentioned above, his participation in X (or Y) may be 
uncertain, because X and Y may themselves be possible outcomes of another, 
nontrivial, lottery. Formally, let A = (X, q; Z, 1 - q) and B = (Y, q; Z, 1 - q). 
With probability 1 - q, both A and B yield a ticket for Z. The lotteries A and B 
yield different outcomes only if the q-probability event happens. In that case, A 
yields a ticket for X while B yields a ticket for Y. As the unconditional lottery Ax 
is preferred to the unconditional lottery By (the uncertainty of these two lotteries 
is resolved at time t2), it is reasonable to assume that A >2 B. Of course, this 
assumption does not follow from the assumptions made so far. 

COMPOUND INDEPENDENCE AXIOM: Let X, Y E L1, and let A = (Z1, ql; 
...; Xqi;..; Zm qm) and B=(Z1,ql;...;Y,qi;...;Zm qm) be two lotteries in 
L2. A >2 B if and only if 3x >-Y. 
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Let CE1(X) be the certainty equivalent of X, given implicitly by (CE1(X), 1) 
-1 X. Let CEr(X) and CEa(X) be the certainty equivalents of X with respect to 
>I and , respectively. That is, ((CEr(X), 1), 1) -2yx and ((CE(X) 1), 1) ~ 2 

Sx. If a2 satisfies the compound independence axiom, then 

( X,, ql; .. * ; X., q.) 2 (( CEA( XJ I ), ql; ... .; (CEA(Xm), ), qm). 

The left-hand side of this last equivalence is a general two-stage lottery. The 
right-hand side is an element of r, the set of lotteries in L2 where all the 
uncertainty is resolved at time tl. 

The compound independence axiom and the reduction of compound lotteries 
axiom are compatible with all preference relations on L1. Let the preference 
relation s1 on L1 be represented by V and define two preference relations on 
L2 as follows: 

(a) Given A,B E L2, letA s2 B if and only if R(A) >1 R(B). This preference 
relation on L2 is the only one to satisfy the reduction of compound lotteries 
axiom such that >Jp = .= , . It can be represented by U(A) = V(R(A)). 

(b) Given A=(X,,ql;...;Xm,qm) and B=(Yl,rl;...;Y,, r,), let A 2B if 
and only if (CE1(X,), ql; . .. ;CEi(Xm), qm) >1 (CE1(Y1), rl; ... ;CE1(Y,), rl). This 
preference relation on L2 is the only one to satisfy the compound independence 
and time neutrality axioms such that >r = = = 17' It can be represented by 
U(A) = V(CE, (X,), ql; ... ;CE,(Xm), qm). 

Without the time neutrality axiom, the compound independence axiom is 
compatible with any two preference relations on L1. Let s1 and >_2 be two 
such preferences and let CEJ2( X) be the certainty equivalent of X with respect to 
>_ 2 

(c) Given A and B as in (b), let A s2B if and only if (CEl(X1), 
ql; Xm), qm) s1 1), rl; .. . ;CE 2(Y), rl). In this case, 
and - = s2. If V1 represents s1, then s2 can be represented by U(A)= 
Vl(CE2( X,), ql; ... ;CE2( Xm), qm). 

To illustrate, consider the extensions of Quiggin's (1982) anticipated utility 
functional to two-stage lotteries via the reduction axiom and via the compound 
independence and the time neutrality axioms. Let X= (xl, pl; ... ; x,, pn) where 

x, < * * * < x,. The anticipated utility of this lottery is given by 

(2) V(x) u(xi)( f P) -f( E ) ]+U(Xn)f(Pn) 
i=l ~~j=i j=i+l 

where u and f are continuous and strictly increasing, u(O)= 0, f(O)= 0, and 
f (1) = 1. Let g(p) = 1 -f (1 - p) and obtain from (2) that 

V(X) = u(xi)g(pi) + E u(xi) g Ap -g i) Pj I 

Some writers use this version of the anticipated utility functional. However, for 

4This structure proves that time neutrality does not imply the reduction axiom. 
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the discussion in Section 4, the expression in (2) is the more natural. The reader is 
left the straightforward but tedious task of extending (2) to two-stage lotteries as 
in cases (a) and (b) above (see Segal (1987b)). The reader can also easily verify 
that these two extensions coincide if and only if f is linear. Later on, I use a 
special case of these extensions. Let x > 0 and let A = ((0,1 - p; x, p), q; (0,1), 
1 - q). By the reduction axiom, 

(3) V(A) = u(x)f(pq), 

while by the compound independence and the time neutrality axioms, 

(4) V(A) = u(x)f(p)f(q).5 

Let u(x) = x and f(p) = (eP - 1)/(e - 1) and get u(3000)f(1) > 
u(4000)f(0.8), but u(4000)f(0.2) > u(3000)f(0.25) = u(3000)f(1)f(0.25) > 
u(4000)f(O.8)f(0.25). These inequalities are in agreement with the reported 
common response to Problems 1-3 of the Introduction.6 

The reduction and the compound independence axioms, both on 2 together 
imply the following mixture independence axiom on >t: 

MIXTURE INDEPENDENCE: Let X = (x1, pl; ... ; x, pn), Y = (yip q1, . . . ; Ym qm), 

Z = (z1, rl; ...; z,, r,) E Ll, and let a E (0, 1]. X >1 Y if and only if aX + 
(1 -a)Z (xl, ap1; ... ; xn, apn; z1, (1 -a)rl; ... ; z,, (1 -a)r,) s1 aY+ (1 -a)Z = 

(Y q1,oql; ym Lqm; z1l(1 - a)r,; ... ;z,,(1 -a)r,). We say that j2 satisfies this 
axiom if both >-I and > satisfy it. 

This is a slightly stronger version of Marschak's (1950) Postulate IV2. It is well 
known that this axiom, together with continuity, completeness, and transitivity, 
implies the expected utility representation (1). I now turn to a discussion of the 
connection between the mixture independence, compound independence, and 
reduction of compound lotteries axioms. 

THEOREM 2: (a) The three axioms, compound independence, reduction of com- 
pound lotteries, and mixture independence, are pairwise independent-no one 
implies another. Moreover, no one of them in conjunction with the time neutrality 
axiom implies any other. 

(b) The reduction axiom implies time neutrality, but mixture independence and 
compound independence, even together, do not. 

(c) The reduction and the compound independence axioms imply mixture indepen- 
dence, and the reduction and the mixture independence axioms imply compound 
independence. Mixture independence, compound independence, and time neutrality 
imply the reduction axiom, but no proper subset of these three axioms has this 
imDlication. 

5 The expression at (3) and (4) equal each other for all p and q if and only if f (p) = pa (Aczel 
(1966)). 

6 For an explanation of this phenomenon, using disappointment theory with a similar compound 
lotteries analysis, see Loomes and Sugden (1986). 
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A natural question is, what preference relations are implied by these different 
axioms. For the next theorem consider the following three versions of expected 
utility for two-stage lotteries. In all cases and in Examples 1 and 2, Xi= 
(xl, Pi; * *; Xn, p) with xl * xn and A( X1, q1; ...; X, q). 

EUl-Expected Utility With Reduction: A preference relation that can be 
represented by 

m n 
(S) U(A) = U(Xj,ql;. .; Xm, qm)- = Y.F qipju(xj). 

i=1 j=1 

EU2-Expected Utility With Time Neutrality: A preference relation that in- 
duces the same expected utility representation (1) of -r and >A. 

EU3-Expected Utility Without Time Neutrality: A preference relation that 
induces expected utility representations (1) of -r and , but these two 
representations are not necessarily the same. 

Obviously, EU1 = EU2 EU3. To illustrate these definitions, consider the 
following two examples. The first demonstrates a preference relation which is 
EU2 but not EUL. The second provides an example for an EU3 preference 
relation that is not EU2. 

EXAMPLE 1: For X, YeL1, X Y, let a(X,Y)=min{x: Fx(x)>Fy(x)1. 
Define a relation R on L1 such that for X $ Y, XR Y if and only if either 
E(X) > E(Y) (E(X) is the expected value of X), or E(X) = E(Y) and 
Fx(a(X, Y)) < Fy(a(X, Y)). Let A = (X1, ql; ... ; Xm, qm), and assume, without 
loss of generality, that XmR... RX1. In the following example the representation 
functional depends on the order of the Xi's, and the relation R is used to ensure 
that the lottery A has a unique exposition. 

Let f: [0,1 ]-* [0,11 be onto, strictly increasing, but not linear. Let = 

f(En%jpi)_-f(Fnj+= pi), ]= 1,--, n-1, i = 1,..., m, and let Pni =f(Pn) i= 
1 ... m. Let qi=f(?miq)-f (m i+lq i=1,..., m-1, and let qm =f(qm). 
Let iy= LqiJS j=1,...,n,and let X= (xl, rl; ... ;xn, rn). In other words, X 
is obtained from A by transforming the original distributions of X1,..., Xn and 
of A by f and by using the reduction of compound lotteries axiom for the 
transformed distributions. We now transform this new distribution by using the 
inverse of f. Define recursively s =f-n(r), and j=f f[rj+f(Ynk1?lSk)]- 

?k=j1+lSk, j = n - 1,...,1. Let u: [0, M] -1R, and define U(A) = Esju(xj). One 
can easily verify that this preference relation induces the same expected utility 
relation on r and A (with the utility function u), hence it satisfies the mixture 
independence and time neutrality axioms. It does not satisfy the reduction of 
compound lotteries or the compound independence axioms (hence, by Theorem 
3(a), it is not EU1). For example, let f(p) = (eP - 1)/(e - 1) and u(x) = x. 
U((0, 1), 0.5; (0, 0.5; 1, 0.5), 0.5) = ln[(e - 1)2/(e - 1) + 1] = 0.219 # 0.25 = 

U((O, 0.75; 1, 0.25), 1), while by the reduction axiom these two lotteries are equally 
attractive. To obtain a violation of the compound independence axiom note 
that U((0, 0.5; 1, 0.5), 1) = U((0, 0.75; 2, 0.25), 1) = 0.5, but U((0, 1), 
0.5; (0, 0.5; 1, 0.5), 0.5) = 0.219 + 0.102 = U((0, 1), 0.5; (0, 0.75; 2,0.25), 0.5). 
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EXAMPLE 2: For continuous and increasing functions u and v, let 2 be 
represented by U(A) = Ejqju(v-1(EjpJv(xj))). This preference relation induces 
expected utility relations on F and A, with u at F and v at A (see Kreps and 
Porteus (1978), and Selden (1978)). It satisfies mixture independence and com- 
pound independence, but not time neutrality or the reduction axiom unless 
v = au + b. For example, let u(x) = x2 and v(x) = x. U((0, 1), 0.5; 
(0, 0.5; 1, 0.5), 0.5) = 0.125 # 0.25 = U((0, 1), 0.75; (1, 1), 0.25), while by the reduc- 
tion axiom these two lotteries are equally attractive. 

THEOREM 3: Let >2 induce continuous preferences -r and >, . 

(a) It is EU1 if and only if it satisfies the mixture independence, time neutrality, 
and compound independence axioms (if and only if it satisfies the reduction of 
compound lotteries and the compound independence axioms). 

(b) It is EU2 if and only if it satisfies the mixture independence and the time 
neutrality axioms. 

(c) It is EU3 if and only if it satisfies the mixture independence axiom. 

Of course, further results follow by combining Theorems 2 and 3. Recently, 
Yaari (1987) suggested the following "dual independence" axiom for decision 
making under uncertainty: let X= (xl, pl; ... ;xn, p,) Y= (yl, pi; ;yn, pn), 
and Z = (z1, pl; ... ; z,, p). Of course, there is no loss of generality in assuming 
the same probability vectors in all three lotteries. Yaari assumes that X 1 Y if 
and only if for every a - (0,1], (ax1 ? (1 - a)zj, pl; ... ; ax, + (1 - a)zn, pj )> 

(ay1 + (1 - a)z1, pl; ... ; ay, + (1 - a)zn, pPn). (See also Roell (1987).) The above 
discussion makes it evident that, in our richer setting, Yaari's dual theory 
concerns a duality with mixture independence. In fact, because his functional is a 
special case of (2), his dual (mixture) independence theory can be consistent with 
compound independence. 

3. COMPOUND DOMINANCE 

This section discusses several possible extensions of the concept of stochastic 
dominance to two-stage lotteries. Let X and Y be two one-stage lotteries. We say 
that X stochastically dominates Y if for every x, Fx(x) < Fy(x). X strictly 
stochastically dominates Y if X stochastically dominates Y and for some x, 
Fx(x) < Fy(x). These definitions lead to the following two axioms. 

ONE-STAGE (STRICT) STOCHASTIC DOMINANCE AXIOM: If X (strictly) stochasti- 
cally dominates Y, then X s1 Y (X >-1 Y). 

We say that the relation >2 satisfies the one-stage stochastic dominance and 
the strict one-stage stochastic dominance axioms if the induced relations wir and 

, satisfy them. It is well known that X stochastically dominates Y if and only 
if for every increasing function u: [0, M] -1 R, E[u(X)] > E[u(Y)] (Hanoch and 
Levy (1969)). The one-stage stochastic dominance axiom can thus be interpreted 
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in two different ways. Firstly, if for every possible outcome x, the lottery X gives 
more than x with higher probability than the lottery Y, then X is preferred to Y. 
Secondly, if all expected utility maximizers with increasing utility functions 
prefer X to Y, then X is preferred to Y. 

Each of these two interpretations has its own drawbacks. The first does not 
naturally extend to more general lotteries where there is no natural complete 
order over the prizes, for example, lotteries with prizes in R2 (see Levhari, 
Paroush, and Peleg (1975)). The second has little normative appeal in a nonex- 
pected utility world. In this section I examine these two interpretations of 
stochastic dominance for L2, together with some possible extensions of this 
concept. 

Let D be a set of outcomes with (possibly partial) order FD, and let L(D) be 
the space of lotteries with outcomes in D. The function u: D -1 R is increasing 
(with respect to FD) if whenever a FD b, u(a) > u(b). Let u*(D, FJD) be the 
set of all the increasing (with respect to t D) functions u: D --.R 

DEFINITION: Let A = (a1, pl; ... ;am, Pm)' B = (b1, q1; ... ; b1, q1) E L(D). The 
lottery A stochastically dominates the lottery B with respect to : D if and only if 
for every u E u*(D, FDD), Epiu(ai) > Eqiu(bi). A preference relation on L(D) is 
said to satisfy the :D -stochastic dominance axiom if A is preferred to B 
whenever A stochastically dominates B with respect to F D 

LEMMA 4: Let A, B E L(D). The lottery A stochastically dominates the lottery B 
with respect to FD if and only if A = (a1, ql; ... ; am, qm) and B = 
(bl, ql; ... ; bm, qm), where ai _>D bi, i = 1,..., m (Kamae, Krengel, and O'Brien, 
1977).8 

Consider now the case D = L1, with X L Y if and only if X stochastically 
dominates Y. To simplify terminology, I adopt the term two-stage stochastic 
dominance. Let A = (X1,p p; ...; Xm, pm) and B = (Y1, q1; ...; Yl, q1) be two two- 
stage lotteries. The lottery A dominates the lottery B by two-stage stochastic 
dominance if and only if for every V: L1 -1 R which is increasing with respect to 
one-stage stochastic dominance,9 2piV(X1) > 2qiV(Y1). 

TWO-STAGE STOCHASTIC DOMINANCE AXIOM: If the lottery A dominates the 
lottery B by two-stage stochastic dominance, then A t2 B. 

Let A, B E L2 such that A dominates B by two-stage stochastic dominance. It 
follows from Lemma 4 that R(A) stochastically dominates R(B). (The one-stage 
lottery R(A) is obtained from A by the reduction of compound lotteries axiom.) 
Assume, by Lemma 4, that A =(X1, ql;...;Xmqm) and B=(Y1, ql;...;Ymqm) 

7 See Levhari, Paroush, and Peleg (1975), Fishburn and Vickson (1978), and Hansen, Holt, and 
Peled (1978) for the case D = R I. 

8 It is of course assumed that (a,, ql; a,, q2; a3, q3; * * *) -D (a,, q1 + q2; a3, q3, ... )- 
9 The functional V is not necessarily an expected utility functional. 
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with Xi stochastically dominating Yi, i = 1,..., m. For every x, the probability 
that R(A) yields x or less is Eqi Fx(x) < Eqi Fy(x), which is the corresponding 
probability for R(B). The opposite, however, is not true. That is, it may happen 
that R(A) stochastically dominates R(B), but A does not dominate B by 
two-stage stochastic dominance. Let A = ((0, 0.8; 1, 0.2), 0.5; (0, 0.1; 1, 0.9), 0.5) 
and let B = ((0, 0.6; 1, 0.4), 0.5; (0, 0.4; 1, 0.6), 0.5), and obtain R(A) = 
(0, 0.45; 1, 0.55) and R(B) = (0, 0.5; 1, 0.5). Obviously, R(A) stochastically domi- 
nates R(B), but it follows immediately from Lemma 4 that A does not dominate 
B by two-stage stochastic dominance. 

Stronger results hold for the one-stage and the two-stage stochastic dominance 
axioms, provided >2 satisfies the reduction axiom or the compound indepen- 
dence and the time neutrality axioms. Formally we have the following Theorem. 

THEOREM 5: If the relation >2 satisfies the reduction of compound lotteries 
axiom, or if it satisfies the compound independence and the time neutrality axioms, 
then it satisfies the two-stage stochastic dominance axiom if and only if it satisfies 
the one-stage stochastic dominance axiom. 

Consider again the one-stage stochastic dominance axiom. This axiom implies 
that if for every outcome x the probability of winning more than x under the 
lottery X is at least as large as the corresponding probability under the lottery Y, 
then X should be preferred to Y. The major problem in adapting this idea to 
two-stage lotteries is the lack of an objective complete order on L1. Instead, one 
can try to use an objective partial order on this space, namely, the partial 
one-stage stochastic dominance order. Formally, for Xe L1, let X* = { Y: Y 
stochastically dominates X}. For each A = (X1, ql; ... ; X,, qm) and Q c L1, let 
PA(Q) = Ei x E Qqi be the probability that A yields an element of Q. The above 
discussion suggests that if for every X, PA(X*) > PB(X*), then A >'2 B. I call this 
axiom upper compound dominance. This is, however, not the only possible 
extension. The one-stage stochastic dominance axiom for simple lotteries also 
says that if for every x the probability of winning less than x under X is less 
than the corresponding probability under Y, then X is preferred to Y. Let 
X* = {Y: X stochastically dominates Y}. This last observation leads to the 
assumption that if for all X, PA(X*) < PB(X*), then A >:2 B. I call this axiom 
lower compound dominance. 

These two interpretations of dominance coincide on R, but not on L1. (See the 
proof of Theorem 6 for a counterexample.) The following axiom therefore seems 
a possible combination of those two axioms: 

WEAK COMPOUND DOMINANCE AXIOM: Iffor every X, PA(X*) > PB(X*), and 
if for every X, PA(X*) < PB(X*), then A >2 B. 

Alternatively, one could suggest the following axiom: 

STRONG COMPOUND DOMINANCE AXIOM: Iffor every X, PA(X*) > PB(X*), or 
if for every X, PA(X*) < PB(X*), then A >2 B. 
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The following theorem discusses the connection between these axioms, the 
reduction of compound lotteries axiom, and the compound independence axiom: 

THEOREM 6: Let the preference relation >2 satisfy the one-stage stochastic 
dominance axiom. 

(a) The reduction of compound lotteries axiom implies the strong compound 
dominance axiom, but the strong compound dominance axiom does not imply the 
reduction axiom. 

(b) The strong compound dominance axiom implies both the upper and the lower 
compound dominance axioms, but none of these two implies the strong compound 
dominance axiom. 

(c) Each of the upper and the lower compound dominance axioms implies the 
weak compound dominance axiom, but it implies neither of them. 

(d) The weak compound dominance axiom implies, but is not implied by, the 
two-stage stochastic dominance axiom. 

Let the monotonic (with respect to one-stage stochastic dominance) preference 
relation > 2 induce continuous preferences -r and :A,. We know that if > 2 

satisfies the reduction and the compound independence axioms, then it can be 
represented by the expected utility functional (5). However, as argued above, in 
an intertemporal framework the reduction axiom may not be supportable on 
normative grounds, and, descriptively, some decision makers violate it. On the 
other hand, it follows from Theorem 5 that if > 2 satisfies the compound 
independence and the time neutrality axioms, then it also satisfies the two-stage 
stochastic dominance axiom; hence all continuous and monotonic preference 
relations on L1 can be extended to L2 through compound independence and 
time neutrality to satisfy the two-stage stochastic dominance axiom. As the 
strong, the upper and lower, and the weak compound dominance axioms are 
successive (strict) weakenings of the reduction axiom and, moreover, as they all 
have some normative appeal over L2, the question naturally arises as to what 
preference relations are consistent with compound independence and these 
axioms. Partial answers to this question are given by Theorems 7 and 9. For these 
we need the following definitions. 

Let Xe L1 and define X? = Cl{(x, p) E [0, MI x [0,1]: p > Fx(x)} to be the 
epigraph of Fx. Let LO={ XO: Xe L1,} be the set of these epigraphs. Let 
H = {[x, y] x [ p, q] c [O, M] X [0, 1]: x <y, p < q} and let ' = {(XO, h) E LO? 
x H: Int XO n Int h = 0, X? U h E LO)}. Finally, for S E LO, S+ is the lottery in 
L1 such that S = (S+)O. In Figure 3, X? E LO, hl, h2, h3 E H, (X?, h2) E I, but 
(X?, hl), (X?, h2) ?4 *. 

THEOREM 7: Let >2 induce continuous preference relations wJr and s. It 
satisfies the one-stage strict stochastic dominance, compound independence, time 
neutrality, and strong compound dominance axioms if and only if it can be 
represented by the expected utility functional (5) (that is, if and only if it is an EUI 
relation) with a strictly increasing utility function u. 
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Note that this theorem assumes the strict one-stage stochastic dominance 
axiom. The following example shows that this is indeed a necessary condition, as 
the one-stage stochastic dominance, compound independence, time neutrality, 
and strong compound independence axioms do not imply expected utility. 

EXAMPLE 3: The preference relation >% can be represented by V(X) = sup { x: 
1 - x > Fx(x)}. This relation is continuous and satisfies the one-stage stochastic 
dominance axiom. Its extension to two-stage lotteries via compound indepen- 
dence and time neutrality satisfies the strong compound dominance axiom. (This 
occurs because the preference relation is isomorphic to a preference relation on 
lotteries over the [(0, 1), (1,0)] segment.) Obviously, s1 does not satisfy the 
one-stage strict stochastic dominance axiom. This preference relation cannot be 
represented by an expected utility functional. Indeed, by expected utility theory, 
X = (0, 1/2; 1/3, 1/2) s1 Y = (0, 3/4; 1/2, 1/4) if and only if Z = 
(0,1/4; 1/3,3/4) s1 W= (0,1/2; 1/3,1/4; 1/2,1/4). However, V(X) = 1/3> 
1/4= V(Y), but V(Z)= 1/3 = V(W). 

4. ANTICIPATED UTILITY'0 

In the last few years, several authors have suggested alternatives to expected 
utility theory. One of the most promising of these new theories is anticipated 
utility theory (also known as "expected utility with rank-dependent 
probabilities"), first suggested by Quiggin (1982). It helps in solving several 
paradoxes, including the Allais paradox (Quiggin (1982), Segal (1987a), Allais 
(1988)), the preference reversal phenomenon (Karni and Safra (1987)), and the 
Ellsberg paradox (Segal (1987b)). 

According to this theory, the value of the lottery (xl, pl; ... ; x,, pj) with 
xI < - * - < xn is given by (2), where f(O) = 0, f(l) = 1, and u(0) = 0. When f is 
linear, this functional reduces to the expected utility representation (1). One can 
easily verify that for continuous u and f, this functional satisfies the continuity 

10 I am especially grateful to Bill Zame for extensive discussions of this section. 
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axiom and for increasing u and f, it satisfies the one-stage stochastic dominance 
axiom as well. From Chew, Karni, and Safra (1987), Yaari (1986), Roell (1987), 
and Segal (1987a), we know that in this theory risk aversion, in the sense of 
aversion to a mean-preserving spread of the distribution, holds if and only if u is 
concave and f is convex. 

Several authors have axiomatized this theory. Quiggin himself suggested weak- 
ening the mixture independence axiom, but an essential part of his axiomatic 
basis leads to the conclusion that f(0.5) = 0.5. However, as risk aversion is 
associated with a convex f, assuming that f(O.5) = 0.5 takes a lot of power out of 
this theory. 

Yaari (1987) suggested another axiomatic basis, necessarily leading to the 
conclusion that the utility function u is linear. An attempt to obtain the general 
form of this theory is found in Segal (1984, 1989), but the approach taken there 
lacks normative appeal. Recently, Chew and Epstein (1989b) gave a unifying 
axiomatic approach to anticipated utility and Chew's (1983) weighted utility 
theory and Luce (1988) analyzed this model with finite gambles and subjective, 
rather than objective probabilities. In this section I suggest what I believe to be a 
normatively appealing set of axioms implying (2) with a general utility function u 
(thus avoiding the linearity of Yaari's functional) that allows f to be either 
concave of convex (thus letting in the concept of risk aversion). This axiomatic 
basis includes the compound independence axiom and extended concepts of the 
compound dominance axioms. One advantage of this set of axioms is that it 
makes anticipated utility a natural extension of expected utility theory. 

Consider again the one-stage stochastic dominance axiom. One possible inter- 
pretation of it is that if for every x, Pr(X> x) > Pr(Y > x) (or if for every x, 
Pr ( X < x) < Pr (Y < x)), then X s Y. According to this interpretation, the deci- 
sion maker is interested in the probability of receiving more (or less) than every 
possible outcome x. It is therefore a natural extension of this axiom to assume 
that whenever he compares X and Y, the decision maker ignores similar tails. 
Formally we have the following axiom. 

ORDINAL INDEPENDENCE AXIOM (Green and Jullien (1988)): Let X, Y, X', Y' 
e L1, and let x* E (0, M). If for every x > x*, Fx(x) = Fy(x), Fx,(x) = Fy, (x), 
and for every x < x*, Fx(x) = Fx, (x), Fy(x) = Fr (x), then X a1 Y if and only if 
Xf Y' (see Figure 4).11 We say that 2 on L2 satisfies this axiom if it is satisfied 
by -r and a. 

LEMMA 8 (Green and Jullien (1988); see also Segal (1984, 1989); and Chew and 
Epstein (1989b): The following two conditions are equivalent: 

(a) The complete and transitive preference relation s1 satisfies the continuity, 
one-stage strict stochastic dominance, and ordinal independence axioms. 

(b) There is a finitely additive measure v on [0, MI X [0,11 such that V(X)= 
z( X?) represents the preference relation s% . 

" This axiom is similar to but slightly weaker than the cancellation axiom in Segal (1984) where 
Lemma 8 is proved by assuming the latter one. 



TWO-STAGE LOTTERIES 365 

I ~ 
~~~~ I 

I I , . I .FX FyI 

F~~ ~~ ~ , F Fy=Fy I 

FX =FX 

0 X* 

FIGURE 4 

Let h(x, p) = ([O, x] X [1-p, 1) = V(O,1 -p; x, p). Obviously, P and Vcan 
be reconstructed from h, as v([x,y]x[1-p,1-q])=h(y, p)-h(x, p)- 
h(y, q) + h(x, q), and XO can be represented as the union of a finite set of 
rectangles { Qi } where i oj o Intt Qi fl Qj = 0. Different h functions thus 
define different representation functions. Consider the following four well-known 
examples: 

(a) Expected value: h(x, p) =px, V(X) = Ypixi, and v([x, y] X [1 -p, 1 - qJ) 
=[y-x][p-q]. 

(b) Expected utility: h(x, p) =pu(x), V(X) = Xpiu(xi), and v([x, y] x [1 - 
p, 1 - q]) = [u(y) - u(x)][p - q]. 

(c) Dual theory (Yaari (1987)): h(x, p) = xf(p), V(X) = (Ej'-1x1[fQ(?.=pj) - 

fQ;%yi+1Pj)] + xjf(p), and v([x, y] x [1 -p,1 - qJ) = [y - xJ[f(p) -f(q)]. 
(d) Anticipated utility (Quiggin (1982)): h(x, p) = f(p)u(x), V(X) = 

Eui-(x )[f02Yj iP;) -f (?-,iP;)] + u(xn)f(Pn) and v([x, y] X [1 -p, 1 - qJ) 
= [u(y) - u(x)][f(p) -f(q)]. 

In all four examples, h is multiplicatively separable, and the corresponding v 
are product measures. Anticipated utility is the most general form of a product 
measure and my next aim is to guarantee that v is indeed such a measure.'2 

Let A = (X1, p1; ... ;(X0 n X0)+, p; ... ;(X?U Xj)+, p; *... ;Xm Pm) and B= 

(Xi, Pi; ... ; Xi, p; ... ; X, p;. Xm, pm). As is clear from their definitions, the 
upper compound dominance axiom implies that A >2 B while by the lower 
compound dominance axiom, B >2 A. I do not know whether these conditions 
are equivalent to the upper and the lower compound dominance axioms, but they 
are certainly not stronger. I will therefore replace the upper and the lower 
compound dominance axioms by these weaker conditions. 

WEAK UPPER COMPOUND DOMINANCE AXIOM: A = (XI, Pl; ... ;(X,? n 

xj?)+,P;...;(XiUXjo)+pXm,Pm)>2. 
Xm, Pm) 

12 For a different approach to this separability issue see Rubinstein (1988). 
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WEAK LOWER COMPOUND DOMINANCE AXIOM: B = (X1, pl; ... ; Xi p; ... ; Xi, 
p; .. j; Xml Pm) >:2 A = (X1 pl; ... ; (X?X XJ?) + p; ... ; (X.?U XJ?) + p; ...; 
Xm, Pm) 

The main result of this section is presented in the following theorem: 

THEOREM 9: Let 2 induce continuous preference relations wr and s, and 
assume that it satisfies the one-stage strict stochastic dominance, compound indepen- 
dence, time neutrality, and ordinal independence axioms. The relations tr and 

can be represented by the anticipated utility functional (2) with a strictly 
increasing utility function u and a strictly increasing and concave (convex) distribu- 
tion transformation function f if and only if it satisfies the weak upper (lower) 
compound dominance axiom. 

Given the ordinal independence axiom, Theorem 7 follows immediately from 
Theorem 9. By Theorem 6, the strong compound dominance axiom implies upper 
compound dominance, which in turn implies weak upper compound dominance. 
Similarly, the strong compound dominance axiom implies weak lower compound 
dominance, hence, by Theorem 9, the strong compound dominance and the 
ordinal independence axioms imply that f is both convex and concave, that is, 
linear. Linear f means expected utility, which is the result of Theorem 7. 
Theorem 7 is of course much stronger, because it does not assume ordinal 
independence. I do not know whether Theorem 9 can be proved without this 
axiom. 

In the anticipated utility model, risk aversion (loving), in the sense of aversion 
to a mean-preserving spread of the distribution, implies that f is convex 
(concave). Theorem 9 thus indicates a connection between the concept of risk 
aversion and the compound dominance axioms. 

5. SOME EMPIRICAL EVIDENCE 

This section discusses some empirical evidence in a nonexpected utility frame- 
work. For this, I use as an example the anticipated utility model. My first aim 
here is to show that these experimental data support the claim that decision 
makers tend to accept the compound independence axiom while rejecting the 
reduction axiom. Secondly, I show that within the anticipated utility model, these 
data agree with some other nonexpected utility behavioral patterns. Finally, I 
show that what seems to be a risk-loving attitude may actually be compatible 
with risk aversion, provided one is willing to forgo the reduction axiom. 

Section 2 discusses the extensions of (2) to two-stage lotteries via the reduction 
of compound lotteries axiom or via the compound independence and the time 
neutrality axioms. Similarly to (4), it follows that if >2 satisfies the compound 
independence and the time neutrality axioms, then the value of the two-stage 
lottery ((y, 1),l - p; (y,l - q; x, q), p) where y < x is u(y) + [u(x) - 

u(y)]f (p)f (q). It thus follows that ((y, 1), -p; (y, - q; x, q), p) t2 ((Y, 1), 1 
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-p'; (y, 1- q'; x, q'), p') if and only if f(p)/f (p') > f (q')/f(q). Let p >p' > q' 
> q such that pq = p'q'. Let a = p/p' = q'/q. A sufficient condition for 

f( p )/f( p') > f( q')/f(q) is that for every a > 1, f(ap )/f( p) is increasing with 
p. This occurs if and only if 

af '(ap)f( p) > f(ap)f'(p) apf '(ap) pf'(p) 
f (ap) f (p) 

The elasticity of a function f is defined as xf'(x)/f(x). Thus, if the elasticity 
of f is increasing, then the desirability of a two-stage lottery decreases as the two 
stages become less degenerate. Given a compound probability r, this last discus- 
sion asserts that the least-preferred combination of p and q is when p = q= = . 
These results agree with the empirical findings of Ronen (1971), where most 
of his subjects preferred ((-50000,1),0.1; (-50000,0.5; 70000,0.5),0.9) to 
((- 50000,1),0.4; (- 50000,0.25; 70000,0.75),0.6). Moreover, this analysis shows 
that decision makers' attitude towards two-stage lotteries are highly correlated to 
their responses to the common ratio effect. Let x > y and p <q such that 
(0,1 - p; x, P) -1 (0,1 - q; y, q). Let a < 1. By the common ratio effect, (0,1 - 
ap; x, ap) >-1 (0,1 - aq; y, aq). (See MacCrimmon and Larsson (1979), and 
Kahneman and Tversky (1979).) Note that such a behavior violates the mixture 
independence axiom, but not the compound independence axiom, because it does 
not involve two-stage lotteries. It is proved in Segal (1987a) that anticipated 
utility can handle this phenomenon provided the elasticity of f is increasing. (See 
also the numerical example in Section 2, dealing with Problems 1-3 of the 
Introduction.) 

The extension of the anticipated utility model to two-stage lotteries through 
compound independence and time neutrality helps in analyzing several paradoxes 
in expected utility theory, where what seems to be consistent with risk aversion 
violates the assumption that the utility function u is concave. Elsewhere I showed 
that the extension of anticipated utility to two-stage lotteries via the compound 
independence and the time neutrality axioms can solve the probabilistic insur- 
ance phenomenon (Segal (1988)) and the Ellsberg paradox (Segal (1987b)). I now 
show that it can also explain Schoemaker's (1987) findings, described above in 
Section 2. 

The functionals at (1) and (2) can easily be extended to continuous, rather than 
discrete, bounded random variables. Let X be a random variable with outcomes 
in [0, M]. Let Fx be its cumulative distribution function, where Fx(x) = Pr(X < 
x). The expected utility of X is given by 

J (x) dFx(x) 

and the anticipated utility of X is 

(6) - ju(x)df(1-Fx(x))= mf(1-Fx(x))du(x). 
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Consider now the anticipated utility model with the compound independence 
and the time neutrality axioms. By (2), the certainty equivalent of (0, 1 - p; x, p) 
is y = u -[u(x)f(p)]. Consider the two-stage lottery A where p = 0.5 and X is 
uniformly distributed over [0, 1]. Define the random variable Y = u - [ u( X)f(0.5)] 
with the distribution function Fy, given by Fy(y) = Pr (Y < y) = 
Pr(u1-[u(X)f(0.5)] Ay) = Pr(X X u-[u(y)/f(0.5)]) = u-'[u(y)/f(0.5)]. The 
smallest possible value of Y is u- [u(O)f(O.5)] = u- l(0) = 0, its larger possible 
value is u-1[u(1)f(0.5)], and by (6) it follows that 

U(A) = u-1[u(l)f(0.5)] '(y)f ( - Fy(y)) dy. 

Substitute y = u-1[u(x)f(0.5)] and obtain 

(7) U(A) =f(0.5)J1u'(x)f(1l-x) dx =f(0.5)f1u(x)f'(1 - x) dx. 

Consider now the two-stage lottery B where x = 0.5, and P is uniformly 
distributed over [0,1]. Define the random variable Q= u - 1[ u(0.5)f(P)] with the 
distribution function FQ, given by FQ(q) = Pr(Q < q) = Pr(u-'[u(0.5)f(P)] < 
q) = Pr (P < f 1[ u(q)/u(0.5)]) = f 1[ u(q)/u(0.5)]. The smallest and largest pos- 
sible values of Q are 0 and u-1[u(0.5)f(1)] = 0.5, respectively, hence 

U(B) = 05u '(q)f(1 - FQ(q)) dq. 

Substitute q = u-1[u(0.5)f(p)] and obtain 

(8) U(B) = u(0.5)f1f'(p)f (1 -p) dp. 

Note that when f(p) =p, that is, when (6) is reduced to the expected utility 
functional, U(A) = 0.5fou(x) dx and U(B) = 0.5u(0.5). These are indeed the 
values of these lotteries when the reduction axiom is employed together with the 
expected utility functional. 

There are concave utility functions u and convex distribution transformation 
functions f for which U(A) > U(B). For example, let u(x) = ln(x + 1) and let 
f( p) = p3. It follows from (7) and (8) that U(A) = 0.026 > 0.020 = U(B). 

6. SOME REMARKS ON THE INDEPENDENCE AXIOM 

The best known evidence against the expected utility hypothesis is the Allais 
paradox. Allais (1953) found that most people prefer X1 = (0, 0.9; 5 million, 0.1) 
to Y1 = (0,0.89; 1 million, 0.11), but Y2 = (1 million, 1) to X2 = (0,0.01; 1 

million, 0.89; 5 million, 0.1), while by expected utility theory, X1 a Y1 if and only 
if X2 a1 Y2. Such behavior certainly contradicts the mixture independence axiom 
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(see Machina (1982, p. 287)). Let X= (0,1/11; 5 million,10/11), Y= (1 
million, 1), and Z = (0,1). By the mixture independence axiom, X1 0.11X + 
0.89Z s1 Y, = 0.11Y + 0.89Z if and only if X2 = O.11X + 0.89Y s1, = 0.11Y + 
0.89Y, while by the Allais paradox X1 >-1 Y1 but Y2 >-1 X2. Beyond doubt, 
however, this argument does not prove a behavioral violation of the compound 
independence axiom unless one assumes the reduction of compound lotteries 
axiom. Indeed, nonexpected utility theories like Chew's (1983) weighted utility or 
Quiggin's (1982) anticipated utility, which may be consistent with the compound 
independence axiom, are not contradicted by the Allais paradox. 

Some might argue that the mixture and the compound independence axioms 
have the same normative justification. This, in my view, is false. The rationale for 
the compound independence axiom is that if X is preferred to Y, then it should 
be preferred to Y even when receiving X or Y becomes uncertain and other 
prizes are possible. This argument cannot justify the mixture independence 
axiom, as there is no initial preference relation between half lotteries like 
(0,0.01; 5 million, 0.1; - ) and (1 million, 0.11; - ). Similarly, we usually assume 
that (xl, x2,. .., x) > (xl, x2,..., x) if and only if xl >? x, because there is a 
well-defined natural order on quantities of commodities. However, we do not 
necessarily assume that (X1, X2, X3,..., Xn) 1 (X , X3,..., Xn) if and only if 
(x1 X2 Y3,- I *, Yn) > (xl x2, Y3,..., yn), because there is no initial natural order 
on the half bundles (xl, x2, - ). 

In this paper I interpret the compound independence axiom as a mechanism 
that transforms two-stage lotteries into one-stage lotteries. This results from using 
the certainty equivalents of the possible outcomes in the compound lotteries.13 
According to this approach, the compound independence axiom and the reduc- 
tion of compound lotteries axiom should not be used together. Indeed, if the 
decision maker uses the reduction axiom, then the compound independence 
axiom becomes meaningless, because he never really considers two-stage lotteries 
as such. However, using the compound dominance axioms does not rule out the 
compound independence axiom, because they do not change the structure of a 
compound lottery. (Recall that these compound dominance axioms become 
redundant in the presence of the reduction axiom, as follows from Theorem 6.) I 
therefore believe that Theorem 7 gives a better normative basis for expected 
utility theory than the standard one. Moreover, the compound dominance axioms 
prove, as demonstrated by Theorems 7 and 9, that anticipated utility is a natural 
extension of expected utility theory. 

Dept, of Economics, University of Toronto, 150 St. George St., Toronto, Ontario, 
M5S JA], Canada 

Manuscript received April, 1987; final revision received April, 1989. 

13 For a nonaxiomatic approach using this mechanism see Kahneman and Tversky (1979) and 
Loomes and Sugden (1986). 
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APPENDIX 

PROOF OF THEOREM 2: (a) The extension of the anticipated utility functional (2) to two-stage 
lotteries via the reduction of compound lotteries axiom proves that the reduction and the time 
neutrality axioms together do not imply the compound independence or the mixture independence 
axioms. The extension of (2) to two-stage lotteries via the compound independence and the time 
neutrality axioms proves that these axioms, even together, do not imply the reduction axiom, nor do 
they imply the mixture independence axiom. Example 1 in Section 2 proves that the mixture 
independence and the time neutrality axioms do not imply the reduction or the compound indepen- 
dence axioms. 

(b) Obviously, the reduction axiom implies time neutrality. Example 2 in Section 2 proves that 
mixture independence and compound independence together do not imply time neutrality. 

(c) The reduction and the compound independence axioms obviously imply the mixture indepen- 
dence axiom. To prove that the reduction and the mixture independence axioms imply the compound 
independence axiom, let Ax :A 8y and let A = (Z1, ql;... ;X, qi;... ;Zm, qm) and B = 

(Z1, q1; ... ; Y, q,;... Z;Zm, qm) be two two-stage lotteries. By time neutrality, Ax _A 8Y YYx a yy. By 
the reduction and by the mixture independence axioms, A >2 B YR(A) sr YR(B) Y'X r YY 

Assume next that >2 satisfies the mixture independence, compound independence, and the time 
neutrality axioms. Let A = (X1, q1; ...; X, qm) e L2 where X = (xl, p;...; X.. P). i=1. m. 
There is no loss of generality in assuming the same prizes in all the lotteries X, as some of the 
probabilities may equal zero. A ~2 ((CEa(Xl),l), q1; . ;(CEA(Xm), l), ql) C2 ((CEA(Xl), q1; 

,A( ;CaXJl, qjl, 1) -2 ((1 1P ;n, ql pn; . .. ; xl, qm pm; . .. ; Xn, qm pnm),1= ((xj E qi p'; . ..; 
Xn,Eq,pn),1) 2 ((xjj1),Eqjp'; ... ;(XnJ),_qjpn'). It thus follows that >2 satisfies the reduction 
axiom. 

Finally, Example 2 in Section 2 proves that the compound independence and the mixture 
independence axioms do not imply the reduction axiom. Q.E.D. 

PROOF OF THEOREM 3: For the proof that mixture independence implies the expected utility 
representation (1) see, for example, Fishburn (1982). The rest of the proof is trivial. 

PROOF OF THEOREM 5: Let >2 satisfy the compound independence and the one-stage stochastic 
dominance axioms and let A, B E L2 such that A dominates B by two-stage stochastic dominance. 
By Lemma 4, A = (X1, q1; ...; Xm, qm) and B = (Y1, q1; ... ; Ym qm), such that for every i, X, 
stochastically dominates Y. As >2 satisfies the one-stage stochastic dominance axiom, it follows that 
for every i, Xi a1Y, hence A a2 B. 

Let >2 satisfy the time neutrality and the two-stage stochastic dominance axioms and let 
X, Y E L, such that X stochastically dominates Y. The lottery A = (X, 1) dominates the lottery 
B = (Y, 1) by two-stage stochastic dominance, hence A >2 B. In other words, X A Y, and by time 
neutrality, X sF Y. 

Let >2 satisfy the reduction and the one-stage stochastic dominance axioms. Obviously, if A 
dominates B by two-stage stochastic dominance, then A >2 B (see Section 3 in the text). Let >2 

satisfy the reduction and the two-stage stochastic dominance axioms. Since it satisfies the time 
neutrality axiom (Theorem 2), it also satisfies the one-stage stochastic dominance axiom. Q.E.D. 

PROOF OF THEOREM 6: (a) The reduction of compound lotteries axiom implies the strong 
compound dominance axiom: I will first prove that if >2 satisfies the one-stage stochastic dominance 
and the reduction axioms, then [VXPA(X*)>PB(X*)]=>A >2 B. Let A =(X1,q1;...;X,q) and 
B = (Y1, q1; .. .; Y,,,, q,,,) (there is no loss of generality in assuming the same probability vectors), such 
that for all Z E Ll, PA (Z*) > PB (Z*). The preference relation >2 satisfies the reduction axiom, 
hence A and B can be replaced by Yx and yy, where FX = Eq, Fx and Fy = Eq, Fy . As >2 satisfies 
the one-stage stochastic dominance axiom, it is sufficient to prove that for all x, E q, FX (x) < E2q, Fy (x). 
Let Zp = (0,1-p; x, p). For every p, PA(ZP*) > PB(ZP*), hence 

L G : Fx (x) _q1;.-pq > Et: Fy (x) aFF1n- -dF 

Let Gx = (1- Fx (x), ql; ... j ;-Fx (x), qm) and G y= (1- Fy (x), ql; . .. j1- Fy (x), qm). For every 
P, 

Pr (Gx p) = E: 1 -Fx,(x) > pql 
= 

Z: Fx.(x)_< 1-pql 
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In other words, Gx stochastically dominates Gy. As stated in Section 3, this happens if and only if 
for every increasing function u, E[u(Gx)I > E[u(Gy)]. In particular, for u(x) = x, it follows that 
Eq, (1-FX (x)) > Eq, (1 - Fy (x)), hence XqiFx (x) < Eq,Fy (x). 

The proof that if for every X, PA ( X*) Si PBF X*), then A a2 B, is similar. Let ZP = (x, 1 - p; M, p). 
The proof follows from the assumption that for every p, PA(Z') < PB(Zs ) 

The strong compound dominance axiom does not imply the reduction axiom: let Z = (0,0.5; 1,0.5) 
and define V: L1 -- R by 

V(X) = 1 Xx Z*. 
_ 

XE Z*' 

The preference relation 1 on L1 is represented by V, and A=(Xl I PI; ... ; XmA Pm) >2 B= 
(Y1, ql; ... ;Y1, ql) if and only if V(V(XI), pl; ... ;V(Xm), pm) > V(V(Y1), ql; ... ;V(Y), ql). Obviously, 
>2 satisfies the compound independence and the one-stage stochastic dominance axioms. It also 
satisfies the strong compound dominance axiom. Indeed, if VX PA( X*) > PB(AX*), then in particular 
PA(Z*) > PB(Z*) and by the one-stage stochastic dominance axiom, A ?2 B. Suppose that VX 
PA( X*) < PB( X*) and let 

Fw (x) = min {min{ Fx, (x): Xi e Z*}, min Fy(x): Yj 
t Z*}} 

It follows that 

xi ez*P, A 1 : x, w* P,i 1 -j: xe w*,q P--1-j: Y z*qj, 

hence A t2 B. 
The preference relation :2 does not satisfy the reduction of compound lotteries axiom. For 

example, V(V(0,1),1/3; V(0,1/3; 1,2/3),2/3) = V(0,1/3; 1,2/3) = 1, but V(V(0,5/9; 1,4/9),1) = 

V(O, 1) = 0, although these two lotteries are equivalent by the reduction axiom. 
(b)-(c) Obviously, the strong compound dominance axiom implies the upper and the lower 

compound dominance axioms, and each of them implies the weak compound dominance axiom. To 
prove that the opposite does not hold true, construct counterexamples based on the observation that 
by the lower compound dominance axiom; A = ((O,1/3; 1,2/3),1/2; (0,2/3; 2,1/3),1/2) :2 B= 
((0,2/3; 1,1/3), 1/2; (0,1/3; 1,1/3; 2,1/3),1/2), by the upper compound dominance axiom, B s2 A, 
by the strong compound dominance axiom, A =2 B, while the weak compound dominance axiom 
does not compare these two lotteries. 

(d) It is easy to verify, by Lemma 4, that the weak compound dominance axiom implies the 
two-stage stochastic dominance axiom. To see that the opposite is false, construct a counterexample 
based on the observation that by weak compound dominance 

A ((0 ; 2, 3 ), l ; (0, l; 1, 1; 3, '), 
1 

; (1, I; 2, l; 3, - ), l) ~t 

B =((03;j,32),j; j,j l; (0,1-;2jl;3,-1),-) 

while the two-stage stochastic dominance axiom does not compare these two lotteries. Q.E.D. 

PROOF OF THEOREM 7: Obviously, if >2 can be represented by the expected utility functional (5) 
with a strictly increasing utility function u, then it satisfies the one-stage strict stochastic dominance, 
compound independence, time neutrality, and strong compound independence axioms. (Recall that 
EU1 satisfies the reduction of compound lotteries axiom; hence, by Theorem 6, it also satisfies the 
strong compound independence axiom.) To prove the "only if" part of the theorem, let al = tr 
= A . I first show that al can be represented by a measure of the epigraph of Fx and then, that this 
measure is actually the expected utility functional. Because this implies the mixture independence 
axiom, the theorem will follow from Theorem 3(a). 

LEMMA 7.1: Let X, Ye L, such that XA C Y?, and let h E H such that (XA, h), (Y?, h) E 4k. Then 
A = ((AX0 U h)+,0.5; Y,0.5) =2 B = (X,0.5; (Y? U h)+,0.5). 

PROOF: Let Z e Ll. If PA (Z*) = 0, then obviously PB (Z*) > PA (Z*). If PA (Z*) = 0.5, then either 
(X u h) + stochastically dominates Z, but Y does not, or Y stochastically dominates Z, but 
(X?uh)+ does not. In both cases, (YOuh)+?Z*, hence PB(Z*)>PA(Z*). If PA(Z*)=1, then 
X = (( XA U h) fn Y0)+ E Z*, and PB(Z*) = PA(Z*). By the strong compound dominance axiom, 
B t2 A. Similarly, for each Z E Ll, PA(Z*) < PB(Z*), hence A >2 B. It thus follows that A =2 B. 

Q.E.D. 
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LEMMA 7.2: Let ( XO, h), (Y?, h) r' i. Then ( X? U h)+ 1 (Y? u h)+ if and only if X E1 Y. 

PROOF: By the compound independence and time neutrality axioms and by Lemma 7.1, (X? u 
h)+ 1 O(Yo u h)+ ((X? U Y0)+,0.5;(Xo U h)+,0.5) t2 ((X? U Y0)+,0.5; (Yo U h)+,0.5) ((X? 
U Y? u h)+,0.5; X,0.5) k2 ((X0 U Y? U h)+,0.5; Y,0.5) X 1 Y. Q.E.D. 

Define on H partial orders Rx by h,Rxh2 if and only if (X?, h1), (X?, h2) e ' and (X? u hl)+ 
t1 (X0Uh2)+. 

LEmmA 7.3: For every X and Y, Rx and Ry do not contradict each other. In other words, if h1 and 
h2 can be compared by both Rx and Ry, then hlRxh2 if and only if h,Ryh2. 

PROOF: Let X, Ye LI such that (X?, h,),(Y?, h,) e !', i = 1,2, and let ZO = XO n Y?. Obviously, 
Z CL', and (Z0,hi)eI, i=1,2. There exist h',...,hs, and h' .I_,h' such that Vj (Z?u 
Ui-1hk, hi) e k, i = 1, 2, X? = Z? u Us lhI and Y? = Z? u Uk U,h . By Lemma 7.2, h1Rxh2 
(Z0uhlu -- hsUhl)+ > (Z0Uhlu ... uhsUh2)+ (ZU-hl)+ 1 (Z0 Uh2) h 

--(Z? Uhl U ...U h Uhl)+ >-1(Z U h' U.. -h' U h2)+ h,Ryh2. Q. E. D. 

Let R=UX L,Rx. Thatis, h1Rh2 if andonlyifthereexists XeLl suchthat h,Rxh2. Itcanbe 
proved that R is acyclic. That is, h1Rh2R ... Rh,Rh1 implies h,Rh,R ... Rh2Rh1 (see Segal (1987c)). 
Let * be the transitive closure of R: h, >..*h2 if and only if there are h3,....h, such that 
h1Rh3R... Rh,Rh2. 

LEMMA 7.4: There exist V: L1 R R and W: H -- R such that: 
(a) V represents the relation a; 
(b) Wisfinitely additive; that is, if h, U h2 e H, then W(hl U h2) = W(hl) + W(h2) - W(h1 n h2); 
(c) if X? =U-.lhk where Vj (UJjklhk, hj) er , then V(X) = 4tlW(hk). 

PROOF: Let [0, xI X [0, p] -*[x, yl] X [p, 1] (see Figure 5) and let W([O, xi x [0, pl) = W([x, yll X 
[p, 11) = 1. By the continuity assumption there exist z and w such that [x, wl x [p, ll -*[o, zI X [0, p] 
- *[w, y1 x [p,1]. Define W([x, w] x [p,ll) = W([w, y1] x [p,l]) = 0.5. This can be repeated again 
and again for the x as well as for the p axes. By the one-stage strict stochastic dominance axiom, the 
areas of all these rectangles will become smaller and smaller. The function W can thus be defined as 
an atomless, continuous, finitely additive measure on [0, x] x [0, p] and [x, y1] x [p, 1]. Similarly, it 
can be defined for the rectangles [yi, yi+1] x [p, 11 -*[0, x] x [0, p1, i = 1,.... By the one-stage strict 
stochastic dominance and the continuity axioms, the strictly increasing sequence { yi } is finite. 
Indeed, let lim yi =y < M. For all i, ([0, y] x [p,l])+>.I ([0, Y,J x [p,1])+-l (([0, Yi-1J x [p,l]) U 
([0, xl x [0, pI)) +, in contradiction to the continuity and the strict one-stage stochastic dominance 
axioms. This process defines a finitely additive measure W on [x, M] x [p, 1], which can be extended 

0 z x w Y1 Y2 

FIGuRE 5 
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to [0, M] X [0, p] and to [0, x] x [p, 1] and thus to [0, M] X [0,1]. Define V as in part (c) of Lemma 
7.4. Because W is finitely additive, V does not depend on the choice of hl,..., h,. 

Let X0=Uk=lhk and Y0=Ul=1g, where V] (U~4hk, hj), (U!j Jg,, gj) E *, such that X 1 Y. 
We want to construct two sequences (hk )k 51 and (g,') l1 such that X? = Uk= 1 hk, Y? = Us' l gl Vj 
(Uk - 1 hk, hj ), (U, Ig,, g) E k, and for every j 6 s', h -*g,. We will do it by finite induction. If 
h, - *g1, then let h = h, and gl = gl. If h, > *g1, construct h', hI E H such that h' - *g1, h' = Cl(h1 
\h;) e H, (h;, h') E k, and let gl =gl. If g1 >-*hl, construct h , gl, and g2 similarly. It thus follows 
that in each step we can reduce the number of nonequivalent elements either in X or in Y (or in both) 
by one. The desired representation will thus be constructed in a finite number of steps. As X al Y, it 
follows that t' > s'. Obviously, V(Us'=1h) ) = V((ljs11g,')+). As t' > s', it follows that V(X) > 
V(Y), which completes the proof of the lemma. Q.E.D. 

_ I now turn to the proof of the theorem. Let 0 < xl < ... < xn, 0 < p < 1, and 0 < ? < p. Let 
X,=(0,p;x,,1-p), and Y=(0,p-;xl, ,;x,,1-p), il.. n. It follows from the proof of 
Lemma 7.1 that for every i and j, 

_l 
1 _ 

1 1 Y, X+1 _n 
1\ 

x,n; X- n;Y n;X1 n; ;ns } 

_ 1 _ 1 1 _ 1 _ 1\ 
Xi, ,-; . . .; Xj-, 

_ ,; Y, ,-; X+,+ _,; .. * ; Xn, s-J 

The compound independence and the time neutrality axioms together imply that on L2, the 
relation >2 can be represented by U(X1, ql; ... ; X, q) =(V(X1), ql; ... ; V(X ), qm). Assume, 
without loss of generality, that 0(a, 1) = a. We want to show that 4 = EqiV( X) is a possible 
representation. By Lemma 7.4 there exists f > 0 such that V(y) = V( X,) + f, i = 1. n. Moreover, 
for every sufficiently small , there exists an appropriate E. Let 0< y* 6y < * <yn14 be in the 
interior of the range of V. Let p e (0, 1) and 1 = (0, 1 - p; x, ,p) such that V( )=y, i = 1, . . , n. 
There is fP > 0 such that for every 0 < , < f* and for every i and j, 

1 1 1 1 1 

(A.1) 0 Yi, n; ... ;Y-1, n; Y, +A n, ; Yi+,, -; ...;Yn, n 

/ 1 1 1 1 1\ 
=tYi, -; ... ;Yj-1, -; YJ + ; -; Y+1, -;... ;Y n,- 

Let Yl,. y, y1 > 0 be in the interior of the range of V. Let y* = min { Yi,..., } and let fP* 6 y*/2 
be appropriate for y*/2. Let zl . Zn be in the interior of the range of V such that Ez, = Eyi and 
max Jyj - z, I 6 /3*In. By (A.1), 

1~~ ~ 1 1 1 1\ 
0 Y,, -; ... ; Y ' 0Yl, n; -;Yn-l+Yn- Zn,-; +n,- 'n n1'n " 

1 1 1\ 

Yl.. =+ ... Yn;2 ;Yn- Zn) 1+nZ,_ Z-1_ n 

hence 

1( V( X1 0, ** V( -Vn)s f (E, V( Xvi)- 

Let x > 0. V(x, 1) = O(V(x, 1), 1) = 4(V(x, 1), l/n;...; V(x, 1), 1/n) =f(nV(x, 1)), hence f(a)= 
a/n. It thus follows that U(Xl, 1/n;...; X", l/n) = 0(V(Xl), l/n; ...; V(X"), l/n) = YV(Xi)/n, and 

14 The assumption that Yi < ... < yn is not essential, because the value of a lottery depends on its 
prizes and not on their order. 
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by the continuity assumption it follows that c(V(X1), Pi;... ;V(Xn), p,n) =Ap, V(X,). Let u(x) = 
V(x, 1). It follows that on F, Fr can be represented by p, u(x,). We assumed t1 = ar, hence the 
theorem. Q.E.D. 

PROOF OF THEOREM 9: Let L = = . By Lemma 8, j can be represented by a measure v. 
I first prove that if >2 satisfies the weak upper compound dominance axiom then at can be 
represented by (2) with a concave distribution transformation function f (Propositions 9.1-9.3). Then 
I show that if a1 can be represented by (2) with concave f, then >2 satisfies the weak upper 
compound dominance axiom (Proposition 9.4). The proof for the weak lower compound dominance 
axiom-convex f case is similar. 

PROPOSITION 9.1: Assume the weak upper compound dominance axiom and let x <y S x' <y' such 
that vi([x, y] x [0, 1]) = v([x', y'] x [0, 1]). For every p, q, and /3 such that O S p < p + / 6 q < q + B < 
1 there is - > 0 such that if y - x < ?, then v([x, y] X [p, p + /P]) S v([x', y'] X [q, q + /3]). 

PROOF: Let X, Ye L1 and h E H such that X? c Y?,(X?, h), (Y?, h) E= I, X-1 (x,1), (X? U 
h)- 1 (y,l), and Y-1 (x',1). The existence of such X, Y, and h follows from the assumption that x 
and y are sufficiently close. Since v is a measure, (Y0 U h)+-1 (y', 1). 

Let Z, WEL1 such that W a(y',"1) > (x',1) 1 Z1 a(y,1) and let z and w be such that 
Z-1 (z, 1) and W-1 (w, 1). By the weak upper compound dominance axiom it follows that 
((O,l1), p; X, /2; Z, q -p - P; (Y U h)+, P; W,l1 - q - P8) -a2 ((0, 1), p; (X? Uh)+,,Bl; Z, q -p - P; 
Y, ,1; W, 1 - q - ,1) =*(O, p; x, Ps; z, q - p - /B; y', Ps; w, 1 - q - fl):-tj (?, p: y, Ps; z, q - p - /s; x', /s; 
w, 1- q - P) ([x',Y'] X[q, q +P]) > ([x, y] X[p, p+ #]). Q.E.D. 

PROPOSITION 9.2: Let x, y, x', and y' be as in Proposition 9.1. For every 0 <p < q6 1, 
v([x, y] X [p, q]) = v([x', y'] X [p, q]). 

PROOF: By Proposition 9.1 it follows that if x and y are sufficiently close to each other, then for 
every n and i<n-2, v([x,y]x[p+i(q-p)/n, p+(i+1)(q-p)/n]),v([x',y']X[p+(i+ 
1)(q - p)/n, p + (i + 2)(q - p)/n]), hence for every n, v([x, y] x [ p, q - (q- p)/n]) S vi([x', y'] x 
[p + (q -p)/n, q]), and by the continuity of t1 it follows that P([x, y] X [p, q]) < v([x', y'] X 
[p, q]). 

Similarly, v([x, y] X [O, p]) , r([x', y'] x [O, p]) and v([x, y] x [q, 1]) < v([x', y'] X [q, 1]). Since 
v([x, y] x [0,1]) = v([x', y'] x [0,1]), it follows that v([x, y] X [p, q]) = v([x', y'] x [p, q]). The lemma 
now follows by the additivity of the measure v. Q.E.D. 

Define u(x) = v([O, x] x [0,1]). By the one-stage strict stochastic dominance axiom, the function u 
is strictly increasing. 

PROPOSITION 9.3: There is a strictly increasing and concave function f: [0,1] -> [0,1] such that 
v([x, y] x [p, q]) = [u(y) - u(x)][f(1 -p) -f(1 - q)]. 

PROOF: By the definition of u, v([x, y] x [0,1]) = u(y) - u(x). By Proposition 9.2, if u(y) - u(x) 
= m[u(y') - u(x')]/n, then v([x, y] x [p, q]) = mv([x', y'] x [ p, q])/n. Hence, by the continuity 
assumption, v([x, y] x [p, q]) =O(p,q)[u(y) - u(x)]. Define f(p)=0(1 -p,1). Because v is a 
measure, v([x, y] x [p, q]) = [u(y) - u(x)][ f (1 - p) - f (1 - q)]. 

It follows from Propositions 9.1 and 9.2 that for every n, v([x, y] x [p, p + 1/n]) < v([x, y] x [p 
+ 1/n, p + 2/n]). Hence f(1 -p) -f(1 - p - 1/n) <f(1 -p - 1/n) - f(1 - p - 2/n), and f is con- 
cave. The one-stage strict stochastic dominance axiom implies that f is strictly increasing. Q.E.D. 

PROPOSITION 9.4: If !2 satisfies the compound independence and the time neutrality axioms and the 
induced preference relations Fr and tA can be represented by the same anticipated utility functional 
(2) with concave f, then 2 also satisfies the weak upper compound dominance axiom. 

PROOF: Let A= (Xi, 1/m; ...; Xm, 1/m) and B = (X1, 1/m; ... ;(X, n X?)+, 1/m; ... ;(X? U 
Xj,0)+, 1/m; .. .; X,,, 1/m). Assume that the lotteries in A and B are ordered from the worst one to 
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the best one by ;t . The explicit form of B is 

(1)1 (s) (s+1) (s+2) (i) (i+1) 
1 1 ( + \ 1 1 1 

B=(X1,- -) - --;-s? 
1 . x - 

m m m m m m 

(J )1 ( j) (-)(t) (t + 1) (m) 
1 1 1(\ 1 1 

Xi - 1 m X, m ;...;X,- ;(X, AUXj ,) m-;A1 .;---;Xmm-)- m ' m ~ m m m 

By continuity, it is sufficient to prove that the value of B is not less than that of A. From compound 
independence, time neutrality, and (2) it follows that the value of A is given by 

"I m -k+l1 
U(A) = V(XI) + f, [ V(Xk) -V(Xk_ - )] 

k=2 

Hence, 

U(B) - U(A) 

= E [V(X 
k)V 

(Xk 
l)Ix[f( 
m ) f((m)j k[V((X,?UXy?) )j?1 - k X 2 m - k m ) 

- s?V [V(Xk)- V(Xk-)] X If)()] k =j + 1 

?[v(ouXs+ ?) - V((X Xt )I)] X [f(p, Ym f( i m ) 

> k2 [V(x - u Xk+ )] V(X f )I f()mf)j 

+[V((xouxio) )-V(X,)]X[mf- k ) ( m )]k 

V (Xk) - V(Xk-1)] X [f m ) m) 

[V( Xs+ 1) -V(( XO nXJO) )X ft f m) 

> 
[, [ V(Xko) )-V(Xkj)] X [f( m f m) 

-[V((x)-VXjo NVXJ ))] X [f 
m_ 

)f m) 

V( 8\Xk ) ( [ Vf(X1) X f (m)][f ( 

The proof for convex f and the weak lower compound dominance axiom is similar. 

Q.E.D. 
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