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Abstract

That later agents follow the herd of earlier actions is a central insight of research into
economic cascades and social learning. We consider a variant of the standard model in which
agents are differentially informed and observe only the market shares of the competing
alternatives, and not the entire decision sequence. In this environment we show, for a
large range of parameter values, that following the herd is not equilibrium behavior and
that agents are better served following the minority, even if they themselves possess no
private information and the minority consists of a lone dissenter against an arbitrarily large
majority. In such cases, therefore, the minority is wiser than the majority.

1 Introduction

Consider the following decision problem.1 A tourist is faced with the choice between two restau-
rants about which he has no private information. He can observe — by peering through the
restaurant windows — that three patrons are in one restaurant and only one in the other. In the
town there is a mix of tourists and locals, the locals know the relative quality of the restaurants
but otherwise are indistinguishable from tourists. If the diners arrived at the restaurants in ran-
dom order one at a time (facing a similar decision problem), which restaurant should the tourist
choose?
In this paper we show that following the herd is often the wrong answer. We show that,

after any history, following the (nonempty) minority is the optimal choice, provided the fraction
of informed locals is not too great; for instance, if this fraction does not exceed 43% and the
minority consists of a lone dissenter, then following the minority is always the optimal strategy,
no matter how large the majority. A minority, therefore, can be wiser than the majority.
∗Kellogg School of Management, Northwestern University, Evanston, IL 60208. For helpful comments we

thank David McAdams, Meg Meyer, and Peter Norman Sørensen.
1A version of this example first appeared in Banerjee (1992); see also Chamley (2004).
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The model we develop is a variant of the canonical model of social learning introduced by
Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992), hereafter BHW. Our model
differs from the canonical model in two subtle but significant respects that, we argue, capture
more accurately the underlying economic environment. We assume that agents are differentially
informed (tourists versus locals) and, most notably, that they observe only the number of patrons
in each restaurant.
In contrast, in the model of Banerjee and BHW it is assumed that agents observe both the

number of diners in each restaurant and the order in which they arrived. The canonical model
is equivalent to assuming that the hypothetical tourist can peer through the windows and not
only count the patrons inside but also note whether they are currently enjoying their appetizers,
mains, or desserts (and from this information infer the order of arrival).
We show that these modelling differences are important. An optimizing agent still attempts

to infer the private information of the seated patrons, but this inference is now confounded by
uncertainty over the order in which they arrived. Did the lone dissenter arrive first? Or did he
arrive last? The answer to this question is critical to any inferences drawn from the sequence
of actions. If the dissenter arrived first then one may believe that he is a tourist who was
subsequently not followed by a local, whereas if he arrived last then it would be reasonable to
believe that he is himself a local, deviating from the inferior choices of tourists.
Simple calculations are able to establish that minority wisdom is possible in general environ-

ments. Tractability, however, limits our formal statements to a simple model that is little more
than a formalization of the above example. In the model there are two states of the world and
agents are either fully informed about the preferred state (they are locals) or entirely uninformed
(they are tourists). All agents possess common preferences over consuming the better product
irrespective of the state of the world. This simple model captures the possibility of minority
choice in its starkest form and possesses the additional advantage of focusing attention on social
learning, avoiding the interplay of public and private information (as informed agents always
choose correctly and uninformed agents have no private information).
In the simple environment just described we show that minority wisdom is pervasive: indeed,

the strategy of following the majority in all circumstances is optimal (if and) only if the fraction
of informed agents is greater than 7

9
. If instead informed agents compose less than 7

9
of the

population then, in some circumstances, agents find it optimal to follow the minority. More
surprisingly, if the fraction of informed agents is small enough then, for any given minority
size, following such a minority or a smaller one is optimal no matter how large the majority.
In particular, if the population is finite, then all agents find it optimal to always follow the
(nonempty) minority.
Closely related to individual behavior is the issue of aggregate efficiency. The standard con-

clusion from the cascade literature is that the formation of herds inhibits social learning. One
may wonder, therefore, if the contrarian behavior characterized here enhances social learning.
Unfortunately, although minority choice can break incorrect herds, the limited information avail-
able to subsequent agents makes it difficult for them to learn sufficiently from previous actions.
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Withholding information about sequence, therefore, does not prove a panacea to the difficulties
of social learning in incomplete information environments.
Agents in our model follow the minority if and only if it is in their interests to do so. As

informational externalities are ignored, it is therefore not surprising that the equilibrium strategy
is not efficient for arbitrary populations. Despite this failure, limit efficiency holds and the
fraction of agents making the correct decision approaches one as the population becomes large.
Limit efficiency implies that minority choice ultimately breaks down and cannot support an
equilibrium for every possible history (as otherwise minority choice would eternally pull market
shares towards 1

2
). Despite this, the equilibrium strategy, even after many agents have acted,

remains complex and involves a mix of following the minority and majority.
Although our model is closely related to the restaurant example, its simplicity allows wider

application of the key intuition. There are many decision environments in which agents observe
only some form of aggregate statistic and not the full sequence of choices. Often in product
markets the only available information is market shares. Similarly, stock prices are cumulative
statistics of all past actions and are generally considered to be sufficient statistics for market
beliefs. The possibility that sequence matters — as shown here for the canonical model of social
learning — carries, therefore, broad implications for many environments and warrants closer
inspection.
The inference problem at the heart of our analysis is also relevant to more general envi-

ronments. In our model decision makers must draw inferences about what other agents knew
when making their decisions. This problem becomes only more important as assumptions on
the decision sequence and the structure of communication are relaxed. For example, in unmedi-
ated group discussions, each individual must additionally draw inferences about who each other
person has communicated with. These issues also arise when social learning is set in a network
environment.
Ours is not the first paper to relax the full observability assumption of Banerjee and BHW.

Several papers have assumed that agents observe only a partial history: Smith and Sørensen
(1997, 1999) suppose agents observe a random sample from the history of actions and cover a
variety of informational environments, including the one studied here (which they refer to as
the aggregates model), and Çelen and Kariv (2002) assume a number of most recent actions are
observed. The emphasis in all of these papers is not on individual behavior as is the case here,
but rather on the evolution of beliefs, aggregate outcomes, and the possibility that restricting
information can improve social learning.
Similarly, the assumption that agents are differentially informed also appears in the literature.

Smith and Sørensen (2000) analyze general signal structures and note what they refer to as the
overturning principle, that one opposing signal (and action) can overturn many previous, less
informative, signals. Beliefs after such an action are very much a product of decision sequence
and are path dependent. Our results build on the overturning principle and show that, even
absent information about the decision sequence (the path), following the minority is optimal.
Finally, our results on minority wisdom can be contrasted to the finding in Smith and Sørensen
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(2001) that aggregate efficiency sometimes calls for contrarian behavior by individual agents.
Smith and Sørensen’s (2001) result is related to the need for optimal experimentation and is not
a consequence of individual optimization as is the case here.
The remainder of the paper is organized as follows. The model is described in Section 2. Re-

sults are presented in Sections 3 and 4 according to whether a majority of agents are uninformed
or informed, respectively. Section 5 considers issues of efficiency and in Section 6 we show via
example the power of minority wisdom in broader environments. Section 7 concludes.

2 The Model

The model is a simple variant of the canonical model of social learning introduced by BHW.
There are two equiprobable states of the world, Ω = {ω0,ω1} and a countable set of agents,
i = 1, 2, . . .. Each agent must take an action, either 0 or 1. The payoff of an agent is 1 if the
state is ω0 and he takes action 0, or if the state is ω1 and he takes action 1, and 0 otherwise.
Agents move sequentially. Each agent is either informed, with probability p, or uninformed.

These informational types are privately known and independently distributed. An uninformed
agent assigns probability 1

2
to either state. An informed agent learns the realized state. Alter-

natively, agents can be thought of as homogeneous but receiving signals of different accuracy
(either uninformative with probability (1− p) or perfectly informative with probability p). The
parameter p is common knowledge.
Agent n observes how many agents, among the first n − 1 agents, have taken action 1, but

he does not observe the order of these decisions (Agent 1 observes nothing). Therefore, the
information set of Agent (m0 +m1 + 1) can be denoted by an ordered pair (m0,m1), where m0

and m1 are the number of agents having chosen action 0 and 1, respectively. It is clear that an
informed agent always takes the correct action (i.e., 0 if ω0, 1 otherwise). We therefore focus on
the decision of uninformed agents. Let α (m0,m1) denote the probability with which an agent
takes action 1 after history (m0,m1). (In an abuse of notation, we refer to histories as particular
information sets observed by agents, and paths to describe actual sequences of choices.)
If indifferent (that is, if states are equally likely given (m0,m1)), we assume that an agent

chooses either action with probability 1
2
. As results are sensitive to the tie-breaking rule, this

issue is further discussed in Section 5. The decision problem of an agent is the following: given
history (m0,m1), which of the two states is more likely? Because a definite tie-breaking rule has
been adopted, the solution to this decision problem is unique. Therefore, we can solve for the
unique sequential equilibrium of the game, starting with the decision problem of the first agent,
and proceeding recursively. As the strategic aspects of this game are rather elementary, we will
simply refer to the equilibrium strategy as the optimal strategy.2

2This does not imply that this strategy is socially optimal. Efficiency properties of the optimal strategy are
discussed in Section 4.
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3 Wise Minorities: p < 1
2

3.1 An Illustration: Minorities of One

The possibility of minority wisdom — that the minority is more likely to have chosen correctly
than the majority — arises independently of the size of the majority and minority for any given
population, provided that the fraction of informed agents is sufficiently small. In this section we
illustrate the logic behind this finding for minorities of the smallest possible size. Considering
histories of the form (1,m), we show that an uninformed agent is often better served following
the lone dissenter rather than the overwhelming majority (the case of (m, 1) is analogous).
To establish that following the minority is optimal for an uninformed agent at a particular

history requires the calculation of all possible decision sequences, or paths, that can produce the
history. To make these calculations several observations on equilibrium behavior are required.
First, by the tie-breaking assumption and symmetry, an uninformed agent observing a history
(m,m) is indifferent and, again by the tie-breaking assumption, he mixes equally over the two
actions. More generally, the optimal strategy is “symmetric” around such a state (See Remark
1 in the appendix). Second, uninformed agents always follow a unanimous choice. That is, if all
previous agents have chosen identically, such as in the history (0,m), then an uninformed agent
follows the unanimous choice. The uninformed agent can be sure no previous agent was informed
that action 0 is optimal, but it may be possible that a previous agent was informed that action
1 is optimal. Although the evidence may be weak, it leans in favor of the unanimous choice and
an uninformed agent optimally follows this choice.

3.1.1 The First Wise Minority: History (1, 2)

We are now in position to calculate the probability of either state given history (1,m). The
earliest possibility for a single agent to compose a minority is m = 2. Figure 1 depicts, for
each possible state of the world, the possible paths to the history (1, 2), where the history is
represented by the corresponding Cartesian point. In state ω1 (the second panel) there is only
one possible path to history (1, 2): agent 1 is uninformed and chooses action 0, agent 2 is informed
and chooses action 1, and agent 3 is either informed or uninformed and chooses action 1. The
probability of this path conditional on state ω1 is given by

Pr {1, 2 | ω1} =

µ
1− p
2

¶
p

µ
p+

1− p
2

¶
=

µ
1− p
2

¶
p

µ
1 + p

2

¶
.

Observe that if agent 1 chooses action 1 then, conditional on state ω1, history (1, 2) is not
possible. In fact, unanimous choice is guaranteed as it can be broken only by an informed agent
observing an opposing signal, which is not possible in state ω1. This fact proves critical to the
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Figure 1: Paths to (1,2)

illustration presented here for minorities of size one, and similar ideas will prove critical to the
general results of the following section.
For state ω0, the history (1, 2) can be reached by two possible paths (the first panel of Figure

1), both require the first agent to be uninformed and to choose action 1. The paths diverge
for agents 2 and 3 and are as follows: (i) agent 2 is informed and chooses 0, and agent 3 is
uninformed and chooses action 1; (ii) agent 2 is uninformed and follows agent 1, and agent 3 is
informed and chooses 0. The probability of these paths conditional on state ω0 is

Pr {1, 2 | ω0} =
µ
1− p
2

¶µ
p

µ
1− p
2

¶
+ (1− p) p

¶
=
3

4
(1− p)2 p.

An uninformed agent follows the minority if state ω0 is more likely than state ω1 given history
(1, 2); that is, Pr {ω0 | 1, 2} > Pr {ω1 | 1, 2}. By Bayes’ rule

Pr {ω0 | 1, 2} = Pr {ω0}Pr {1, 2 | ω0}
Pr {ω0}Pr {1, 2 | ω0}+Pr {ω1}Pr {1, 2 | ω1} .

As the states are equally likely, the condition for minority choice reduces to

Pr {1, 2 | ω0} > Pr {1, 2 | ω1} ,
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which by algebra requires

3

4
(1− p)2 p >

µ
1− p
2

¶
p

µ
1 + p

2

¶
⇔ p <

1

2
.

Thus, if less than half of all agents are informed, an uninformed agent observing history (1, 2)
optimally follows the minority and chooses action 0. This result is driven by two factors: the
number of possible paths for each state, and the number of agents that are informed versus
uninformed along each path. For history (1, 2) to be reached in state ω0, one agent must be
informed and two uninformed, and two possible paths reach this history. In contrast, for state
ω1 there exists only one possible path, but it is possible for either one or two agents to be
informed. The more likely it is that an agent is informed, therefore, the more likely it is that
state ω1 produced the history. The value p = 1

2
provides the cut-point on either side of which a

different state is more likely to have produced the observed history.

3.1.2 A Lone Dissenter Versus Ever Larger Majorities

The finding of a wise individual at history (1, 2) is of interest in its own right, yet its true
significance is revealed only when its impact on subsequent histories is considered. One may
think that a wise individual is possible in a small group, but that ultimately an individual will
be overwhelmed as the opposing majority grows. We show here that, in fact, the opposite is often
true and that the relative wisdom of a lone dissenter can actually grow. This result is a product of
the layering of decision problems as later agents not only face their own confounded information
environment, but must allow for the confounding of previous agents’ decision problems.
Suppose then that p < 1

2
and at history (1, 2) an uninformed agent follows the minority. The

calculations for histories (1,m), where m ≥ 3, are similar to those for (1, 2) although the logic
of the result is slightly different. As depicted in Figure 2, only one path to (1, 3) exists for each
possible state. Critical here is that should history (1, 2) be reached, then an uninformed agent
follows the minority and induces history (2, 2). In state ω0 (the first panel) the final agent must,
therefore, have been informed and deviated from unanimous choice, as if the previous history had
been (1, 2) the agent, irrespective of private information, would have chosen with the minority.
For state ω1 the history (1, 3) cannot be reached from history (0, 3) and the path can only come
through history (1, 2) (and, therefore, the lone dissenter was the first agent). Consequently, for
history (1, 3) to be reached in state ω1 the 4th agent had to have been informed. The probabilities
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Figure 2: Paths to (1,3)

for these paths are as follows.

Pr {1, 3 | ω0} =

µ
1− p
2

¶
(1− p)2 p (1a)

=
1

2
(1− p)3 p.

Pr {1, 3 | ω1} =

µ
1− p
2

¶
p

µ
1 + p

2

¶
p (1b)

=
1

4
(1− p) (1 + p) p2.

Minority choice requires Pr {ω0 | 1, 3} > Pr {ω1 | 1, 3}, which by algebra, is equivalent to: p <
5−√17
2
≈ 0.438.

With an equal number of paths to reach (1, 3) for each state, the relative likelihood of the
states hinges solely on the numbers of informed and uninformed agents. In state ω0 there need
only be one informed agent to reach history (1, 3), although this agent must be in a particular
location. In contrast, for history ω1 there is at least two informed agents — as due to minority
wisdom at (1, 2), the 4th agent must be informed — and an additional agent (the third) has
the luxury of being informed or uninformed. Thus, as informed agents are less prevalent than
uninformed ones, minority wisdom decreases the probability of reaching (1, 3) in state ω1. In
fact, for a sufficiently small fraction of informed agents, it is more likely that one rather than
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two agents are informed and, therefore, more likely that the lone minority dissenter is informed
rather than uninformed, and worthy of being followed.
The bound on minority wisdom for the history (1, 3) is tighter than for the history (1, 2), and

following a minority may not be optimal at (1, 3) despite being optimal at (1, 2). Surprisingly
perhaps, this contraction of the bound does not continue for larger populations when the minority
is of size one. Therefore, as the wisdom of early minorities feeds into the decisions of later agents,
a lone dissenter becomes increasingly attractive relative to a growing majority. Of course, if later
agents knew that a lone dissenter had repeatedly opposed a growing majority (and the optimal
strategy for earlier uninformed agents is to follow the minority), then their optimal decision would
be obvious and very different to the current environment. What is important here is that later
agents don’t have this information. Thus, the prospect of a repeatedly ignored lone dissenter is
overwhelmed by the probability that the dissenter was the most recent agent, and subsequent
agents prefer to follow the apparently wise minority.
This result for ever increasing majorities — for histories (1,m) — can be readily verified from

the arguments above for history (1, 3). For m > 3 there is again only one possible path for each
history, and again the dissenter must be the final agent in state ω0 and the first agent in state ω1.
Note, however, that as minority choice applies at (1, 2), (1, 3), and so on, there must be at least
(m− 1) informed agents in state ω1 but only one informed agent in state ω0. The probabilities
of reaching (1,m), conditional on each state, are therefore generalizations of Equations (1a) and
(1b) and are as follows.

Pr {1,m | ω0} =
1

2
(1− p)m p

Pr {1,m | ω1} =
1

4
(1− p) (1 + p) pm−1.

As p < 1
2
, Pr {ω0 | 1, 3} > Pr {ω1 | 1, 3} implies Pr {ω0 | 1,m} > Pr {ω1 | 1,m} and minority

choice persists. Therefore, if an uninformed agent is prepared to follow a lone dissenter in
a population of size four, it is optimal for an uninformed agent to follow a lone dissenter in
populations of arbitrary size. In fact, the ratio of probabilities, Pr {1,m | ω0} /Pr {1,m | ω1}, is
increasing in m and the relative wisdom of the minority is increasing in the size of the opposing
majority.

3.2 Larger Minorities

Somewhat surprisingly, our analysis implies that not only may a lone dissenter be wiser than
a majority, but that the dissenter’s relative wisdom is increasing in the size of the opposing
majority. In this section we show that wise minorities are not restricted to lone dissenters, but
rather can arise for minorities of arbitrary size. The relative wisdom does, however, weaken
as the minority grows and, ultimately, breaks down. Thus, for a fixed proportion of informed
agents, a history must be reached such that following the majority is the optimal strategy.
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We illustrate the rationale behind these possibilities for minorities of size three. The calcu-
lations are similar for all opposing majorities but, as with minorities of size one, a distinction
exists between whether the majority exceeds the minority by one or more (history (1, 2) relative
to histories (1,m)). We begin, therefore, with history (3, 4) and assume minority wisdom has
obtained for all minorities up to three. Figure 3 describes the paths that lead to such a history
under each state of the world.
The wisdom of the minority at history (1, 2) depended on both the number of paths under

state ω0 relative to state ω1 and the number of informed versus uninformed agents. The same
logic applies here for a larger minority, although the argument is weakened. This can be seen
firstly be looking at the requirement for the first informed agent. Under either state, all paths
must originate in an initial incorrect choice by an uninformed agent, followed shortly afterwards
by the correct choice of an informed agent who breaks thereby the prevailing unanimity. If the
correct state is ω1 this informed agent must be one of the first four agents (obviously not the first),
whereas if state ω0 is correct then an informed agent must only be one of the first five. So, as in
the case of a lone dissenter, there is one more opportunity here when the true state corresponds to
the minority than otherwise. This pattern persists but the relative advantage diminishes: more
generally, if the history is (m0,m1) = (m,m+ 1), then, under ω0, the probability of breaking
from unanimity by the required points is 1− (1− p)m+1, while it is only 1− (1− p)m under ω1.
The ratio of these two probabilities tends to 1+ 1/m as p tends to 0 (indeed, recall when m = 1
that there are two paths leading to the history (1, 2) under ω0, but only one under ω1), which
itself approaches 1 as m becomes large.
Moreover, further weakening the wisdom of the minority, the path after the first informed

agent is not determinate (as is the case with a minority of 1) and, in fact, there are more paths
leading to history (3, 4) under ω1 than under ω0. This occurs as history (3, 4) under state ω1 is
more consistent with longer strings of consecutive informed agents following a tie: for instance,
from the history (2, 2), history (3, 4) can be reached in state ω0 only through (3, 3) (passing
through (3, 2) or (2, 3)), while in state ω1 there is an additional path to (3, 4) through history
(2, 4). Of course, such a path involves one more informed agent, as only such an agent would
choose action 1 at history (2, 3), but observe that this path is not the only one: moving backwards,
and excluding the path just mentioned, there are two additional paths starting from (2, 2) (each
involving two additional informed agents).
As the additional paths under state ω1 require at least one additional informed agent, this

effect, for fixed m, remains dominated by the advantage to state ω0 (more flexibility in the
location of the first informed agent), provided the proportion of informed agents is low enough.
However, asm grows, the second effect ultimately dominates the first, and for fixed p the wisdom
of the minority ultimately breaks down for some history (m,m+ 1).
As with histories (1,m), the logic for larger minorities is rather different when the majority

exceeds the minority by more than one choice. Figure 4 describes the paths for history (3, 5) under
both states. For state ω0 there is now a unique path leading to (3, 5), along which a determinate
agent, agent six, was informed and broke the prevailing, mistaken unanimity. Previous agents
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Figure 3: Paths to (3,4)

must all have been uninformed, and the type of later agents is irrelevant. Significant here is that
this history is consistent with a single informed agent. In contrast, the pattern under state ω1 is
similar to the one that obtained for history (3, 4): any given path requires at least two informed
agents, but the number of paths is large and increasing in the size of the minority, as the first
informed agent may have been one of many agents. Thus, in this case as well, minority wisdom
prevails provided p is sufficiently close to zero, but breaks down for fixed p provided the minority
size is large enough.

3.3 Minority Choice: Properties of the Optimal Strategy for p < 1
2

This section formalizes and generalizes the arguments described so far. As we have seen, for
any p < 5−√17

2
, minority choice is optimal independently of the majority size, provided only the

existing minority does not exceed one agent. A similar result holds for larger minorities, although
the required bound must be strengthened. In fact, the larger the required minority, the smaller
is the critical bound on p such that minority wisdom obtains for that minority and all smaller
minorities. If pj denotes this bound for minorities of j or smaller, so that p1 = 5−√17

2
, this means

that pj is strictly decreasing in j. In fact,

lim
j→∞

pj = 0.

Therefore, there is no p > 0 for which minority choice would be optimal, independently of both
the minority and the majority size. That is, for any p > 0, there always exists a history (m0,m1)
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Figure 4: Paths to (3,5)

at which point it is optimal to follow the majority.3 This discussion is summarized in the following
Proposition:

Proposition 1 (i) For any history, following the (nonempty) minority is optimal if the fraction
of informed agents is smaller than some upper bound that is independent of the majority size:

∀j > 0,∃pj > 0,∀p ∈ (0, pj) ,∀0 < m0 ≤ j,∀m1 > m0,α (m0,m1) = 0.

(ii) There always exist histories after which choosing with the majority is optimal:

∀p > 0,∃ (m0,m1) ,m1 > m0 > 0 such that α (m0,m1) = 1.

Proof : Part (i), which is a tedious generalization of the argument presented in the illustra-
tion, is relegated to the Appendix.
Part (ii): Suppose otherwise. That is, suppose that, for some k > 0, minority choice is

optimal: ∀m > k0 ≥ k, α (m− k0,m) = 0. In this case, if the state of nature is ω0, observe that:

Pr {m− k0,m | ω0} = 1

2
(1− p)m p,

3In fact, infinitely many such histories exist. It is not true, however, that following the majority thereafter is
necessarily optimal.
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for the only path that connects (0, 0) to (m− k0,m), conditional on state ω0 consists of a string
of m uninformed agents who all chose action 1 (the first of which chose that action at ran-
dom), immediately followed by one informed agent (the agents that then followed chose action 0
independently of their information).
Suppose now that the state of nature is ω1. For 0 ≤ j ≤ m − k0, consider the path along

which the first j agents are uninformed, all of which choosing action 0, immediately followed by
one informed agent, and then, after another arbitrary max {j − k0, 0} agents (so that the ‘band
of length k0 around the diagonal’ is reached), by as many uninformed agents as necessary to
obtain that, overall, m− k0 agents have chosen action 0 (this cannot require more than another
m+k0−j agents). When this occurs, the number of agents having chosen action 1must necessarily
be between m− 2k0 and m. Therefore, the probability of reaching (m− k0,m) following such a
path is at least

1

2
(1− p)m+k0 p2k0+1.

Since there are m− k0 possible choices for the integer j, this means that:
Pr {m− k0,m | ω1} ≥ 1

2
(m− k0) (1− p)m+k0 p2k0+1.

For fixed k0, this number may be chosen to be arbitrarily large relative to 1
2
(1− p)m p, by picking

m large enough. This implies that, for such an m,

Pr {m− k0,m | ω1} > Pr {m− k0,m | ω0} ,
so that the optimal action after such a history is action 1, yielding the desired contradiction.¥

It is easy to compute the first terms of the sequence of upper bounds {pj} recursively: p1 '
0.44, p2 ' 0.29, p3 ' 0.17, p4 ' 0.08, . . ., but a general formula appears elusive. In the proof
of the first part of the proposition, the following lower bound is shown to hold: pj > 4−j.
The breakdown of minority wisdom can arise for varying histories and does not depend on the
minority being close in size to the opposing majority. Indeed, in the proof of the proposition it is
shown that majority choice can arise even if the majority is arbitrarily larger than the minority;
that is, for arbitrarily large |m1 −m0|.
It follows immediately from Proposition 1 that following the minority is optimal, indepen-

dently of the minority size, provided that the population size does not exceed some N , as long
as p is small enough. More formally, consider the following symmetric minority choice strategy
α∗, defined by, for all agents n ≤ N :

α∗ (m0,m1) =

½
0 if m1 = 0,

1 if m0 > m1 > 1.

We have that, for p̄ := p(n−2)/2 or p̄ := p(n−1)/2 depending on the parity of n:

Corollary 1 Given N ∈ N, there exists p̄ > 0 such that, for all p < p̄, α∗ is the optimal strategy
for all agents n ≤ N .
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3.4 When Minority Wisdom Breaks Down

What can be said about the optimal strategy in general once minority wisdom breaks down?
Unfortunately, a complete characterization does not appear possible. The optimal strategy has
a complicated structure, prescribing majority choice in some circumstances and minority choice
in others. The intricacies of the optimal strategy are illustrated by example in Figure 5 (where
the arrow direction represents the optimal choice at a particular history and two arrows reflects
indifference).
Despite the complexity, some approximate regularity does emerge. Figures 6 and 7 depict

several features of choice when p = 1/20 and 100 agents have chosen. Figure 6 shows the optimal
strategy for the 101st agent if uninformed (where the value represented is the probability of
choosing action 1). As can be seen, minority choice has broken down (Corollary 1 no longer
applies) and for two minority sizes it is optimal for an uninformed agent to follow the majority.
This pattern (which appears generally in computations) shows that when the minority choice
strategy α∗ breaks down, the optimality of following the minority does not disappear altogether
but remains rather pervasive.
Figure 7 depicts the distribution of market shares (represented by possible histories (m0,m1))

after 100 agents have chosen and when the state is ω0. As the densities cover a wide range, the
depiction has been replicated in two panels with different scales. The probability that m1 ≤ 50
is 0.765; therefore, after 100 agents have chosen, there is approximately a 1

4
probability that the

minority is wiser than the majority.
Although minority choice draws market shares towards 1

2
, several histories are reached with

significant probability (the six points discernible from zero in the left panel). The boundary
history, m1 = 0 (corresponding to history (100, 0)), is easy to comprehend. The five internal
histories are less easy to interpret, although they appear to indicate that the breakdown of
minority choice is not inconsequential. Rather, the optimal strategy produces paths through the
choice sequence that “collect” a significant fraction of histories. The second panel of Figure 7
reflects the pattern that one may expect from minority choice: that the probability of a particular
history is greater the closer the market shares are to being equal. If the scale is contracted further
then a similar pattern emerges for histories where m1 is less than 50.
The distribution displays a fascinating pattern. “Jumps” in the density appear precisely

at states where the optimal strategy switches from one action to another. That is, the three
points appearing for minority sizes m1 < 50 (including the case m1 = 0), whose probability
are significant enough to be discerned on the left panel are precisely the three values of m1 for
which it is optimal to follow the majority. The same observation applies to the case m1 > 50.
For those states m1 < 50 for which following the minority is optimal, their probability increases
geometrically as m1 increases (roughly by a factor 103 from m1 to m1 + 1, with the exception of
the crossing of one of the points where majority choice is optimal), ranging from a probability
of the order 10−129 for m1 = 1 to the order 1/100 for m1 = 49. When m1 > 50, at points where
minority choice is optimal, the probability decreases smoothly, with a downward jump at each
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Figure 5: Optimal strategy for uninformed agents (p = 1/4)
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Figure 6: Optimal action of an uninformed agent at (100−m1,m1) as a function ofm1, p = 1/20
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Figure 7: Probability under state ω0 of history (100−m1,m1) as a function of m1, p = 1/20

exceptional point, as can be observed from the right panel.

4 p > 1
2 : Wise Majorities?

We have so far established that minority wisdom always occurs after some history when p < 1/2
(in particular, after the histories (1, 2) and (2, 1)), and indeed, after infinitely many histories
provided p < p1. In this section we consider the alternative case in which p > 1

2
, so that agents

begin by following the majority should histories (1, 2) or (2, 1) be reached. This presages a
dramatic change in the optimal strategy. Surprisingly, despite an expectation that a majority of
agents are informed (and, therefore, choosing correctly), it is not always the case that following
a majority is optimal. To gain some insight into this case, let us return to the simple example.
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Figure 8: Paths Under Majority Choice

4.1 An Illustration: Following the Majority at (1, 2)

Since p > 1/2, we already know that majority choice is optimal after history (1, 2) (i.e., α (1, 2) =
1). Figure 8 depicts possible paths for state ω0 if majorities are always followed (the paths for
state ω1 are a simple reflection of these). It will be useful to compute Pr {2, 2 | ω0} and
Pr {1, 3 | ω0}. Under ω0, history (2, 2) cannot be reached from history (2, 1) , since majority
choice at (2, 1) implies that history (3, 1) necessarily follows, whether the fourth agent is informed
or not. Therefore,

Pr {2, 2 | ω0} = Pr {1, 2 | ω0} · p = 3

4
p2 (1− p)2 .

To understand this, observe that, at history (1, 2), only an informed agent would choose action
0. The formula for Pr {1, 2 | ω0} has been derived in Section 3. Consider now history (1, 3)
under state ω0. Either the previous history was (0, 3), in which case the last agent was informed
(and all prior agents were not), or it was (1, 2), in which case the last agent must have been
uninformed and rationally have chosen the majority action. Therefore:

Pr {1, 3 | ω0} = Pr {0, 3 | ω0} · p+Pr {1, 2 | ω0} · (1− p) = 5

8
p (1− p)3 .

Observe that Pr {2, 2 | ω0} < Pr {1, 3 | ω0} if and only if p < 5/8. That is, for such p, a tie is
less likely than a mistaken majority, conditional on state ω0. This may appear surprising. To
understand this, recall that majority choice is optimal at (1, 2) and (2, 1). Under majority choice,
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if the majority happens to be right, it can only grow from that point on. Conversely, if a history
produces a tie, truth must have been with the minority in the previous period, and the last
agent must have been informed. If an uninformed agent had come along instead, the mistaken
majority would have grown even larger. Thus, if p is close to 1/2, it is hardly more likely to
reach a tie from that point on, than to reach a history along which the mistaken majority exceeds
the minority by two (these two events are equally likely if p = 1/2). But the latter history can
be reached by other paths as well: for instance, it can be reached by a path in which the last
agent was informed. Therefore, if p is close enough to 1/2, the history (1, 3) is more likely than
history (1, 2) (under ω0). Regardless of this relationship, however, trivial calculations show that
majority choice is also optimal at histories (1, 3) and (3, 1), provided that p ≥ 1/2.
Why then does all this matter? Consider now history (2, 3) under states ω0 and ω1 respec-

tively. First,

Pr {2, 3 | ω0} = Pr {1, 3 | ω0} · p+Pr {2, 2 | ω0} 1− p
2
,

since either the previous history was (1, 3) and the last agent was informed (for an uninformed
agent would have followed the majority), or the previous history was (2, 2) , and the last player
was an uninformed agent who happened to make the wrong choice. Second,

Pr {2, 3 | ω1} = Pr {2, 2 | ω1}
µ
p+

1− p
2

¶
,

as the history (2, 3) cannot be reached from history (1, 3) if the state is ω1, but it can be reached
from history (2, 2) if either the last agent was informed or uninformed but lucky.
Since Pr {2, 2 | ω0} = Pr {2, 2 | ω1} , it follows immediately that:

Pr {2, 3 | ω1} > Pr {2, 3 | ω0}⇔ Pr {2, 2 | ω0} > Pr {1, 3 | ω0} ,

that is, majority choice is optimal after history (2, 3) if and only if p > 5/8. If p ∈ (1/2, 5/8), it
is now majority choice that breaks down!

4.2 Majority Choice: Properties of the Optimal Strategy for p > 1
2

The reader presumably sees a parallel with the case p < 1/2: for p < 1/2, minority choice is
optimal for the first agents, but not, once large populations are considered, for some sufficiently
large minorities (the lower p, the larger the necessary minority). For p > 1/2, majority choice is
optimal for the first agents, but not necessarily, once large populations are considered, for some
(as it turns out) sufficiently large minorities (the larger p, the larger the necessary minority).
However, as we will see, this analogy has its limitations, as this is only valid as long as p is below
some upper bound. For p sufficiently large, majority choice is optimal, no matter how large
the population and no matter how small the majority. To be more formal, define the majority
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choice strategy as the (symmetric) strategy that necessarily mimics the choice of the majority:
α∗∗ (m0,m1) = 0 if and only if m0 > m1.
Under majority choice, the history follows a random walk that is rather simple (as depicted in

Figure 8). If, for example, the true state is ω0, a strict majority for action 0 acts as an absorbing
barrier: if action 0 achieves a majority at any point then all subsequent agents, both informed
and uninformed, follow and choose action 0. In contrast, if a strict majority exists for action 1
then subsequent agents choose actions dependent on their information: informed agents follow
the minority and choose action 0, and uninformed agents choose action 1. Matters are hardly
more complicated at a tie. Therefore, as most agents are informed, a strict majority for action 0
obtains eventually. Using these properties of choice sequences in combination with the literature
on random walks, the following rather striking conclusion emerges.

Proposition 2 The majority choice strategy is optimal if and only if p ≥ 7/9.

Proof : Under the majority choice strategy, it is possible to describe quite explicitly the
conditional probabilities of the various histories. Namely,

Pr {m0,m1 | ω0} =
m0+1X
r=1

2−r
m1 −m0 + r − 1
m1 +m0 − r + 1

µ
m1 +m0 − r + 1
m0 − r + 1

¶
pm0 (1− p)m1 , m1 > m0,

Pr {m,m | ω0} = Pr {m− 1,m | ω0} ,
Pr {m0,m1 | ω0} = 1 + p

2
Pr {m1,m1 | ω0} , m1 < m0,

The first formula follows from the formula for the number N (m0,m1) of paths going from (0, 0)
to (m0,m1) touching exactly r times the horizontal axis without ever crossing it (see Mohanty
(1979), formula (4.9)):

N (m0,m1) =
m1 −m0 + r − 1
m1 +m0 − r + 1

µ
m1 +m0 − r + 1
m0 − r + 1

¶
.

The other two formulas are obvious. Trite computations show that, for n ∈ 2N:

Pr {m,m | ω0}
pm (1− p)m =

C (2; 2m)

22m
:=

2m−1X
r=0

(−1)r 2−rC2m−1−r + (−1)2m 2−2m,

where Cn =
¡
2n
n

¢
/ (n+ 1) is the Catalan number (C (2;n) is known as a generalized Catalan

number).
Let p (m0,m1) = Pr {m0,m1 | ω0}. For p ≥ 3/4, the probability p (m0,m1) is non-increasing

in m1, for m1 > m0. To see this, observe that p (m0,m1 + 1), p (m0,m1) are given by the
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aforementioned summations, and consider the ratio of the corresponding summands:

N (m0,m1 + 1)

N (m0,m1)
(1− p) ≤ 1

4

N (m0,m1 + 1)

N (m0,m1)

=
1

4

m1 + 1− (m0 + 1− r)
m1 − (m0 + 1− r)

m1 + (m0 + 1− r)
m1 + 1

≤ 1

4

r + 1

r

2m0 + 2− r
m0 + 2

≤ 1
4
4 = 1,

where the second inequality follows by observing that the expression is decreasing in m1, and
the last one from the fact that the expression is decreasing in r ≤ m0 + 1.
It follows that majority choice is optimal provided that:

Pr {(m+ 1,m) | ω0} > Pr {(m,m+ 1) | ω0} .
We will show that this inequality holds for all m if and only if p ≥ 7/9. The previous inequality
is equivalent to:

C (2;n+ 1)− C (2;n)
2C (2;n)

≤ p

1− p,

for n := 2m. As can be readily verified, C (2;n+ 1) /C (2;n) is increasing in n and bounded,
and converges therefore to some limit l. It is clear, from the definition of C (2;n), that:

C (2;n+ 1) + C (2;n) = 2n+1Cn, and thus also

C (2;n+ 2)− C (2;n) = 2n+2Cn+1 − 2n+1Cn.
>From the identity:

C (2;n+ 2)− C (2;n+ 1)
C (2;n+ 1)

=
C (2;n+ 2)− C (2;n)

C (2;n+ 1)
− C (2;n+ 1)− C (2;n)

C (2;n)

C (2;n)

C (2;n+ 1)
,

it follows that:

l = lim
n

C (2;n+ 2)− C (2;n)
C (2;n+ 1) + C (2;n)

= lim
n

2n+2Cn+1 − 2n+1Cn
2n+1Cn

= 2 lim
n

Cn+1
Cn
− 1 = 2 lim

n

µ
4− 6

n+ 2

¶
− 1 = 7.

Hence,
C (2;n+ 1)− C (2;n)

2C (2;n)
≤ p

1− p∀n⇔ p ≥ p̄ := 7/9.

It is clear that the optimal action given some event (m0,m1) only depends on the optimal actions
at all events (m0

0,m
0
1) for m

0
1 < m1, and m0

0 ≤ m0. It follows that there are thresholds pi such
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that the majority rule is optimal as long as the minority does not exceed i, provided p ≥ pi. The
threshold pi is increasing in i and tends to p̄ as n→∞. ¥

The optimal strategy for p ≥ 7
9
is, therefore, straightforward. For p ∈ ¡1

2
, 7
9

¢
, however, the

optimal strategy (once majority choice breaks down) is complicated and irregular, as is the case
for p < 1

2
.

5 Efficiency

Although minority choice allows undesirable herds to be avoided, it does not aggregate informa-
tion efficiently over time as it runs into the fundamental problem that to be effective it must
ultimately stop. If minority choice were always optimal, and informed agents were rare (p < 1

2
),

then provided only the first agent made an incorrect choice the tally would tend to oscillate
around a tie, with larger departures from ties being caused by strings of informed agents, eventu-
ally cancelled out by the larger numbers of uninformed agents that, choosing with the minority,
would cause a reversion to a tie. The optimal strategy would, in effect, jam the signals of prior
agents.
But we already know that minority choice must break down, sooner or later, independently

of the value of p. The question of efficiency becomes therefore nontrivial. What is the limit of
the expected fraction of agents who choose correctly, as the number of agents grows large? Given
the optimal strategy, define Xn as the random variable that corresponds to the choice of the nth
agent: Xn = 0 if he chooses 0, Xn = 1 otherwise. Define also:

Sn :=
nX
i=1

Xn and Mn := Sn/n.

The optimal strategy is asymptotically efficient if limn→∞E [Mn | ω0] = 0, where E [·] denotes
expectations. [Since it is symmetric, this also implies that limn→∞ E [Mn | ω1] = 1.] A strategy
is efficient if it minimizes E [Mn | ω0] and E [1−Mn | ω1], for all n (we could have equivalently
stated this definition in terms of Sn rather thanMn). At first glance, it may not be obvious that
there exists a strategy that simultaneously minimizes the expected number of incorrect decisions
for all population sizes. For example, why wouldn’t it be in the collective interest to have a
group of early agents choose against their own interest for the sake of avoiding signal-jamming?
It is nevertheless the case that efficient strategies exist. One of them is described in the proof of
the following result, based on an application of the welfare improvement principle (see Banerjee
and Fudenberg (2004), Smith and Sørensen (1999)).

Proposition 3 The optimal strategy is asymptotically efficient, but not efficient.

Proof : Consider the probability that agent nmakes the incorrect decision (before he observes
his private signal) if he follows the strategy of either following his informative signal, if the case
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occurs, or mimicking one of his predecessors at random. [The optimal strategy is the one that
minimizes this probability.] While this is not a particularly bright strategy, it nevertheless
guarantees that this probability does not exceed:

qn = (1− p)
Pn−1

j=1 qj

n− 1 ,

where qj denotes the corresponding probability for agent j, with the understanding that q1 =
(1− p) /2. [Of course, qj is an upper bound on the probability agent j < n takes an incorrect
decision, since agent j follows the optimal strategy.] Solving, we get, for all n:

qn =
1− p
2

n−1Y
j=1

µ
1− p

j

¶
.

Taking logarithms, the convergence of this sequence is equivalent to the divergence of the series
ln (1− p/n), which follows from the divergence of the series −p/n.
Thus, the probability of an incorrect decision tends to 0 along any path. One efficient strategy

is: “choose action 0 until at least one agent has chosen action 1 so far” (obviously, there is
another one, where the role of 0 and 1 are exchanged). Of course, informed agents follow their
information. The argument is rather simple. Consider any agent n, uninformed. If one or more
of his predecessors are informed, he is sure to choose the correct action (since either the correct
action is 1, and therefore someone has chosen 1 before, so agent n chooses 1; or the correct
action is 0, in which case nobody has chosen 1, and agent n chooses 0 as well). If none of his
predecessors is informed, then indeed, both actions are equally good, and 0 is optimal. For n
agents, the expected number of agents taking the incorrect action under the efficient strategy is:

S∗n =
1− p
2p

(1− (1− p)n) ,

which tends to (1− p) / (2p).
So the total expected number of agents taking an incorrect action is finite under the efficient

strategy. The equilibrium strategy is not efficient, because, in some circumstances, while the
deciding agent knows that at least one of his predecessors was informed, he is not able to infer
what this information was. For instance, if the fourth agent observes two choices for 1 and one
choice for 0 — which implies that at least one agent was informed — it could be that the sequence
was (1, 0, 1), with the second agent being informed of state 0, or it could be that the sequence
was (0, 1, 1), in which case the second agent was informed of state 1.
This implies that, among the first three agents, the expected number of agents choosing in-

correctly for, say, p = 1/5, is 126/125 > 1, while under the efficient strategy, only 122/125 < 1
choose incorrectly. (Suboptimality also obtains for larger p: for p = 8/9, the numbers are 95/1458
and 91/1458, respectively.) ¥
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While the optimal strategy is not efficient — in fact, for small p, the expected number of
agents taking an incorrect action is larger than under an efficient strategy by a factor that is
(arbitrarily?) large — it appears to be the case, from all numerical calculations that we made, that
the expected number of incorrect decisions remains bounded, for any p > 0. [Clearly, there exists
sample paths for which the number of incorrect decisions is arbitrarily large.] This conjecture
is easily proven for the case p > 1

2
, but we have not been able to establish it otherwise.4 As

mentioned in the proof of the previous result, this limit is finite for any efficient procedure.
However, the proportional sampling scheme used there to prove that E [Mn | ω0] tends to zero
under the equilibrium strategy does not yield that E [Sn | ω0] converges. To the contrary, under
this sampling scheme, this number diverges, as is readily verified. The next figure illustrates this
discussion (where S∗n represents the efficient strategy and Sn the optimal strategy).
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Figure 9: Expected number of incorrect decisions, (i) p = 1/3 and (ii) p = 2/3

6 Discussion

6.1 The tie-breaking rule

The structure of the optimal strategy is sensitive to the tie-breaking rule that is adopted. The
qualitative features of the optimal strategy obtain for any tie-breaking rule, as long as agents
that are indifferent do not systematically choose a pure action. For instance, if indifferent agents
systematically choose action 0, then the optimal strategy is the efficient strategy described above:
as soon as an agent chooses action 1, all his followers do the same (on the equilibrium path),
otherwise uninformed agents choose action 0. Since this strategy is efficient, why shouldn’t agents
use this tie-breaking rule rather than the symmetric one we have used?

4If p > 1/2, observe that, by following the majority decision, the nth agent can secure a probability of
error not exceeding (1− p) qdn/2e, where qj is the jth agent’s probability of error under that method, and dxe
is the smallest integer no smaller than x. This implies that the sum of probabilities of errors does not exceedP∞
j=1

1−p
2 2

j (1− p)j = (1− p)2 / (2p− 1), which is indeed finite.

23



What matters for our results is not that agents randomize, but that they are unsure how
uninformed agents decide when they face a tie. There are two obvious reasons for why such
uncertainty is plausible. First, we have assumed that preferences are common knowledge. Second,
we have assumed that less informed agents are completely uninformed. If either assumption fails,
as is the case if, for instance, an agent’s utility has an idiosyncratic component, no matter how
small, that is private information, or if less informed agents receive noisy, but neither completely
uninformative nor perfectly correlated signals, the necessary uncertainty would obtain.
Therefore, we view our model as a simplification of a richer model in which agents have

different preferences and are neither perfectly informed nor uninformed. The results of such a
richer model are described in the following subsections. Simple calculations, as in Section 3,
show that minority choice arises in these broader environments. Rather than repeat the tedious
detail, we take the opportunity at several points to instead focus on optimal behavior further
down the decision sequence, showing patterns of behavior for the 101st agent.

6.2 Differentially informed agents

Suppose now that some agents simply receive a better signal than others and that all agents are
potentially informed. That is, conditional on the state, a more informed agent receives the correct
signal with probability q, while a less informed agents receive the correct signal with probability
r, where 1/2 ≤ r ≤ q ≤ 1. How does the optimal strategy vary with our three parameters: p, q,
and r? While we are unable to provide a symbolic characterization for arbitrary histories, the
actual computations can be carried out for any set of specific values.
The extreme case of homogeneous agents is standard. If q = r, the optimal strategy of an

agent who receives a signal in favor of 1 is as follows: α (m0,m1) = 0 if m0 > m1 + 1, = 1
2
if

m0 = m1 + 1, and = 1 otherwise. In particular, it is independent of the quality of the signal.
So majority choice is optimal in this case, at least when the majority exceeds the minority by
more than one. The reasoning is familiar. The first agent chooses according to his signal. The
second, knowing this, is indifferent if his signal is opposed to the first agent’s choice (he then
randomizes), and chooses according to his signal otherwise. Informational cascades can take
place from agent three onwards: if the first two agents picked the same action, the third agent
ignores his signal and follows the majority. Otherwise, he follows his signal. Etc. Heterogeneity
is therefore a necessary ingredient of our results.
Turn now to heterogeneous, although not necessarily extreme, signals and consider the opti-

mal strategy of the agent who comes in position 101, with a signal of accuracy r that is in favor
of state ω1. Suppose, as before, that informed agents are perfectly informed (q = 1). How does
his action vary, as a function of m1, the number of agents who have chosen action 1 so far? This
depends on the value of r, the quality of his signal; Figure 10 illustrates this effect for several
values of r (where, as before, the value represented is the probability of choosing action 1; note
that for r 6= 1

2
the figures need not be symmetric as less informed agents now possess private

information). The case of r = 1/2, in which the agent’s signal is uninformative, is that consid-
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ered previously and following the minority choice is generally optimal, with only two exceptions
(see panel 1 of the figure). As can be seen from the remaining panels, minority choice is less
frequent for larger values of r, but it does persist. These findings establish two conclusions: that
uninformed agents are not necessary for minority wisdom to arise, and that the relative wisdom
of a minority can be significant (and sufficient to overcome a private signal of 4

5
accuracy).
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Figure 10: Optimal strategy of a less informed agent with a signal in favor of 1, as a function of
m1, m0 +m1 = 100, p = 1/20, q = 1, (i) r = 1/2, (ii) r = 3/5 and (iii) r = 4/5

Figure 11 shows how the 101st agent’s decision varies with the fraction of better informed
agents, still assuming that better informed agents are perfectly informed, and setting r, the
accuracy of less informed agents, to 3/5. The effect of a higher p seems to be to increase the
“volatility” of his decision: when very few agents are likely to be perfectly informed, he follows the
minority and goes against his own signal, unless this minority is large enough. As the expected
fraction of informed agents increases, the agent appears more likely to choose with the majority,
although a significant amount of minority choice persists and his decision becomes very sensitive
to the specific size of the majority.
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Figure 11: Optimal strategy of a less informed agent with a signal in favor of 1, as a function of
m1, m0 +m1 = 100, q = 1, r = 3/5, (i) p = 1/50, (ii) p = 1/20 and (iii) p = 1/2

Finally, Figure 12 illustrates the effect of increasing the quality of the information received
by the more informed agents. Setting q = r is again the traditional model and majority choice
prevails (except when outweighed by private information). The effect for q > r seems to be what
one would expect given previous results: the higher the quality of information available to better
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informed agents, the more likely it is that minority choice is optimal. These figures also establish
that unbounded private signals are not necessary for minority wisdom to arise.
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Figure 12: Optimal strategy of a less informed agent with a signal in favor of 1, as a function of
m1, m0 +m1 = 100, p = 1/20, r = 3/5, (i) q = 7/10, (ii) q = 9/10 and (iii) q = 1

The quality of information available to agents can be indexed by σ = pq + (1− p) r. Fixing
n and two out of the three parameters p, q and r, one can verify numerically that increasing
the quality of information, as measured by the third parameter, tends to decrease the expected
number of mistakes.5 Holding σ fixed, it is also the case that increasing the spread between the
quality of the signals received by well-informed and less informed agents is socially beneficial, as
it tends to decrease the expected number of mistakes as well.

6.3 Continuous Beliefs

The calculations of the previous examples depend on the restriction to two signals, although the
logic of the results do not. The possibility for wise minorities arises even with a continuum of
signals and beliefs with full support. For example, suppose that each agent gets an independent
draw t from some distribution f with support

£
1
2
, 1
¤
; the agent is informed of the realized value

of t and then given a signal of the state of the world that is correct with probability t ≥ 1
2
, and

incorrect with probability 1− t ≤ 1
2
. Let the density of f be given by

f (t;α, p) = 2 (1 + α) ((1− p) (2 (1− t))α + p (2t− 1)α) ,
where α ≥ 1 and 0 ≤ p ≤ 1. This density covers a broad array of possibilities: for α = 1 and
p = 1

2
it corresponds to the uniform distribution, and when α→∞, f converges to the baseline

model of the current paper with two point support
©
1
2
, 1
ª
and respective mass 1 − p and p.

Roughly speaking, α describes the convexity of the density (convexity is increasing in α), and q
in this context represents “tilt,” where lower p puts more weight on uninformative signals and
values of p near one puts more weight on informative signals (and so p’s role here is analogous
to that in the baseline two signal model).

5It is possible to find pairs of values (sufficiently close to each other) that violate the monotonicity, but these
counterexamples are essentially driven by integer problems.
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Smith and Sørensen (1997) study the uniform case and find that minority wisdom does
not arise, thereby proving that heterogeneity of signals is not sufficient for minority wisdom.
Examining agent beliefs at history (2, 1), it can be shown that the minority is wiser than the
majority for sufficiently small p and large α; that is, as in the binary case, if agents are more
likely to receive relatively inaccurate signals and sufficient mass is toward the extremes of the
distribution (both informed and uninformed).6 Thus, sufficient variance of beliefs is necessary
for the decisions of a minority to convey more information than those of the majority. The left
panel of Figure 13 depicts for the 4th agent the likelihood ratio of the two states given the history
(2, 1) as p and α vary. Of most interest is the size of this ratio relative to one as, modulo his
private signal, the agent wishes to follow the minority if the ratio is greater than one, and the
majority otherwise; for ease of visualization, this sign is depicted in the right panel of the figure,
where a value of one corresponds to a likelihood ratio greater than one and a value of negative
one corresponds to a value less than one.
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Figure 13: (i) Likelihood ratio Pr{(2,1)|ω1}
Pr{(2,1)|ω0} , and (ii) the sign of its value relative to one.

Notable in the right panel is the non-monotonicity in p of agent 4’s optimal response for some
values of α. In the baseline binary signal model, the probability of breaking unanimity at any
point, conditional on these choices being for the wrong state, is always the same and equal to
p, the probability that an agent is informed. With continuous beliefs this property no longer
holds and it is decreasingly likely that unanimity is broken as the number of previous choices

6One may be interested in the condition that delineates the domain of minority wisdom. An intriguing
conjecture by Peter Norman Sørensen is that log-concavity of the log likelihood ratio (of the distribution of
unconditional beliefs) is sufficient to rule out wise minorities. Numerical verification of the distribution considered
here establishes that log-concavity fails for all values of α larger than one. Thus, Sørensen’s conjecture is not
disproved by our calculations and remains open.
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Figure 14: Optimal strategy of an uninformed agent, as a function of m1, m0 +m1 = 100, p =
1/20, (i) no partisans, (ii) 10% partisans for each decision, (iii) 10% partisans for action 1, none
for action 0

increases. Consequently, although lower p means that the path to (2, 1) through (1, 1) conveys
less information in favor of the majority, it also implies that this path is relatively more likely
than that through (2, 0) (which conveys information in favor of the minority). These dual forces
interact in such a way that the wisdom of the minority may not be monotonic in p.

6.4 Partisans

Let us return to the case in which signals are either perfectly informative, or not informative at
all, and suppose that some agents are partisans: that is, they have a preference for one of the
actions, so that it is a dominant strategy for them to choose that action independently of the
history that precedes. Whether a player is a partisan or not is private information, and each
agent has a positive, commonly known, probability of being partisan, which is independent of
the state of nature and of the history. We shall now refer to an uninformed agent as one that
is neither partisan nor informed. Partisanship introduces yet another source of uncertainty for
uninformed agents, who must account for the possibility that some decisions may not have been
taken on the basis of direct or indirect evidence, but simply because of the agent’s preferences.
We illustrate in Figure 14, for some specific parameters, how the existence of such partisans
affects an uninformed agent’s decision, for the cases in which partisans are equally likely to
choose one or the other decision, and in which there are only partisans for decision 1.
Introducing partisans has a strong impact on the decision of uninformed agents. A minority

need not be the expression of the few informed agents any longer. Rather, it may bring together
those agents who favor the action against which all evidence pleads. Indeed, as can be observed
from the case in which both types of partisans exist, while minority choice still persists, it can
now be found only for sufficiently large minorities. In aggregate, however, the optimal strategy
appears to be at least as complex as in the case without any partisans.
If partisans are all expected to choose action 1 (case (iii)), then the effect on behavior is

even more dramatic: in almost every contingency, the uninformed agent prefers to choose action
0. In fact, this behavior balances out the presence of partisans. Under state ω0, the expected
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number of agents who choose action 1, among the first hundred agents, is 20.97 in the absence of
partisans (for the parameter values used in Figure 14). With partisans on either side (case (ii)),
this number almost doubles to 40.77. That is, partisans mist the inference problem, and out
of the eighty or so non-partisans, more than thirty take the incorrect decision. If all partisans
favor action 1 (case (iii)), this expected number goes down to 21.45, which means that, among
the ninety or so non-partisans, hardly more than ten got it wrong!7 The benefit is not without
a corresponding cost, however, which arises in state ω1 when the expected number of agents to
choose action 1 is only 64.59 and more than 35 agents take the incorrect action. It would seem,
therefore, that partisans are useful for information aggregation only when they are wrong.
The inclusion of one-sided partisans introduces an effect not dissimilar to that within the

efficient strategy of Section 4, although asymmetrically and less effectively. The assumption
that 10% of agents are partisans for action 1 makes it more likely that the first agent chooses
action 1 rather than action 0, thereby making later observations of action 0 more informative.
That is, as agents expect early agents to choose 1, any choice of action 0 most likely reflects an
informed decision worthy of imitation (as there are no action 0 partisans). On the other hand,
and unlike in the efficient strategy, uninformed agents may choose action 0 even in state ω1. By
the preceding logic, this induces later uninformed agents to follow with action 0, perpetuating
an incorrect herd that otherwise may have been overcome in the absence of action 1 partisans.

7 Conclusion

Although becoming a prominent topic of economic research only in the past decade and a half,
social learning has long concerned thinkers from a variety of fields. Indeed, the question of mi-
nority wisdom that is at the heart of the current paper was addressed insightfully by Kierkegaard
in the 19th century:

“Truth always rests with the minority, and the minority is always stronger than
the majority, because the minority is generally formed by those who really have an
opinion, while the strength of a majority is illusory, formed by the gangs who have no
opinion and who, therefore, in the next instant (when it is evident that the minority
is the stronger) assume its opinion . . . while Truth again reverts to a new minority.”
— Søren Kierkegaard (1813-1855).

Although it is likely that Kierkegaard did not have a specific model in mind (if any at all),
we show here that he grasped a degree of truth. Key to our results is the assumption that
agents are unaware of the sequence in which previous decisions were made. To infer the private
information of others, therefore, agents must first draw inferences about what previous agents
knew when making their decisions. This decision problem, when combined with differentially

7In case (i), among the first ninety agents, the expected number making the incorrect decision is 19.71.
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informed agents, not only leads to different behavior than would otherwise arise, but induces the
unexpected situation in which the minority is more likely than the majority to be right.
The model we analyze is far from capturing real decision environments although the main

findings appear robust to simple generalizations. The possibility that sequence matters to in-
dividual behavior suggests that more study is needed of how history affects behavior and the
informativeness of aggregate statistics. The opportunities are broad for application of these ideas,
both in the laboratory and in the field.
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Appendix:

Proof of Proposition 1, part (i): The following remarks will prove useful in the argument.
Remark 1: The problem is obviously symmetric: if one action is optimal when m1 out of n

agents have taken action 1 so far, then the other action is optimal when n−m1 out of n agents
have taken that action so far. Formally:

α (m0,m1) = 1− α (m1,m0) .

Remark 2: Let Pr {ωi | m0,m1} denote the probability that the state is ωi ∈ Ω, given that
mi agents have taken action i = 0, 1, and let Pr {m0,m1 | ωi} denote the probability that mi

agents take action i, given state ωi ∈ Ω (conditional, of course, onm0+m1 agents exactly having
chosen). It follows from Bayes rule that:

Pr {ωi | m0,m1} =
Pr {m0,m1 | ωi}Pr {ωi}

Pr {m0,m1 | ω0}Pr {ω0}+Pr {m0,m1 | ω1}Pr {ω1}
=

Pr {m0,m1 | ωi}
Pr {m0,m1 | ω0}+Pr {m0,m1 | ω1} .

Therefore,

Pr {ω0 | m0,m1} > Pr {ω1 | m0,m1}⇔ Pr {m0,m1 | ω0} > Pr {m0,m1 | ω1} .
The advantage of working with the probabilities Pr {m0,m1 | ωi} is that they obey simple recur-
sions, namely:

Pr {m0,m1 | ω0} = Pr {m0,m1 − 1 | ω0} · (1− p)α (m0,m1 − 1)
+Pr {m0 − 1,m1 | ω0} · (p+ (1− p) (1− α (m0 − 1,m1))) ,

Pr {m0,m1 | ω1} = Pr {m0,m1 − 1 | ω1} · (p+ (1− p)α (m0,m1 − 1))
+Pr {m0 − 1,m1 | ω1} · (1− p) (1− α (m0 − 1,m1)) ,

with boundary condition Pr {0, 0 | ωi} = 1 ∀ωi ∈ Ω.
The general argument is by induction, assuming that it holds for m1 ≤ M − 1, and proving

it holds then for m1 =M as well, for p ≤ 4−M . For m1 = 1, it was established in Section 3 that
the conclusion obtains provided p ≤ ¡5−√17¢ /2. Conditional on state ω0, if 1 out of n agents
have taken action 1, no more than 2 agents among the n agents could have been uninformed.
Suppose now that the proposition holds for all m ≤ M − 1, as well as the following claim,

valid for m = 1: conditional on state ω0, if m ≤ M − 1 out of n agents have taken action 1
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(where m and n satisfy the assumptions of Proposition 1), then no more than 2m agents, out
of these n agents, could have been uninformed. We establish these two claims for m = M by
induction on the number of agents, n. Suppose that n = 2M +1 (the smallest number of agents
that must be considered given the assumptions of Proposition 1). For the second claim, we must
show that no more than 2M were uninformed, that is, at least one agent was informed. This,
however, is obvious, since unanimity would obtain if all agents were uninformed. For the first
claim, observe that:

Pr {M + 1,M | ω1} = 1− p
2

Pr {M,M | ω1}+Pr {M + 1,M − 1 | ω1} .

To see this, observe that either M out of the first 2M agents had taken action 1, in which case,
conditional on state 1, only an uninformed agent could take action 0 (furthermore, only with
probability 1

2
), orM−1 out of the first 2M agents had done so, in which case, even an uninformed

would have taken action 1 (by the induction hypothesis on M). Similarly:

Pr {M + 1,M | ω0} =
µ
1− p
2

+ p

¶
Pr {M,M | ω0}+ (1− p) Pr {M + 1,M − 1 | ω0} .

Therefore:

Pr {M + 1,M | ω1} > Pr {M + 1,M | ω0}
⇐⇒

Pr {M + 1,M − 1 | ω1} > pPr {M,M | ω0}+ (1− p) Pr {M + 1,M − 1 | ω0} ,
since Pr {M,M | ωi} is independent of i. Observe that, ifM out of 2M agents have taken action
1, at least one of them must have been informed. And if M − 1 out of 2M agents have taken
action 1, then, as no more than 2 (M − 1) could have been uninformed, at least two of them
must have been informed. Therefore:

pPr {M,M | ω0}+ (1− p) Pr {M + 1,M − 1 | ω0}
≤ p

X
i≥1

µ
2M − 1
i

¶
1

2
pi (1− p)2M−i + (1− p)

X
i≥2

µ
2M − 1
i

¶
1

2
pi (1− p)2M−i

<
1

2
p2 (1− p)2M−1 4M ,

as long as p < 1/2. [The fact that the first agent to act must have been uninformed has been
used in the binomial coefficient.] In addition:

Pr {M + 1,M − 1 | ω1} = 1

2
p (1− p)M−1 .

Therefore, the desired inequality holds for p ≤ 4−M .
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Suppose now that both claims hold for some n ≥ 2M + 1, and suppose that M out of n+ 1
agents have taken action 1. As for the second claim, either M − 1 out of the first n agents had
taken action 1, in which case no more than 2 (M − 1) + 1 < 2M out of the n + 1 agents can
be uninformed, or M out of the first n agents had taken action 1. In that case, however, the
(n+ 1)th agent must have been informed, as, by the induction hypothesis, an uninformed agent
would have taken action 1. Therefore, in this case as well, no more than 2M out of the first n+1
agents can be uninformed. In state ω0 at least M agents are informed; therefore:

Pr {n+ 1−M,M | ω0} <
X
i≤2M

µ
n

i

¶
1

2
(1− p)i pn+1−i.

Observe also that:
Pr {n+ 1−M,M | ω1} = 1

2
p (1− p)n+1−M .

A sufficient condition to establish Pr {n+ 1−M,M | ω1} > Pr {n+ 1−M,M | ω0} is, there-
fore,

1

2
p (1− p)n+1−M ≥ (1− p)

2M

2
pn+1−2M2n,

which reduces to:
1 ≥ pn−2M (1− p)3M−(n+1) 2n.

The right-hand side is decreasing in n for p ≤ 4−M ; and for n = 2M +2 (the smallest value), the
right-hand side is bounded by:

p2 (1− p)M−3 22M+2 ≤ 4−M+1 (1− p)M−3 < 1.

The result follows. ¥
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