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Abstract The common property problem, first analyzed in the context of overfishing (Gor-
don, 1954), is ubiquitous: independent tax authorities will overtax the same base (Berkowitz
and Li, 2000), and independent researchers will exert excessive effort to make the same
breakthrough (Wright, 1983). We propose a “Partnership Solution” to this common prop-
erty problem. Each of n players maximizes his payoff by joining a partnership in the first
stage and by choosing his effort at the second stage. Under the rules of a partnership,
each member must pay his own cost of effort but receives an equal share of the partner-
ship’s revenue. The incentive to free ride created by such partnerships can be beneficial
since it naturally offsets the incentive to exert excessive effort inherent in common property
problems. In our two-stage game, this institutional arrangement can, under specified cir-
cumstances, induce socially optimal effort in a subgame-perfect equilibrium: no one has a
unilateral incentive (1) to switch partnerships (or create a new partnership) in the first stage
or (2) to deviate from socially optimal effort in the second stage. Not all consequences of
partnerships are so benign. Cartel members can use partnerships to solve their “problem”
of excessive output so as to achieve monopoly profits; infinitely-repeated interactions are
unnecessary. Service professionals frequently organize themselves into such partnerships
as do plywood producers and crews on fishing vessels. In Japan, crews of different fish-
ing vessels sometimes form partnerships to share their revenues (Platteau and Seki, 2000),
reportedly for the reasons we analyze.
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1 Introduction

If N individuals independently exploit a common property resource, aggregate effort will

be excessive because of congestion externalities. If, on the other hand, everyone must

share the fruits of his labor equally with the other N − 1 individuals, aggregate effort will

be insufficient because of free-riding. Each of these two extremes is a special case of the

following arrangement: players partitioned into partnerships simultaneously choose effort

levels, with each partnership’s share of aggregate revenue equal to its share of aggregate

effort and every member of each partnership required to share equally with his colleagues

the gross revenue he brings in. In the first of the extremes above, there are N “solo”

partnerships while in the second, there is 1 “grand” partnership to which all N individuals

belong.

Since too little effort occurs when there is 1 partnership and too much effort occurs when

there are N partnerships, one might expect that aggregate effort increases with the number

of partnerships. We verify this conjecture analytically and Schott et. al. (2005 ) verify it

experimentally. Socially optimal effort can, therefore, be induced (or approximated if there

are integer problems) by dividing the N players exogenously into an intermediate number

of partnerships in such a way that each agent’s tendency to work too hard is exactly offset

by his tendency to free ride. We refer to this as the “Partnership Solution.”1

In reality, of course, the Partnership Solution is viable if and only if a person assigned

to a given group has no incentive to switch to some other partnership (pre-existing or new).

We refer to such partnerships as “stable.” We investigate the stability of the Partnership
1While Kandel and Lazear (1992) emphasized that the free-riding inherent in partnerships is a problem

to be overcome, Schott(2001) was the first to recognize that, in the context of common property, free-riding
may be part of the solution. In particular, he introduced the idea of grouping users of a common-property
resource into an optimal number of independent output-sharing partnerships. He did not investigate the
stability of these partnerships nor did he show that partnerships can also solve the cartel’s problem of
excessive output.
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Solution in a two-stage game where partnerships are formed at the first stage and effort is

chosen simultaneously at the second stage. Whether a partnership is stable or not turns out

to depend on the advantages of team production over solo production. This follows since

the principal source of first-stage instability is going into business for oneself.

Since common-property problems are ubiquitous, our Partnership Solution has many

potential applications. While environmental problems (overfishing, excessive hunting, ex-

cessive pumping of water or oil) come immediately to mind, common-property problems

arise in other situations as well. When many researchers independently work to make the

same discovery, there is excessive research effort due to the negative externalities that each

researcher imposes on the others. If researchers were grouped into stable “research part-

nerships” and paid a share of revenues rather than a wage, the problem of excessive effort

could be attenuated much as it is on fishing vessels where the entire crew shares the catch.2

Similarly, when many tax authorities independently tax the same base, there is excessive

taxation due to the negative externalities that each imposes on the others. If tax authori-

ties grouped themselves into stable partnerships and had to share what they collected while

bearing their own collection costs, the problem of excessive taxation could be resolved.3

Indeed our Partnership Solution applies to other collective action problems besides the

common-property problem—some of which we might prefer to leave unsolved. Consider a

homogeneous cartel which operates over a finite horizon under complete information. Under

such circumstances, Cournot profits are predicted to occur in every period since any scheme

to collect higher profits would unravel from the end. But if the firms in an industry were

partitioned into stable partnerships (a common form of organization within some service
2Wright (1983), among others, has shown that competition to make a discovery results in excessive

research activity due to a congestion externality “equivalent to that noted by H. Scott Gordon (1954) with
respect to fishing.” Wright (p. 694) credits Usher (1964) as the first to note the equivalence between these
two problems but lists many contributors to the literature on inventive activity who have emphasized its
common-property aspect.

3In their analysis of multiple tax authorities in Russia, Berkowitz and Li (2000) point out that the tax
base is a common property resource and the excessive taxation is a “tragedy of the commons.”
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industries) enough free-riding could be induced within each partnership to elevate industry

profits to the monopoly level without any need for complex, history-dependent strategies

over an unbounded horizon. This would be one potential explanation for the existence of

the partnership as an organizational form.

A more benign explanation for partnerships has recently been advanced by Levin and

Tadelis (2004). They show that a firm’s choice to organize as a partnership instead of

a corporation can reassure consumers unable to observe the quality of a service prior to

purchase that a firm’s employees are of high quality. To isolate this effect, they assume that

members of the applicant pool differ in their intrinsic quality; as a simplification, Levin and

Tadelis assume that each individual works equally hard in any organizational environment

regardless of the incentives he faces. While their elegant model clearly captures one reason

why firms choose to organize as partnerships, it cannot explain why fishermen share their

catch, why plywood employees (Craig and Pencavel, 1992) share their revenues, or why

wait-staff share their tips.

The motives of the fishermen of Toyama Bay who for nearly half a century have formed

groups which pool their revenues (net of some costs) has been investigated empirically in

two fascinating articles by Platteau, Seki, and Carpenter (Platteau and Seki (2000) and

Carpenter and Seki (2004)). Since 1992, the fishermen have divided into 5 partnerships:

the crews of seven vessels have constituted one partnership, the crews of two vessels have

constituted a second partnership, and the crews of each of the remaining three vessels

have constituted the other three partnerships (each sharing the catch of its own vessel).

As Plateau and Seki (2000) emphasize, these fishermen are relatively homogeneous: they

come from the same region, use the same technology to catch the same prey (Japanese

glass shrimp or “shiroebi”) and market it through the same cooperative. To identify the

benefits they derive from partnerships, Platteau and Seki interviewed the skippers of the

12 boats and, when feasible, used more objective measures to validate their responses. It
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turns out that partnerships are not formed for insurance purposes: “The most prominent

result emerging from this exercise is certainly the fact that stabilization of incomes was

not mentioned a single time by the 12 skippers interviewed.” Instead, the main motive is

to reduce congestion: “The desire to avoid the various costs of crowding while operating

in attractive fishing spots appears as the main reason stated by Japanese fishermen for

adopting pooling arrangements.” The fishermen also mentioned that by sharing catch and

reducing excessive effort, they can obtain higher prices: “Fishermen believe that by limiting

effort they can cause fish prices to rise.” Statistical analysis of price data confirmed this

effect. These shiroebi fishermen are hardly unique. There were 147 such fishing groups in

Japan that engaged in some form of pooling as of the census of 1988.

Our goal is to identify the circumstances when such partnership solutions would be

(1) advantageous to participants and (2) stable. To do so, we assume that each worker

chooses his effort level to maximize his payoff and hence responds to effort incentives. As

a simplification, appropriate in the case of the Toyama Bay fishermen, we assume that

workers are homogeneous. This pair of assumptions provides a useful complement to Levin-

Tadelis’s analysis, which assumes instead no response to effort incentives but heterogeneity.4

Our analysis should be of interest both to regulators attempting to solve common-property

problems and to anti-trust authorities trying to thwart collusion.

We proceed as follows. In Section 2, we introduce our notation, define the goal of socially

optimal effort, and discuss the determinants of equilibrium effort in the second-stage of our

game. In Section 3, we provide conditions sufficient for the Partnership Solution to be

stable. Section 4 generalizes the analysis to account for situations where some costs are

shared and where agents have market power; it also shows how partnerships can be used to

improve everyone’s payoff even when they cannot attain the first-best. Section 5 concludes
4Also see Farrell and Scotchmer (1988) for other examples of partnerships and an analysis of partnerships

using cooperative game theory.
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the paper.

2 Decentralization in a Two-Stage Partnership Game

To begin, we define the notation that will be used throughout this paper.

mi = number of members of group i

xik= effort level of agent k in group i

Y −k
i = aggregate effort level of members of group i other than agent k

X−i= aggregate effort of other groups

X = total effort level (sum of all agents’ efforts)

f(X) = aggregate production function

c = constant marginal cost of effort

n = number of groups

N = total number of agents

A(·) = f(X)
X = average product

x̄ik = (xi+Y −k
i )

mi
= mean effort level in group i

Until Section 4, we make the assumption standard in the common-property literature that

the price of output is a constant (normalized to unity). In addition, we assume that (1)

A(X) is bounded, strictly positive, strictly decreasing, and twice continuously differentiable;

(2) A(0) − c > 0; and (3) the Novshek (1985) condition, A′(X) + XA′′(X) < 0, holds for

all X ≥ 0.

Socially optimal effort (X∗ = argmax X(A(X) − c)) must satisfy the following first-

order condition:
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A(X∗) + X∗A′(X∗)− c = 0. (1)

Since the Novshek condition holds, X∗ is unique. This aggregate effort level is the goal we

seek to achieve by decentralization through our Partnership Solution.

In the first stage of our two-stage game, agents choose a partnership to which to belong.

Let n ≤ N denote the number of distinct groups specified by the agents and index these

groups i = 1, . . . , n. Then, in the second stage, agents simultaneously choose their effort

after observing each agent’s choice of group.5 To verify that the partnership solution is

subgame-perfect, we must show that it forms a Nash equilibrium in every subgame. We

approach this through backwards induction, considering the problem of effort choice first.

2.1 Equilibrium Effort Choice in Second-Stage Subgames

Consider second-period subgames in which individuals grouped into partnerships simulta-

neously choose their effort levels.

An individual in group i would choose his own effort level (xik) taking as given the

aggregate effort level of his colleagues in partnership i (Y −k
i =

∑
l 6=k xil) as well as the

aggregate effort levels of the other partnerships (X−i). Hence, he would maximize

πik = Max
xik

{
1

mi

[
xik + Y −k

i

xik + Y −k
i + X−i

]
· f(xik + Y −k

i + X−i)− cxik

}
,

where mi is the number of partners in his group.This is equivalent to maximizing:

miπik =
(
xik + Y −k

i

)
·A

(
xik + Y −k

i + X−i

)
−micxik. (2)

5The assumption that agents observe the composition of their partnership before exerting effort seems
plausible; however, it is not innocuous. If effort choices had to be made without observing the partnership
partition, then there would be no pure-strategy Nash Equilibria.
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To find the best response of member k in partnership i, we differentiate the objective

function (2) with respect to xik and substitute X = xik + Y −k
i + X−i to arrive at the

following N first-order conditions:

A (X) +
(
xik + Y −k

i

)
·A′ (X)− cmi = 0 for i = 1, . . . , n and k = 1, . . . ,mi. (3)

Each first-order condition in (3) clarifies why player i reduces his effort in a multiperson

partnership compared to his effort operating solo, for unchanged effort of the other N − 1

players. There are two effects, each of which leads him to reduce his effort: the “internaliza-

tion effect” and the “diversion-of-benefits effect.” First, since in a multiperson partnership,

player i receives a share of the receipts generated by his partners, he would refrain from

imposing as large a negative externality on them as he would if he operated solo. That

is, the first factor in the second term is larger by Y −k
i than it would be if he operated

solo. This “internalization effect” would induce him to reduce his effort in a multiperson

partnership even if c = 0 but the effect would disappear if under the rules of the partnership

he received nothing from his partners. Second, since in a multiperson partnership, player i

must relinquish a share of the benefits of his effort but must pay the full cost of generating

them, he would reduce his effort. That is, the second factor in the last term is mi > 1

times as large as it would be if he were operating solo. This “diversion-of-benefits effect”

would persist even if his partners were not, like him, required to share their own benefits

but would disappear if c = 0.

The N =
∑n

i=1 mi first-order conditions in (3) plus the two equations defining Y −k
i and

X in terms of the individual effort levels (xik) determine the N effort levels and these two
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aggregates.6 Rewriting the first factor of the second term in terms of x̄i gives us:

A (X) + mix̄i ·A′ (X)− cmi = 0, for i = 1, . . . , n. (4)

These n equations plus the equation X =
∑n

i=1 mix̄i uniquely determine the n mean effort

levels {x̄i}n
i=1 and X. We can solve (4) for x̄i, the mean effort level in group i:

x̄i =
(

1
−A′(X)

) (
A(X)
mi

− c

)
. (5)

2.2 Partnership Effects on Effort Choice

If partnerships of different sizes form at the first stage, then their mean effort levels will

differ at the second stage. In particular,

Proposition 1 In any equilibrium, strictly larger groups have strictly smaller mean effort

levels.

Proof: As (5) reflects, the strictly positive mean effort level at the ith partnership can
be represented as the product of two positive factors. The second factor will be smaller at
a partnership with a larger number of members (mi) while the first factor will be the same
for all the partnerships. Hence, the larger the partnership the smaller the mean effort.�

Intuitively, the larger the group, the more free-riding occurs within it.

Next we verify that aggregate effort in the second-stage depends only on the number (n)

of groups formed at the first stage and not on the distribution of agents among the different

groups:
6In this model, aggregate effort within each partnership is uniquely determined but individual effort

within each partnership is indeterminate. To understand why, consider any solution to the N + 2 first-order
conditions. If the effort within any partnership is reassigned internally without affecting the partnership’s
aggregate effort, then each of these N + 2 equations still holds. Intuitively, such a reassignment does not
affect anyone’s marginal incentives to alter his effort unilaterally. An expansion in effort still has the same
marginal cost (c) and, since it still has the same effect on the total effort of the group and the same effect
on the aggregate effort of all groups, it has the same marginal benefit as before the reassignment.
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Proposition 2 Aggregate effort (X) in the second stage depends only on the number of

groups formed in the first stage and not on the size of those groups.

Proof: Adding together the n first-order conditions in (4), we obtain the following condi-
tion:7

nA(X) + XA′(X)− cN = 0. (6)

Thus aggregate effort (X) induced in the Nash equilibria of second-stage subgames depends
only on the number of groups formed at the first stage and not on the specific partition. �

A monotonic relationship exists between the number of partnerships formed at the first

stage and the aggregate effort expended at the second stage.

Proposition 3 The larger the number of groups formed at the first stage, the larger the

aggregate effort level at the second stage.

Proof: Differentiating (6) implicitly, we obtain:

dX

dn
=

A(X)
−[(n + 1)A′(X) + XA′′(X)]

> 0,

where the inequality follows from A(X) > 0, A′(X) < 0, and the Novshek condition.�

Since aggregate effort in our game is a continuous function of the number of groups formed

at the first stage and since n = 1 induces too little aggregate effort and n = N generates too

much, some unique intermediate number of groups will (if we provisionally ignore integer

constraints) induce the socially optimal level of effort at the second stage. We can find this

number by plugging X∗ into (6) and then solving for n∗.

Proposition 4 If n∗ = c(N−1)
A(X∗) + 1 groups form at the first stage, then the aggregate effort

chosen in the Nash equilibrium of the second stage will be socially optimal.
7Our proposition reinterprets the result in Bergstrom and Varian (1985) that, in an interior equilibrium

of a Cournot oligopoly model with constant marginal costs, aggregate output depends only on the sum of
the marginal costs.
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Proof: Substitute n∗ = c(N−1)
A(X∗) + 1 and X∗ into (6). This gives us:(
c(N − 1)
A(X∗)

+ 1
)

A(X∗) + X∗A′(X∗)− cN = 0.

Simplifying, we obtain:

A(X∗) + X∗A′(X∗)− c = 0

which is the same as (1), the condition defining X∗.�

Proposition 4 implies that whenever c = 0, the social optimum is achieved by putting

everyone in a single partnership (n = 1). For suppose everyone is in a single partnership

and exerting an N th of the optimal aggregate effort. If any individual varied his effort in

either direction, his costs would remain zero, the revenues that he contributes to the pool

would change but the revenues his partners would contribute to the pool would change

by an exactly offsetting amount (since there could be no first-order change in aggregate

producer surplus). The individual would, therefore, have no incentive to deviate.

Contrast this with the case where c > 0. In that case, the social optimum cannot be

supported by putting everyone in a single partnership since this same individual would

now have a strict incentive to decrease his effort; for contracting effort would lower his

costs without any first-order change in his gross revenues. As illustrated below, when

c > 0 the social optimum is achieved with more than one partnership. For then, if an

individual unilaterally increases his effort the revenues obtained by his own partnership

must strictly increase (exactly offsetting the revenue decrease experienced by each of the

other partnerships) by enough that his share of his partnership’s gain exactly offsets his

additional cost.

To illustrate, suppose that N = 12 players earn their livelihood working in an activity

plagued by a congestion externality. Assume aggregate production (and hence aggregate

revenue) is f(X) = 19X −X2, where X represents aggregate effort. Suppose that the cost

per unit of effort is c = 3. It is straightforward to see that the socially optimal effort level
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is X∗ = 8. Since N = 12, then Proposition 4 implies that:

n∗ =
3(11)
19− 8

+ 1 = 4.

That is, if the 12 players divide into 4 partnerships, then the resulting aggregate effort will

be socially optimal. If n∗ is not an integer, the Partnership Solution can only approximate

the maximum social surplus.8 Henceforth, we assume that n∗ is an integer.

3 Equilibrium Partnership Choice in the First Stage

To implement the Partnership Solution, consider the following two-step procedure:

1. Step 1

Partition the N players into n∗ groups in such a way that no two groups differ in size

by more than one member.9

2. Step 2

Recommend that every player observe the number of groups which form at the first

stage, use (6) to compute the aggregate effort expected in the second stage, and then

set his own effort level equal to the mean effort of his group as given in (4).

No player would have an incentive to deviate unilaterally from the recommendation in

Step 2 since he would anticipate that the others are making the recommended efforts then
8Suppose in the previous example that N = 8 instead. As before, X∗ = 8 but now n∗ = 32

11
= 2.91.

There are two possible integer solutions, n = 2 or n = 3. If n = 3, then we find that X = 8.25 which yields
a social product of 63.94, while if n = 2 then X = 4.67 and the social product is 52.89. So n = 3 is optimal
given the integer constraint. Setting n = 3 allows society to obtain 99.9% of the maximal social product,
while only 40% can be achieved under the common property solution (where n = N).

9This can always be done. We simply compute the number of members in the smallest group by taking
the largest integer, Q ≤ N

n∗ . If N
n∗ is an integer, then all groups will have Q members. If N

n∗ is not an integer,
there will be a remainder of R < n∗ people left over, each of whom can be assigned to a different group.
There will then be n∗ − R groups, each with Q members, and R groups, each with Q + 1 members. For a
concrete analogy to dealing playing cards sequentially, see footnote 13.
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and these recommendations form a Nash equilibrium.

But does any agent have an incentive to deviate in the first stage from the partnership

to which he is assigned given that he anticipates sharing the workload of that partnership

equally at the second stage? If not, we will have established one way to implement the

Partnership Solution. If so, we will have established that the Partnership Solution cannot

be implemented. For, in that case, the Partnership Solution also can not be implemented

with partners making asymmetric efforts.10

Deviations at the first stage fall into two categories: (1) an agent can abandon the

colleagues in his prescribed group for the members of some other group or (2) he can

abandon his prescribed group to go into business for himself. As the following proposition

shows, the first type of deviation is never advantageous.

Proposition 5 If groups differ in size by at most one member, then no one can strictly

improve his payoff by joining another group.

Proof: First note that, from Proposition 2, a deviation which maintains the number of
groups formed at the first stage will not alter aggregate effort (X∗) exerted at the second
stage. Second, assuming homogeneous effort within groups (as discussed above), note that
the payoff to each player in group i (πi) is:11

πi = x̄i(A(X∗)− c). (7)

This is strictly increasing in x̄i since A(X∗) − c > 0. Each member’s payoff is larger in
groups with a larger mean level of effort. Proposition 1 tells us that a group with a smaller
number of members will have a larger mean effort since its smaller size will discourage

10Consider a partition of the players into k partnerships. This uniquely determines the aggregate effort
level of every partnership and hence the gross revenue of the members of each partnership. An individual
in partnership i will receive t he same gross revenue no matter how aggregate efforts are distributed within
any of the k partnerships. However, his payoff equals the common gross revenue of his partnership less his
own effort cost. Hence, if effort were reallocated within his partnership so that he undertook more than his
share, he would have a stronger incentive to deviate.

11To see this, begin with the objective function (2) and see that, if player k makes effort xik in a group
with mean effort x̄i when aggregate effort is X, then his payoff is: πik = x̄iA(X)− cxik.

13



free-riding. Hence, the only way to strictly increase one’s payoff by defecting to another
group is to switch to a group which, even after the defector is added, is strictly smaller than
his original group. But there are no such opportunities to increase one’s payoff if groups
initially differ in size by at most one member.�

Consider the second type of deviation: an agent deviates to form a new, singleton,

group. Whether this is profitable or not depends upon the disadvantage of solo produc-

tion compared to team production. The literature on the theory of the firm identifies the

disadvantages of organizing multi-agent firms. Such firms are rife with incentive problems

to which single-agent firms are immune. But, since multi-agent firms abound, there must

be a countervailing advantage to such arrangements—individuals working in teams must

be able to produce more output per man-hour than those working alone.12 Following the

literature on team production, therefore, we assume that a team can produce more than

an individual working by himself the same number of man-hours; in extreme cases, a team

may be necessary in order to produce at all.

Suppose that to duplicate the efforts of 1 man-hour of team effort, a single individual

must work 1/β hours, for β ∈ (0, 1]. Then, if we continue to express effort in man-hours of

team effort, the marginal cost of effort for an individual working alone would be 1
β c.

Partition the N players into n groups in such a way that no two groups differ in size by

more than 1 member. For any n there is a unique partition that satisfies this restriction.13

In the case where some partnerships are one member larger than others, these larger part-

nerships will generate more free-riding in the equilibrium of the second stage (Proposition

1). Anticipating lower payoffs in the second stage, every member of a larger partnership

would have a stronger incentive to deviate to a solo partnership at the first stage. Let
12Alchian and Demsetz (1972) were the first to emphasize the importance of team production in the theory

of the multi-person firm and their insights have now percolated down to undergraduate treatments of that
theory. For an extensive discussion, consult the textbooks by Eaton et. al (Chapter 19, 2002) and Campbell
(Chapter 2.5, 1995).

13One might visualize dealing out N agents sequentially (as if they were cards in a deck) to each of n
partnerships until all N agents had been dealt out. At most, some partnerships would have one more agent
than other partnerships.
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g(n, β) denote the gain a member of a larger partnership would achieve by setting up his

own partnership. If g(n, β) ≤ 0 then he has no incentive to deviate and a fortiori neither

does any member of a smaller partnership; hence the partition under consideration is stable.

If, however, g(n, β) > 0 then he has an incentive to deviate and the partition under con-

sideration is unstable. By analyzing properties of the g(·, ·) function, we show below that

for any n, including n∗, there is a unique β(n) ∈ (0, 1] such that the Partnership Solution

is stable for all β ≤ β(n).

3.1 Team Production is Essential (β = 0)

In many applications, “it takes two workers to perform a given task” (Holmstrom and

Tirole, p. 67). That is, solo production is infeasible. For example, no matter how hard a

person works he/she cannot catch a whale by himself; nor can he/she stay awake every day

and night of his medical career to help patients with their medical emergencies. In other

applications deviating to solo groups may be illegal since many partnership agreements

contain ‘non-compete’ clauses which prevent an individual, when leaving a partnership,

from competing in the same market as the group he is leaving.14

Whenever solo production is infeasible, g(n, 0) < 0 and we can conclude:

Proposition 6 When solo production is infeasible, the Partnership Solution solves the

common-property problem.

Proof: As we have verified, no unilateral deviation to an existing partnership is strictly
advantageous to any agent. Moreover, since g(n, 0) < 0, no deviation to a solo partnership
is profitable for any n, including n∗. �

14Various courts have upheld such clauses, including the Georgia Supreme Court in Rash v. Toccoa Clinic
Med. Assoc., 253 Ga. 322, 320 S.E.2d 170 (1984).
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3.2 Solo Production Is Feasible (β ∈ (0, 1])

If solo partnerships are legal and feasible, we must investigate further. Social welfare can

never be maximized as long as any solo partnership is involved. For, if there are any solo

partnerships, then even if in equilibrium optimal effort (X∗) results, the cost of achieving

it will strictly exceed cX∗, which a planner could achieve just by assembling a team of all

N players and commanding that level of effort. So we assume that n = 1, 2, . . . , bN/2c

partnerships, where bZc denotes the greatest integer less than or equal to Z. For example,

if N = 15, there are at most b15/2c = 7 partnerships: six with two members and one with

three members.

Equation (6) implicitly defines the aggregate effort which would result from n part-

nerships, each of which has two or more members. Denote the aggregate effort implicitly

defined by this equation as X(n). If X(bN/2c) ≥ X∗, then the Partnership Solution can

potentially achieve the first best by generating more free riding and thereby bringing effort

down toward X∗.

Denote the payoff of a potential deviator, prior to his deviation, as πC and his payoff

after going solo as πD. πC is independent of β. A partner who deviates, therefore, gains

g(n, β) = πD−πC . His gain from going solo, his effort, everyone else’s effort, and aggregate

effort, will depend on the parameter β. Define β such that for any β > β, the deviator going

solo would make strictly positive effort while for any smaller β he would make zero effort.

When β ∈ [0, β], the deviator would receive a zero payoff (πD = 0) following his deviation.

Hence, g(n, β) = g(n, 0) = −πC < 0 for any β ∈ [0, β]. When β ∈ (β, 1] the consequences

of one agent’s going solo are described by the four variables πD, X, X−1, and x̄1 which are

defined by equations (8)-(11) below, where for simplicity we assign the index “1” to the

deviator’s solo partnership (and therefore denote his effort as x̄1 and the aggregate effort of

all others as X−1):
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πD = x̄1(A(X)− c

β
) (8)

A(X) + x̄1A
′(X)− c

β
= 0 (9)

nA(X) + X−1A
′(X)− (N − 1)c = 0 (10)

x̄1 + X−1 = X. (11)

Equation (10) is obtained by adding up the first-order conditions of the n original partner-

ships after effort levels have adjusted in response to the deviation.

Proposition 7 g(n, β) is a continuous function of β for any β in (β, 1).

Proof: Since πC is independent of β, it is sufficient to show that πD is continuous in β. Use
(11) to eliminate X from (8)-(10). Equation (10) does not involve β. Given the Novshek
condition, (n + 1)A′ + X−1A

′′ 6= 0; therefore, the implicit function theorem insures that,
in a neighborhood of any solution (x̄1, X−1, X) induced by β ∈ (β, 1) we can write (10) as

X−1 = f(x̄1) where f(·) is a continuous function with derivative f ′ = − nA′+X−1A′′

(n+1)A′+X−1A′′ ∈
(−1, 0). Equation (9) does involve β. Replace X−1 in this equation by f(x̄1). Given the
Novshek condition and A′ < 0, (1+f ′)(A′+ x̄1A

′′)+A′ 6= 0; therefore, the implicit function
theorem insures that we can write (9) locally as x̄1 = h(β) for some continuous function
h(·) with derivative h′ = − c/β2

A′+(1+f ′)(A′+x1A′′) > 0. Substituting both of these continuous
functions into (8), we obtain:

πD(β) = h(β) [A (h(β) + f(h(β)))− c/β] .

Since A(·) is continuous and since sums, products, and compositions of continuous func-
tions are continuous, πD is a continuous function of β in a neighborhood of any solution
(x̄1, X−1, X) induced by β ∈ (β, 1). Given this conclusion, there can be no β ∈ (β, 1) where
πD is discontinuous. It follows that g(n, β) is continuous for β in the open interval (β, 1).
�

Since g(n, β) = πD(β)−πC , we can differentiate to obtain the partial derivative, gβ(n, β)

anywhere in the open interval:

Proposition 8 gβ(n, β) > 0 for any β in (β, 1).
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Proof: Since x̄1 > 0 for any β in (β, 1), h(β) > 0. Recall that A′ < 0. Differentiating our
expression for g(n, β) and using (9) to simplify (an application of the envelope theorem) we
conclude that:

gβ(n, β) = h′[A + hA′ − c/β] + h[A′f ′h′ + c/β2] = h[A′f ′h′ + c/β2] > 0

for any β in (β, 1).�

We have shown that g(n, β) is continuous and strictly increasing in β in the open interval

(β, 1) and g(n, β) = −πC for β ∈ [0, β]. The following lemma establishes that there is no

discontinuity at the boundary β = β.

Lemma 1 The function g(n, β) is continuous in β at the point β.

Proof: Since g(n, β) = −πC for β ∈ [0, β], it suffices to verify that limβ↓β g(n, β) =
limβ↓β(πD − πC) = −πC . But this follows from (8) since limβ↓β x̄1 = 0 and A is bounded.
�

We can therefore, conclude:

Proposition 9 If the partition indexed by n is stable for some β, then it is stable for all

smaller β.

Proof: This follows from Proposition 8. �

We now use the results above to prove the existence and uniqueness of a ‘threshold’

β(n) which separates stable from unstable partitions.

Proposition 10 For any n ≤ bN/2c, there exists a unique β(n) ∈ (β, 1] such that for any

β < β(n), the partition indexed by n can be supported as a subgame-perfect equilibrium,

while for β > β(n) the partition can never be supported.

Proof: For any given n, suppose that at β = 1, g ≤ 0. Then that partition can be
supported as an subgame-perfect equilibrium for any β ∈ (0, 1] and we can define β(n) = 1.
Now suppose that at β = 1, g > 0. Then by continuity (Proposition 7), there will exist one
or more roots, β ∈ (0, 1), such that g(n, β) = 0. Denote any root as β(n). Uniqueness of
β(n) then follows since g is strictly increasing (Proposition 8).�
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This makes precise the intuitive notion that the socially optimal partnership partition

is stable if team production is “sufficiently advantageous”: β needs to be smaller than

β(n∗). Alternatively, for any given β, β(n) also defines partnership partitions which are

stable:{n : β(n) ≤ β}.

Is the Partnership Solution always stable even when team production confers no ad-

vantage whatsoever(β = 1)? A single counterexample suffices to eliminate this possibility.

Recall the example introduced at the outset where N = 12 producers in an industry, each

with constant marginal cost of c = 3, face an inverse demand curve of P = 19 − X and

attempt to achieve monopoly profits by dividing into n = 4 partnerships of equal size. It

is easily verified that for any β ≤ .39, full monopoly profits ($64) can be achieved, but for

β > .39 the configuration of four partnerships is unstable. There remains the possibility

that for at least some example satisfying our assumptions, the partnership solution is stable

even in the absence of advantages to team production. This seems unlikely since, in general,

a partition with fewer than n∗ partnerships can never be stable.15

4 Generalizations

Until now, we have assumed that no costs were shared within a partnership. We have also

assumed that no individual or partnership has the power to change the price of output. We

now relax both assumptions by reinterpreting our previous analysis. In addition, we show
15When β = 1, n < n∗ is never stable. Recall that the only partitions we need consider are those where

partnerships differ by at most one member and where effort is shared equally among the partners. Pick
a partnership and designate someone as a potential deviator. Before going solo, he would earn exactly
the same payoff as everyone else in his partnership; after going solo, he would earn at least as much as
his ex-partner(s) since he would eliminate free-riding and β = 1. If, for the sake of argument, he did not
strictly benefit from going solo then (1) the payoff of his ex-partners would likewise not increase and (2) the
payoff of everyone else must strictly decrease. But then the sum of the payoffs would strictly decrease which
contradicts the fact that the aggregate profit function is increasing in the number of partnerships to the left
of n∗. An analogous argument establishes the strict profitability (when β = 1) of a “marginal” deviation
in the neighborhood of n∗ partnerships. See our earlier working paper: Heintzelman, Salant, and Schott
(2004).
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how partnerships can be valuable as a way to increase payoffs even when the first-best is

unattainable.

Suppose we partition N homogeneous agents into n payoff-sharing groups indexed by

i, each playing a simultaneous-move game. Assume agent k in group i chooses xik to

maximize 1
mi

[
xik + Y −k

i

]
·G(xik + Y −k

i + X−i)− cxik. If we make the same assumptions

about G(X) that we made about A(X) then we will get the corresponding results. So assume

that (1) G(X) is strictly positive, strictly decreasing, and twice continuously differentiable;

(2) G(0) − c > 0; and (3) the Novshek (1985) condition, G′(X) + XG′′(X) < 0, holds for

all X ≥ 0. These assumptions are sufficient to insure the existence of a pure-strategy Nash

equilibrium in the simultaneous-move game. Because G(·) is downward-sloping, there is a

negative externality: agent k is adversely affected by increases in X−i. We have derived

conditions sufficient for the aggregate payoff, X(G(X) − c), to be maximized: provided

n∗ ≤ bN/2c and β < β(n∗), the optimum can be achieved by setting up n∗ partnerships

differing in size by at most one member.

Suppose G(X) = A(X)−K, where K denotes cost per unit effort for those costs shared

within the partnership. Then the Partnership Solution maximizes producer surplus. Since

price is constant, this maximizes social welfare as well.

Next suppose G(X) = P (f(X))A(X)−K, where P (·) is the industry price when aggre-

gate output f(X) is put on the market. This generalization fits the case of the fishermen of

Toyama Bay, who share some but not all costs and who use their partnerships not merely

to curb congestion but to raise price. Again, the Partnership Solution maximizes producer

surplus.

Finally, suppose G(X) = P (X) − K, where X is now interpreted as output and K

(respectively, c) as the cost per unit output rather than effort, which is shared (respectively,

not shared) within the partnership. In this case, the Partnership Solution curbs excessive

output and permits a cartel to maximize profits without any need for supergame strategies.
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In these last two cases, producer surplus is maximized but social welfare could be increased

by raising production. To see this, note that a marginal increase in production by anyone

would have no first-order effect on producer surplus but would strictly increase consumer

surplus.

In cases where β > β(n∗), the advantages of team production are insufficient to achieve

the first-best using the Partnership Solution. In such cases, a generalization of the Partner-

ship Solution can nonetheless lead to a second-best equilibrium with a large increase in the

aggregate payoff. To illustrate, recall the example where N = 12, c = 3, and G(X) = 19−X.

In that case n∗ = 4 and β = .39. Suppose as in our earlier example that β = .56 > .39. Then

dividing the agents into four partnerships of equal size is not feasible since each member

would have an incentive to go solo. However, if the 12 agents are divided into six part-

nerships of equal size, then industry profit is $54.12—not the first-best level of $64 but

approximately triple the result in the oligopoly (or common property) solution.

5 Conclusion

In this paper, we examined the viability of the Partnership Solution to the common property

problem and showed that this proposal was also a potential solution to the problem of

organizing a cartel to achieve monopoly profits. The Japanese fishermen who have formed

partnerships to pool the revenues (and some costs) from their various vessels report that

their goal is to reduce congestion and raise price. These are, in fact, the consequences to

be expected from partnerships.

We showed that the Partnership Solution suffers from a single weakness: the tempta-

tion to flee one’s free-riding partners and go solo. Going solo is sometimes infeasible for

technological or legal reasons. Even when it is feasible, however, going solo ceases to be

as attractive when there are substantial benefits from team production or substantial fixed
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costs of setting up a private practice (office rent, support staff to handle billing and third

party reimbursement, etc.). In such circumstances, the Partnership Solution can sometimes

be used to maximize the aggregate payoff.

Throughout, we assumed that a partnership had to admit every applicant. It might have

been more realistic to assume that members of an existing partnership could deny admission

to anyone if opposition to him within the partnership was “sufficiently widespread.” This

change in assumption would in fact have increased the scope of the Partnership Solution.

For, every solution we identified as stable would continue to be stable since no one in such

solutions has any incentive to join an existing partnership even when assured of admission.

But partitions we identified as unstable under our old assumption would become stable

under this new assumption. To illustrate, suppose going solo was infeasible and we set up n∗

non-solo partnerships some of which differed by two or more members. Such an arrangement

could not achieve the first-best under our old assumption because every member of the

largest partnership would deviate unilaterally to a smaller partnership with less free-riding.

But this same arrangement would achieve the first-best under the new assumption since

admitting him would be blocked unanimously by existing members who anticipated that

expanding the number of partners would stimulate free-riding and would lower each of their

payoffs. In assuming that no applicant could be rejected by existing members, therefore,

we understated the usefulness of partnerships in solving the common-property and cartel

problems.

Our conclusions contain both good and bad news. The good news is that partnerships

can eliminate all or much of the deadweight loss associated with the common property prob-

lem. The bad news is that they can also eliminate all or much of the loss in monopoly profits

experienced by cartels. Anti-trust authorities would be well-advised to take our analysis

into account when investigating professions where firms are organized as partnerships.
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